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SOLVING POLYNOMIAL EQUATIONS

Abstract. Let k be a field and f : k" — k™ be a polynomial isomorphism. We give
a formula for f~!. In particular we show how to solve the equation f = 0.

1. Introduction

Many processes in economy, engineering, or biological sciences are de-
scribed by real or complex polynomial equations. Moreover, such equations
(over fields of positive characteristic) play important role in a modern cryp-
tography.

From this point of view it is interesting and important to have an algo-
rithm to solve a system of such equations. Let us fix a field & and number
n € N. Here we consider a system of polynomials f = (f1,..., fn) : k™ — k"
with additional assumption that f is a polynomial isomorphism. Such sys-
tems are important in cryptography. There is a well known formula based
on Grobner basis to compute the inverse of f (see e.g. [2], p. 66), however
this kind of formulas are not convenient for effective computations.

Here, we give a different formula (which seems to be effective in many
cases) to invert f and to solve equation f = 0. Such a formula was well-known
in the characteristic zero ( see e.g. [1]). The new ingredient is a proof that
this formula is still valid in positive characteristic.

2. Polynomial isomorphisms.

Here, we recall basic properties of polynomial isomorphisms. If f is
a polynomial isomorphism and g = f~! is a polynomial inverse of f, then
fog =identity. Consequently Jac(f)Jac(g) = 1. Since we can extend both
mappings f and g to algebraic closure of k, we see that Jac(f) = const. Now
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it is easy to compute Jac(f) — it is enough to compute Jacobian of linear
parts of f;. If Jac(f) =1 we say that f is normalized. For our purposes we
can always assume that f is normalized. Now we show how to estimate the
degree of f~1. We start with the Perron Theorem (see [4], Satz 57, p. 129,
for the classical version and [3] for short modern proof):

THEOREM 2.1. (Perron Theorem) Let k be a field and let Q1,...,Qn+1 €
klx1,...,zm] be non-constant polynomials with deg Q; = d;. If the mapping
Q= (Q1,...,Qnys1) : K"t — k"1 s generically finite, then there exists
a non-zero polynomial W (T, ..., Tyhy1) € k[T1, ..., Tht1] such that

(a) W(Q1,...,Qnt1) =0,
(b) deg W (T{", T3>, ..., Tty <TI0 dy.
Now we have the following basic and well-known fact:

THEOREM 2.2. Let f : k™ — k™ be a polynomial isomorphism. Let
deg fi = d;, where dy > ds > -+ > dy. If g = (91,...,9n) = [}, then
max' ; deg g; < H;:ll d;

Proof. For the sake of completeness we give a proof of this theorem. Fix
anumber 1 < ¢ < n. Apply Theorem 2.1 to the polynomials fi, ..., f, and z;.
Thus there exists a non-zero polynomial W(X,Th,...,T,) € k[ X, T1,...,T,]
such that

W (@i f1,.. fa) =0 and degW(X,T{",T52,... ., T¢) <[] 4
j:

Since the mapping f = (f1,..., fn) is an isomorphism with inverse g, we
have z; = g;(f1,..., fn). Hence a polynomial P(X,T) = X — ¢;(Th,...,Ty)
is a minimal polynomial of z; over k[f1,..., fu]. By the minimality of P, we
have P(X,T)|W(X,T), in particular

n
deg P(X, T{", 132, .., ") < [] 4.
Since P(X,T) = X — ¢i(T1,...,Tn) we conclude that

n
deg gi (T, T3, ..., Td") < [ d;
and consequently deg g; < H” ! d;.

3. Derivations
We start with:

DEFINITION 3.1. Let L be a k-linear operator L : k[zy,...,z,| — k[z1,
xyn). We say that L is a derivation if L(fg) = L(f)g + fL(g).



Solving polynomial equations 799

It is easy to see that a derivation is determined by its values on variables
T1,...,Tn. Moreover derivations 8 - generate the module of derivations over
k[ml, ..., Ty, l.e., every derivation L has the form

L= ZA a:cz

where A; are polynomials. Now consider the derivation .S; = a . Note that

!
SHx") = ﬁxm*a =alC% 4.
Take S¢/al(2]") = Cpai* ™ and Sf'/al(z]') = 0 for j # i. In this way we
can define the operator S/a! over every field. We have the following:

THEOREM 3.2. (Taylor formula) Let k be a field of any characteristic. Let
F € klz1,...,2,). Then for b= (by,...,b,) € k™ we have

F(I‘l,...,xn)
Sal Sa2 Sg" ey e @
B Z ap!l ag! T Q! (F)(b)(xl_bl) 1(.1'2—[)2) 2(~Tn_bn) ",
|a|<deg F

where |a| = a1 + - - + an.
Proof. If char k = 0, the result is well-known. Assume that chark =p > 0.
Let
F(z1,...,25) = Z anxlxy? . apn
la|<deg F'
and let F({aa}jaj<deg ) be a field generated by all coefficients of F. Now

choose real numbers {bq}|a|<deg 7 and by, ..., b, which form purely tran-

scendental system over Q. We have an epimorphism

T Z[{ba}\alédeng {b;c}] - Fp({aa}\odgdegFa {bk‘})a

which induces the epimorphism

Z[{ba}al<deg s ALk H[T1, - - 0] = Fp({aa}al<deg 7o A} 21, - - 2n].
It is easy to see that 7’ commutes with every derivation D®/a!. Now take
Fl(z1,...,2n Z baxtxy? . xpr.
|oo|<deg F'

Note that 7/(F’) = F and 7'(V/) = b. Over R we have a classical Taylor
formula:
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F/(J,'l,...,xn)
SalsOlQ SOén o a
= 3 S ) ey — B s = )% G )
|a|<deg F’ ) ’ "

Now it is enough to apply 7 to both sides of this equation. m

ProrosSITION 3.3. Let f = (f1,..., fn) be a normalized polynomial iso-
morphism. Then

0 0
= Az j )
6fz Z J aaﬁj

where
of on  oh o o on
Ox1 Oz """ Oxj_1 Oxjp1 """ Ozp
Of 0h  Of o 0h O
Ox1 Oz " Oxj_1 Oxjp1 """ Ozp
Aij =
ofi ofi  Ofi 1 Ofi Ok
Oxr1 Oxzo " " 833]',1 ijH Oz
Ofn Ofn Ofn Ofn Ofn
ox1 Oxg """ 8:Ej,1 a$j+1 T Oz

Proof. Let D; = 8?‘* Derivation D; is uniquely determined by conditions

Di(fj) = di;

where d;; is the Kronecker delta. This leads to the following system of linear

equations:
afj
> Aikﬁ—xk = by,
j=1,...,n. Now it is enough to solve this system using the Cramer rules
(note that the Jacobian of f is one). =
In the sequel we need a generalized version of this Proposition. We have:

PROPOSITION 3.4. Let k be a domain. Let (f1,...,fn) C k[z1,...,2,] be
a system of algebraically independent polynomials. Let 0 = det[ggz]. Then

there exists a derivation D) on the ring klz1,...,xy]s, which coincides on
the subring k[f1, ..., fn] with D; = % Moreover we have

0
,— + —
Dl_l/é E Az] j,

where
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Of Of1 9f1 9f1 ofr
Oxr1 Oz """ 8:Ej,1 6mj+1 *t Oz
9f2 Of2 Ofa Ofa Ofs
Oxr1 Oz """ 8:Ej,1 6mj+1 Tt Oz
A=l op on on g on on
Ox1 Oz """ Oxj_1 Oxji1 """ Ozp
Ofn Ofn dfn dfn Ofn
Jxy Oxo " Oxj_1 Oxji1 """ Ozp
Proof. Exactly as in Proposition 3.3 we get:
’
D} = W = 1/<SZA”a
where
Of Ofr Ofh g Oh of
Ox1 Oxo " " 833]',1 ijH Oz
9f2 Of2 Ofa Ofa Of2
Oxr1 Oz """ 8:Ej,1 6mj+1 Ct Oz
A/' - . . e . . . .
LY Ofi Ofi Ofi Ofi ofi
Ox1 Ozg """ Oxj_1 Oxjp1 ~ " Ozrp
Ofn Ofn  Ofn (g Ofn_ Ofn
Ox1 Oxo " " 833]',1 ijH Oz
and (5:det[g£;c ]. The derivation D} is the derivation of the ring k[z1, . .., zy)s.
Moreover, we have D!(f;) = 0;; where ¢;; is the Kronecker delta. Since

a derivation is uniquely determined by its values on generators, we have
that D} on k[f1,..., fn] coincides with D; = aifi. .

REMARK 3.5. The crucial point here is that even if a polynomial g €
klf1,..., fn] is given as a sum (of polynomials from k[z1,...,z,]) g = g1+92,
where g; € k[f1,. .., fn] we have still D;(g) = Di(g1) + D’(gg)

We also need a following obvious observation:

PROPOSITION 3.6. Let k be a domain of characteristic zero. Assume that
I Ck is an ideal. If D is a k-linear derivation of the ring R = kla,. .., ay]
then D*/a!(IR) C IR.

Now we show how to compute D¢ /a! effectively. Of course, it is compli-
cated only for a fields of positive characteristic. We assume that D; = aif-?
where f; is a component of a polynomial automorphism.

DEFINITION 3.7. The method of computing D¢ /al(h): First, we compute
operator D; in a formal way, i.e., we leave all integral coefficients which



802 7. Jelonek

appear unchanged. Next, we compute D; “a”’ times also in a formal way, we
receive the operator N. Then we compute formally N (h) and then divide all
formal coefficients by a!. Finally, we compute the impression in the field.

We show that this definition is stated in a correct way (i.e., fractions do
not appear in this constructions). Let

— aq .02 @
fi(ze, ... zn) = E ajax]txy? T
lo|<deg F'

and h = H(f1,..., fn), where H = ngdegH baxitzy? .. xdn.
Take Fp({@ia,ba}). Now choose real numbers {a; ,},{b;,}, which form
purely transcendental system over (. We have the epimorphism

72 Zld 0 {,}] = Fy({aia}. {ba)).

which induces the epimorphism

7' R=1Z[{a;,}, {ba}][xl, vy ] = S =Fp({aial, {bay)[T1, - -5 Tl

If T denotes ker 7, then ker n' = I[x1,...,z,]. It is easy to see that =’
commutes with every derivation D%/a!. Now take
iz, ..., Zamx‘flxg?...x
lal
and
H' (21, a0) = Y Vaftal® . . oo,

la

Let f' = (f1,..., f}). Note that «'(f") = f. If we take b’ = H'(f{,..., f})
then m(h') = h. Now if we compute D}"/a!(h’) fractions do not appear and
it is enough to use m - D;*/al(h) = w(D}"* /a\(})).

EXAMPLE 3.8. Let k = Fy and let (formally) D = 32%£ — . Then

ox
52
formally D? = 93:26% — 622 adx By — 62 5 T 693 and consequently

92 0 0 8 82

4. A formula
In this section we give a formula for the inverse of polynomial automor-

phism. We have:

THEOREM 4.1. Let f = (f1,..., fn) be a normalized polynomial isomor-
phism. Assume that deg f; = d; and dy > dy -+ > dy,. Take b = (b1, ..., by)
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= f(0). Let D;= 8%1 be derivations as in Proposition 3.3. Let g=(g1,-..,9n)
= L. Then

gj(y17 e 7y’n)
_ Z D?l DgQ Dan

ol ool o] (2;)(0)(y1 — b1)** (y2 — b2)™ ... (Y — bn)™",

lo|<@
where QQ = H?;ll dj.

Proof. First assume that chark = 0. Let us note that g;(f1,..., fn) = ;.
Now develop a function x; considered as a function of variables fi,..., f,
in a Taylor series in a center b (note that for every polynomial h we have

h(b) = h(£)(0)).

Now assume that char £ = p > 0. In fact, we could repeat the previous
proof, but it does not suggest a way how to compute derivations in effective
way. Hence we use different method. Let g = f~! and g = (g1,...,9n). Let

— al 02 @
filxy, ..o ) = E ajax]txs? .oy
|o|<deg F'

and

— al .02 (o7
gi(T1, ..., xp) = E biax]'xg® . oz
lo|<deg F'

Take F,({@ia,biat,b1,...,b,) to be a field generated by all coefficients
of components of automorphisms f,g and by by,...,b,. Now choose real
numbers {a; ,},{V; ,}, {b;}, which form purely transcendental system over
Q. We have the epimorphism

m 2 Zlag o AV o} (0] = Fp({aia}s {bia} {bi}),
which induces the epimorphism
R = Z[{aé,a}v {bg,a]n {b;}”xlv cees Tp)
— S =Fpy({aial {bia}, {bi})[z1,. .., zn].

If T denotes ker 7, then ker ' = I[x1,...,z,]. It is easy to see that =’
commutes with every derivation D®/al. Now take
fi1, .. zn) = Z aior]tTy? T
||
and

! — / aq 02 o
gi(x1,...,Tp) = E i1 Tg” o™

|al
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Let f" = (f{,...,f}) and ¢ = (g},...,4,). Note that 7'(f') = f and
7'(¢g’) = g. Over R we have gi(f1,---, fh) = zi+H;, where H; € I[xq,...,z,)].
Now we compute D) = 3 f’ By Proposition 3.4 we get:

D) = 8f’_1/5ZA”8

where
of1 9f1 0fi o 9fi af
Jxy Oxz """ Oxj_1 Oxji1 """ Oxp
of; of  ony o of o
Jxy Oxz """ Oxj_1 Oxji1 """ Ozp
S O
o
Aij — | ar of af! of! of;
Oxr1 Oz """ 8:Ej,1 6mj+1 Oz
S |
ofy Ofn Ofn_ (o Ofn ofn
Ox1 Ozg " Oxj_1 Oxjp1 """ Ozp
and § = det[ ] Note that 6 = 1 mod I[z1,...,z,] and hence, we can
extend the Inapplng 7 ¢ R — S to the mapping 7’ : Rs — S. Now de-
velop a function x; + H; considered as a function of variables f1,..., f} in

a Taylor series in a center b’ (note that for every polynomial h we have
h(b') = h(f")(0)). Using rules of differentiation and facts that H;, D(5) =
0 mod I[z1,...,z,] and § = 1 mod I[z1,...,x,], ( see Proposition 3.6) we
get after application of 7’ that

gj(yla s ,yn)
Z D?l DSQ Da"

o1l as! T ay!

(z;)(0)(y1 — b1)* (y2 — b2)*? ... (Y — bp) . =
lo|<Q

Now we are able to solve equation f = 0:

COROLLARY 4.2. If f(71,...,7) =0, then

Dal DaQ D?Lén [e3% (03 [e%

v = Z Oi' az' . (25)(0)(=b1)* (=b2)** ... (=bp)*".
<@~ T "

Proof. We have f(g) = identity hence f(g(0)) = 0. This means that g(0) is

a zero of f. m

COROLLARY 4.3. Let S be the set of all coefficients of polynomials f1,
.+y fn (notations as in Theorem 4.1). Then all coefficients of polynomials
Gy -y gn (where g = f~1) belong to the ring F,[S] (where Fy = Z).
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