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ON GROEBNER BASES AND IMMERSIONS OF
GRASSMANN MANIFOLDS G2,n

ZORAN Z. PETROVIĆ and BRANISLAV I. PRVULOVIĆ

(communicated by Donald M. Davis)

Abstract
Mod 2 cohomology of the Grassmann manifoldG2,n is a poly-

nomial algebra modulo a certain well-known ideal. A Groeb-
ner basis for this ideal is obtained. Using this basis, some new
immersion results for Grassmannians G2,n are established.

1. Introduction

Mod 2 cohomology of Grassmann manifolds Gk,n = O(n+ k)/O(n)×O(k) has a
rather simple description. It is the polynomial algebra on the Stiefel-Whitney classes
w1, w2, . . . , wk of the canonical vector bundle γk over Gk,n modulo the ideal Ik,n
generated by the dual classes wn+1, wn+2, . . . , wn+k. Alas, from this description it is
not at all easy to establish whether a certain cohomology class is zero or not. In [6],
Monks found Groebner bases for the ideal I2,n in the cases n = 2s − 3 and n = 2s − 4.
Using these bases, some new results concerning the mod 2 cohomology of G2,2s−3 and
G2,2s−4 were established in that paper. Also, the author used the method of modified
Postnikov towers and gave an immersion result for the spaces G2,2s−3 into Rd. In [9],
Shimkus improved this immersion result by the same method.

Motivated by these results, we have found a reduced Groebner basis for the ideal
I2,n for all n. This result is stated in Theorem 2.7. In Corollary 2.8 we present a
convenient vector space bases for H∗(G2,n;Z2).

Using these bases and modified Postnikov towers, in Theorem 3.11 we generalize
the immersion result established in [9] and prove that G2,n immerses into R4n−5

where n is any odd integer > 7. Our result improves upon the previously known best
result (obtained by Cohen in [2]) whenever α(n) = α(2n) < 5 (where α(n) denotes
the number of ones in the binary expansion of n).

The lower bounds for the immersion dimension of G2,n (which is defined by
imm(G2,n) := min{d | G2,n immerses into Rd}) were established by Oproiu ([8])
using the method of the Stiefel-Whitney classes. For example, he has shown that
imm(G2,2s−1+1) > 2s+1 − 2. Our result states that imm(G2,2s−1+1) 6 2s+1 − 1 for

s > 4, so it only remains to check whether G2,2s−1+1 can be immersed into R2s+1−2.
One more example where the lower bound from [8] almost reaches the upper bound
obtained in Theorem 3.11 is G2,7, 22 6 imm(G2,7) 6 23.
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In addition to these main results, in Theorem 3.1 we use Groebner bases to give a
simple proof of the previous result of Oproiu concerning lower bounds for imm(G2,n).
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2. Groebner bases

For positive integer b and arbitrary integer a, the binomial coefficient is defined by(
a
b

)
:= a(a−1)···(a−b+1)

b! . Also,
(
a
0

)
:= 1. If b is a negative integer, we define

(
a
b

)
to be

equal to zero. Then it is easy to see that the well-known formula(
a

b

)
=

(
a− 1

b

)
+

(
a− 1

b− 1

)
(1)

is valid for all a, b ∈ Z.
From formula (1) we deduce directly that

(
a
b

)
+
(
a−1
b−1

)
≡

(
a−1
b

)
(mod 2), a, b ∈ Z,

or equivalently
(
a−1
b−1

)
≡

(
a
b

)
+
(
a−1
b

)
(mod 2), a, b ∈ Z.

Henceforth, all binomial coefficients are considered mod 2.

Let Gk,n be the Grassmann manifold of unoriented k-dimensional vector subspaces
in Rn+k. It is known that the cohomology algebra H∗(Gk,n;Z2) is isomorphic to the
quotient Z2[w1, w2, . . . , wk]/Ik,n of the polynomial algebra Z2[w1, w2, . . . , wk] by the
ideal Ik,n generated by polynomials wn+1, wn+2, . . . , wn+k, which are obtained from
the equation

(1 + w1 + w2 + · · ·+ wk)(1 + w1 + w2 + · · · ) = 1.

For k = 2 (which is the case from now on), we have

1 + w1 + w2 + · · · = 1

1 + w1 + w2

=
∑
t>0

(w1 + w2)
t =

∑
t>0

∑
a+b=t

(
a+ b

a

)
wa

1w
b
2

=
∑
a,b>0

(
a+ b

a

)
wa

1w
b
2.

By identifying the homogenous parts of (cohomological) degree r > 0, we obtain

wr =
∑

a+2b=r

(
a+ b

a

)
wa

1w
b
2.

It is understood that a and b are nonnegative integers.
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We use the grlex ordering on the monomials in Z2[w1, w2] with w1 > w2. That is,
wa

1w
b
2 � wc

1w
d
2 if either a+ b < c+ d or else a+ b = c+ d and a 6 c. Of course, we

will write wa
1w

b
2 ≺ wc

1w
d
2 when wa

1w
b
2 � wc

1w
d
2 and wa

1w
b
2 6= wc

1w
d
2 .

We shall prove that, with respect to this ordering, the reduced Groebner basis for
the ideal I2,n = (wn+1, wn+2) is of the form G = {g0, g1, . . . , gn+1} where LT(gm) =
wn+1−m

1 wm
2 , 0 6 m 6 n+ 1. From this it follows immediately that a vector space

basis for H∗(G2,n;Z2) is the set of all monomials wa
1w

b
2 such that a+ b 6 n.

Let us now define the polynomials gm (0 6 m 6 n+ 1).

Definition 2.1. For 0 6 m 6 n+ 1, let

gm :=
∑

a+2b=n+1+m

(
a+ b−m

a

)
wa

1w
b
2.

As before, it is understood that a, b > 0. Note that the (cohomological) degree of
the polynomial gm is n+ 1 +m.

By comparing with the above formula for wr, it is obvious that g0 = wn+1. Also,

w2wn =
∑

a+2b=n

(
a+ b

a

)
wa

1w
b+1
2 =

∑
a+2b=n+2

(
a+ b− 1

a

)
wa

1w
b
2 = g1.

The change of variable b 7→ b− 1 does not affect the requirement that b > 0 since for
b = 0 the binomial coefficient

(
a+b−1

a

)
=

(
n+1
n+2

)
is equal to 0.

From the defining formula, one can see that b must be such that m 6 b 6 n+1+m
2 .

Namely, a+ b−m cannot be negative since a+ b−m < 0 implies a+ 2b 6 2(a+
b) < 2m 6 n+ 1 +m, contradicting the requirement that a+ 2b = n+ 1 +m. Now,
a+ b−m must be > a in order for

(
a+b−m

a

)
to be nonzero, and we conclude that b >

m. The second inequality comes from the condition a+ 2b = n+ 1 +m. Therefore,
we have

gm =

[n+1+m
2 ]∑

b=m

(
n+ 1− b

b−m

)
wn+1+m−2b

1 wb
2. (2)

It is obvious that the summand obtained for b = m provides the leading term
LT(gm) = wn+1−m

1 wm
2 .

In order to show that G = {g0, g1, . . . , gn+1} is a Groebner basis for I2,n, we define
the ideal IG := (G) = (g0, g1, . . . , gn+1) in Z2[w1, w2]. As we have already noticed,
wn+1 = g0 ∈ IG, wn+2 = w1wn+1 + w2wn = w1g0 + g1 ∈ IG, so I2,n ⊆ IG.

It remains to prove that IG ⊆ I2,n and that G is a Groebner basis. It turns out
that the following proposition plays the crucial role in proving these facts.

Proposition 2.2. For each m ∈ {0, 1, . . . , n− 1}, w2gm + w1gm+1 = gm+2. Also, we
have that w2gn + w1gn+1 = 0.
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Proof. We calculate

w2gm + w1gm+1

=
∑

a+2b=n+1+m

(
a+ b−m

a

)
wa

1w
b+1
2 +

∑
a+2b=n+m+2

(
a+ b−m− 1

a

)
wa+1

1 wb
2

=
∑

a+2b=n+m+3

(
a+ b−m− 1

a

)
wa

1w
b
2 +

∑
a+2b=n+m+3

(
a+ b−m− 2

a− 1

)
wa

1w
b
2

=
∑

a+2b=n+m+3

(
a+ b−m− 2

a

)
wa

1w
b
2 = gm+2.

We note that, for the similar reasons as above, the change of variable b 7→ b− 1
(a 7→ a− 1) does not affect the requirement that b > 0 (a > 0).

The second statement is a consequence of the equalities gn = LT(gn) = w1w
n
2 and

gn+1 = LT(gn+1) = wn+1
2 which are easily seen from (2).

Corollary 2.3. IG ⊆ I2,n.

Proof. We already know that

g0 = wn+1 ∈ I2,n and g1 = w1wn+1 + wn+2 ∈ I2,n.

Proposition 2.2 applies, and by induction on m we have that gm ∈ I2,n (0 6 m 6
n+ 1). The corollary follows.

Therefore, G is a basis for I2,n, and we wish to prove that it is a Groebner basis.
We recall that (for a fixed monomial ordering) the S-polynomial of polynomials f, g ∈
Z2[x1, x2, . . . , xk] is given by (we work with mod 2 coefficients)

S(f, g) =
L

LT(f)
· f +

L

LT(g)
· g,

where L = lcm(LT(f),LT(g)) denotes the least common multiple of LT(f) and LT(g).
If 0 6 m < m+ s 6 n+ 1, we see that

lcm(LT(gm),LT(gm+s)) = lcm(wn+1−m
1 wm

2 , wn+1−m−s
1 wm+s

2 ) = wn+1−m
1 wm+s

2 ,

and so we have

S(gm, gm+s) = ws
2gm + ws

1gm+s. (3)

We are going to prove that G satisfies a sufficient condition (see [1]) for being a
Groebner basis. In order to do that, we recall the following definition and theorem ([1,
p. 219]). We formulate them for the field R = Z2. It is assumed that we have an
ordering � on the monomials in Z2[x1, x2, . . . , xk].

Definition 2.4. Let F be a finite subset of Z2[x1, x2, . . . , xk], f ∈ Z2[x1, x2, . . . , xk]
a nonzero polynomial and t a fixed monomial. If f can be written as a finite sum of

the form
∑
i

mifi, where fi ∈ F and mi ∈ Z2[x1, x2, . . . , xk] are nonzero monomials

such that LT(mifi) � t for all i, we say that
∑
i

mifi is a t-representation of f with

respect to F .
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Theorem 2.5. Let F be a finite subset of Z2[x1, x2, . . . , xk], 0 /∈ F . If for all f1, f2
∈ F , S(f1, f2) either equals zero or has a t-representation with respect to F for some
monomial t ≺ lcm(LT(f1),LT(f2)), then F is a Groebner basis.

We need the following lemma.

Lemma 2.6. For 0 6 m < m+ s 6 n+ 1, S(gm, gm+s) =
s−1∑
i=0

wi
1w

s−1−i
2 gm+2+i.

It is understood that for m+ s = n+ 1, the last summand in this sum (for i =
s− 1) is zero.

Proof. We proceed by induction on s. For s = 1, we obtain

S(gm, gm+1) = w2gm + w1gm+1 = gm+2 =
0∑

i=0

wi
1w

−i
2 gm+2+i,

using (3) and Proposition 2.2. For the inductive step, we have

S(gm, gm+s) = ws
2gm + ws

1gm+s

= ws
2gm + w2w

s−1
1 gm+s−1 + w2w

s−1
1 gm+s−1 + ws

1gm+s

= w2S(gm, gm+s−1) + ws−1
1 gm+s+1

= ws−1
1 gm+s+1 +

s−2∑
i=0

wi
1w

s−1−i
2 gm+2+i

=

s−1∑
i=0

wi
1w

s−1−i
2 gm+2+i,

again by (3), Proposition 2.2 and the induction hypothesis. It is clear that if m+ s =
n+ 1 then the summand ws−1

1 gm+s+1 does not appear in the sum (Proposition 2.2)
and so 0 6 i 6 s− 2 in this case.

Theorem 2.7. Let n > 2. Then G = {g0, g1, . . . , gn+1} defined above is the reduced
Groebner basis for the ideal I2,n in Z2[w1, w2] with respect to the grlex ordering �.

Proof. We have already shown that G is a basis for I2,n. We wish to apply The-
orem 2.5. Let gm and gm+s (0 6 m < m+ s 6 n+ 1) be two arbitrary elements of
G. If m = n, then m+ s must be n+ 1 and, using (3) and Proposition 2.2, one
obtains S(gm, gm+s) = S(gn, gn+1) = w2gn + w1gn+1 = 0. If m 6 n− 1, then accord-
ing to Lemma 2.6,

S(gm, gm+s) =
s−1∑
i=0

wi
1w

s−1−i
2 gm+2+i.

Define t = t(m, s) := wn−1−m
1 wm+s+1

2 . First of all, observe that

t ≺ wn+1−m
1 wm+s

2 = lcm(LT(gm),LT(gm+s)).
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Now, for all i ∈ {0, 1, . . . , s− 1},

LT(wi
1w

s−1−i
2 gm+2+i) = wi

1w
s−1−i
2 LT(gm+2+i)

= wi
1w

s−1−i
2 wn+1−m−2−i

1 wm+2+i
2

= wn−1−m
1 wm+s+1

2 = t.

Theorem 2.5 applies, and we conclude that G is a Groebner basis for I2,n.
To see that it is the reduced one, we observe that {LT(g) | g ∈ G} is the set of

all monomials wa
1w

b
2 such that a+ b = n+ 1. Also, by looking at formula (2), we see

that all other terms appearing in gm have the sum of the exponents < n+ 1, and so
they cannot be divisible by any of the leading terms in G.

Since G is a Groebner basis for I2,n, a vector space basis for Z2[w1, w2]/I2,n could
be formed by taking all the monomials in Z2[w1, w2] (more precisely, their classes)
which are not divisible by any of LT(g0),LT(g1), . . . ,LT(gn+1). As we have noticed
in the proof of Theorem 2.7, the set {LT(g) | g ∈ G} is the set of all monomials wa

1w
b
2

such that a+ b = n+ 1. From this it is obvious that wa
1w

b
2 is not divisible by any of

the leading terms LT(gm) if and only if a+ b 6 n. By collecting all these facts, we
have proved the following corollary.

Corollary 2.8. Let n > 2. If wi is the i-th Stiefel-Whitney class of the canonical
vector bundle γ2 over G2,n, then the set {wa

1w
b
2 | a+ b 6 n} is a vector space basis

for H∗(G2,n;Z2).

Let us now determine a few elements of the Groebner basis G which will be used
in our later calculations. As we have already noticed, by formula (2), gn+1 = wn+1

2

and gn = w1w
n
2 . Using this and Proposition 2.2, we obtain w2gn−1 = w1gn + gn+1 =

w2
1w

n
2 + wn+1

2 = w2(w
2
1w

n−1
2 + wn

2 ), and so we deduce that gn−1 = w2
1w

n−1
2 + wn

2 .
Continuing in the same manner, one gets

gn−2 = w3
1w

n−2
2 ;

gn−3 = w4
1w

n−3
2 + w2

1w
n−2
2 + wn−1

2 ;

gn−4 = w5
1w

n−4
2 + w1w

n−2
2 ;

gn−5 = w6
1w

n−5
2 + w4

1w
n−4
2 + wn−2

2 .

3. Immersions

In order to construct the immersions of Grassmannians G2,n into Euclidean spaces,
we recall the theorem of Hirsch ([4]) which states that a smooth compact m-manifold
Mm immerses in Rm+l if and only if the classifying map fν : M

m → BO of the stable
normal bundle ν of Mm lifts up to BO(l).

Mm BO
fν //

BO(l)

BO

p

��
Mm

BO(l)
<<z

z
z

z
z

z
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Let imm(Mm) denote the least integer d such that Mm immerses into Rd. By
Hirsch’s theorem, if wk(ν) 6= 0 then imm(Mm) > m+ k.

As in Corollary 2.8, let wi be the i-th Stiefel-Whitney class of the canonical vector
bundle γ2 over G2,n (n > 2). It is well known (see [8, p. 179]) that, if 2s is the least
power of 2 exceeding n, i.e., 2s−1 6 n < 2s, then for the total Stiefel-Whitney class
w(ν) of the stable normal bundle ν of G2,n, one has

w(ν) = (1 + w2
1)(1 + w1 + w2)

2s+1−2−n. (4)

For n = 2s − 2, from formula (2) we have that

g0 =
2s−1−1∑
b=0

(
2s − 1− b

b

)
w2s−1−2b

1 wb
2 = w2s−1

1

since the binomial coefficient
(
2s−1−b

b

)
is odd only for b = 0 (by Lucas formula). This

means that w2s−1
1 = 0 in H∗(G2,2s−2;Z2). But then w2s−1

1 = 0 in H∗(G2,n;Z2) for
all n 6 2s − 2 since the inclusion i : G2,n → G2,2s−2 is obviously covered by a map of
canonical bundles γ2.

If 2s−1 6 n 6 2s − 2, then by formula (4) we have

w(ν) = (1 + w2
1)(1 + w1 + w2)

2s(1 + w1 + w2)
2s−2−n

= (1 + w2
1)(1 + w2s

1 + w2s

2 )(1 + w1 + w2)
2s−2−n.

Now, w2s

2 = 0 because it is a class of degree 2s+1 > 2s+1 − 4 > 2n = dim(G2,n). Also,
by the previous discussion w2s

1 = 0 and (4) simplifies to

w(ν) = (1 + w2
1)(1 + w1 + w2)

2s−2−n. (5)

If n = 2s − 1, then from (4) we obtain

w(ν) = (1 + w2
1)(1 + w1 + w2)

2s−1

= (1 + w1)
2
2s−1∑
i=0

(
2s − 1

i

)
(1 + w1)

iw2s−1−i
2

=
2s−1∑
i=0

(1 + w1)
i+2w2s−1−i

2

=
2s−1∑
i=0

i+2∑
j=0

(
i+ 2

j

)
wj

1w
2s−1−i
2 .

(6)

We now recall a theorem of Oproiu ([8]), and we prove it using the Groebner basis
from Theorem 2.7.

Theorem 3.1 (Oproiu [8]). For 2 6 2s−1 6 n < 2s, we have:

(a) If n 6 2s − 2, then imm(G2,n) > 2s+1 − 2.

(b) imm(G2,2s−1) > 3 · 2s − 2.

Proof. (a) The top class in the expression (5) is w2s+1−2−2n(ν) = w2
1w

2s−2−n
2 , and

since the sum of the exponents 2 + 2s − 2− n = 2s − n 6 2s−1 6 n, by Corollary 2.8
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we have that w2s+1−2−2n(ν) 6= 0 and we conclude that

imm(G2,n) > dim(G2,n) + 2s+1 − 2− 2n = 2s+1 − 2.

(b) From the equality (6) we calculate

w2s(ν) =
2s−1∑

i=2s−1−1

(
i+ 2

2i+ 2− 2s

)
w2i+2−2s

1 w2s−1−i
2

=
2s−1∑
l=0

(
2s + 1− l

2s − 2l

)
w2s−2l

1 wl
2 =

2s−1∑
l=0

(
2s + 1− l

l + 1

)
w2s−2l

1 wl
2

=

(
2s + 1

1

)
w2s

1 +

(
2s

2

)
w2s−2

1 w2 +

(
2s − 1

3

)
w2s−4

1 w2
2 + · · ·

= w2s

1 + w2s−4
1 w2

2 + · · · ,

where the unwritten monomials (if there are any) have the sum of the exponents
6 2s − 3 = n− 2. Note that, since 2s−1 > 2, three written summands must appear in
the sum.

On the other hand, from the equality (2) we see that the first element of the
Groebner basis in this case is

g0 =
2s−1∑
b=0

(
2s − b

b

)
w2s−2b

1 wb
2 = w2s

1 + (2s − 1)w2s−2
1 w2 +

(
2s − 2

2

)
w2s−4

1 w2
2 + · · ·

= w2s

1 + w2s−2
1 w2 + w2s−4

1 w2
2 + · · · .

Again, the unwritten monomials have the sum of the exponents 6 n− 2, and three
written ones must be here.

By adding these two equalities together, using the fact that g0 = 0 in H∗(G2,n;Z2)
we obtain

w2s(ν) = w2s−2
1 w2 + · · · .

The sum of the exponents in the monomial w2s−2
1 w2 is 2s − 1 = n, and in the remain-

ing monomials (if there are any) this sum is 6 n− 2, so none of these monomials is
divisible by any of the leading terms LT(gm). This means that we have obtained the
remainder of dividing w2s(ν) by G. Since w2s−2

1 w2 must appear in this remainder,
we conclude that w2s(ν) 6= 0. Finally, this implies that

imm(G2,2s−1) > dim(G2,2s−1) + 2s = 3 · 2s − 2

and we are done.

Example 3.2. If n = 2s−1 > 2, then imm(G2,2s−1) > 2s+1 − 2 = 2 · dim(G2,2s−1)− 2.
By the result of Massey [5, Theorem V], if Mm is orientable, m > 4 and w2(ν) ·
wm−2(ν) = 0, then Mm immerses into R2m−2. Now, G2,2s−1 is orientable (Grass-
mannian Gk,n is orientable if and only if n+ k is even; see [8, p. 179]), and from
formula (5) we have

w(ν) = (1 + w2
1)(1 + w1 + w2)

2s−1−2,
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so

w2(ν) =

(
1 +

(
2s−1 − 2

2

))
w2

1 + (2s−1 − 2)w2 = 0

since 2s−1 > 2. This implies that G2,2s−1 immerses into R2s+1−2, i.e., imm(G2,2s−1) 6
2s+1 − 2, so for 2s−1 > 2, we actually have the equality

imm(G2,2s−1) = 2s+1 − 2.

Also, we note that for G2,3, Oproiu’s Theorem 3.1(b) gives imm(G2,3) > 10, and
by Cohen’s theorem ([2]), imm(G2,3) 6 10, so imm(G2,3) = 10. For G2,5, the results
of Oproiu ([8]) and Monks ([6]) provide inequalities 14 6 imm(G2,5) 6 17.

We now turn to the proof of the immersion result.

Lemma 3.3. Let n be an odd integer > 5. For the stable normal bundle ν of G2,n we
have:

(a) wi(ν) = 0 for i > 2n− 5;

(b) w1(ν) = w1;

(c) w2(ν) = w2 if n ≡ 3 (mod 4); w2(ν) = w2
1 + w2 if n ≡ 1 (mod 4).

Proof. As above, let s be the integer such that 2s−1 6 n < 2s. Since n is odd, we
have that n > 2s−1 + 1. This implies 4n > 2s+1 + 4, i.e., 2s+1 − 2− 2n < 2n− 5.

If n 6= 2s − 1, then from formula (5) we see that the top class in the expression for
w(ν), namely w2

1w
2s−2−n
2 , is of degree 2s+1 − 2− 2n, and by the previous inequality,

we deduce that wi(ν) = 0 for i > 2n− 5.

For n = 2s − 1, Oproiu shows [8, p. 182] that the top nonzero class in the expres-
sion (4) is of degree 2s and, since n > 7 in this case, we conclude that 2s = n+ 1 <
2n− 5 obtaining (a).

From formula (4) we read off

w1(ν) = (2s+1 − 2− n)w1;

w2(ν) =

(
1 +

(
2s+1 − 2− n

2

))
w2

1 + (2s+1 − 2− n)w2

and obtain (b) and (c).

A few more lemmas will be useful.

Lemma 3.4. In H∗(G2,n;Z2), for all nonnegative integers a and b, the following
relations hold:

(a) Sq1(wa
1w

b
2) = (a+ b)wa+1

1 wb
2;

(b) Sq2(wa
1w

b
2) = bwa

1w
b+1
2 +

(
a+b
2

)
wa+2

1 wb
2.

Proof. Since Sqj(wa
1) =

(
a
j

)
wa+j

1 , the formulas are true for b = 0. We proceed by
induction on b.

(a) By the Wu formula, Sq1w2 = w1w2. Using the Cartan formula and the induc-
tion hypothesis, we have
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Sq1(wa
1w

b
2) = Sq1(w2w

a
1w

b−1
2 )

= w1w2w
a
1w

b−1
2 + (a+ b− 1)w2w

a+1
1 wb−1

2

= (a+ b)wa+1
1 wb

2.

(b) For the induction step we use again formulas of Cartan and Wu, the statement
(a) and the fact that Sq2w2 = w2

2. We calculate

Sq2(wa
1w

b
2) = Sq2(w2w

a
1w

b−1
2 )

= wa
1w

b+1
2 + (a+ b− 1)wa+2

1 wb
2 + (b− 1)wa

1w
b+1
2

+

(
a+ b− 1

2

)
wa+2

1 wb
2

= bwa
1w

b+1
2 +

(
a+ b

2

)
wa+2

1 wb
2,

and the proof is complete.

Lemma 3.5. The map (Sq2 + w2(ν)) : H
2n−5(G2,n;Z2) → H2n−3(G2,n;Z2), where

n is an odd integer > 5, is determined by the equalities

(Sq2 + w2(ν))(w
5
1w

n−5
2 ) = (Sq2 + w2(ν))(w

3
1w

n−4
2 ) = (Sq2 + w2(ν))(w1w

n−3
2 )

= w1w
n−2
2 .

Proof. By Corollary 2.8, the set {w5
1w

n−5
2 , w3

1w
n−4
2 , w1w

n−3
2 } is a vector space basis

for H2n−5(G2,n;Z2).

Now, if n ≡ 3 (mod 4), using Lemma 3.3, Lemma 3.4 and Groebner basis from
Theorem 2.7, we calculate

(Sq2 + w2(ν))(w
5
1w

n−5
2 ) = Sq2(w5

1w
n−5
2 ) + w2w

5
1w

n−5
2

= (n− 5)w5
1w

n−4
2 +

(
n

2

)
w7

1w
n−5
2 + w5

1w
n−4
2

= w7
1w

n−5
2 + w5

1w
n−4
2

= w1(gn−5 + w4
1w

n−4
2 + wn−2

2 ) + w5
1w

n−4
2 = w1w

n−2
2 ;

(Sq2 + w2(ν))(w
3
1w

n−4
2 ) = Sq2(w3

1w
n−4
2 ) + w2w

3
1w

n−4
2

= (n− 4)w3
1w

n−3
2 +

(
n− 1

2

)
w5

1w
n−4
2 + w3

1w
n−3
2

= w5
1w

n−4
2 = gn−4 + w1w

n−2
2 = w1w

n−2
2 ;

(Sq2 + w2(ν))(w1w
n−3
2 ) = Sq2(w1w

n−3
2 ) + w2w1w

n−3
2

= (n− 3)w1w
n−2
2 +

(
n− 2

2

)
w3

1w
n−3
2 + w1w

n−2
2

= w1w
n−2
2 .
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Similarly, if n ≡ 1 (mod 4), we have

(Sq2 + w2(ν))(w
5
1w

n−5
2 ) = Sq2(w5

1w
n−5
2 ) + w2

1w
5
1w

n−5
2 + w2w

5
1w

n−5
2

= (n− 5)w5
1w

n−4
2 +

(
n

2

)
w7

1w
n−5
2 + w7

1w
n−5
2 + w5

1w
n−4
2

= w7
1w

n−5
2 + w5

1w
n−4
2

= w1(gn−5 + w4
1w

n−4
2 + wn−2

2 ) + w5
1w

n−4
2 = w1w

n−2
2 ;

(Sq2 + w2(ν))(w
3
1w

n−4
2 ) = Sq2(w3

1w
n−4
2 ) + w2

1w
3
1w

n−4
2 + w2w

3
1w

n−4
2

= (n− 4)w3
1w

n−3
2 +

(
n− 1

2

)
w5

1w
n−4
2 + w5

1w
n−4
2 + w3

1w
n−3
2

= w5
1w

n−4
2 = gn−4 + w1w

n−2
2 = w1w

n−2
2 ;

(Sq2 + w2(ν))(w1w
n−3
2 ) = Sq2(w1w

n−3
2 ) + w2

1w1w
n−3
2 + w2w1w

n−3
2

= (n− 3)w1w
n−2
2 +

(
n− 2

2

)
w3

1w
n−3
2 + w3

1w
n−3
2 + w1w

n−2
2

= w1w
n−2
2 ,

and the proof of the lemma is complete.

Lemma 3.6. The map Sq1 : H2n−2(G2,n;Z2) → H2n−1(G2,n;Z2), where n is an odd
integer > 5, is trivial.

Proof. The set {w2
1w

n−2
2 , wn−1

2 } is a vector space basis for H2n−2(G2,n;Z2) (Corol-
lary 2.8). Using Lemma 3.4, we obtain

Sq1(w2
1w

n−2
2 ) = nw3

1w
n−2
2 = w3

1w
n−2
2 = gn−2 = 0;

Sq1(wn−1
2 ) = (n− 1)w1w

n−1
2 = 0,

which proves the lemma.

Lemma 3.7. The map (Sq2 + w2(ν)) : H
2n−3(G2,n;Z2) → H2n−1(G2,n;Z2), where

n is an odd integer > 5, is determined by the equalities:

(Sq2 + w2(ν))(w
3
1w

n−3
2 ) = w1w

n−1
2 6= 0;

(Sq2 + w2(ν))(w1w
n−2
2 ) = 0.

Proof. Again by Corollary 2.8, the classes w3
1w

n−3
2 and w1w

n−2
2 form a vector space

basis for H2n−3(G2,n;Z2), and the class w1w
n−1
2 is nontrivial in H2n−1(G2,n;Z2) ∼=

Z2.
By Lemma 3.3 and Lemma 3.4, for n ≡ 3 (mod 4) we have

(Sq2 + w2(ν))(w
3
1w

n−3
2 ) = Sq2(w3

1w
n−3
2 ) + w2w

3
1w

n−3
2

= (n− 3)w3
1w

n−2
2 +

(
n

2

)
w5

1w
n−3
2 + w3

1w
n−2
2

= w5
1w

n−3
2 + w3

1w
n−2
2

= w1(gn−3 + w2
1w

n−2
2 + wn−1

2 ) + w3
1w

n−2
2

= w1w
n−1
2 ;
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(Sq2 + w2(ν))(w1w
n−2
2 ) = Sq2(w1w

n−2
2 ) + w2w1w

n−2
2

= (n− 2)w1w
n−1
2 +

(
n− 1

2

)
w3

1w
n−2
2 + w1w

n−1
2

= w3
1w

n−2
2 = gn−2 = 0.

Likewise, for n ≡ 1 (mod 4), we obtain

(Sq2 + w2(ν))(w
3
1w

n−3
2 ) = Sq2(w3

1w
n−3
2 ) + w2

1w
3
1w

n−3
2 + w2w

3
1w

n−3
2

= (n− 3)w3
1w

n−2
2 +

(
n

2

)
w5

1w
n−3
2 + w5

1w
n−3
2 + w3

1w
n−2
2

= w5
1w

n−3
2 + w3

1w
n−2
2

= w1(gn−3 + w2
1w

n−2
2 + wn−1

2 ) + w3
1w

n−2
2

= w1w
n−1
2 ;

(Sq2 + w2(ν))(w1w
n−2
2 ) = Sq2(w1w

n−2
2 ) + w2

1w1w
n−2
2 + w2w1w

n−2
2

= (n− 2)w1w
n−1
2 +

(
n− 1

2

)
w3

1w
n−2
2 + w3

1w
n−2
2 + w1w

n−1
2

= w3
1w

n−2
2 = gn−2 = 0,

which was to be proved.

Lemma 3.8. The map Sq1 : H2n−3(G2,n;Z2) → H2n−2(G2,n;Z2), where n is an odd
integer > 5, is given by the equalities:

Sq1(w3
1w

n−3
2 ) = w2

1w
n−2
2 + wn−1

2 ;

Sq1(w1w
n−2
2 ) = 0.

Proof. As we have noticed in the proof of the previous lemma, the set

{w3
1w

n−3
2 , w1w

n−2
2 }

is a vector space basis for H2n−3(G2,n;Z2). So, we calculate

Sq1(w3
1w

n−3
2 ) = nw4

1w
n−3
2 = w4

1w
n−3
2 = gn−3 + w2

1w
n−2
2 + wn−1

2 = w2
1w

n−2
2 + wn−1

2 ,

Sq1(w1w
n−2
2 ) = (n− 1)w2

1w
n−2
2 = 0

by Lemma 3.4.

Lemma 3.9. If n is an odd integer > 5, then in H∗(G2,n;Z2) we have

(Sq2 + w1(ν)
2 + w2(ν))Sq

1(w3
1w

n−4
2 + w1w

n−3
2 ) = w2

1w
n−2
2 .

Proof. By Lemma 3.4(a),

Sq1(w3
1w

n−4
2 + w1w

n−3
2 ) = (n− 1)w4

1w
n−4
2 + (n− 2)w2

1w
n−3
2 = w2

1w
n−3
2 .

If n ≡ 3 (mod 4), by Lemma 3.3 and Lemma 3.4(b), one obtains

(Sq2 + w1(ν)
2 + w2(ν))(w

2
1w

n−3
2 ) = Sq2(w2

1w
n−3
2 ) + w2

1w
2
1w

n−3
2 + w2w

2
1w

n−3
2

= (n− 3)w2
1w

n−2
2 +

(
n− 1

2

)
w4

1w
n−3
2 + w4

1w
n−3
2

+ w2
1w

n−2
2 = w2

1w
n−2
2 .
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If n ≡ 1 (mod 4), again by Lemma 3.3 and Lemma 3.4(b), we have

(Sq2 + w1(ν)
2 + w2(ν))(w

2
1w

n−3
2 ) = Sq2(w2

1w
n−3
2 ) + w2w

2
1w

n−3
2

= (n− 3)w2
1w

n−2
2 +

(
n− 1

2

)
w4

1w
n−3
2 + w2

1w
n−2
2

= w2
1w

n−2
2 ,

and we are done.

Lemma 3.10. If n is an odd integer > 5, then in H∗(G2,n;Z2) the following equality
holds:

(Sq2 + w2(ν))(w
2
1w

n−3
2 ) = wn−1

2 .

Proof. As before, we use Lemma 3.3, Lemma 3.4 and Groebner basis from Theo-
rem 2.7.

If n ≡ 3 (mod 4),

(Sq2 + w2(ν))(w
2
1w

n−3
2 ) = Sq2(w2

1w
n−3
2 ) + w2w

2
1w

n−3
2

= (n− 3)w2
1w

n−2
2 +

(
n− 1

2

)
w4

1w
n−3
2 + w2

1w
n−2
2

= w4
1w

n−3
2 + w2

1w
n−2
2 = gn−3 + wn−1

2 = wn−1
2 .

If n ≡ 1 (mod 4),

(Sq2 + w2(ν))(w
2
1w

n−3
2 ) = Sq2(w2

1w
n−3
2 ) + w2

1w
2
1w

n−3
2 + w2w

2
1w

n−3
2

= (n− 3)w2
1w

n−2
2 +

(
n− 1

2

)
w4

1w
n−3
2 + w4

1w
n−3
2 + w2

1w
n−2
2

= w4
1w

n−3
2 + w2

1w
n−2
2 = gn−3 + wn−1

2 = wn−1
2 ,

completing the proof.

We are now ready to prove our immersion result.

Theorem 3.11. If n is an odd integer > 7, then G2,n immerses into R4n−5.

Proof. Let fν : G2,n → BO be the classifying map for the stable normal bundle ν of
G2,n. We want to show that fν can be lifted up to BO(2n− 5). We will use the 2n-
MPT for the fibration p : BO(2n− 5) → BO which can be constructed by the method
of Gitler and Mahowald ([3]) using the result of Nussbaum ([7]) who proved that their
method is applicable to the fibrations p : BO(l) → BO when l is odd. The tower is
presented in Figure 1 (Km stands for the Eilenberg-MacLane space K(Z2,m)).

The relations that produce the k-invariants are

k21 : (Sq2 + w2)w2n−4 = 0,

k22 : (Sq2 + w2
1 + w2)Sq

1w2n−4 + Sq1w2n−2 = 0,

k23 :

{
(Sq4 + w4)w2n−4 + w2w2n−2 = 0, n ≡ 3 (mod 4)

(Sq4 + w4)w2n−4 + Sq2w2n−2 = 0, n ≡ 1 (mod 4),

k31 : (Sq2 + w2)k
2
1 + Sq1k22 = 0.
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G2,n BO
fν // BO K2n−4 ×K2n−2.

w2n−4×w2n−2 //

E1

BO

q1

��

E1 K2n−3 ×K2n−2 ×K2n−1

k2
1×k2

2×k2
3 //

E2

E1

q2

��

E2 K2n−2

k3
1 //

E3

E2

q3

��

G2,n

E1

g

88qqqqqqqq
G2,n

E2

h

AA�
�

�
�

�
�

�
�

�
�

�
�

Figure 1: 2n-MPT for p : BO(2n− 5) → BO

Since dim(G2,n) = 2n, fν lifts up to BO(2n− 5) if and only if it lifts up to E3.

By Lemma 3.3(a), f∗
ν (w2n−4) = w2n−4(ν) = 0, f∗

ν (w2n−2) = w2n−2(ν) = 0, so fν
can be lifted up to E1, i.e., there is a map g1 : G2,n → E1 such that q1 ◦ g1 = fν .

In order to make the next step (to lift fν up to E2), we need to modify (if
necessary) the lifting g1 to a lifting g such that g∗(k21) = g∗(k22) = g∗(k23) = 0. By
choosing a map α× β : G2,n → K2n−5 ×K2n−3 = Ω(K2n−4 ×K2n−2) (i.e., classes
α ∈ H2n−5(G2,n;Z2) and β ∈ H2n−3(G2,n;Z2)), we get another lifting g : G2,n → E1

as the composition

G2,n G2,n ×G2,n
4 // G2,n ×G2,n K2n−5 ×K2n−3 × E1

(α×β)×g1 // K2n−5 ×K2n−3 × E1 E1,
µ //

where 4 is the diagonal mapping and µ : Ω(K2n−4 ×K2n−2)× E1 → E1 is the action
of the fibre in the principal fibration q1 : E1 → BO. So, we are looking for classes α and
β such that g∗(k21) = g∗(k22) = g∗(k23) = 0. By looking at the relations that produce
the k-invariants k21, k

2
2 and k23, we conclude that the following equalities hold (see [3,

p. 95]):

g∗(k21) = g∗1(k
2
1) + (Sq2 + w2(ν))(α);

g∗(k22) = g∗1(k
2
2) + (Sq2 + w1(ν)

2 + w2(ν))Sq
1α+ Sq1β;

g∗(k23) =

{
g∗1(k

2
3) + (Sq4 + w4(ν))(α) + w2 · β, n ≡ 3 (mod 4)

g∗1(k
2
3) + (Sq4 + w4(ν))(α) + Sq2β, n ≡ 1 (mod 4).

First, we need to prove that the class g∗1(k
2
1) is in the image of the map (Sq2 +

w2(ν)) : H
2n−5(G2,n;Z2) → H2n−3(G2,n;Z2). The k-invariant k31 is produced by the

relation (Sq2 + w2)k
2
1 + Sq1k22 = 0 which holds in H∗(E1;Z2). Applying g∗1 , we get

(Sq2 + w2(ν))g
∗
1(k

2
1) = Sq1g∗1(k

2
2).

But, by Lemma 3.6, Sq1g∗1(k
2
2) = 0. Hence, g∗1(k

2
1) is in the kernel of the map (Sq2 +
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w2(ν)) : H
2n−3(G2,n;Z2) → H2n−1(G2,n;Z2), and according to Lemmas 3.5 and 3.7,

this kernel coincides with the image of the map (Sq2 + w2(ν)) : H
2n−5(G2,n;Z2) →

H2n−3(G2,n;Z2). Thus, we can find a class α ∈ H2n−5(G2,n;Z2) such that g∗(k21) = 0.

SinceH2n−2(G2,n;Z2) is generated by the classes w2
1w

n−2
2 and wn−1

2 (Corollary 2.8),
by Lemma 3.8 and Lemma 3.9 we see that we can choose a class β ∈ H2n−3(G2,n;Z2)
and modify α (by adding, if necessary, the class w3

1w
n−4
2 + w1w

n−3
2 ) to obtain g

such that g∗(k22) = 0. Since w3
1w

n−4
2 + w1w

n−3
2 is in the kernel of the map (Sq2 +

w2(ν)) : H
2n−5(G2,n;Z2) → H2n−3(G2,n;Z2) (Lemma 3.5), adding this class to the

previous α will not spoil the equality g∗(k21) = 0.

Finally, observe the class β′ := w1w
n−2
2 ∈ H2n−3(G2,n;Z2). According to Corol-

lary 2.8, w2 · β′ = w1w
n−1
2 6= 0 and if n ≡ 1 (mod 4), by Lemma 3.4,

Sq2β′ = (n− 2)w1w
n−1
2 +

(
n− 1

2

)
w3

1w
n−2
2 = w1w

n−1
2 6= 0.

Since β′ is in the kernel of the map Sq1 : H2n−3(G2,n;Z2) → H2n−2(G2,n;Z2)
(Lemma 3.8), we can add this class to the previous β (if necessary) and obtain a
lifting g such that g∗(k21) = g∗(k22) = g∗(k23) = 0.

Therefore, we can lift fν up to E2, i.e., there is a map h1 : G2,n → E2 such that
q1 ◦ q2 ◦ h1 = q1 ◦ g = fν .

We need to make one more step: to prove that the lifting h1 can be modified to
a lifting h which lifts up to E3, i.e., such that h∗(k31) = 0. Arguing as before, we see
that it suffices to find classes a ∈ H2n−4(G2,n;Z2) and b ∈ H2n−3(G2,n;Z2) such that
(Sq2 + w2(ν))(a) + Sq1b = h∗

1(k
3
1) ∈ H2n−2(G2,n;Z2). But, since w2

1w
n−2
2 and wn−1

2

generate H2n−2(G2,n;Z2), according to Lemma 3.8 and Lemma 3.10, such classes a
and b exist (that is, the indeterminacy of k31 is all of H2n−2(G2,n;Z2)). This completes
the proof of the theorem.
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128 ZORAN Z. PETROVIĆ and BRANISLAV I. PRVULOVIĆ
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