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Abstract

We prove that a binomial edge ideal of a graph G has a quadratic Gröbner basis

with respect to some term order if and only if the graph G is closed with respect to

a given labelling of the vertices. We also state some criteria for the closedness of a

graph G that do not depend on the labelling of its vertex set.

1 Introduction

In this article a graph G means a simple graph without isolated vertices, loops and multiple
edges. Let V (G) = [n] = {1, . . . , n} denote the set of vertices and E(G) the set of edges.

One of the main objects of study in combinatorial commutative algebra is the edge
ideal of a graph G which is generated by the monomials xixj , where {i, j} is an edge of
G, in the polynomial ring K[x1, . . . , xn] over the field K. Edge ideals of a graph has been
introduced by Villarreal in 1990 [16], where he studied the Cohen-Macaulay property of
such ideals. Many authors have focused their attention on such ideals (see for example
[15], [9],[7], [2]).

In 2010, binomial edge ideals were introduced in [10] and appear independently, but
at the same time, also in [13]. Let S = K[x1, · · · , xn, y1, · · · , yn] be the polynomial ring
in 2n variables with coefficients in a field K. For i < j, set fij = xiyj − xjyi. The ideal
JG of S generated by the binomials fij = xiyj − xjyi such that i < j and {i, j} is an edge
of G, is called the binomial edge ideal of G.

Such class of ideals is a natural generalization of the ideal of 2-minors of a 2×n-matrix
of indeterminates. Really, the ideal of 2-minors of a 2 × n-matrix may be considered
as the binomial edge ideal of a complete graph on [n]. Moreover the binomial edge
ideal of a line graph, which can be interpreted as an ideal of adjacent minors, has been
examined in [3]. The importance of this class of binomial edge ideals for algebraic statistics
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is unquestionable [10]. Indeed these ideals arise naturally in the study of conditional
independence statements [4]. Many algebraic properties of binomial edge ideals in terms
of properties of the underlying graph were studied in [10] and [12].

In [10], Theorem 1.1, the authors proved the following:

Theorem 1.1. Let G be a graph on the vertex set [n], and let < the lexicographic order
induced by x1 > · · · > xn > y1 > · · · > yn on S. Then the following conditions are
equivalent:

(1) The generators fij of JG form a quadratic Gröbner basis.

(2) For all edges {i, j} and {k, ℓ} with i < j and k < ℓ one has {j, ℓ} ∈ E(G) if i = k,
and {i, k} ∈ E(G) if j = ℓ.

The authors in [10], called a graph G on [n] closed with respect to the given labelling of
the vertices if G satisfies condition (2). The term closed graph is not standard terminology
in graph theory. Nevertheless this class of graphs is related to a well-known class of graphs:
the chordal graphs. A closed graph is chordal ([10]) but the converse is not true. Indeed
a closed graph is a claw-free chordal graph, where by a claw we mean a graph with three
different edges e1, e2, e3 such that e1 ∩ e2 ∩ e3 6= ∅.

In Theorem 1.1 the role of the lexicographic order on S is fundamental. In this article
we are able to state that the existence of a quadratic Gröbner basis for JG is not related
to the lexicographic order on S. In fact, one of the main result in the paper implies
that the closed graphs are the only graphs for which the binomial edge ideal JG has a
quadratic Gröbner basis with respect to some term order on S (Theorem 3.4). Our result
underlines also the relation between binomial edge ideals and edge ideals. In fact as a
consequence we obtain that JG has a quadratic Gröbner basis with respect to some term
order ≺ on S if and only if in(JG) is the edge ideal of a bipartite graph with bipartition
V1 = {x1, · · · , xn} and V2 = {y1, · · · , yn}. The strict relation between algebraic invariants
of an ideal J and in(J) is well known (see for example [5], Chapter 15).

Furthermore Theorem 1.1 and Theorem 3.4 suggest that it would be interesting to
state some criteria for the closedness of a simple graph G. Since the characterizations of
closed graphs G (see [10], [12]) depend on the labelling of V (G), our aim is to state some
new criteria for the closedness of a graph that do not depend on the labelling of its vertex
set (Theorem 5.5 and Corollary 5.7).

We believe that by an ordering on the vertices obtained by lexicographic breadth first
search and an appropriate specialization of the algorithm on chordality test (see Algo-
rithms 2, 3 of [8] or [14]), it is possible to test the closedness of a graph as a consequence
of Theorem 5.5 in linear time. But this is not the aim of this paper.

The paper is organized as follows.
Section 2 contains some preliminaries and notions that we will use in the paper.
In Section 3, we state a fundamental result that gives the motivation of an intensive

study of closed graphs: we prove that the only graphs having quadratic Gröbner basis
with respect to a given monomial order are the closed ones (Theorem 3.4). The statement
is obtained by the construction of a special oriented graph (Definition 3.1).
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In Section 4, we introduce the notion of a linear quasi-tree simplicial complex (Def-
inition 4.3) and we relate it with a closed graph (Proposition 4.6). Moreover we give
a characterization of the closedness of a graph G in terms of particular cliques of G
(Proposition 4.8). This result will be crucial in the sequel.

In Section 5, we analyze the behaviour of the set of facets F(∆(G)) of the clique
complex ∆(G) (Definition 2.1) of a graph G when ∆(G) is a linear quasi-tree (Proposition
5.1). We introduce a special subclass of the linear quasi-tree complexes: the class of closed
complexes (Definition 5.2). The section contains the main results in the paper. We give
a criterion for the closedness of a graph G that is independent from the labelling of V (G)
(Theorem 5.5). We show that a graph G is closed if and only if the clique complex ∆(G)
is a closed complex (Corollary 5.7).

2 Preliminaries

In this section we recall some concepts and a notation on graphs and on simplicial com-
plexes that we will use in the article.

Let G be a simple graph with vertex set V (G) and the edge set E(G). Let v, w ∈ V (G).
A path π from v to w is a sequence of vertices v = v0, v1, · · · , vt = w such that {vi, vi+1}
is an edge of the underlying graph. A graph G is connected if for every pair of vertices v1

and v2 there is a path from v1 to v2. If G is directed (or digraph), that is, G consists of a
finite nonempty set of vertices with a prescribed collection X of ordered pairs of distinct
vertices, then the path is called directed, if either (vi, vi+1) is an arrow for all i, or (vi+1, vi)
is an arrow for all i.

When we fix a given labelling on the vertices we say that G is a graph on [n].
Let G be a graph with vertex set [n]. A subset C of [n] is called a clique of G is for all i
and j belonging to C with i 6= j one has {i, j} ∈ E(G).

Set V = {x1, . . . , xn}. A simplicial complex ∆ on the vertex set V is a collection of
subsets of V such that

(i) {xi} ∈ ∆ for all xi ∈ V and

(ii) F ∈ ∆ and G ⊆ F imply G ∈ ∆.

An element F ∈ ∆ is called a face of ∆. For F ∈ ∆ we define the dimension of F by
dim F = |F | − 1, where |F | is the cardinality of the set F . A maximal face of ∆ with
respect to inclusion is called a facet of ∆.

If ∆ is a simplicial complex with facets F1, . . . , Fq, we call {F1, . . . , Fq} the facet set
of ∆ and we denote it by F(∆). When F(∆) = {F1, . . . , Fq}, we write ∆ = 〈F1, . . . , Fq〉.

Definition 2.1. The clique complex ∆(G) of G is the simplicial complex whose faces are
the cliques of G.

Definition 2.2. Let ∆ be a simplicial complex. A facet F ∈ F(∆) is said to be a leaf of
∆ if either F is the only facet of ∆, or there exists a facet B ∈ F(∆), B 6= F , called a
branch of F , such that H ∩ F ⊆ B ∩ F for all H ∈ F(∆) with H 6= B.

the electronic journal of combinatorics 18 (2011), #P211 3



Observe that for a leaf F the subcomplex ∆′ with F(∆′) = F(∆) \ F coincides with
the restriction ∆[n]\(F\(B∩F )).

We finish this section by recalling the following definition from [11].

Definition 2.3. Let ∆ be a simplicial complex. ∆ is called a quasi-forest if there exists
a labelling F1, · · · , Fq of the facets of ∆, such that for every 1 < i ≤ q, the facet Fi is a
leaf of the subcomplex 〈F1, · · · , Fi〉. The sequence F1, . . . , Fq is called a leaf order of the
quasi-tree. A connected quasi-forest is called a quasi-tree.

3 Quadratic Gröbner bases

In this section we observe that the only graphs having quadratic Gröbner bases with
respect to a monomial order ≺ are the closed graphs with respect to a labelling induced
by ≺.

Let G be a graph on the vertex set V (G) = [n], E(G) its edge set and S =
K[x1, · · · , xn,
y1, · · · , yn].

Definition 3.1. Let JG be the binomial edge ideal of G and let ≺ a term order on S. We
define an oriented graph G≺ with V (G≺) = V (G) and edge set

E(G≺) = {(i, j) : xiyj ∈ in≺ JG}.

Proposition 3.2. G≺ is an acyclic directed graph.

Proof. It is sufficient to show that every cycle in G is not a directed cycle in G≺. Let

{i1, i2, . . . , ir} ⊆ V (G)

be the vertices of a cycle and suppose that (ij, ij+1) ∈ E(G≺) for j = 1, . . . , r − 1. We
will show that (ir, i1) 6∈ E(G≺).

By hypothesis we have that xijyij+1
≻ xij+1

yij for j = 1, . . . , r − 1. Since ≺ is a term
order, then yi3(xi1yi2) ≻ yi3(xi2yi1) and yi1(xi2yi3) ≻ yi1(xi3yi2). Therefore yi3(xi1yi2) ≻
yi1(xi3yi2) and xi1yi3 ≻ xi3yi1.

By the same argument we have that yi4(xi1yi3) ≻ yi4(xi3yi1) and yi1(xi3yi4) ≻
yi1(xi4yi3). Hence yi4(xi1yi3) ≻ yi1(xi4yi3) and xi1yi4 ≻ xi4yi1, and so on. Finally, we
will have that xi1yir ≻ xiryi1 .

Remark 3.3. We observe that the ideal JG of S is multigraded if we assign the following
multidegrees to the indeterminates of S:

deg(xi) = deg(yi) = (0, . . . , 0, 1, 0, . . . , 0) ∈ Nn,

where the entry 1 is at the i-th position. Hence the only binomials of degree 2 in JG are
the generators of JG up to scaling.
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Theorem 3.4. Let G be a graph. The following conditions are equivalent:

(1) G is closed on [n];

(2) JG has a quadratic Gröbner basis with respect to some term order ≺ on S.

Proof. (1)⇒ (2). See [10], Theorem 1.1.
(2)⇒ (1). By Proposition 3.2 G≺ is a directed acyclic graph. Hence there exists a labelling

ω : V (G≺) → [n]

such that for all (i, j) ∈ E(G≺) we have that ω(i) < ω(j). This means that ω is compatible
with the orientation of G≺ (see for example [1], Proposition 1.4.3).

We will show that the graph G is closed with respect to the labelling ω.
Let i1, i2, i3 ∈ V (G≺) such that ω(i1) = i, ω(i2) = j, ω(i3) = k and let {i1, i2},

{i1, i3} ∈ E(G). It follows that {i, j}, {i, k} are edges of G with respect to the labelling
ω. By condition (2) of Theorem 1.1, we have to analyze the following two cases:

(a) i < j, i < k;

(b) i > j, i > k.

Case (a). Since ω is compatible with the oriented graph G≺, we have the following
inequalities

xi1yi2 ≻ xi2yi1 and xi1yi3 ≻ xi3yi1. (3.1)

By hypothesis the S-polynomial

S(fi1i2, fi1i3) = yi1fi2i3 = yi1(xi2yi3 − xi3yi2)

reduces to 0. Therefore there exists a binomial xisyit −xityis ∈ JG (see Remark 3.3) whose
leading monomial divides the leading monomial of yi1fi2i3. Suppose that in(fi1i2) = xi2yi1.
This contradicts the first inequality in (3.1). By the same argument and the second
inequality in (3.1), in(fi1i3) does not divide in(yi1fi2i3). Hence fi2i3 ∈ JG and {j, k} is an
edge of G with respect to the labelling ω. Case (b) follows by similar arguments.

4 Closed graphs and linear quasi-tree complexes

In this section we introduce the notion of a simplicial complex which is a linear quasi-tree.
This class of simplicial complexes is a subclass of the quasi-forest complexes (Definition
2.3). Our aim is to underline the close link that there exists between the closed graphs and
these simplicial complexes. First of all we recall the following definition ([12], Definition
2.1).

Definition 4.1. A graph G is closed if there exists a labelling for which it is closed.

We quote the next result from ([12], Theorem 2.2).
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Theorem 4.2. Let G be a graph on [n]. The following conditions are equivalent:

(1) G is closed;

(2) there exists a labelling of G such that all facets of ∆(G) are intervals [a, b] ⊆ [n].

Moreover, if the equivalent conditions hold and the facets F1, . . . , Fr of ∆(G) are labeled
such that min(F1) < min(Fr) < · · · < min(Fq), then F1, . . . , Fr is a leaf order of ∆(G).

Since a graph is closed if and only if each connected component is closed we assume
from now on that the graph G is connected.

Thanks to Theorem 4.2 if G is a closed graph on the vertex set [n] and ∆(G) is the
clique complex, then we may assume that

∆(G) = 〈[m1, M1], [m2, M2], . . . , [mr, Mr]〉, (4.1)

with 1 = m1 < m2 < . . . < mr < n, 1 < M1 < M2 < . . . < Mr = n with mi < Mi and
mi+1 ≤ Mi, for i ∈ [r].

Now we introduce a special subclass of the quasi-trees complexes.

Definition 4.3. A simplicial complex is a linear quasi-tree if there exists an order on the
facets

F1, . . . , Fq

such that

(1) Fi is a leaf for the subcomplex 〈Fi, . . . , Fq〉;

(2) Fi+1 is the only branch of Fi for all i < q.

Remark 4.4. Let ∆ be a simplicial complex and let F(∆) = {F1, . . . , Fq} be the set of
its facets. It is always possible to verify if ∆ is a linear quasi tree and in the positive case
it is possible to order F(∆) so that conditions (1) and (2) of Definition 4.3 are satisfied.
In fact, if ∆ is a linear quasi tree, then there exists a leaf Fi, that is a facet of ∆ satisfying
Definition 2.2. In order to determine Fi it is sufficient to intersect the facet Fi, i = 1, . . . , q,
with the other facets. Let Fi1 be such a facet and let Fi2 be its branch. It must be unique
by (2) of Definition 4.3.
If Fi1 is a leaf and Fi2 is its unique branch, then we consider the subcomplex ∆′ =
F(∆) \ {Fi1} and we verify if Fi2 is a leaf of ∆′ and if its branch is unique and so on.
Proceeding in this way we will obtain a linear order Fi1 , Fi2 , . . . , Fiq with respect to which
∆ is a linear quasi tree.
We will show this process by the next example.

Example 4.5. Let ∆ = 〈F1, F2, F3, F4〉, with F1 = {a, b, f}, F2 = {a, e, f}, F3 = {b, c, f}
and F4 = {d, e, f}. We want to determine a order on the facet set F(∆) so that ∆ is a
linear quasi tree.
Consider the facet F1. We have:

F1 ∩ F2 = {a, f}, F1 ∩ F3 = {b, f}, F1 ∩ F4 = {f}.
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Since F1 ∩F2 and F1 ∩F3 are not comparable, then F1 is not a leaf of ∆ (Definition 2.2).
Consider the facet F2. We have:

F2 ∩ F1 = {a, f}, F2 ∩ F3 = {f}, F2 ∩ F4 = {e, f}.

Since F2 ∩F1 and F2 ∩F4 are not comparable, then F2 is not a leaf of ∆ (Definition 2.2).
Now consider the facet F3. We have:

F3 ∩ F1 = {b, f}, F3 ∩ F2 = {f}, F3 ∩ F4 = {f}.

Hence F1 is the unique branch of F3 and consequently F3 is a leaf of ∆.
Now consider the subcomplex of ∆: ∆′ = 〈F1, F2, F4〉. We have:

F1 ∩ F2 = {a, f}, F1 ∩ F4 = {f}.

It follows that F2 is the unique branch of F1 and F1 is a leaf of ∆′. It is easy to observe
that we can conclude that ∆ is a linear quasi tree with respect to the following order on
F(∆): F3, F1, F2, F4.

From now on when we consider a simplicial complex ∆ that is a linear quasi-tree we
write ∆ = 〈F1, . . . , Fq〉 with leaf order {F1, F2, . . . , Fq} on the facet set. We state the
following.

Proposition 4.6. Let G be a graph on [n]. If G is a closed graph, then ∆(G) is a linear
quasi-tree.

Proof. From (4.1), since G is closed, we may assume ∆(G) = 〈F1, . . . , Fr〉, where Fi =
[mi, Mi], for i = 1, . . . , r.

We observe that [mi, Mi]∩ [mi+1, Mi+1] = [mi+1, Mi]. Since mi+d > mi+1 for all d ≥ 2,
then

Fi ∩ Fi+d = [mi+d, Mi]  [mi+1, Mi].

Therefore Fi is a leaf and Fi+1 is the unique branch for Fi.

Example 4.7. The converse of Proposition 4.6 is not true. In fact there are linear quasi-
trees that are not closed.

Let V (G) = {a, b, c, d, e, f} and let ∆(G) = 〈F1, F2, F3〉 be the facet set of its clique
complex, where F1 = {a, b, c}, F2 = {b, c, d, e} and F3 = {b, e, f}. We can easily check
that 〈F1, F2, F3〉 is a linear quasi-tree but the subgraph induced by the vertices {a, b, d, f}
is a claw, i.e. the complete bipartite graph K1,3. Therefore by ([10], Proposition 1.2) G
is not closed.

We finish this section giving a criterion for the closedness of a graph with respect to
a given labelling that will be crucial in the sequel.

Let G be a graph on the vertex set V (G) = [n]. For each vertex j ∈ V (G) we define a
partition of its neighborhood NG(j) = {i ∈ [n] : {i, j} ∈ E(G)} into two sets as follows:

NG(j) = N<
G (j) ∪ N>

G (j),
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where

N<
G (j) = {i : {i, j} ∈ E(G), i < j}, N>

G (j) = {k : {j, k} ∈ E(G), j < k}.

Proposition 4.8. Let G be a graph on [n]. The following conditions are equivalent:

(1) G is closed with respect to the given order of the vertices;

(2) for all vertices j ∈ V (G) the sets N<
G (j), N>

G (j) are cliques of G.

Proof. (1) ⇒ (2). Let j ∈ V (G). For all i1, i2 ∈ N<
G (j), by definition, we have that

{i1, j}, {i2, j} ∈ E(G) with i1 < j and i2 < j. Since G is closed, then {i1, i2} ∈ E(G).
Hence N<

G (j) is a clique. Similarly for N>
G (j).

(2) ⇒ (1). Let {j, k1}, {j, k2} ∈ E(G) with j < k1, j < k2. This implies k1, k2 ∈ N>
G (j).

Since N>
G (j) is a clique, then {k1, k2} ∈ E(G). The other case follows by similar argument.

5 Closed graphs with respect to any labelling

In this section we give a characterization of closed graphs which does not depend on the
labelling of their vertex sets. For this reason we study the clique complex ∆(G) of the
simple graph G.

Let ∆ = 〈F1, . . . , Fr〉 be a simplicial complex. We set

Fi1,i2,...,is := Fi1 ∩ Fi2 ∩ . . . ∩ Fis

with 1 ≤ i1 < i2 < . . . < is ≤ r and Fi,i := Fi for i ∈ [r].

Proposition 5.1. If ∆ = 〈F1, . . . , Fr〉 is a linear quasi-tree, then Fi,j = Fi,i+1,...,j, 1 ≤
i < j ≤ r. In particular, Fk,ℓ ⊇ Fi,j for all k, ℓ such that i ≤ k ≤ ℓ ≤ j.

Proof. We proceed by descending induction on i, for i < j. If i = j − 1 there is nothing
to prove. Let i ≤ j − 1 and suppose Fi,j = Fi,i+1,...,j. We have to prove that Fi−1,j =
Fi−1,i,i+1,...,j.

Since Fi−1,i,j = Fi−1 ∩ Fi,j = Fi−1,i,i+1,...,j, we need to show that

Fi−1 ∩ Fi,j = Fi−1,j .

By definition Fi−1,i,j ⊆ Fi−1,j . Since Fi is a branch of Fi−1, then Fi−1,j ⊆ Fi−1,i. Hence
Fi−1,j ∩ Fj ⊆ Fi−1,i ∩ Fj , that is, Fi−1,j ⊆ Fi−1,i,j and the assertion follows.

Denote by P = {Fi,j : 1 ≤ i ≤ j ≤ r} the poset whose order is given by the inclusion
and set Fi,j = ∅ if either i < 1 or j > r. If F, G ∈ P are not comparable or F 6= ∅ or
G 6= ∅, we write F 6∼ G .
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Definition 5.2. Let ∆ = 〈F1, . . . , Fr〉 be a linear quasi-tree. ∆ is called closed if the
following properties are satisfied:

(I) Fi,j 6∼ Fk,ℓ if i < k, j < ℓ, i, j, k, ℓ ∈ [r] (incomparability);

(C) Fi+1,i+d = Fi,i+d ∪ Fi+1,i+d+1 if Fi,i+d+1 6= ∅ with d ≥ 1 and i ∈ [r] (covering).

Theorem 5.3. Let G be a graph on [n]. If G is closed, then ∆(G) is closed.

Proof. Since, from Proposition 4.6, ∆(G) is a linear quasi-tree, we have only to prove that
the facet set F(∆(G)) = {F1, . . . , Fr} satisfies properties (I) and (C) in Definition 5.2.

(I). Since G is closed on [n], if Fi,j 6= ∅ and Fk,ℓ 6= ∅, from (4.1) we have:

Fi,j = Fi ∩ Fj = [mi, Mi] ∩ [mj , Mj ] = [mj , Mi],

Fk,ℓ = Fk ∩ Fℓ = [mk, Mk] ∩ [mℓ, Mℓ] = [mℓ, Mk],

with i < j and k < ℓ. We may assume i < k and j < ℓ. Hence by (4.1) mj < mℓ and
Mi < Mk. Therefore Mk ∈ Fk,ℓ \ Fi,j and mj ∈ Fi,j \ Fk,ℓ, that is Fi,j ≁ Fk,ℓ.

(C). Since Fi,i+d+1 6= ∅ and G is closed, then

Fi,i+d+1 = [mi+d+1, Mi] 6= ∅.

Therefore mi+d+1 ≤ Mi, and

Fi,i+d ∪ Fi+1,i+d+1 = [mi+d, Mi] ∪ [mi+d+1, Mi+1] = [mi+d, Mi+1] = Fi+1,i+d.

To prove that ∆(G) closed implies G closed we need a labelling on the vertices of G
for which G is closed.

Lemma 5.4. Let ∆(G) = 〈F1, . . . , Fr〉 be a linear quasi-tree. Set ni = max{j : Fi,j 6=
∅, j ∈ [r]}. Then n1 ≤ n2 ≤ · · · ≤ nr and every set Fi,j in

B = {F1,1, . . . , F1,n1
, F2,n1

, . . . , F2,n2
, . . . , Fr,r}

is not empty.

Proof. Since Fi,ni
6= ∅, then Fi+1,ni

6= ∅ (Proposition 5.1). Hence ni+1 ≥ ni. Moreover, by
Proposition 5.1, we can also state that every set in B is not empty.

Now we are in position to state the main result in the paper.

Theorem 5.5. Let G be a graph. Suppose that ∆(G) is closed. Let F1, . . . , Fr be the leaf
order of ∆(G) and consider the family

F = {F ′
i,j}Fi,j∈B,

where B is defined as in Lemma 5.4 and F ′
i,j = Fi,j \ (Fi−1,j ∪ Fi,j+1) . Then
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(1) The family F is a partition of V (G);

(2) G is closed with respect to the following total order on the vertices: For the vertices
in each F ′

i,j we fix an arbitrary total order and set u < v, if u ∈ F ′
i,j and v ∈ F ′

k,ℓ

with i < k or i = k and j < ℓ.

Proof. (1). First of all, we prove the following claim.

Claim 5.6. Let Fi,j 6= ∅ then

Fi ∪ Fj =

j
⋃

k=i

Fk =

(

j−1
⋃

k=i

Fi,k

)

∪

(

j
⋃

k=i+1

Fk,j

)

∪ Fi,j.

Proof of the Claim. Let i ≤ k ≤ ℓ ≤ j. Since, by assumption Fi,j 6= ∅, then Proposition
5.1 implies that Fk,ℓ 6= ∅.
By condition (I) in Definition 5.2 and Proposition 5.1, Fk,ℓ ⊆ Fi,j if and only if 1 ≤ i ≤
k ≤ ℓ ≤ j ≤ r. Hence the poset Pij = {Fk,ℓ : i ≤ k ≤ ℓ ≤ j}, whose partial order is given
by the inclusion, is the following:

�
�

�
�

�
�

�
�

�
�

�
�

. . .
�
�

�
��

�
�
�

�
�

�
�

. . .
�
�

�
��

�
�
�

. . .
�
�

�
�

. . . . . .

�
�

�
�

@@ �� @@ �� ��

@@ �� ��

Fi,i Fi+1,i+1 Fi+2,i+2 Fj,j

Fi,i+1 Fi+1,i+2 Fj−1,j

Fi,i+2 Fj−2,j

Fi,j

We observe that
⋃j

k=i Fk =
⋃

F∈Pi,j
F . Since Fk−1,k+1 6= ∅, for k = i + 1, . . . , j − 1,

then by condition (C) we have Fk,k = Fk−1,k ∪ Fk,k+1, that is

j
⋃

k=i

Fk =
⋃

F∈P ′

i,j

F

with P ′
i,j = Pi,j \ {Fk : k = i + 1, . . . , j − 1}. By similar argument we may subtract all

the redundant elements Fk,ℓ with i < k < ℓ < j. Hence

j
⋃

k=i

Fk =

(

j−1
⋃

k=i

Fi,k

)

∪

(

j
⋃

k=i+1

Fk,j

)

∪ Fi,j = Fi ∪ Fj ,
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and Claim 5.6 is proved.
Let P = {Fi,j : 1 ≤ i ≤ j ≤ r} be the poset induced by the inclusion. We say that

an element Fi,j ∈ P is an inner element if Fi−1,j+1 ∈ P and Fi−1,j+1 6= ∅. Otherwise an
element of P is said to be border element.
We observe that the border elements are exactly the elements of B described in Lemma
5.4, and

V (G) =
⋃

Fi,j∈B

Fi,j. (5.1)

In fact if v ∈ V (G), then v ∈ Fk,k ∈ F(∆(G)). If Fk,k ∈ B we have nothing to
prove. Suppose Fk,k /∈ B then Fk−1,k+1 6= ∅ and, since ∆(G) is closed by property (C)
Fk,k = Fk−1,k ∪ Fk,k+1. We may assume v ∈ Fk−1,k. If Fk−1,k /∈ B applying the same
argument after a finite number of steps we obtain v ∈ Fi,j ∈ B. If we remove the
redundant elements in (5.1) we obtain

V (G) =
⋃

Fi,j∈B

F ′
i,j,

where F ′
i,j = Fi,j \ (Fi−1,j ∪ Fi,j+1). We observe the following

if v ∈ F ′
i,j, then v ∈ Fk if and only if k = i, . . . , j. (5.2)

This assertion can be deduced from the structure of the poset P. For sake of completeness
we give a direct proof. Since v ∈ F ′

i,j then v ∈ Fi,j and by Proposition 5.1, v ∈ Fk with
k = i, . . . , j. Suppose that v ∈ Fℓ, with ℓ > j. Then v ∈ Fi ∩ Fℓ = Fi,ℓ. Therefore
v ∈ Fi,ℓ ( Fi,j and this is a contradiction since v ∈ Fi,j \ Fi,j+1 and Fi,j+1 ⊇ Fi,ℓ.
By (5.2), it easily follows that

F = {F ′
i,j}Fi,j∈B,

is a partition of V (G).
(2). We prove that G is closed with respect to the labelling induced by the ordering defined
in the statement. By Proposition 4.8 it is sufficient to prove that for every v ∈ V (G),
N<

G (v), N>
G (v) ∈ ∆(G). Since v ∈ V (G), then v ∈ F ′

i,j ∈ F . We claim that N>
G (v) ⊆ Fj ,

N<
G (v) ⊆ Fi.

Let {v, w} ∈ E(G) with v < w, we want to prove that {v, w} ⊆ Fj . Since v ∈ F ′
ij by

(5.2) the only cliques containing v are Fi, . . . , Fj. Therefore, since {v, w} is contained in
a clique of G, then {v, w} ⊆ Fi ∪ Fi+1 ∪ . . . ∪ Fj. By Claim 5.6 {v, w} ⊆ Fi ∪ Fj. Since
v < w, we have the following cases:

(a) w ∈ F ′
i,j;

(b) w ∈ F ′
k,ℓ, with k > i;

(c) w ∈ F ′
k,ℓ, with k = i and ℓ > j.

(a). Obvious. (b). If w ∈ F ′
k,ℓ with k > i, then we have that w 6∈ Fi, by (5.2). Hence

w ∈ Fj . (c). If w ∈ F ′
i,ℓ with ℓ > j, then we have that w ∈ Fj , by (5.2).

By the same argument we prove that N<
G (v) ⊂ Fi.
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Corollary 5.7. Let G be a graph. The following conditions are equivalent:

(1) The graph G is closed on [n];

(2) the clique complex ∆(G) is closed;

(3) the binomial edge ideal JG has a quadratic Gröbner basis.

Proof. The equivalence follows from Theorems 5.3, 5.5 and 3.4.
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