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EFFICIENT COMPUTATION OF

CASTELNUOVO-MUMFORD REGULARITY

AMIR HASHEMI

Abstract. In this paper, we introduce the notion of a homogeneous ideal in
quasi stable position (QSP); a new definition for the notion of generic coordi-
nates to compute efficiently the Castelnuovo-Mumford regularity of a homo-
geneous ideal. This definition is simple to check, because it is tested on the
initial ideal for the degree reverse lexicographic ordering. It is explicit, because
we provide an algorithm to decide whether a monomial ideal is in QSP or not.
The main result of this paper is that the Castelnuovo-Mumford regularity of
an ideal in QSP is the maximal degree of the elements of its reduced Gröbner
basis with respect to the reverse lexicographic ordering. We have implemented
an algorithm in (the distributed library noether.lib of) Singular based on the
above results for computing the Castelnuovo-Mumford regularity of a general
ideal, and we evaluate its performance via some examples.

1. Introduction

Let us consider a homogeneous ideal I over the ring R = K[x0, . . . , xn] where K
is an arbitrary field. A good measure to estimate the complexity of the computation
of the Gröbner basis of I is the maximal degree of the polynomials which appear
during the computation (see [11, 14, 15]). On the other hand, let

0 −→ F� −→ · · · −→ F0 −→ I −→ 0

be a minimal graded free resolution of I and ei the maximal degree of the gener-
ators of Fi. Then the Castelnuovo-Mumford regularity of I is defined as reg(I) =
max{ei − i | i = 0, . . . , �} (see [3, 8]). By a well-known result, if coordinates are
generic and the monomial ordering is the reverse lexicographic ordering, then reg(I)
is an upper bound for the degree of the Gröbner basis elements. This upper bound
is reached if the characteristic of K is zero (see [3]).

It follows from these remarks and other similar properties that all computations
are much easier if the coordinates are sufficiently generic in order that the above
relations are satisfied. More specifically, it is easy to compute the Castelnuovo-
Mumford regularity from a Gröbner basis if the coordinates are sufficiently generic
and if one knows that they are. Therefore, one needs a testable definition of suffi-
ciently generic. This definition has to be as large as possible in order to avoid as
much as possible a costly change of coordinates.
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1164 AMIR HASHEMI

Bayer and Stillman in [3] have already introduced an explicit definition of generic
coordinates for a homogeneous ideal. Bermejo and Gimenez in [5] have defined the
nice notion of nested type (with a test) for a monomial ideal. But, all of these
definitions of generic coordinates are not sufficiently generic such that the degree
of the Gröbner basis elements is equal to reg(I). On the other hand, if I is a Borel
monomial ideal and the characteristic of K is zero, then reg(I) is the maximal
degree of the elements of the reduced Gröbner basis of the ideal with respect to the
reverse lexicographic ordering (see [2, 3, 7, 10]).

In this paper, we introduce the notion of a homogeneous ideal in quasi stable
position (QSP); a new definition for the notion of generic coordinates for comput-
ing efficiently the Castelnuovo-Mumford regularity of a homogeneous ideal. This
definition is simple to check, because it is tested on the initial ideal for the degree
reverse lexicographic ordering. It is explicit, because we provide an algorithm to
decide whether a monomial ideal is in QSP or not within a quadratic complexity in
input size. We show that, (if the base field is large enough) almost all linear change
of variables transform an ideal into QSP. We prove that the Castelnuovo-Mumford
regularity of an ideal in QSP is the maximal degree of the elements of its reduced
Gröbner basis with respect to the reverse lexicographic ordering. Thus, QSP is a
generalization of Borel.

From the computational point of view, there are three important ways to com-
pute the Castelnuovo-Mumford regularity of an ideal.

• Computing the minimal free resolution which is infeasible in practice.
• Making a random linear change of variables in Kn(n+1)/2 to put the input
ideal in Borel position and computing the Gröbner basis of the changed
ideal for testing this position and reading the regularity ([3, 10]).

• Making a random linear change of variables in Knd−d(d−1)/2 where d is
the dimension of input ideal to put the input ideal in nested type position,
computing the Gröbner basis of the changed ideal to test nested type and
then computing the satieties of some monomial ideals associated to this
ideal for computing the regularity ([5]).

Roughly speaking, QSP allows for having a method (to compute the regularity of
an ideal) with the advantages of the second and third approach, making an incremen-
tal random linear change of variables in KN with N = n(n+1)/2−(n−d−1)(n−d)/2
(which is smaller than Kn(n+1)/2) then computing the Gröbner basis of the changed
ideal for testing QSP (which is less expensive than Borel test and nested type test)
and reading the regularity without further computation.

We have implemented an algorithm in the distributed library noether.lib [1] of
Singular [13] based on the above results to compute the Castelnuovo-Mumford
regularity of an ideal. It makes an incremental (one variable after the other) random
linear change of variables to put the input ideal in QSP. We compare its efficiency
with the algorithm regIdeal (from library mregular.lib) of Singular via some
examples.

The main results of this paper are the following, in which in(I) is the initial ideal
of I, i.e., the ideal generated by the leading terms of the elements of I with respect
to the reverse lexicographic ordering ≺ with xn ≺ xn−1 ≺ · · · ≺ x0.

• QSP can be tested on the monomial ideal in(I) instead of I.
• An algorithm (with a polynomial complexity) for determining whether a
monomial ideal is in QSP is given.
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EFFICIENT COMPUTATION OF CASTELNUOVO-MUMFORD REGULARITY 1165

• If the characteristic of K is zero, or sufficiently large, almost all linear
changes of variables transform a homogeneous ideal in QSP.

• If I is in QSP, then reg(I) = reg(in(I)).
• If I is in QSP, then reg(I) is the maximal degree of the elements of in(I).
• If the characteristic of K is zero, or sufficiently large, one can compute
efficiently the regularity of an ideal by putting it in QSP.

Now, we give the structure of the paper. In Sections 2, we describe an al-
gorithm to compute the satiety of an ideal. In Section 3, we define the notion
of a homogeneous ideal in QSP. In Section 4, we prove our main result on the
Castelnuovo-Mumford regularity of an ideal in QSP, and we describe also an algo-
rithm to compute the Castelnuovo-Mumford regularity of a homogeneous ideal. In
Section 5, we show the performance of our algorithms with the existing algorithms
of Singular via some examples. Section 6 presents our conclusions.

2. Satiety of an ideal

In this section we first introduce a new notion of generic coordinates (sat-generic
position) to compute the satiety of an ideal. Then, we describe an algorithm to
compute the satiety of a general ideal.

We recall first the definition of the saturation and the satiety of a homogeneous
ideal. Let I be a homogeneous ideal of the polynomial ring R = K[x0, . . . , xn] where
K is an arbitrary field. If m = 〈x0, . . . , xn〉 is the unique maximal homogeneous
ideal of R, then the ideal I : mi is defined for any positive integer i as

I : mi = {F ∈ R | ∀G ∈ mi, GF ∈ I}.
The ideal I : m∞ is defined

⋃∞
i=1 I : mi. Denote by I� the set of homogeneous

elements of degree � of I.

Proposition 2.1 (Definition). The ideal Isat = I : m∞ is called the saturation of
I and it is equal to the unique largest ideal J ⊂ R having the following property:

∃m s.t. ∀� ≥ m J� = I�.

Proof. One can see easily that the saturation of I satisfies this property. �
Definition 2.1. The satiety of I, denoted by sat(I), is the smallest positive integer
m such that I� = Isat� for all � ≥ m.

Now, we show that if the last variable is generic for an ideal, then its satiety
is the same as that of its initial ideal with respect to the reverse lexicographical
ordering. For this, we need the following lemmas from [3] in which a linear form
y ∈ R is generic for a homogeneous ideal I ⊂ R if y is a nonzero divisor in R/Isat.

Lemma 2.1. Let I ⊂ R be a homogeneous ideal and let y ∈ R be a linear form.
Then the following conditions are equivalent:

(1) (I : y)� = I� for any � ≥ m.
(2) sat(I) ≤ m and y is generic for I.

Lemma 2.2. Let I ⊂ R be a homogeneous ideal and m a natural number. Then

(I : xn)m = Im ⇔ (in(I) : xn)m = in(I)m.

Proposition 2.2. Let xn be generic for a homogeneous ideal I ⊂ R. Then sat(I) =
sat(in(I)).
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Proof. We have (I : xn)� = I� for any � ≥ sat(I) by Lemma 2.1. Thus, (in(I) :
xn)� = in(I)� for any � ≥ sat(I) by Lemma 2.2, and this implies that sat(in(I)) ≤
sat(I) using Lemma 2.1. To prove the other inequality, the same proof works using
the fact that xn is also generic for in(I) by Lemma 2.2. �

The following corollary was inspired by [5], Proposition 2.1.

Corollary 2.1. Let xn be generic for a homogeneous ideal I ⊂ R. Then

sat(I) = max
m∈(in(I):xn)\in(I)

{deg(m)}+ 1.

Proof. We have sat(I) is equal to sat(in(I)) by Proposition 2.2. On the other hand,
from hypothesis xn is also generic for in(I) (Lemma 2.2). Thus, (in(I) : xn)� =
in(I)� for any � ≥ sat(in(I)) by Lemma 2.1, and the satiety of in(I) is the smallest
degree from which in(I) : xn and in(I) are equal. This is equal to the maximum
degree of the elements of (in(I) : xn)\ in(I) plus one which proves the assertion. �

We introduce now a new notion to check whether the last variable is sufficiently
generic for an ideal to compute its satiety. A homogeneous ideal I is in sat-generic
position if the quotient of in(I) with respect to the maximal homogeneous ideal
is equal to its quotient with respect to the last variable. The following corollary
results easily from Proposition 2.2 and Corollary 2.1.

Corollary 2.2. Let I ⊂ R be a homogeneous ideal in sat-generic position. Then
sat(I) = sat(in(I)) and this is equal to the maximal degree of the elements of in(I)
containing xn.

We describe also an algorithm to check this definition for a monomial ideal.

Algorithm 1 sat-generic-test

Input: J ⊂ R a monomial ideal
Output: The answer of “Is J in sat-generic position?”
G := a minimal system of generators for ideal J
for each xe0

0 · · ·xen
n ∈ G with en > 0 do

for j = 0, . . . , n− 1 do
if xe0

0 · · ·xen−1

n−1 x
en−1
n xj /∈ G then

return “No”
end if

end for
end for
return “Yes”

Remark 2.1. The complexity of this algorithm is quadratic in input size.

In the rest of this section, we suppose that the characteristic of K is zero, or
sufficiently large. We will prove that almost all linear changes of the last variable
transform a homogeneous ideal into sat-generic position. For this we recall some
preliminaries from [7], page 352. Let Rm be the K-vector space consisting of all
forms of degree m. If V is a t-dimensional subspace of of Rm and f1, . . . , ft is a K-
basis of V , then the t-exterior power ∧tV of V is equal to Kf where f = f1∧· · ·∧ft.
If f1, . . . , ft and g1, . . . , gt are linearly independent systems in Rm, then generate
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EFFICIENT COMPUTATION OF CASTELNUOVO-MUMFORD REGULARITY 1167

the same K-subspace iff f1 ∧ · · · ∧ ft = λg1 ∧ · · · ∧ gt for some nonzero λ ∈ K. If
m1, . . . ,mt are distinct monomials in Rm, then m1∧· · ·∧mt is called a monomial of
∧tRm. Such a monomial is called normal expression ifmt ≺ · · · ≺ m1. We order the
monomials of ∧tRm by ordering their normal expressions lexicographically. That
is, m1 ∧ · · · ∧ mt < m′

1 ∧ · · · ∧ m′
t iff mi ≺ m′

i for the smallest index i such that
m′

i �= mi. Then for each f ∈ ∧tRm, we can consider its initial monomial in(f).
Let I ⊂ R be a homogeneous ideal. For all Λ = (a0, . . . , an−1) in Kn, denote by

Λ(I) the result of the substitution xn �→ xn + an−1xn−1 + · · ·+ a0x0 in I.
Recall that the Zariski topology on Kn is the topology which has the algebraic

sets as closed sets, i.e., a set V is closed if and only if there exists a (finite) family
of polynomials f1, . . . , fk ∈ K[a0, . . . , an−1] such that

V = {Λ ∈ Kn | f1(Λ) = · · · = fk(Λ) = 0}.
It is well known that a nonempty Zariski open set is dense. Under these assump-
tions, by a restriction to the last variable of Galligo’s theorem [10] (see also [7],
Theorem 15.18) we have the following theorem.

Theorem 2.1. Let K be an infinite field. Then, there is a monomial ideal J ⊂ R
and a Zariski open set U ⊂ Kn such that in(Λ(I)) = J for each Λ ∈ U . Moreover,
for each m ≥ 0, if Jm has dimension t, ∧tJm is generated by max{in(f) | f ∈
∧tΛ(I)m,Λ ∈ Kn}.
Proof. Let f1, . . . , ft be a basis for Im and f = f1 ∧ · · · ∧ ft. For any Λ =
(a0, . . . , an−1) we have Λ(f) = Λ(f1)∧· · ·∧Λ(ft) is a linear combination of monomi-
als in ∧tRm. Let p(a0, . . . , an−1) ⊂ K[a0, . . . , an−1] be the coefficient of in(Λ(f)).
Now set

Um = {Λ ∈ Kn | p(a0, . . . , an−1) �= 0}.
Let Jm be the subspace of Rm generated by m1, . . . ,mt where in(Λ(f)) = m1∧· · ·∧
mt. Set J =

∑
m≥1 Jm and U =

⋂∞
m=1 Um. We now show that J is an ideal and U is

a Zariski open set. To show that J is an ideal, it suffices to prove that RiJm ⊂ Rm+i

for any i and m. Note that Um and Um+i are dense, therefore Um ∩ Um+i �= ∅.
Pick Λ ∈ Um ∩ Um+i, it follows that in(Λ(I))m = Jm and in(Λ(I))m+i = Jm+i.
Since in(Λ(I)) is an ideal, we can conclude the desired inclusion. Also, the ideal J
satisfies the last statement of the theorem.

We will show that U is a Zariski open set of Kn. Since each Um is Zariski open,
it is enough to show that U is equal to finite intersection of the Um. Suppose that
J is generated by m1, . . . ,ms. Let e be the highest degree of these monomials. We
claim that U =

⋂e
m=1 Um. Take Λ ∈

⋂e
m=1 Um, in(Λ(I))m = Jm for any m ≤ e,

hence J ⊂ in(Λ(I)). Since dimK Jm = dimK Im = dimK in(Λ(I))m for every m we
have J = in(Λ(I)) and thus Λ ∈ U . The other inclusion is trivial. This argument
was a rewriting of the proof of [7], Theorem 15.18. �
Corollary 2.3. Let the characteristic of K be zero, or sufficiently large. With
the notation of Theorem 2.1, J is in sat-generic position (and therefore almost all
linear changes of the last variable transform I in sat-generic position).

Proof. We have to show that if xnm ∈ J , then xim ∈ J . Let Λi = (0, . . . , 0, 1,
0, . . . , 0) ∈ Kn such that the ith element is one and the others are zero. So, it is
enough to prove that Λi(Js) = Js with s = deg(m)+1. Also, let Λ be an element of
Kn such that in(Λ(I)) = J . Choose a basis f1, . . . , ft for Λ(I)s. Set f = f1∧· · ·∧ft.
Thus in(f) = in(f1) ∧ · · · ∧ in(ft).
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If Λi(Js) �= Js, then Λi(in(f)) �= in(f). By definition of Λi(in(f)), its terms
(other than in(f)) are strictly greater than in(f). We will show that for a suitable
Λ′ ∈ Kn, a monomial (with nonzero coefficient) strictly greater than in(f) appears
in Λ′(f). This contradicts the last statement of Theorem 2.1, proving the assertion.

Let Λ′ be the vector Λi by replacing 1 by c where c is a generic element of
K. Let fi = cix

pi
n f ′

i for any i where pi is a nonnegative integer and f ′
i ∈ R is a

polynomial whose leading coefficient is 1. Let m be the normal expression form of
xp1

i in(f ′
1) ∧ · · · ∧ xpt

i in(f ′
t). It is trivial that m appears in Λ′(f). We claim that m

is strictly greater than in(f) and it has a nonzero coefficient if c ∈ K is sufficiently
generic. From supposition and definition of orderings, it is clear that m is strictly
greater than in(f). To prove the other part of claim, let p(c) be the coefficient of
m in f . One can see easily that c1 · · · ctcp1+···+pt is the leading coefficient of p(c)
(which is nonzero). By the assumption on the characteristic of K, it follows that
for a sufficiently generic value of c, the value of p(c) is nonzero and this ends the
proof. This argument was inspired by the proof of [7], Theorem 15.20. �
Example 2.1. If K is finite and its characteristic is not sufficiently large, Corollary
2.3 may be false. For example, let the characteristic of K be two and I = 〈x2, y2〉 ⊂
K[x, y]. Then, any linear change of coordinates transforms I to itself which is not in
sat-generic position, because I : y = 〈x2, y〉 is not equal to I : 〈x, y〉 = 〈x2, xy, y2〉.

Finally, we describe our algorithm to compute the satiety of a general ideal.
For this, we denote by D(n, J) the maximal degree of the elements of a minimal
system of generators of a monomial ideal J containing xn. The correctness and
termination of this algorithm follow, respectively, from Corollaries 2.2 and 2.3. We
have implemented this algorithm in Singular and we compare its running time
with satiety and satiety(.,1) (from the library mregular.lib) of Singular in
Section 5.

Algorithm 2 sat

Input: I ⊂ R a homogeneous ideal
Output: The satiety of I
J := in(I)
while sat-generic-test(J)=”No” do
ψ := The map xn �−→ xn + an−1xn−1 + · · · + a0x0 with ai ∈ K a random
element
J := in(ψ(I))

end while
return D(n, J)

3. Quasi stable position

In this section, we define the new notion of a homogeneous ideal in quasi stable
position (QSP). We show also the relationship between this notion and the other
existing notions of generic coordinates for computing the Castelnuovo-Mumford
regularity of a homogeneous ideal.

To define the notion QSP, we need the following sequence of ideals associated
to an ideal in which J is a monomial ideal of the ring R = K[x0, . . . , xn] and
mi = 〈x0, . . . , xi〉 is the unique maximal ideal of the ring Ri = K[x0, . . . , xi].

Licensed to Johannes Kepler University. Prepared on Sun Sep 20 16:58:32 EDT 2015 for download from IP 140.78.164.246.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



EFFICIENT COMPUTATION OF CASTELNUOVO-MUMFORD REGULARITY 1169

Notation 3.1. Let sec(J, 0) = J and sec(J, i) = J |xn−i+1=···=xn=0 ∩ Rn−i for i =
1, . . . , n.

Definition 3.1. A monomial ideal J is in quasi stable position (QSP) if we have
sec(J, i) : mn−i = sec(J, i) : xn−i for i = 0, . . . , dim(J).

Definition 3.2. A homogeneous ideal I ⊂ R is in quasi stable position (QSP) if
in(I) is in QSP.

We note an immediate consequence of these definitions.

Corollary 3.1 (QSP-test). Let J be a monomial ideal and w(m) the maximal in-
teger � such that x� divides a monomial m. The following conditions are equivalent:

• J is in QSP.
• For all monomial m ∈ J , if w(m) ≥ n− dim(J) we have xi(m/xw(m)) ∈ J
for all i < w(m).

Using this test, we give an algorithm to decide whether a monomial ideal is in
QSP.

Algorithm 3 QSP-test

Input: J ⊂ R a monomial ideal
Output: The answer of “Is J in QSP?
G := {m1, . . . ,mk} a minimal system of generators for J
Deg := max{deg(m1), . . . , deg(mk)}
d := smallest � such that xDeg

i ∈ J for i = 0, . . . , n− �
for each xe0

0 · · ·xeh
h ∈ G with h ≥ n− d and eh > 0 do

for j = 1, . . . , h− 1 do
if xe0

0 · · ·xeh−1

h−1 x
eh−1
h xj /∈ G then

return “No”
end if

end for
end for
return “Yes”

Proof of algorithm QSP-test. The termination of the algorithm is obvious. Let us
show its correctness. For this, we have to prove that J is in QSP if and only if the
response of the algorithm is “Yes”. Suppose that J is in QSP and xe0

0 · · ·xeh
h ∈ G

for some h ≥ n− d with eh > 0. This implies that

xe0
0 · · ·xeh−1

h−1 x
eh−1
h ∈ J : xh = J : 〈x0, . . . , xh〉.

Thus, xe0
0 · · ·xeh−1

h−1 xj must be in J for any j = 0, . . . , h − 1, and the answer is
“Yes”. In this case, d is the dimension of J by the Noether normalization test (see
[4], Lemma 3.1). Conversely, we can conclude that J : xh ⊂ J : 〈x0, . . . , xh〉, and
therefore J is in QSP by definition of the notation. �

Remark 3.1. In this algorithm, the integer d is the dimension of J if the answer is
“Yes” (see the proof of algorithm).

Proposition 3.1. The complexity of this algorithm is quadratic in kn.
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Figure 1. Classes of ideals

Proof. One can easily see that the number of operations in the loop “For” is kn2.
Thus the complexity of the algorithm is polynomial in kn. �

Example 3.1. There is a nontrivial homogeneous ideal in QSP. Set R = Q[x, y, z,
t, u, v, h]. Let I be the homogenization of the 5-th Katsura ideal with respect to h,
i.e., the homogenization of the ideal generated by 2x2+2y2+2z2+2t2+2u2+ v2−
v, xy+yz+2zt+2tu+2uv−u, 2xz+2yt+2zu+u2+2tv−t, 2xt+2yu+2tu+2zv−z, t2+
2xv+2yv+2zv−y and 2x+2y+2z+2t+2u+v−1. Its dimension is 1, and its initial
ideal, in(I), is generated by x, t2, zt, yt, yz, y2, u3, tu2, zu2, yu2, z2u, z3, u2v2, tuv2,
zuv2, yuv2, z2v2, uv4, tv4, zv4, yv4, v6. One can easily check that this initial ideal is
in QSP by the above algorithm, and therefore I is in QSP by definition.

We now compare QSP with some other notions of generic coordinates. Recall
that a monomial ideal J ⊂ R is in nested type position (NTP) if sec(J, i)sat =
sec(J, i) : x∞

n−i for i = 0, . . . , dim(J)− 1 (see [5], Proposition 3.2).

Lemma 3.1. Any monomial ideal in QSP is in NTP.

Proof. Let J be a monomial ideal in QSP. We have to show that any monomial
m ∈ sec(in(J), i) : x∞

n−i belongs to sec(in(J), i)sat for any i < dim(J). Let xk
n−im ∈

sec(in(J), i) for some integers k and i. From hypothesis we have xk
jm ∈ sec(in(J), i)

for any j < n− i, and this follows the assertion. �

Recall that a monomial ideal J ⊂ R is Borel if it is fixed under the action of the
upper triangular invertible matrices in GL(n + 1,K). Provided the characteristic
of K is zero, a monomial ideal J ⊂ R is Borel if and only if xjm ∈ J implies that
xim ∈ J for all i < j. Also, there is another class of monomial ideals called stable
ideals (see [9]). A monomial ideal J ⊂ R is stable if the equality of Definition 3.1
is true for i = 0, . . . , n − 1. Thus, in characteristic zero a Borel monomial ideal is
a stable ideal, and in any characteristic a stable ideal is in QSP. These imply that
QSP is a notion between stable and NTP. In Figure 1, we compare the different
notions of generic coordinates in which BP (resp. SP, NTP and NP) shows the
class of the ideals whose initial ideals are in Borel position (resp. stable position,
NTP and Noether position). Recall that a monomial ideal J is in Noether position
if a pure power of xi belongs to J for i = 0, . . . , n−dim(J) (see [4]). Note that QSP
and NTP are not equivalent. For example, the ideal 〈x2, y2〉 ⊂ Q[x, y] is in NTP,
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EFFICIENT COMPUTATION OF CASTELNUOVO-MUMFORD REGULARITY 1171

but it is not in QSP. Also, QSP is not equivalent to SP, because, for example, the
initial ideal of Example 3.1 is an ideal in QSP but it is not in SP (this is also true
for the initial ideal of the 6, 7, 8, 9 and 10-th Katsura ideals).

In the rest of this section we suppose that the characteristic of K is zero, or
sufficiently large. We show that for almost all linear change of variables an ideal
is in QSP. Let I ⊂ R be a homogeneous ideal of dimension d. For all Λ =
(a1, . . . , aN ) ∈ KN with N = n(n + 1)/2 − (n − d − 1)(n − d)/2, denote by Λ(I)
the result of the following substitution in I:

xn �→ xn + a1xn−1 + a2xn−2 + · · ·+ anx0,

xn−1 �→ xn−1 + an+1xn−2 + · · ·+ a2n−1x0,

...

xn−d �→ xn−d + aN−n+d+1xn−d−1 + · · ·+ aNx0.

Under these assumptions, we can conclude the following.

Corollary 3.2. Let the characteristic of K be zero, or sufficiently large. There is
a monomial ideal J ⊂ R and a Zariski open set U ⊂ KN such that in(Λ(I)) = J
for each Λ ∈ U . Moreover, J is in QSP (and thus almost all linear changes of the
variables xn, . . . , xn−d put I in QSP).

Proof. The assertion follows by applying Corollary 2.3 to the variables xn, . . . , xn−d.
�

For finite fields, this is not always true. For instance, in characteristic p > 0,
there is no linear change of variables to put the ideal 〈xp, yp〉 in QSP. Note that
the fact that the characteristic of K is small causes this problem.

4. Castelnuovo-Mumford regularity of an ideal in QSP

In this section, we prove the main result of this paper: the Castelnuovo-Mumford
regularity of an ideal in QSP is the maximal degree of the elements of its reduced
Gröbner basis with respect to the reverse lexicographic ordering. We describe also
an algorithm based on this result to compute the Castelnuovo-Mumford regularity
of a general homogeneous ideal.

We prove first that the maximal degree of the elements of the reduced Gröbner
basis of an ideal in QSP is less than or equal to its Castelnuovo-Mumford regularity
(Proposition 4.2).

Lemma 4.1 ([3]). Let I ⊂ R be a homogeneous ideal, and y ∈ R a generic linear
form for I. The following conditions are equivalent:

• reg(I) ≤ m.
• sat(I) ≤ m and reg(I + 〈y〉) ≤ m.

Lemma 4.2 ([3]). Let I ⊂ R be a zero–dimensional homogeneous ideal. The
following conditions are equivalent:

• sat(I) ≤ m.
• reg(I) ≤ m.
• Im = Rm.

Corollary 4.1. With the same hypothesis reg(I) = sat(I).
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Lemma 4.3 ([12]). Let I ⊂ R homogeneous ideal. Then

reg(I) = max{sat(I), reg(Isat)}.

We need some more notation as follows: We define J ⊂ R to be a monomial
ideal. Let sec(J, 0) = J and sec(J, i) = J + 〈xn−i+1, . . . , xn〉 for i = 1, . . . , n.

Proposition 4.1. Let J ⊂ R be a monomial ideal in QSP and let d = dim(J),
then

reg(J) = max
0≤i≤d

{sat(sec(J, i))}(1)

= max
0≤i≤d

{sat(sec(J, i))}.(2)

Proof. To prove the equality (1), from Lemma 4.1 we have

reg(J) = max{sat(J), reg(sec(J, 1))}.
By reusing this formula for the ideal sec(J, 1) and using the fact that xn−1 is generic
for sec(J, 1) we obtain

reg(J) = max{sat(J),max{sat(sec(J, 1)), reg(sec(J, 2))}}
= max{sat(J), sat(sec(J, 1)), reg(sec(J, 2))}.

So by an induction, we can conclude that reg(J) is equal to

max{sat(J), sat(sec(J, 1)), . . . , sat(sec(J, d− 1)), reg(sec(J, d))}.
Since sec(J, d) is zero-dimensional, then reg(sec(J, d))=sat(sec(J, d)) (Corollary 4.1),
and this proves the assertion.

Let us prove (2). It is enough to show that sat(sec(J, i)) = sat(sec(J, i)) for any
i. By the membership xn−i+1, . . . , xn ∈ sec(J, i) we have

sec(J, i)sat = sec(J, i)sat|xn−i+1=···=xn=0 ∩Rn−i

by definition of the saturation of an ideal, and this proves the assertion. �

Lemma 4.4. If I ⊂ R is a homogeneous ideal in QSP then reg(I) = reg(in(I)).

Proof. Following [3], a sequence y1, . . . , yi ∈ R of linear forms is called generic for
an ideal I ⊂ R if yj is generic for I + 〈y1, . . . , yj−1〉 for any j = 1, . . . , i. By
hypothesis the sequence xn, . . . , xn−dim(I)+1 is generic for in(I). Thus the assertion
follows from [3], Theorem 2.4. �

Proposition 4.2. Let I ⊂ R be a homogeneous ideal in QSP. The maximal degree
of the elements of the reduced Gröbner basis of I is less than or equal to reg(I).

Proof. Using Lemma 4.4, it is enough to prove the assertion for J = in(I) which
is a monomial ideal. Let us consider G = {m1, . . . ,ms} a minimal system of
generators of J and a monomial mj in G. Let xi be the greatest variable which
divides mj . Two cases are possible: If i ∈ {n − d + 1, . . . , n} with d = dim(J),
these assumptions imply that mj/xi ∈ sec(J, n− i) : xi and mj/xi /∈ sec(J, n− i).
In addition, sec(J, n− i)sat = sec(J, n− i) : x∞

i because J is in QSP. This implies
that mj/xi ∈ sec(J, n− i)sat. The facts that mj/xi ∈ sec(J, n− i)sat and mj/xi /∈
sec(J, n − i) result in deg(mj) ≤ sat(sec(J, n − i)) by definition. Thus deg(mj) is
less than or equal to reg(J) by Proposition 4.1.

In the other case, i.e., i ∈ {0, . . . , n− d}, we use the facts that sec(J, d) is zero–
dimensional and its regularity is less than or equal to reg(J) (Lemma 4.1 and the
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fact that J is in QSP). Suppose ad absurdum that deg(mj) > reg(J) for some j.
Let m be a monomial of degree reg(J) which divides mj . Thus m ∈ sec(J, d) by
Lemma 4.2, and m ∈ J by supposition. This is a contradiction with minimality of
G which follows that deg(mj) ≤ reg(J), and this proves the assertion. �

Bayer and Stillman [3] have proved that if the characteristic ofK is zero, then the
Castelnuovo-Mumford regularity of a Borel monomial ideal is the maximal degree of
the elements of its reduced Gröbner basis with respect to the reverse lexicographic
ordering. In the following, we generalize this result to any characteristic and the
ideals in QSP.

Theorem 4.1. The Castelnuovo-Mumford regularity of an ideal in QSP is the
maximal degree of the elements of its reduced Gröbner basis with respect to the
reverse lexicographic ordering.

Proof. Let I ⊂ R be an ideal in QSP. Also, let D be the maximal degree of the
elements of in(I). From Proposition 4.2, we have D ≤ reg(I). To prove the other
inequality, from Proposition 4.1 (2) and Lemma 4.4 we have reg(I) = reg(in(I)) ≤
sat(sec(in(I), i)) for some i with 0 ≤ i ≤ dim(I). From hypothesis, sec(in(I), i)
is in QSP, and its satiety is equal to the maximal degree of the elements of in(I)
containing xn−i by Corollary 2.2. Thus, reg(I) ≤ D. �

Algorithm 4 reg

Input: I ⊂ R a homogeneous ideal
Output: The Castelnuovo-Mumford regularity of I
J := in(I)
if QSP-test(J)=”Yes” then
return Maximal degree of the elements of J

end if
while sat-generic-test(J)=”No” do
ψ := The map xn �−→ xn + an−1xn−1 + · · · + a0x0 with ai ∈ K a random
element
J := in(ψ(I))

end while
r := D(n, J)
d := dim(I)
for i = n, . . . , n− d+ 1 do
I := I|xi=0 ⊂ K[x0, . . . , xi−1]
J := in(I)
while sat-generic-test(J)=”No” do
ψ := The map xi−1 �−→ xi−1 + ai−2xi−2 + · · ·+ a0x0 with ai ∈ K a random
element
J := in(ψ(I))

end while
r := max{r,D(i− 1, J)}

end for
return r

This algorithm is based on the above theorem for computing the Castelnuovo-
Mumford regularity of a general ideal by an incremental (one variable after the
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other) random linear change of variables to put the input ideal in QSP. We denote
byD(i, J) the maximal degree of the elements of a minimal system of generators of a
monomial ideal J containing xi. The correctness and termination of this algorithm
follow, respectively, from Theorem 4.1 and Corollary 3.2. We have implemented this
algorithm in the distributed library noether.lib [1] of Singular and we compare
its running time with the function regIdeal (from the library mregular.lin) of
Singular in Section 5.

5. Experiments and remarks

We have implemented sat and reg algorithms with the computer algebra sys-
tem Singular (version 3-0-1). We have also implemented the msat (resp. mreg)
algorithm which is a modular version of sat (resp. reg) algorithm, i.e., it computes
the initial ideal modulo 2147483647 (the biggest prime number less than 231) with
a high probability. All of these algorithms are contained in the distributed library
noether.lib [1].

We choose Singular since it has many functionalities needed which are related
to a multivariate polynomial ring. Also, we want to be able to compare our al-
gorithms with the existing functions: satiety, satiety(.,1) and regIdeal of
Singular.

For this experiment, we use some examples from [6], the Posso list1 and [5]. For
the polynomial systems which are not homogeneous, we use their homogenization.
The results are shown in Table 1. All of the computations are done over Q. The
monomial ordering is always degree reverse lexicographical ordering. In this table,
Example 1 is the ideal of the ring Q[x, y, z] generated by 8x2y2 + 5xy3 + 3x3z +
x2yz, x5+2y3z2+13y2z3+5yz4, 8x3+12y3+xz2, 7x2y4+18xy3z2+y3z3. Examples
2, 3, 5, 8, 9, 10, 12, 14, 15, 16, 17 and 18 are, respectively, Siebert, Macaulay, Schwarz,
Cassou, Horrocks, Huneke, Amrhein2, Gerdt, Möller, Sturmfels/Eisenbud, mat32

and Butcher Examples (see [6]), and Examples 4, 6, 7 and 11 are, respectively,
Bronstein2, Cyclic roots 5, Katsura4 and Katsura5 Examples from the Posso list.
Examples 13 and 20 are respectively Examples 4.13 and 4.10 from [5]. Example 19
is Shimoyama/Yokoyama example and it is the ideal generated by the polynomials
−j9 + 9j8a − 36j7a2 + 84j6a3 − 126j5a4 + 126j4a5 − 84j3a6 + 36j2a7 − 9ja8 +
a9,−bj8 + 8bj7a+ j8a− 28bj6a2 − 8j7a2 + 56bj5a3 + 28j6a3 − 70bj4a4 − 56j5a4 +
56bj3a5+70j4a5−28bj2a6−56j3a6+8bja7+28j2a7−ba8−8ja8+a9, cj7−7cj6a−
j7a+21cj5a2 +7j6a2 − 35cj4a3 − 21j5a3 +35cj3a4 +35j4a4 − 21cj2a5 − 35j3a5 +
7cja6 +21j2a6 − ca7 − 7ja7 + a8,−dj6 +6dj5a+ j6a− 15dj4a2 − 6j5a2 +20dj3a3 +
15j4a3 − 15dj2a4 − 20j3a4 + 6dja5 + 15j2a5 − da6 − 6ja6 + a7, ej5 − 5ej4a− j5a+
10ej3a2 + 5j4a2 − 10ej2a3 − 10j3a3 + 5eja4 + 10j2a4 − ea5 − 5ja5 + a6,−fj4 +
4fj3a+ j4a−6fj2a2−4j3a2+4fja3+6j2a3−fa4−4ja4+a5, gj3−3gj2a− j3a+
3gja2+3j2a2−ga3−3ja3+a4,−hj2+2hja+j2a−ha2−2ja2+a3, ij− ia−ja+a2

in the ring Q[a, b, c, d, e, f, g, h, i, j].
In Table 1, the column var (resp. dim, sat, reg and ncv) shows the number of

variables of the ring (resp. the dimension, the satiety, the Castelnuovo-Mumford
regularity of the ideal and the number of variables which are needed to change to
put the ideal in QSP). The other columns show the timing of computing by the
corresponding algorithm in which timing is measured in seconds (with a precision
of hundredths of a second) and the symbol ∞ means more than 24 hours. The

1http://www-sop.inria.fr/saga/POL/BASE/3.posso/
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Table 1. Comparison of msat, sat, satiety and satiety(.,1)

and of mreg, reg and regIdeal algorithms

Example var dim sat msat sat satiety satiety(.,1) reg ncv mreg reg regIdeal

1 3 1 8 0.01 0.01 0.06 0.01 8 0 0.01 0.01 0.01
2 5 2 9 0.03 0.11 0.06 8.62 9 2 0.06 ∗0.80 11.79
3 5 3 0 0.00 0.00 0.01 0.43 7 2 0.02 0.02 0.43
4 5 3 0 0.00 0.00 0.01 0.04 6 2 0.02 0.03 0.05
5 6 1 0 0.01 0.26 0.01 0.18 6 1 0.02 0.15 0.32
6 6 1 0 0.03 5.50 0.21 5.80 11 1 0.06 3.96 5.98
7 6 1 0 0.00 0.00 0.15 0.01 5 0 0.01 0.01 0.01
8 6 2 0 0.43 11.17 ∗0.37 ∞ 16 3 1.58 ∗2420.72 ∞
9 6 3 0 0.03 0.11 0.02 1.16 5 3 0.11 0.34 1.28
10 6 3 0 0.02 0.03 0.66 ∞ 42 3 7.98 ∞ ∞
11 7 1 0 0.01 ∗0.05 4.59 0.06 6 0 0.02 0.06 0.07
12 8 1 0 0.01 ∗0.01 0.45 0.02 8 0 0.04 0.04 0.05
13 8 2 0 0.09 0.12 2.57 49.23 6 1 0.27 ∗3.14 46.07
14 8 3 7 0.08 0.32 0.23 1645.79 7 4 0.36 ∗32.32 1610.60
15 8 3 7 0.04 0.26 0.06 6.44 7 2 0.07 0.32 8.96
16 9 3 4 0.01 0.01 0.02 0.39 4 4 0.08 0.47 ∗0.40
17 9 4 4 0.01 0.00 0.02 1.66 4 3 0.05 0.11 1.63
18 10 5 0 1.42 6.71 2.20 ∞ 10 4 8.32 32502.42 ∞
19 10 9 0 0.00 0.00 0.01 24.16 9 5 14.54 17.32 28.75
20 11 4 0 0.22 ∗0.21 7.66 2.19 29 ? ∞ ∞ ∗10.61

symbol ∗ shows the timing which is important in comparison with the other timings.
Timings were conducted on a personal computer with 3.2GHz, Intel(R)-Xeon(TM),
1024 MB memory and 64 bits under the Linux operating system.

The experiments we made seem to show that these first implementations are
already very efficient. Especially, a comparison of the column time of reg and
regIdeal in Table 1 shows that our algorithm to compute the Castelnuovo-Mumford
regularity is more efficient than regIdeal (except for Examples 16 and 19). The
timings of Examples 1, 7, 11 and 12 show that for the ideals which are already in
QSP, our algorithm does not run faster than regIdeal. Note that regIdeal al-
gorithm is based on [5] by using the notion of nested type for monomial ideals. It
makes a random linear change of variables in Knd−d(d−1)/2 where d is the dimen-
sion of input ideal to put the input ideal in this position. Next, it computes the
Gröbner basis of the changed ideal (say I) to test nested type and then computes
the satiety of ŝec(in(I), i) for i = 0, . . . , d for computing the regularity.

The efficiency of our algorithm comes from Theorem 4.1: By an incremental
(one variable after the other) random linear change of variables it puts a general
homogeneous ideal in QSP. Then by computing the Gröbner basis of the changed
ideal it tests QSP (which is less expensive than the Borel test and the nested type
test). Finally, it reads the regularity without further computation.

As a counterpart of its efficiency, it makes the linear change of variables in KN

with N = n(n+1)/2− (n−d−1)(n−d)/2 which is larger than Knd−d(d−1)/2 (that
of [5]). But, in practice, since it makes this change of variables incrementally, the
set which is used is less than KN (see the column ncv).

Also, this incremental change of variables makes the computation of Gröbner
bases less expensive than the case when we change all the last variables in one
step and avoids destroying the possible sparsity and therefore transforming an easy
problem into an intractable one (see Example 18 and 20).

This table shows also that sat algorithm is more efficient than satiety(.,1).
The last algorithm makes a random linear change of variables to find a monomial
ideal of nested type with the same satiety. Once a monomial ideal is nested type,
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one could compute its satiety from its Gröbner basis. The efficiency of our algorithm
comes from the fact that we change only the last variable to put the ideal in generic
position (see Section 2). But, it is not more efficient than satiety. The Singular
code of satiety is only the following line to compute the satiety of an ideal I:

maxdeg1(simplify(reduce(quotient(I,maxideal(1)),I),2))+1;

The efficiency of this algorithm is followed by using the commands quotient and
reduce, which compute, respectively, the quotient ideal of I with respect to the
maximal ideal and the normal form of this quotient with respect to I.

6. Conclusion

In this paper, we have introduced the new notion of a homogeneous ideal in
QSP. A definition for the notion of generic coordinates to compute efficiently
the Castelnuovo-Mumford regularity of a homogeneous ideal. We have provided
an algorithm to decide whether a monomial ideal is in QSP or not which has a
quadratic complexity in input (a monomial ideal) size. We have proved that the
Castelnuovo-Mumford regularity of an ideal in QSP is the maximal degree of the
elements of its reduced Gröbner basis with respect to the reverse lexicographic
ordering. Then, we have presented two algorithms sat and reg (using this result)
to compute, respectively, the satiety and the Castelnuovo-Mumford regularity of a
general homogeneous ideal by an incremental random linear change of variables to
put the ideal in a convenient generic position. Our experiments show the efficiency
of our algorithms compared with the corresponding algorithms of Singular.
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