Homology, Homotopy and Applications, vol. 13(2), 2011, pp.113-128

ON GROEBNER BASES AND IMMERSIONS OF GRASSMANN MANIFOLDS $G_{2,n}$

ZORAN Z. PETROVIĆ AND BRANISLAV I. PRVULOVIĆ

(communicated by Donald M. Davis)

Abstract

Mod 2 cohomology of the Grassmann manifold $G_{2,n}$ is a polynomial algebra modulo a certain well-known ideal. A Groebner basis for this ideal is obtained. Using this basis, some new immersion results for Grassmannians $G_{2,n}$ are established.

1. Introduction

Mod 2 cohomology of Grassmann manifolds $G_{k,n} = O(n+k)/O(n) \times O(k)$ has a rather simple description. It is the polynomial algebra on the Stiefel-Whitney classes w_1, w_2, \ldots, w_k of the canonical vector bundle γ_k over $G_{k,n}$ modulo the ideal $I_{k,n}$ generated by the dual classes $\overline{w}_{n+1}, \overline{w}_{n+2}, \ldots, \overline{w}_{n+k}$. Alas, from this description it is not at all easy to establish whether a certain cohomology class is zero or not. In [6], Monks found Groebner bases for the ideal $I_{2,n}$ in the cases $n = 2^s - 3$ and $n = 2^s - 4$. Using these bases, some new results concerning the mod 2 cohomology of $G_{2,2^s-3}$ and $G_{2,2^s-4}$ were established in that paper. Also, the author used the method of modified Postnikov towers and gave an immersion result for the spaces $G_{2,2^s-3}$ into \mathbb{R}^d . In [9], Shimkus improved this immersion result by the same method.

Motivated by these results, we have found a reduced Groebner basis for the ideal $I_{2,n}$ for all n. This result is stated in Theorem 2.7. In Corollary 2.8 we present a convenient vector space bases for $H^*(G_{2,n}; \mathbb{Z}_2)$.

Using these bases and modified Postnikov towers, in Theorem 3.11 we generalize the immersion result established in [9] and prove that $G_{2,n}$ immerses into \mathbb{R}^{4n-5} where *n* is any odd integer ≥ 7 . Our result improves upon the previously known best result (obtained by Cohen in [2]) whenever $\alpha(n) = \alpha(2n) < 5$ (where $\alpha(n)$ denotes the number of ones in the binary expansion of *n*).

The lower bounds for the immersion dimension of $G_{2,n}$ (which is defined by $\operatorname{imm}(G_{2,n}) := \min\{d \mid G_{2,n} \text{ immerses into } \mathbb{R}^d\}$) were established by Oproiu ([8]) using the method of the Stiefel-Whitney classes. For example, he has shown that $\operatorname{imm}(G_{2,2^{s-1}+1}) \ge 2^{s+1} - 2$. Our result states that $\operatorname{imm}(G_{2,2^{s-1}+1}) \le 2^{s+1} - 1$ for $s \ge 4$, so it only remains to check whether $G_{2,2^{s-1}+1}$ can be immersed into $\mathbb{R}^{2^{s+1}-2}$. One more example where the lower bound from [8] almost reaches the upper bound obtained in Theorem 3.11 is $G_{2,7}$, $22 \le \operatorname{imm}(G_{2,7}) \le 23$.

Received Jan 11, 2011, revised June 27, 2011; published on October 7, 2011.

²⁰⁰⁰ Mathematics Subject Classification: $57\mathrm{R}42,\,13\mathrm{P}10,\,55\mathrm{S}45.$

Key words and phrases: Grassmanian, Groebner basis, immersion.

Article available at http://intlpress.com/HHA/v13/n2/a8 and doi:10.4310/HHA.2011.v13.n2.a8 Copyright © 2011, International Press. Permission to copy for private use granted.

In addition to these main results, in Theorem 3.1 we use Groebner bases to give a simple proof of the previous result of Oproiu concerning lower bounds for $\operatorname{imm}(G_{2,n})$.

Acknowledgements

The authors would like to thank the referee for pointing out that they had overlooked the fact that the proof of Theorem 3.11 does not go through for n = 5.

The first author was partially supported by the Ministry of Science and Environmental Protection of Republic of Serbia Project #174032; the second author was partially supported by the Ministry of Science and Environmental Protection of Republic of Serbia Project #174034.

2. Groebner bases

For positive integer b and arbitrary integer a, the binomial coefficient is defined by $\binom{a}{b} := \frac{a(a-1)\cdots(a-b+1)}{b!}$. Also, $\binom{a}{0} := 1$. If b is a negative integer, we define $\binom{a}{b}$ to be equal to zero. Then it is easy to see that the well-known formula

$$\binom{a}{b} = \binom{a-1}{b} + \binom{a-1}{b-1} \tag{1}$$

is valid for all $a, b \in \mathbb{Z}$.

From formula (1) we deduce directly that $\binom{a}{b} + \binom{a-1}{b-1} \equiv \binom{a-1}{b} \pmod{2}$, $a, b \in \mathbb{Z}$, or equivalently $\binom{a-1}{b-1} \equiv \binom{a}{b} + \binom{a-1}{b} \pmod{2}$, $a, b \in \mathbb{Z}$.

Henceforth, all binomial coefficients are considered mod 2.

Let $G_{k,n}$ be the Grassmann manifold of unoriented k-dimensional vector subspaces in \mathbb{R}^{n+k} . It is known that the cohomology algebra $H^*(G_{k,n};\mathbb{Z}_2)$ is isomorphic to the quotient $\mathbb{Z}_2[w_1, w_2, \ldots, w_k]/I_{k,n}$ of the polynomial algebra $\mathbb{Z}_2[w_1, w_2, \ldots, w_k]$ by the ideal $I_{k,n}$ generated by polynomials $\overline{w}_{n+1}, \overline{w}_{n+2}, \ldots, \overline{w}_{n+k}$, which are obtained from the equation

$$(1 + w_1 + w_2 + \dots + w_k)(1 + \overline{w}_1 + \overline{w}_2 + \dots) = 1.$$

For k = 2 (which is the case from now on), we have

$$1 + \overline{w}_1 + \overline{w}_2 + \dots = \frac{1}{1 + w_1 + w_2}$$
$$= \sum_{t \ge 0} (w_1 + w_2)^t = \sum_{t \ge 0} \sum_{a+b=t} \binom{a+b}{a} w_1^a w_2^b$$
$$= \sum_{a,b \ge 0} \binom{a+b}{a} w_1^a w_2^b.$$

By identifying the homogenous parts of (cohomological) degree $r \ge 0$, we obtain

$$\overline{w}_r = \sum_{a+2b=r} \binom{a+b}{a} w_1^a w_2^b$$

It is understood that a and b are nonnegative integers.

We use the griex ordering on the monomials in $\mathbb{Z}_2[w_1, w_2]$ with $w_1 > w_2$. That is, $w_1^a w_2^b \preceq w_1^c w_2^d$ if either a + b < c + d or else a + b = c + d and $a \leq c$. Of course, we will write $w_1^a w_2^b \prec w_1^c w_2^d$ when $w_1^a w_2^b \preceq w_1^c w_2^d$ and $w_1^a w_2^b \neq w_1^c w_2^d$.

We shall prove that, with respect to this ordering, the reduced Groebner basis for the ideal $I_{2,n} = (\overline{w}_{n+1}, \overline{w}_{n+2})$ is of the form $G = \{g_0, g_1, \ldots, g_{n+1}\}$ where $\mathrm{LT}(g_m) = w_1^{n+1-m}w_2^m, \ 0 \leq m \leq n+1$. From this it follows immediately that a vector space basis for $H^*(G_{2,n};\mathbb{Z}_2)$ is the set of all monomials $w_1^a w_2^b$ such that $a + b \leq n$.

Let us now define the polynomials g_m $(0 \leq m \leq n+1)$.

Definition 2.1. For $0 \leq m \leq n+1$, let

$$g_m := \sum_{a+2b=n+1+m} \binom{a+b-m}{a} w_1^a w_2^b.$$

As before, it is understood that $a, b \ge 0$. Note that the (cohomological) degree of the polynomial g_m is n + 1 + m.

By comparing with the above formula for \overline{w}_r , it is obvious that $g_0 = \overline{w}_{n+1}$. Also,

$$w_2\overline{w}_n = \sum_{a+2b=n} \binom{a+b}{a} w_1^a w_2^{b+1} = \sum_{a+2b=n+2} \binom{a+b-1}{a} w_1^a w_2^b = g_1.$$

The change of variable $b \mapsto b-1$ does not affect the requirement that $b \ge 0$ since for b = 0 the binomial coefficient $\binom{a+b-1}{a} = \binom{n+1}{n+2}$ is equal to 0.

From the defining formula, one can see that b must be such that $m \leq b \leq \frac{n+1+m}{2}$. Namely, a + b - m cannot be negative since a + b - m < 0 implies $a + 2b \leq 2(a + b) < 2m \leq n + 1 + m$, contradicting the requirement that a + 2b = n + 1 + m. Now, a + b - m must be $\geq a$ in order for $\binom{a+b-m}{a}$ to be nonzero, and we conclude that $b \geq m$. The second inequality comes from the condition a + 2b = n + 1 + m. Therefore, we have

$$g_m = \sum_{b=m}^{\left[\frac{n+1+m}{2}\right]} {n+1-b \choose b-m} w_1^{n+1+m-2b} w_2^b.$$
(2)

It is obvious that the summand obtained for b = m provides the leading term $LT(g_m) = w_1^{n+1-m} w_2^m$.

In order to show that $G = \{g_0, g_1, \ldots, g_{n+1}\}$ is a Groebner basis for $I_{2,n}$, we define the ideal $I_G := (G) = (g_0, g_1, \ldots, g_{n+1})$ in $\mathbb{Z}_2[w_1, w_2]$. As we have already noticed, $\overline{w}_{n+1} = g_0 \in I_G, \ \overline{w}_{n+2} = w_1 \overline{w}_{n+1} + w_2 \overline{w}_n = w_1 g_0 + g_1 \in I_G$, so $I_{2,n} \subseteq I_G$.

It remains to prove that $I_G \subseteq I_{2,n}$ and that G is a Groebner basis. It turns out that the following proposition plays the crucial role in proving these facts.

Proposition 2.2. For each $m \in \{0, 1, ..., n-1\}$, $w_2g_m + w_1g_{m+1} = g_{m+2}$. Also, we have that $w_2g_n + w_1g_{n+1} = 0$.

Proof. We calculate

$$\begin{split} w_2 g_m + w_1 g_{m+1} \\ &= \sum_{a+2b=n+1+m} \binom{a+b-m}{a} w_1^a w_2^{b+1} + \sum_{a+2b=n+m+2} \binom{a+b-m-1}{a} w_1^{a+1} w_2^b \\ &= \sum_{a+2b=n+m+3} \binom{a+b-m-1}{a} w_1^a w_2^b + \sum_{a+2b=n+m+3} \binom{a+b-m-2}{a-1} w_1^a w_2^b \\ &= \sum_{a+2b=n+m+3} \binom{a+b-m-2}{a} w_1^a w_2^b = g_{m+2}. \end{split}$$

We note that, for the similar reasons as above, the change of variable $b \mapsto b-1$ $(a \mapsto a-1)$ does not affect the requirement that $b \ge 0$ $(a \ge 0)$.

The second statement is a consequence of the equalities $g_n = LT(g_n) = w_1 w_2^n$ and $g_{n+1} = LT(g_{n+1}) = w_2^{n+1}$ which are easily seen from (2).

Corollary 2.3. $I_G \subseteq I_{2,n}$.

Proof. We already know that

$$g_0 = \overline{w}_{n+1} \in I_{2,n}$$
 and $g_1 = w_1 \overline{w}_{n+1} + \overline{w}_{n+2} \in I_{2,n}$

Proposition 2.2 applies, and by induction on m we have that $g_m \in I_{2,n}$ $(0 \leq m \leq n+1)$. The corollary follows.

Therefore, G is a basis for $I_{2,n}$, and we wish to prove that it is a Groebner basis. We recall that (for a fixed monomial ordering) the S-polynomial of polynomials $f, g \in \mathbb{Z}_2[x_1, x_2, \ldots, x_k]$ is given by (we work with mod 2 coefficients)

$$S(f,g) = \frac{L}{\mathrm{LT}(f)} \cdot f + \frac{L}{\mathrm{LT}(g)} \cdot g,$$

where $L = \operatorname{lcm}(\operatorname{LT}(f), \operatorname{LT}(g))$ denotes the least common multiple of $\operatorname{LT}(f)$ and $\operatorname{LT}(g)$. If $0 \leq m < m + s \leq n + 1$, we see that

$$\operatorname{lcm}(\operatorname{LT}(g_m), \operatorname{LT}(g_{m+s})) = \operatorname{lcm}(w_1^{n+1-m} w_2^m, w_1^{n+1-m-s} w_2^{m+s}) = w_1^{n+1-m} w_2^{m+s},$$

and so we have

$$S(g_m, g_{m+s}) = w_2^s g_m + w_1^s g_{m+s}.$$
(3)

We are going to prove that G satisfies a sufficient condition (see [1]) for being a Groebner basis. In order to do that, we recall the following definition and theorem ([1, p. 219]). We formulate them for the field $R = \mathbb{Z}_2$. It is assumed that we have an ordering \leq on the monomials in $\mathbb{Z}_2[x_1, x_2, \ldots, x_k]$.

Definition 2.4. Let F be a finite subset of $\mathbb{Z}_2[x_1, x_2, \ldots, x_k]$, $f \in \mathbb{Z}_2[x_1, x_2, \ldots, x_k]$ a nonzero polynomial and t a fixed monomial. If f can be written as a finite sum of the form $\sum_i m_i f_i$, where $f_i \in F$ and $m_i \in \mathbb{Z}_2[x_1, x_2, \ldots, x_k]$ are nonzero monomials such that $\operatorname{LT}(m_i f_i) \preceq t$ for all i, we say that $\sum_i m_i f_i$ is a t-representation of f with respect to F. **Theorem 2.5.** Let F be a finite subset of $\mathbb{Z}_2[x_1, x_2, \ldots, x_k]$, $0 \notin F$. If for all $f_1, f_2 \in F$, $S(f_1, f_2)$ either equals zero or has a t-representation with respect to F for some monomial $t \prec \operatorname{lcm}(\operatorname{LT}(f_1), \operatorname{LT}(f_2))$, then F is a Groebner basis.

We need the following lemma.

Lemma 2.6. For $0 \le m < m + s \le n + 1$, $S(g_m, g_{m+s}) = \sum_{i=0}^{s-1} w_1^i w_2^{s-1-i} g_{m+2+i}$.

It is understood that for m + s = n + 1, the last summand in this sum (for i = s - 1) is zero.

Proof. We proceed by induction on s. For s = 1, we obtain

$$S(g_m, g_{m+1}) = w_2 g_m + w_1 g_{m+1} = g_{m+2} = \sum_{i=0}^0 w_1^i w_2^{-i} g_{m+2+i},$$

using (3) and Proposition 2.2. For the inductive step, we have

$$\begin{split} S(g_m, g_{m+s}) &= w_2^s g_m + w_1^s g_{m+s} \\ &= w_2^s g_m + w_2 w_1^{s-1} g_{m+s-1} + w_2 w_1^{s-1} g_{m+s-1} + w_1^s g_{m+s} \\ &= w_2 S(g_m, g_{m+s-1}) + w_1^{s-1} g_{m+s+1} \\ &= w_1^{s-1} g_{m+s+1} + \sum_{i=0}^{s-2} w_1^i w_2^{s-1-i} g_{m+2+i} \\ &= \sum_{i=0}^{s-1} w_1^i w_2^{s-1-i} g_{m+2+i}, \end{split}$$

again by (3), Proposition 2.2 and the induction hypothesis. It is clear that if m + s = n + 1 then the summand $w_1^{s-1}g_{m+s+1}$ does not appear in the sum (Proposition 2.2) and so $0 \leq i \leq s - 2$ in this case.

Theorem 2.7. Let $n \ge 2$. Then $G = \{g_0, g_1, \ldots, g_{n+1}\}$ defined above is the reduced Groebner basis for the ideal $I_{2,n}$ in $\mathbb{Z}_2[w_1, w_2]$ with respect to the greex ordering \preceq .

Proof. We have already shown that G is a basis for $I_{2,n}$. We wish to apply Theorem 2.5. Let g_m and g_{m+s} $(0 \leq m < m+s \leq n+1)$ be two arbitrary elements of G. If m = n, then m + s must be n + 1 and, using (3) and Proposition 2.2, one obtains $S(g_m, g_{m+s}) = S(g_n, g_{n+1}) = w_2g_n + w_1g_{n+1} = 0$. If $m \leq n-1$, then according to Lemma 2.6,

$$S(g_m, g_{m+s}) = \sum_{i=0}^{s-1} w_1^i w_2^{s-1-i} g_{m+2+i}.$$

Define $t = t(m, s) := w_1^{n-1-m} w_2^{m+s+1}$. First of all, observe that

$$t \prec w_1^{n+1-m} w_2^{m+s} = \operatorname{lcm}(\operatorname{LT}(g_m), \operatorname{LT}(g_{m+s})).$$

Now, for all $i \in \{0, 1, \dots, s-1\}$,

$$\begin{split} \mathrm{LT}(w_1^i w_2^{s-1-i} g_{m+2+i}) &= w_1^i w_2^{s-1-i} \mathrm{LT}(g_{m+2+i}) \\ &= w_1^i w_2^{s-1-i} w_1^{n+1-m-2-i} w_2^{m+2+i} \\ &= w_1^{n-1-m} w_2^{m+s+1} = t. \end{split}$$

Theorem 2.5 applies, and we conclude that G is a Groebner basis for $I_{2,n}$.

To see that it is the reduced one, we observe that $\{LT(g) \mid g \in G\}$ is the set of all monomials $w_1^a w_2^b$ such that a + b = n + 1. Also, by looking at formula (2), we see that all other terms appearing in g_m have the sum of the exponents < n + 1, and so they cannot be divisible by any of the leading terms in G.

Since G is a Groebner basis for $I_{2,n}$, a vector space basis for $\mathbb{Z}_2[w_1, w_2]/I_{2,n}$ could be formed by taking all the monomials in $\mathbb{Z}_2[w_1, w_2]$ (more precisely, their classes) which are not divisible by any of $\mathrm{LT}(g_0), \mathrm{LT}(g_1), \ldots, \mathrm{LT}(g_{n+1})$. As we have noticed in the proof of Theorem 2.7, the set $\{\mathrm{LT}(g) \mid g \in G\}$ is the set of all monomials $w_1^a w_2^b$ such that a + b = n + 1. From this it is obvious that $w_1^a w_2^b$ is not divisible by any of the leading terms $\mathrm{LT}(g_m)$ if and only if $a + b \leq n$. By collecting all these facts, we have proved the following corollary.

Corollary 2.8. Let $n \ge 2$. If w_i is the *i*-th Stiefel-Whitney class of the canonical vector bundle γ_2 over $G_{2,n}$, then the set $\{w_1^a w_2^b \mid a+b \le n\}$ is a vector space basis for $H^*(G_{2,n}; \mathbb{Z}_2)$.

Let us now determine a few elements of the Groebner basis G which will be used in our later calculations. As we have already noticed, by formula (2), $g_{n+1} = w_2^{n+1}$ and $g_n = w_1 w_2^n$. Using this and Proposition 2.2, we obtain $w_2 g_{n-1} = w_1 g_n + g_{n+1} =$ $w_1^2 w_2^n + w_2^{n+1} = w_2 (w_1^2 w_2^{n-1} + w_2^n)$, and so we deduce that $g_{n-1} = w_1^2 w_2^{n-1} + w_2^n$. Continuing in the same manner, one gets

$$\begin{split} g_{n-2} &= w_1^3 w_2^{n-2}; \\ g_{n-3} &= w_1^4 w_2^{n-3} + w_1^2 w_2^{n-2} + w_2^{n-1}; \\ g_{n-4} &= w_1^5 w_2^{n-4} + w_1 w_2^{n-2}; \\ g_{n-5} &= w_1^6 w_2^{n-5} + w_1^4 w_2^{n-4} + w_2^{n-2}. \end{split}$$

3. Immersions

In order to construct the immersions of Grassmannians $G_{2,n}$ into Euclidean spaces, we recall the theorem of Hirsch ([4]) which states that a smooth compact *m*-manifold M^m immerses in \mathbb{R}^{m+l} if and only if the classifying map $f_{\nu} \colon M^m \to BO$ of the stable normal bundle ν of M^m lifts up to BO(l).

Let $\operatorname{imm}(M^m)$ denote the least integer d such that M^m immerses into \mathbb{R}^d . By Hirsch's theorem, if $w_k(\nu) \neq 0$ then $\operatorname{imm}(M^m) \geq m + k$.

As in Corollary 2.8, let w_i be the *i*-th Stiefel-Whitney class of the canonical vector bundle γ_2 over $G_{2,n}$ $(n \ge 2)$. It is well known (see [8, p. 179]) that, if 2^s is the least power of 2 exceeding n, i.e., $2^{s-1} \le n < 2^s$, then for the total Stiefel-Whitney class $w(\nu)$ of the stable normal bundle ν of $G_{2,n}$, one has

$$w(\nu) = (1 + w_1^2)(1 + w_1 + w_2)^{2^{s+1} - 2 - n}.$$
(4)

For $n = 2^s - 2$, from formula (2) we have that

$$g_0 = \sum_{b=0}^{2^{s-1}-1} {\binom{2^s-1-b}{b}} w_1^{2^s-1-2b} w_2^b = w_1^{2^s-1}$$

since the binomial coefficient $\binom{2^s-1-b}{b}$ is odd only for b = 0 (by Lucas formula). This means that $w_1^{2^s-1} = 0$ in $H^*(G_{2,2^s-2}; \mathbb{Z}_2)$. But then $w_1^{2^s-1} = 0$ in $H^*(G_{2,n}; \mathbb{Z}_2)$ for all $n \leq 2^s - 2$ since the inclusion $i: G_{2,n} \to G_{2,2^s-2}$ is obviously covered by a map of canonical bundles γ_2 .

If $2^{s-1} \leq n \leq 2^s - 2$, then by formula (4) we have

$$w(\nu) = (1 + w_1^2)(1 + w_1 + w_2)^{2^s}(1 + w_1 + w_2)^{2^s - 2 - n}$$

= $(1 + w_1^2)(1 + w_1^{2^s} + w_2^{2^s})(1 + w_1 + w_2)^{2^s - 2 - n}.$

Now, $w_2^{2^s} = 0$ because it is a class of degree $2^{s+1} > 2^{s+1} - 4 \ge 2n = \dim(G_{2,n})$. Also, by the previous discussion $w_1^{2^s} = 0$ and (4) simplifies to

$$w(\nu) = (1 + w_1^2)(1 + w_1 + w_2)^{2^s - 2 - n}.$$
(5)

If $n = 2^s - 1$, then from (4) we obtain

$$w(\nu) = (1 + w_1^2)(1 + w_1 + w_2)^{2^s - 1}$$

= $(1 + w_1)^2 \sum_{i=0}^{2^s - 1} {\binom{2^s - 1}{i}} (1 + w_1)^i w_2^{2^s - 1 - i}$
= $\sum_{i=0}^{2^s - 1} (1 + w_1)^{i+2} w_2^{2^s - 1 - i}$
= $\sum_{i=0}^{2^s - 1} \sum_{j=0}^{i+2} {\binom{i+2}{j}} w_1^j w_2^{2^s - 1 - i}.$ (6)

We now recall a theorem of Oproiu ([8]), and we prove it using the Groebner basis from Theorem 2.7.

Theorem 3.1 (Oproid [8]). For $2 \leq 2^{s-1} \leq n < 2^s$, we have:

(a) If $n \leq 2^{s} - 2$, then $\operatorname{imm}(G_{2,n}) \geq 2^{s+1} - 2$. (b) $\operatorname{imm}(G_{2,2^{s}-1}) \geq 3 \cdot 2^{s} - 2$.

Proof. (a) The top class in the expression (5) is $w_{2^{s+1}-2-2n}(\nu) = w_1^2 w_2^{2^s-2-n}$, and since the sum of the exponents $2+2^s-2-n=2^s-n \leqslant 2^{s-1} \leqslant n$, by Corollary 2.8

we have that $w_{2^{s+1}-2-2n}(\nu) \neq 0$ and we conclude that

$$\operatorname{imm}(G_{2,n}) \ge \operatorname{dim}(G_{2,n}) + 2^{s+1} - 2 - 2n = 2^{s+1} - 2.$$

(b) From the equality (6) we calculate

$$w_{2^{s}}(\nu) = \sum_{i=2^{s-1}-1}^{2^{s}-1} {\binom{i+2}{2i+2-2^{s}}} w_{1}^{2^{i}+2-2^{s}} w_{2}^{2^{s}-1-i}$$

$$= \sum_{l=0}^{2^{s-1}} {\binom{2^{s}+1-l}{2^{s}-2l}} w_{1}^{2^{s}-2l} w_{2}^{l} = \sum_{l=0}^{2^{s-1}} {\binom{2^{s}+1-l}{l+1}} w_{1}^{2^{s}-2l} w_{2}^{l}$$

$$= {\binom{2^{s}+1}{1}} w_{1}^{2^{s}} + {\binom{2^{s}}{2}} w_{1}^{2^{s}-2} w_{2} + {\binom{2^{s}-1}{3}} w_{1}^{2^{s}-4} w_{2}^{2} + \cdots$$

$$= w_{1}^{2^{s}} + w_{1}^{2^{s}-4} w_{2}^{2} + \cdots,$$

where the unwritten monomials (if there are any) have the sum of the exponents $\leq 2^s - 3 = n - 2$. Note that, since $2^{s-1} \geq 2$, three written summands must appear in the sum.

On the other hand, from the equality (2) we see that the first element of the Groebner basis in this case is

$$g_0 = \sum_{b=0}^{2^{s-1}} {\binom{2^s - b}{b}} w_1^{2^s - 2b} w_2^b = w_1^{2^s} + (2^s - 1)w_1^{2^s - 2}w_2 + {\binom{2^s - 2}{2}} w_1^{2^s - 4}w_2^2 + \cdots$$
$$= w_1^{2^s} + w_1^{2^s - 2}w_2 + w_1^{2^s - 4}w_2^2 + \cdots$$

Again, the unwritten monomials have the sum of the exponents $\leq n - 2$, and three written ones must be here.

By adding these two equalities together, using the fact that $g_0 = 0$ in $H^*(G_{2,n}; \mathbb{Z}_2)$ we obtain

$$w_{2^s}(\nu) = w_1^{2^s - 2} w_2 + \cdots$$

The sum of the exponents in the monomial $w_1^{2^s-2}w_2$ is $2^s-1=n$, and in the remaining monomials (if there are any) this sum is $\leq n-2$, so none of these monomials is divisible by any of the leading terms $\operatorname{LT}(g_m)$. This means that we have obtained the remainder of dividing $w_{2^s}(\nu)$ by G. Since $w_1^{2^s-2}w_2$ must appear in this remainder, we conclude that $w_{2^s}(\nu) \neq 0$. Finally, this implies that

$$\operatorname{imm}(G_{2,2^s-1}) \ge \operatorname{dim}(G_{2,2^s-1}) + 2^s = 3 \cdot 2^s - 2$$

and we are done.

Example 3.2. If $n = 2^{s-1} > 2$, then $\operatorname{imm}(G_{2,2^{s-1}}) \ge 2^{s+1} - 2 = 2 \cdot \dim(G_{2,2^{s-1}}) - 2$. By the result of Massey [5, Theorem V], if M^m is orientable, m > 4 and $w_2(\nu) \cdot w_{m-2}(\nu) = 0$, then M^m immerses into \mathbb{R}^{2m-2} . Now, $G_{2,2^{s-1}}$ is orientable (Grassmannian $G_{k,n}$ is orientable if and only if n + k is even; see [8, p. 179]), and from formula (5) we have

$$w(\nu) = (1 + w_1^2)(1 + w_1 + w_2)^{2^{s-1}-2},$$

 \mathbf{SO}

$$w_2(\nu) = \left(1 + \binom{2^{s-1} - 2}{2}\right) w_1^2 + (2^{s-1} - 2)w_2 = 0$$

since $2^{s-1} > 2$. This implies that $G_{2,2^{s-1}}$ immerses into $\mathbb{R}^{2^{s+1}-2}$, i.e., $\operatorname{imm}(G_{2,2^{s-1}}) \leq 2^{s+1}-2$, so for $2^{s-1} > 2$, we actually have the equality

$$\operatorname{imm}(G_{2,2^{s-1}}) = 2^{s+1} - 2.$$

Also, we note that for $G_{2,3}$, Oproiu's Theorem 3.1(b) gives $\operatorname{imm}(G_{2,3}) \ge 10$, and by Cohen's theorem ([2]), $\operatorname{imm}(G_{2,3}) \le 10$, so $\operatorname{imm}(G_{2,3}) = 10$. For $G_{2,5}$, the results of Oproiu ([8]) and Monks ([6]) provide inequalities $14 \le \operatorname{imm}(G_{2,5}) \le 17$.

We now turn to the proof of the immersion result.

Lemma 3.3. Let n be an odd integer ≥ 5 . For the stable normal bundle ν of $G_{2,n}$ we have:

- (a) $w_i(\nu) = 0$ for $i \ge 2n 5$;
- (b) $w_1(\nu) = w_1;$
- (c) $w_2(\nu) = w_2$ if $n \equiv 3 \pmod{4}$; $w_2(\nu) = w_1^2 + w_2$ if $n \equiv 1 \pmod{4}$.

Proof. As above, let s be the integer such that $2^{s-1} \leq n < 2^s$. Since n is odd, we have that $n \ge 2^{s-1} + 1$. This implies $4n \ge 2^{s+1} + 4$, i.e., $2^{s+1} - 2 - 2n < 2n - 5$.

If $n \neq 2^s - 1$, then from formula (5) we see that the top class in the expression for $w(\nu)$, namely $w_1^2 w_2^{2^s-2-n}$, is of degree $2^{s+1} - 2 - 2n$, and by the previous inequality, we deduce that $w_i(\nu) = 0$ for $i \geq 2n - 5$.

For $n = 2^s - 1$, Oproiu shows [8, p. 182] that the top nonzero class in the expression (4) is of degree 2^s and, since $n \ge 7$ in this case, we conclude that $2^s = n + 1 < 2n - 5$ obtaining (a).

From formula (4) we read off

$$w_1(\nu) = (2^{s+1} - 2 - n)w_1;$$
$$w_2(\nu) = \left(1 + \binom{2^{s+1} - 2 - n}{2}\right)w_1^2 + (2^{s+1} - 2 - n)w_2$$

and obtain (b) and (c).

A few more lemmas will be useful.

Lemma 3.4. In $H^*(G_{2,n};\mathbb{Z}_2)$, for all nonnegative integers a and b, the following relations hold:

- (a) $Sq^1(w_1^a w_2^b) = (a+b)w_1^{a+1}w_2^b;$
- $(b) \ Sq^2(w_1^aw_2^b) = bw_1^aw_2^{b+1} + {a+b \choose 2}w_1^{a+2}w_2^b.$

Proof. Since $Sq^{j}(w_{1}^{a}) = {a \choose j}w_{1}^{a+j}$, the formulas are true for b = 0. We proceed by induction on b.

(a) By the Wu formula, $Sq^1w_2 = w_1w_2$. Using the Cartan formula and the induction hypothesis, we have

ZORAN Z. PETROVIĆ AND BRANISLAV I. PRVULOVIĆ

$$Sq^{1}(w_{1}^{a}w_{2}^{b}) = Sq^{1}(w_{2}w_{1}^{a}w_{2}^{b-1})$$

= $w_{1}w_{2}w_{1}^{a}w_{2}^{b-1} + (a+b-1)w_{2}w_{1}^{a+1}w_{2}^{b-1}$
= $(a+b)w_{1}^{a+1}w_{2}^{b}$.

(b) For the induction step we use again formulas of Cartan and Wu, the statement (a) and the fact that $Sq^2w_2 = w_2^2$. We calculate

$$\begin{split} Sq^2(w_1^a w_2^b) &= Sq^2(w_2 w_1^a w_2^{b-1}) \\ &= w_1^a w_2^{b+1} + (a+b-1) w_1^{a+2} w_2^b + (b-1) w_1^a w_2^{b+1} \\ &+ \binom{a+b-1}{2} w_1^{a+2} w_2^b \\ &= b w_1^a w_2^{b+1} + \binom{a+b}{2} w_1^{a+2} w_2^b, \end{split}$$

and the proof is complete.

Lemma 3.5. The map $(Sq^2 + w_2(\nu))$: $H^{2n-5}(G_{2,n}; \mathbb{Z}_2) \to H^{2n-3}(G_{2,n}; \mathbb{Z}_2)$, where n is an odd integer ≥ 5 , is determined by the equalities

$$(Sq^{2} + w_{2}(\nu))(w_{1}^{5}w_{2}^{n-5}) = (Sq^{2} + w_{2}(\nu))(w_{1}^{3}w_{2}^{n-4}) = (Sq^{2} + w_{2}(\nu))(w_{1}w_{2}^{n-3})$$
$$= w_{1}w_{2}^{n-2}.$$

Proof. By Corollary 2.8, the set $\{w_1^5 w_2^{n-5}, w_1^3 w_2^{n-4}, w_1 w_2^{n-3}\}$ is a vector space basis for $H^{2n-5}(G_{2,n}; \mathbb{Z}_2)$.

Now, if $n \equiv 3 \pmod{4}$, using Lemma 3.3, Lemma 3.4 and Groebner basis from Theorem 2.7, we calculate

$$(Sq^{2} + w_{2}(\nu))(w_{1}^{5}w_{2}^{n-5}) = Sq^{2}(w_{1}^{5}w_{2}^{n-5}) + w_{2}w_{1}^{5}w_{2}^{n-5}$$

$$= (n-5)w_{1}^{5}w_{2}^{n-4} + \binom{n}{2}w_{1}^{7}w_{2}^{n-5} + w_{1}^{5}w_{2}^{n-4}$$

$$= w_{1}^{7}w_{2}^{n-5} + w_{1}^{5}w_{2}^{n-4}$$

$$= w_{1}(g_{n-5} + w_{1}^{4}w_{2}^{n-4} + w_{2}^{n-2}) + w_{1}^{5}w_{2}^{n-4} = w_{1}w_{2}^{n-2};$$

$$\begin{split} (Sq^2 + w_2(\nu))(w_1^3 w_2^{n-4}) &= Sq^2(w_1^3 w_2^{n-4}) + w_2 w_1^3 w_2^{n-4} \\ &= (n-4)w_1^3 w_2^{n-3} + \binom{n-1}{2} w_1^5 w_2^{n-4} + w_1^3 w_2^{n-3} \\ &= w_1^5 w_2^{n-4} = g_{n-4} + w_1 w_2^{n-2} = w_1 w_2^{n-2}; \end{split}$$

$$(Sq^{2} + w_{2}(\nu))(w_{1}w_{2}^{n-3}) = Sq^{2}(w_{1}w_{2}^{n-3}) + w_{2}w_{1}w_{2}^{n-3}$$
$$= (n-3)w_{1}w_{2}^{n-2} + \binom{n-2}{2}w_{1}^{3}w_{2}^{n-3} + w_{1}w_{2}^{n-2}$$
$$= w_{1}w_{2}^{n-2}.$$

Similarly, if $n \equiv 1 \pmod{4}$, we have

$$\begin{split} (Sq^2 + w_2(\nu))(w_1^5 w_2^{n-5}) &= Sq^2(w_1^5 w_2^{n-5}) + w_1^2 w_1^5 w_2^{n-5} + w_2 w_1^5 w_2^{n-5} \\ &= (n-5)w_1^5 w_2^{n-4} + \binom{n}{2} w_1^7 w_2^{n-5} + w_1^7 w_2^{n-5} + w_1^5 w_2^{n-4} \\ &= w_1^7 w_2^{n-5} + w_1^5 w_2^{n-4} \\ &= w_1(g_{n-5} + w_1^4 w_2^{n-4} + w_2^{n-2}) + w_1^5 w_2^{n-4} = w_1 w_2^{n-2}; \\ (Sq^2 + w_2(\nu))(w_1^3 w_2^{n-4}) &= Sq^2(w_1^3 w_2^{n-4}) + w_1^2 w_1^3 w_2^{n-4} + w_2 w_1^3 w_2^{n-4} \\ &= (n-4)w_1^3 w_2^{n-3} + \binom{n-1}{2} w_1^5 w_2^{n-4} + w_1^5 w_2^{n-4} + w_1^3 w_2^{n-3} \\ &= w_1^5 w_2^{n-4} = g_{n-4} + w_1 w_2^{n-2} = w_1 w_2^{n-2}; \\ (Sq^2 + w_2(\nu))(w_1 w_2^{n-3}) &= Sq^2(w_1 w_2^{n-3}) + w_1^2 w_1 w_2^{n-3} + w_2 w_1 w_2^{n-3} \\ &= (n-3)w_1 w_2^{n-2} + \binom{n-2}{2} w_1^3 w_2^{n-3} + w_1^3 w_2^{n-3} + w_1 w_2^{n-2} \\ &= w_1 w_2^{n-2}, \end{split}$$

and the proof of the lemma is complete.

Lemma 3.6. The map $Sq^1: H^{2n-2}(G_{2,n}; \mathbb{Z}_2) \to H^{2n-1}(G_{2,n}; \mathbb{Z}_2)$, where n is an odd integer ≥ 5 , is trivial.

Proof. The set $\{w_1^2 w_2^{n-2}, w_2^{n-1}\}$ is a vector space basis for $H^{2n-2}(G_{2,n}; \mathbb{Z}_2)$ (Corollary 2.8). Using Lemma 3.4, we obtain

$$Sq^{1}(w_{1}^{2}w_{2}^{n-2}) = nw_{1}^{3}w_{2}^{n-2} = w_{1}^{3}w_{2}^{n-2} = g_{n-2} = 0;$$

$$Sq^{1}(w_{2}^{n-1}) = (n-1)w_{1}w_{2}^{n-1} = 0,$$

which proves the lemma.

Lemma 3.7. The map $(Sq^2 + w_2(\nu))$: $H^{2n-3}(G_{2,n}; \mathbb{Z}_2) \to H^{2n-1}(G_{2,n}; \mathbb{Z}_2)$, where n is an odd integer ≥ 5 , is determined by the equalities:

$$(Sq^{2} + w_{2}(\nu))(w_{1}^{3}w_{2}^{n-3}) = w_{1}w_{2}^{n-1} \neq 0;$$

$$(Sq^{2} + w_{2}(\nu))(w_{1}w_{2}^{n-2}) = 0.$$

Proof. Again by Corollary 2.8, the classes $w_1^3 w_2^{n-3}$ and $w_1 w_2^{n-2}$ form a vector space basis for $H^{2n-3}(G_{2,n};\mathbb{Z}_2)$, and the class $w_1 w_2^{n-1}$ is nontrivial in $H^{2n-1}(G_{2,n};\mathbb{Z}_2) \cong \mathbb{Z}_2$.

By Lemma 3.3 and Lemma 3.4, for $n \equiv 3 \pmod{4}$ we have

$$\begin{split} (Sq^2 + w_2(\nu))(w_1^3 w_2^{n-3}) &= Sq^2(w_1^3 w_2^{n-3}) + w_2 w_1^3 w_2^{n-3} \\ &= (n-3)w_1^3 w_2^{n-2} + \binom{n}{2} w_1^5 w_2^{n-3} + w_1^3 w_2^{n-2} \\ &= w_1^5 w_2^{n-3} + w_1^3 w_2^{n-2} \\ &= w_1(g_{n-3} + w_1^2 w_2^{n-2} + w_2^{n-1}) + w_1^3 w_2^{n-2} \\ &= w_1 w_2^{n-1}; \end{split}$$

ZORAN Z. PETROVIĆ AND BRANISLAV I. PRVULOVIĆ

$$(Sq^{2} + w_{2}(\nu))(w_{1}w_{2}^{n-2}) = Sq^{2}(w_{1}w_{2}^{n-2}) + w_{2}w_{1}w_{2}^{n-2}$$
$$= (n-2)w_{1}w_{2}^{n-1} + \binom{n-1}{2}w_{1}^{3}w_{2}^{n-2} + w_{1}w_{2}^{n-1}$$
$$= w_{1}^{3}w_{2}^{n-2} = g_{n-2} = 0.$$

Likewise, for $n \equiv 1 \pmod{4}$, we obtain

$$\begin{split} (Sq^2 + w_2(\nu))(w_1^3w_2^{n-3}) &= Sq^2(w_1^3w_2^{n-3}) + w_1^2w_1^3w_2^{n-3} + w_2w_1^3w_2^{n-3} \\ &= (n-3)w_1^3w_2^{n-2} + \binom{n}{2}w_1^5w_2^{n-3} + w_1^5w_2^{n-3} + w_1^3w_2^{n-2} \\ &= w_1^5w_2^{n-3} + w_1^3w_2^{n-2} \\ &= w_1(g_{n-3} + w_1^2w_2^{n-2} + w_2^{n-1}) + w_1^3w_2^{n-2} \\ &= w_1w_2^{n-1}; \\ (Sq^2 + w_2(\nu))(w_1w_2^{n-2}) &= Sq^2(w_1w_2^{n-2}) + w_1^2w_1w_2^{n-2} + w_2w_1w_2^{n-2} \\ &= (n-2)w_1w_2^{n-1} + \binom{n-1}{2}w_1^3w_2^{n-2} + w_1^3w_2^{n-2} + w_1w_2^{n-1} \\ &= w_1^3w_2^{n-2} = g_{n-2} = 0, \end{split}$$

which was to be proved.

Lemma 3.8. The map $Sq^1: H^{2n-3}(G_{2,n}; \mathbb{Z}_2) \to H^{2n-2}(G_{2,n}; \mathbb{Z}_2)$, where n is an odd integer ≥ 5 , is given by the equalities:

$$Sq^{1}(w_{1}^{3}w_{2}^{n-3}) = w_{1}^{2}w_{2}^{n-2} + w_{2}^{n-1};$$

$$Sq^{1}(w_{1}w_{2}^{n-2}) = 0.$$

Proof. As we have noticed in the proof of the previous lemma, the set

$$\{w_1^3 w_2^{n-3}, w_1 w_2^{n-2}\}$$

is a vector space basis for $H^{2n-3}(G_{2,n};\mathbb{Z}_2)$. So, we calculate $Sq^{1}(w_{1}^{3}w_{2}^{n-3}) = nw_{1}^{4}w_{2}^{n-3} = w_{1}^{4}w_{2}^{n-3} = g_{n-3} + w_{1}^{2}w_{2}^{n-2} + w_{2}^{n-1} = w_{1}^{2}w_{2}^{n-2} + w_{2}^{n-1},$ $Sq^{1}(w_{1}w_{2}^{n-2}) = (n-1)w_{1}^{2}w_{2}^{n-2} = 0$

by Lemma 3.4.

Lemma 3.9. If n is an odd integer ≥ 5 , then in $H^*(G_{2,n};\mathbb{Z}_2)$ we have

$$(Sq^{2} + w_{1}(\nu)^{2} + w_{2}(\nu))Sq^{1}(w_{1}^{3}w_{2}^{n-4} + w_{1}w_{2}^{n-3}) = w_{1}^{2}w_{2}^{n-2}.$$

Proof. By Lemma 3.4(a),

$$\begin{split} Sq^1(w_1^3w_2^{n-4}+w_1w_2^{n-3}) &= (n-1)w_1^4w_2^{n-4}+(n-2)w_1^2w_2^{n-3} = w_1^2w_2^{n-3}.\\ \text{If } n \equiv 3 \pmod{4}, \text{ by Lemma 3.3 and Lemma 3.4(b), one obtains}\\ (Sq^2+w_1(\nu)^2+w_2(\nu))(w_1^2w_2^{n-3}) &= Sq^2(w_1^2w_2^{n-3})+w_1^2w_1^2w_2^{n-3}+w_2w_1^2w_2^{n-3}\\ &= (n-3)w_1^2w_2^{n-2}+\binom{n-1}{2}w_1^4w_2^{n-3}+w_1^4w_2^{n-3}\\ &+ w_1^2w_2^{n-2} = w_1^2w_2^{n-2}. \end{split}$$

If
$$n \equiv 1 \pmod{4}$$
, again by Lemma 3.3 and Lemma 3.4(b), we have
 $(Sq^2 + w_1(\nu)^2 + w_2(\nu))(w_1^2w_2^{n-3}) = Sq^2(w_1^2w_2^{n-3}) + w_2w_1^2w_2^{n-3}$
 $= (n-3)w_1^2w_2^{n-2} + \binom{n-1}{2}w_1^4w_2^{n-3} + w_1^2w_2^{n-2}$
 $= w_1^2w_2^{n-2},$

and we are done.

Lemma 3.10. If n is an odd integer ≥ 5 , then in $H^*(G_{2,n};\mathbb{Z}_2)$ the following equality holds:

$$(Sq^2 + w_2(\nu))(w_1^2 w_2^{n-3}) = w_2^{n-1}.$$

Proof. As before, we use Lemma 3.3, Lemma 3.4 and Groebner basis from Theorem 2.7. If $n \equiv 3 \pmod{4}$

$$(Sq^{2} + w_{2}(\nu))(w_{1}^{2}w_{2}^{n-3}) = Sq^{2}(w_{1}^{2}w_{2}^{n-3}) + w_{2}w_{1}^{2}w_{2}^{n-3}$$
$$= (n-3)w_{1}^{2}w_{2}^{n-2} + \binom{n-1}{2}w_{1}^{4}w_{2}^{n-3} + w_{1}^{2}w_{2}^{n-2}$$
$$= w_{1}^{4}w_{2}^{n-3} + w_{1}^{2}w_{2}^{n-2} = g_{n-3} + w_{2}^{n-1} = w_{2}^{n-1}.$$

If
$$n \equiv 1 \pmod{4}$$
,
 $(Sq^2 + w_2(\nu))(w_1^2 w_2^{n-3}) = Sq^2(w_1^2 w_2^{n-3}) + w_1^2 w_1^2 w_2^{n-3} + w_2 w_1^2 w_2^{n-3}$
 $= (n-3)w_1^2 w_2^{n-2} + \binom{n-1}{2} w_1^4 w_2^{n-3} + w_1^4 w_2^{n-3} + w_1^2 w_2^{n-2}$
 $= w_1^4 w_2^{n-3} + w_1^2 w_2^{n-2} = g_{n-3} + w_2^{n-1} = w_2^{n-1}$,
completing the proof.

completing the proof.

We are now ready to prove our immersion result.

Theorem 3.11. If n is an odd integer ≥ 7 , then $G_{2,n}$ immerses into \mathbb{R}^{4n-5} .

Proof. Let $f_{\nu}: G_{2,n} \to BO$ be the classifying map for the stable normal bundle ν of $G_{2,n}$. We want to show that f_{ν} can be lifted up to BO(2n-5). We will use the 2n-MPT for the fibration $p: BO(2n-5) \to BO$ which can be constructed by the method of Gitler and Mahowald ([3]) using the result of Nussbaum ([7]) who proved that their method is applicable to the fibrations $p: BO(l) \to BO$ when l is odd. The tower is presented in Figure 1 (K_m stands for the Eilenberg-MacLane space $K(\mathbb{Z}_2, m)$).

The relations that produce the k-invariants are

$$k_1^2 : (Sq^2 + w_2)w_{2n-4} = 0,$$

$$k_2^2 : (Sq^2 + w_1^2 + w_2)Sq^1w_{2n-4} + Sq^1w_{2n-2} = 0,$$

$$k_3^2 : \begin{cases} (Sq^4 + w_4)w_{2n-4} + w_2w_{2n-2} = 0, & n \equiv 3 \pmod{4} \\ (Sq^4 + w_4)w_{2n-4} + Sq^2w_{2n-2} = 0, & n \equiv 1 \pmod{4}, \\ k_1^3 : (Sq^2 + w_2)k_1^2 + Sq^1k_2^2 = 0. \end{cases}$$

Figure 1: 2*n*-MPT for $p: BO(2n-5) \rightarrow BO$

Since dim $(G_{2,n}) = 2n$, f_{ν} lifts up to BO(2n-5) if and only if it lifts up to E_3 .

By Lemma 3.3(a), $f_{\nu}^*(w_{2n-4}) = w_{2n-4}(\nu) = 0$, $f_{\nu}^*(w_{2n-2}) = w_{2n-2}(\nu) = 0$, so f_{ν} can be lifted up to E_1 , i.e., there is a map $g_1: G_{2,n} \to E_1$ such that $q_1 \circ g_1 = f_{\nu}$.

In order to make the next step (to lift f_{ν} up to E_2), we need to modify (if necessary) the lifting g_1 to a lifting g such that $g^*(k_1^2) = g^*(k_2^2) = g^*(k_3^2) = 0$. By choosing a map $\alpha \times \beta \colon G_{2,n} \to K_{2n-5} \times K_{2n-3} = \Omega(K_{2n-4} \times K_{2n-2})$ (i.e., classes $\alpha \in H^{2n-5}(G_{2,n};\mathbb{Z}_2)$ and $\beta \in H^{2n-3}(G_{2,n};\mathbb{Z}_2)$), we get another lifting $g \colon G_{2,n} \to E_1$ as the composition

$$G_{2,n} \xrightarrow{\bigtriangleup} G_{2,n} \times G_{2,n} \times G_{2,n} \xrightarrow{(\alpha \times \beta) \times g_1} K_{2n-5} \times K_{2n-3} \times E_1 \xrightarrow{\mu} E_1,$$

where \triangle is the diagonal mapping and $\mu: \Omega(K_{2n-4} \times K_{2n-2}) \times E_1 \to E_1$ is the action of the fibre in the principal fibration $q_1: E_1 \to BO$. So, we are looking for classes α and β such that $g^*(k_1^2) = g^*(k_2^2) = g^*(k_3^2) = 0$. By looking at the relations that produce the k-invariants k_1^2, k_2^2 and k_3^2 , we conclude that the following equalities hold (see [3, p. 95]):

$$g^{*}(k_{1}^{2}) = g_{1}^{*}(k_{1}^{2}) + (Sq^{2} + w_{2}(\nu))(\alpha);$$

$$g^{*}(k_{2}^{2}) = g_{1}^{*}(k_{2}^{2}) + (Sq^{2} + w_{1}(\nu)^{2} + w_{2}(\nu))Sq^{1}\alpha + Sq^{1}\beta;$$

$$g^{*}(k_{3}^{2}) = \begin{cases} g_{1}^{*}(k_{3}^{2}) + (Sq^{4} + w_{4}(\nu))(\alpha) + w_{2} \cdot \beta, & n \equiv 3 \pmod{4} \\ g_{1}^{*}(k_{3}^{2}) + (Sq^{4} + w_{4}(\nu))(\alpha) + Sq^{2}\beta, & n \equiv 1 \pmod{4}. \end{cases}$$

First, we need to prove that the class $g_1^*(k_1^2)$ is in the image of the map $(Sq^2 + w_2(\nu)): H^{2n-5}(G_{2,n};\mathbb{Z}_2) \to H^{2n-3}(G_{2,n};\mathbb{Z}_2)$. The k-invariant k_1^3 is produced by the relation $(Sq^2 + w_2)k_1^2 + Sq^1k_2^2 = 0$ which holds in $H^*(E_1;\mathbb{Z}_2)$. Applying g_1^* , we get

$$(Sq^2 + w_2(\nu))g_1^*(k_1^2) = Sq^1g_1^*(k_2^2).$$

But, by Lemma 3.6, $Sq^1g_1^*(k_2^2) = 0$. Hence, $g_1^*(k_1^2)$ is in the kernel of the map $(Sq^2 +$

 $w_{2}(\nu)): H^{2n-3}(G_{2,n}; \mathbb{Z}_{2}) \to H^{2n-1}(G_{2,n}; \mathbb{Z}_{2}), \text{ and according to Lemmas 3.5 and 3.7,}$ this kernel coincides with the image of the map $(Sq^{2} + w_{2}(\nu)): H^{2n-5}(G_{2,n}; \mathbb{Z}_{2}) \to H^{2n-3}(G_{2,n}; \mathbb{Z}_{2}).$ Thus, we can find a class $\alpha \in H^{2n-5}(G_{2,n}; \mathbb{Z}_{2})$ such that $g^{*}(k_{1}^{2}) = 0.$ Since $H^{2n-2}(G_{2,n}; \mathbb{Z}_{2})$ is generated by the classes $w_{1}^{2}w_{2}^{n-2}$ and w_{2}^{n-1} (Corollary 2.8),

Since $H^{2n-2}(G_{2,n};\mathbb{Z}_2)$ is generated by the classes $w_1^2 w_2^{n-2}$ and w_2^{n-1} (Corollary 2.8), by Lemma 3.8 and Lemma 3.9 we see that we can choose a class $\beta \in H^{2n-3}(G_{2,n};\mathbb{Z}_2)$ and modify α (by adding, if necessary, the class $w_1^3 w_2^{n-4} + w_1 w_2^{n-3}$) to obtain gsuch that $g^*(k_2^2) = 0$. Since $w_1^3 w_2^{n-4} + w_1 w_2^{n-3}$ is in the kernel of the map $(Sq^2 + w_2(\nu)): H^{2n-5}(G_{2,n};\mathbb{Z}_2) \to H^{2n-3}(G_{2,n};\mathbb{Z}_2)$ (Lemma 3.5), adding this class to the previous α will not spoil the equality $g^*(k_1^2) = 0$.

previous α will not spoil the equality $g^*(k_1^2) = 0$. Finally, observe the class $\beta' := w_1 w_2^{n-2} \in H^{2n-3}(G_{2,n}; \mathbb{Z}_2)$. According to Corollary 2.8, $w_2 \cdot \beta' = w_1 w_2^{n-1} \neq 0$ and if $n \equiv 1 \pmod{4}$, by Lemma 3.4,

$$Sq^{2}\beta' = (n-2)w_{1}w_{2}^{n-1} + \binom{n-1}{2}w_{1}^{3}w_{2}^{n-2} = w_{1}w_{2}^{n-1} \neq 0.$$

Since β' is in the kernel of the map $Sq^1: H^{2n-3}(G_{2,n}; \mathbb{Z}_2) \to H^{2n-2}(G_{2,n}; \mathbb{Z}_2)$ (Lemma 3.8), we can add this class to the previous β (if necessary) and obtain a lifting g such that $g^*(k_1^2) = g^*(k_2^2) = g^*(k_3^2) = 0$.

Therefore, we can lift f_{ν} up to E_2 , i.e., there is a map $h_1: G_{2,n} \to E_2$ such that $q_1 \circ q_2 \circ h_1 = q_1 \circ g = f_{\nu}$.

We need to make one more step: to prove that the lifting h_1 can be modified to a lifting h which lifts up to E_3 , i.e., such that $h^*(k_1^3) = 0$. Arguing as before, we see that it suffices to find classes $a \in H^{2n-4}(G_{2,n};\mathbb{Z}_2)$ and $b \in H^{2n-3}(G_{2,n};\mathbb{Z}_2)$ such that $(Sq^2 + w_2(\nu))(a) + Sq^1b = h_1^*(k_1^3) \in H^{2n-2}(G_{2,n};\mathbb{Z}_2)$. But, since $w_1^2w_2^{n-2}$ and w_2^{n-1} generate $H^{2n-2}(G_{2,n};\mathbb{Z}_2)$, according to Lemma 3.8 and Lemma 3.10, such classes aand b exist (that is, the indeterminacy of k_1^3 is all of $H^{2n-2}(G_{2,n};\mathbb{Z}_2)$). This completes the proof of the theorem.

References

- T. Becker and V. Weispfenning, Gröbner bases: A computational approach to commutative algebra, Graduate Texts in Mathematics 141, Springer-Verlag, New York, 1993.
- [2] R. Cohen, The immersion conjecture for differentiable manifolds, Ann. of Math. 122 (1985), no. 2, 237–328.
- [3] S. Gitler and M. Mahowald, The geometric dimension of real stable vector bundles, *Bol. Soc. Mat. Mex.* (2) **11** (1966), 85–107.
- [4] M.W. Hirsch, Immersions of manifolds, Trans. Amer. Math. Soc. 93 (1959), no. 2, 242–276.
- [5] W.S. Massey, Normal vector fields on manifolds, Proc. Amer. Math. Soc. 12 (1961), no. 1, 33–40.
- [6] K.G. Monks, Groebner bases and the cohomology of Grassmann manifolds with application to immersion, *Bol. Soc. Mat. Mex. (3)* 7 (2001), no. 1, 123–136.
- [7] F. Nussbaum, Obstruction theory of possibly nonorientable fibrations, Northwestern Unversity Ph.D. thesis (1970).

ZORAN Z. PETROVIĆ AND BRANISLAV I. PRVULOVIĆ

- [8] V. Oproiu, Some non-embedding theorems for Grassmann manifolds $G_{2,n}$ and $G_{3,n}$, Proc. Edinburgh Math. Soc. **20** (1976–77), no. 3, 177–185.
- [9] T.A. Shimkus, New immersions of Grassmann manifolds, *Bol. Soc. Mat. Mex.* (3) **13** (2007), no. 2, 381–389.

Zoran Z. Petrović zoranp@matf.bg.ac.rs

University of Belgrade, Faculty of Mathematics, Studentski trg 16, Belgrade, Serbia

Branislav I. Prvulović bane@matf.bg.ac.rs

University of Belgrade, Faculty of Mathematics, Studentski trg 16, Belgrade, Serbia