Zbigniew Jelonek

SOLVING POLYNOMIAL EQUATIONS

Abstract

Let k be a field and $f: k^{n} \rightarrow k^{n}$ be a polynomial isomorphism. We give a formula for f^{-1}. In particular we show how to solve the equation $f=0$.

1. Introduction

Many processes in economy, engineering, or biological sciences are described by real or complex polynomial equations. Moreover, such equations (over fields of positive characteristic) play important role in a modern cryptography.

From this point of view it is interesting and important to have an algorithm to solve a system of such equations. Let us fix a field k and number $n \in \mathbb{N}$. Here we consider a system of polynomials $f=\left(f_{1}, \ldots, f_{n}\right): k^{n} \rightarrow k^{n}$ with additional assumption that f is a polynomial isomorphism. Such systems are important in cryptography. There is a well known formula based on Gröbner basis to compute the inverse of f (see e.g. [2], p. 66), however this kind of formulas are not convenient for effective computations.

Here, we give a different formula (which seems to be effective in many cases) to invert f and to solve equation $f=0$. Such a formula was well-known in the characteristic zero (see e.g. [1]). The new ingredient is a proof that this formula is still valid in positive characteristic.

2. Polynomial isomorphisms.

Here, we recall basic properties of polynomial isomorphisms. If f is a polynomial isomorphism and $g=f^{-1}$ is a polynomial inverse of f, then $f \circ g=$ identity. Consequently $\operatorname{Jac}(f) \operatorname{Jac}(g)=1$. Since we can extend both mappings f and g to algebraic closure of k, we see that $\operatorname{Jac}(f)=$ const. Now

[^0]it is easy to compute $\operatorname{Jac}(f)$ - it is enough to compute Jacobian of linear parts of f_{i}. If $\operatorname{Jac}(f)=1$ we say that f is normalized. For our purposes we can always assume that f is normalized. Now we show how to estimate the degree of f^{-1}. We start with the Perron Theorem (see [4], Satz 57, p. 129, for the classical version and [3] for short modern proof):
Theorem 2.1. (Perron Theorem) Let k be a field and let $Q_{1}, \ldots, Q_{n+1} \in$ $k\left[x_{1}, \ldots, x_{m}\right]$ be non-constant polynomials with $\operatorname{deg} Q_{i}=d_{i}$. If the mapping $Q=\left(Q_{1}, \ldots, Q_{n+1}\right): k^{n+1} \rightarrow k^{n+1}$ is generically finite, then there exists a non-zero polynomial $W\left(T_{1}, \ldots, T_{n+1}\right) \in k\left[T_{1}, \ldots, T_{n+1}\right]$ such that
(a) $W\left(Q_{1}, \ldots, Q_{n+1}\right)=0$,
(b) $\operatorname{deg} W\left(T_{1}^{d_{1}}, T_{2}^{d_{2}}, \ldots, T_{n+1}^{d_{n+1}}\right) \leq \prod_{j=1}^{n+1} d_{j}$.

Now we have the following basic and well-known fact:
Theorem 2.2. Let $f: k^{n} \rightarrow k^{n}$ be a polynomial isomorphism. Let $\operatorname{deg} f_{i}=d_{i}$, where $d_{1} \geq d_{2} \geq \cdots \geq d_{n}$. If $g=\left(g_{1}, \ldots, g_{n}\right)=f^{-1}$, then $\max _{\mathrm{i}=1}^{\mathrm{n}} \operatorname{deg} g_{i} \leq \prod_{j=1}^{n-1} \bar{d}_{j}$.
Proof. For the sake of completeness we give a proof of this theorem. Fix a number $1 \leq i \leq n$. Apply Theorem 2.1 to the polynomials f_{1}, \ldots, f_{n} and x_{i}. Thus there exists a non-zero polynomial $W\left(X, T_{1}, \ldots, T_{n}\right) \in k\left[X, T_{1}, \ldots, T_{n}\right]$ such that

$$
W\left(x_{i}, f_{1}, \ldots, f_{n}\right)=0 \quad \text { and } \quad \operatorname{deg} W\left(X, T_{1}^{d_{1}}, T_{2}^{d_{2}}, \ldots, T_{n}^{d_{n}}\right) \leq \prod_{j=1}^{n} d_{j}
$$

Since the mapping $f=\left(f_{1}, \ldots, f_{n}\right)$ is an isomorphism with inverse g, we have $x_{i}=g_{i}\left(f_{1}, \ldots, f_{n}\right)$. Hence a polynomial $P(X, T)=X-g_{i}\left(T_{1}, \ldots, T_{n}\right)$ is a minimal polynomial of x_{i} over $k\left[f_{1}, \ldots, f_{n}\right]$. By the minimality of P, we have $P(X, T) \mid W(X, T)$, in particular

$$
\operatorname{deg} P\left(X, T_{1}^{d_{1}}, T_{2}^{d_{2}}, \ldots, T_{n}^{d_{n}}\right) \leq \prod_{j=1}^{n} d_{j}
$$

Since $P(X, T)=X-g_{i}\left(T_{1}, \ldots, T_{N}\right)$ we conclude that

$$
\operatorname{deg} g_{i}\left(T_{1}^{d_{1}}, T_{2}^{d_{2}}, \ldots, T_{n}^{d_{n}}\right) \leq \prod_{j=1}^{n} d_{j}
$$

and consequently $\operatorname{deg} g_{i} \leq \prod_{j=1}^{n-1} d_{j}$.

3. Derivations

We start with:
DEFINITION 3.1. Let L be a k-linear operator $L: k\left[x_{1}, \ldots, x_{n}\right] \rightarrow k\left[x_{1}\right.$, $\left.\ldots, x_{n}\right]$. We say that L is a derivation if $L(f g)=L(f) g+f L(g)$.

It is easy to see that a derivation is determined by its values on variables x_{1}, \ldots, x_{n}. Moreover derivations $\frac{\partial}{\partial x_{i}}$ generate the module of derivations over $k\left[x_{1}, \ldots, x_{n}\right]$, i.e., every derivation L has the form

$$
L=\sum_{i=1}^{n} A_{i}(x) \frac{\partial}{\partial x_{i}}
$$

where A_{i} are polynomials. Now consider the derivation $S_{i}=\frac{\partial}{\partial x_{i}}$. Note that

$$
S_{i}^{a}\left(x_{i}^{m}\right)=\frac{m!}{(m-a)!} x_{i}^{m-a}=a!C_{m}^{a} x_{i}^{m-a}
$$

Take $S_{i}^{a} / a!\left(x_{i}^{m}\right)=C_{m}^{a} x_{i}^{m-a}$ and $S_{i}^{a} / a!\left(x_{j}^{m}\right)=0$ for $j \neq i$. In this way we can define the operator S_{i}^{a} / a ! over every field. We have the following:

Theorem 3.2. (Taylor formula) Let k be a field of any characteristic. Let $F \in k\left[x_{1}, \ldots, x_{n}\right]$. Then for $b=\left(b_{1}, \ldots, b_{n}\right) \in k^{n}$ we have

$$
\begin{aligned}
& F\left(x_{1}, \ldots, x_{n}\right) \\
& \quad=\sum_{|\alpha| \leq \operatorname{deg} F} \frac{S_{1}^{\alpha_{1}}}{\alpha_{1}!} \frac{S_{2}^{\alpha_{2}}}{\alpha_{2}!} \ldots \frac{S_{n}^{\alpha_{n}}}{\alpha_{n}!}(F)(b)\left(x_{1}-b_{1}\right)^{\alpha_{1}}\left(x_{2}-b_{2}\right)^{\alpha_{2}} \ldots\left(x_{n}-b_{n}\right)^{\alpha_{n}}
\end{aligned}
$$

where $|\alpha|=\alpha_{1}+\cdots+\alpha_{n}$.
Proof. If char $k=0$, the result is well-known. Assume that char $k=p>0$. Let

$$
F\left(x_{1}, \ldots, x_{n}\right)=\sum_{|\alpha| \leq \operatorname{deg} F} a_{\alpha} x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \ldots x_{n}^{\alpha_{n}}
$$

and let $\mathbb{F}_{p}\left(\left\{a_{\alpha}\right\}_{|\alpha| \leq \operatorname{deg} F}\right)$ be a field generated by all coefficients of F. Now choose real numbers $\left\{b_{\alpha}\right\}_{|\alpha| \leq \operatorname{deg} F}$ and $b_{1}^{\prime}, \ldots, b_{n}^{\prime}$, which form purely transcendental system over \mathbb{Q}. We have an epimorphism

$$
\pi: \mathbb{Z}\left[\left\{b_{\alpha}\right\}_{|\alpha| \leq \operatorname{deg} F},\left\{b_{k}^{\prime}\right\}\right] \rightarrow \mathbb{F}_{p}\left(\left\{a_{\alpha}\right\}_{|\alpha| \leq \operatorname{deg} F},\left\{b_{k}\right\}\right)
$$

which induces the epimorphism

$$
\pi^{\prime}: \mathbb{Z}\left[\left\{b_{\alpha}\right\}|\alpha| \leq \operatorname{deg} F,\left\{b_{k}^{\prime}\right\}\right]\left[x_{1}, \ldots, x_{n}\right] \rightarrow \mathbb{F}_{p}\left(\left\{a_{\alpha}\right\}|\alpha| \leq \operatorname{deg} F,\left\{b_{k}\right\}\right)\left[x_{1}, \ldots, x_{n}\right]
$$

It is easy to see that π^{\prime} commutes with every derivation $D^{a} / a!$. Now take

$$
F^{\prime}\left(x_{1}, \ldots, x_{n}\right)=\sum_{|\alpha| \leq \operatorname{deg} F} b_{\alpha} x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \ldots x_{n}^{\alpha_{n}}
$$

Note that $\pi^{\prime}\left(F^{\prime}\right)=F$ and $\pi^{\prime}\left(b^{\prime}\right)=b$. Over \mathbb{R} we have a classical Taylor formula:

$$
\begin{aligned}
& F^{\prime}\left(x_{1}, \ldots, x_{n}\right) \\
& \quad=\sum_{|\alpha| \leq \operatorname{deg} F} \frac{S_{1}^{\alpha_{1}}}{\alpha_{1}!} \frac{S_{2}^{\alpha_{2}}}{\alpha_{2}!} \ldots \frac{S_{n}^{\alpha_{n}}}{\alpha_{n}!}\left(F^{\prime}\right)\left(b^{\prime}\right)\left(x_{1}-b_{1}^{\prime}\right)^{\alpha_{1}}\left(x_{2}-b_{2}^{\prime}\right)^{\alpha_{2}} \ldots\left(x_{n}-b_{n}^{\prime}\right)^{\alpha_{n}}
\end{aligned}
$$

Now it is enough to apply π to both sides of this equation.
Proposition 3.3. Let $f=\left(f_{1}, \ldots, f_{n}\right)$ be a normalized polynomial isomorphism. Then

$$
\frac{\partial}{\partial f_{i}}=\sum A_{i j} \frac{\partial}{\partial x_{j}},
$$

where

Proof. Let $D_{i}=\frac{\partial}{\partial f_{i}}$. Derivation D_{i} is uniquely determined by conditions

$$
D_{i}\left(f_{j}\right)=\delta_{i j}
$$

where $\delta_{i j}$ is the Kronecker delta. This leads to the following system of linear equations:

$$
\sum A_{i k} \frac{\partial f_{j}}{\partial x_{k}}=\delta_{i j},
$$

$j=1, \ldots, n$. Now it is enough to solve this system using the Cramer rules (note that the Jacobian of f is one).

In the sequel we need a generalized version of this Proposition. We have:
Proposition 3.4. Let k be a domain. Let $\left(f_{1}, \ldots, f_{n}\right) \subset k\left[x_{1}, \ldots, x_{n}\right]$ be a system of algebraically independent polynomials. Let $\delta=\operatorname{det}\left[\frac{\partial f_{i}}{\partial x_{k}}\right]$. Then there exists a derivation D_{i}^{\prime} on the ring $k\left[x_{1}, \ldots, x_{n}\right]_{\delta}$, which coincides on the subring $k\left[f_{1}, \ldots, f_{n}\right]$ with $D_{i}=\frac{\partial}{\partial f_{i}}$. Moreover we have

$$
D_{i}^{\prime}=1 / \delta \sum A_{i j} \frac{\partial}{\partial x_{j}}
$$

where

Proof. Exactly as in Proposition 3.3 we get:

$$
D_{i}^{\prime}=\frac{\partial}{\partial f_{i}}=1 / \delta \sum A_{i j}^{\prime} \frac{\partial}{\partial x_{j}}
$$

where
and $\delta=\operatorname{det}\left[\frac{\partial f_{i}}{\partial x_{k}}\right]$. The derivation D_{i}^{\prime} is the derivation of the ring $k\left[x_{1}, \ldots, x_{n}\right]_{\delta}$. Moreover, we have $D_{i}^{\prime}\left(f_{j}\right)=\delta_{i j}$ where $\delta_{i j}$ is the Kronecker delta. Since a derivation is uniquely determined by its values on generators, we have that D_{i}^{\prime} on $k\left[f_{1}, \ldots, f_{n}\right]$ coincides with $D_{i}=\frac{\partial}{\partial f_{i}}$.
REMARK 3.5. The crucial point here is that even if a polynomial $g \in$ $k\left[f_{1}, \ldots, f_{n}\right]$ is given as a sum (of polynomials from $\left.k\left[x_{1}, \ldots, x_{n}\right]\right) g=g_{1}+g_{2}$, where $g_{i} \notin k\left[f_{1}, \ldots, f_{n}\right]$ we have still $D_{i}(g)=D_{i}^{\prime}\left(g_{1}\right)+D_{i}^{\prime}\left(g_{2}\right)$.

We also need a following obvious observation:
Proposition 3.6. Let k be a domain of characteristic zero. Assume that $I \subset k$ is an ideal. If D is a k-linear derivation of the $\operatorname{ring} R=k\left[a_{1}, \ldots, a_{n}\right]$ then $D^{a} / a!(I R) \subset I R$.

Now we show how to compute D_{i}^{a} / a ! effectively. Of course, it is complicated only for a fields of positive characteristic. We assume that $D_{i}=\frac{\partial}{\partial f_{i}}$, where f_{i} is a component of a polynomial automorphism.
Definition 3.7. The method of computing $D_{i}^{a} / a!(h)$: First, we compute operator D_{i} in a formal way, i.e., we leave all integral coefficients which
appear unchanged. Next, we compute D_{i} "a" times also in a formal way, we receive the operator N. Then we compute formally $N(h)$ and then divide all formal coefficients by a !. Finally, we compute the impression in the field.

We show that this definition is stated in a correct way (i.e., fractions do not appear in this constructions). Let

$$
f_{i}\left(x_{1}, \ldots, x_{n}\right)=\sum_{|\alpha| \leq \operatorname{deg} F} a_{i, \alpha} x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \ldots x_{n}^{\alpha_{n}}
$$

and $h=H\left(f_{1}, \ldots, f_{n}\right)$, where $H=\sum_{|\alpha| \leq \operatorname{deg} H} b_{\alpha} x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \ldots x_{n}^{\alpha_{n}}$.
Take $\mathbb{F}_{p}\left(\left\{a_{i, \alpha}, b_{\alpha}\right\}\right)$. Now choose real numbers $\left\{a_{i, \alpha}^{\prime}\right\},\left\{b_{\alpha}^{\prime}\right\}$, which form purely transcendental system over \mathbb{Q}. We have the epimorphism

$$
\pi: \mathbb{Z}\left[a_{i, \alpha}^{\prime},\left\{b_{\alpha}^{\prime}\right\}\right] \rightarrow \mathbb{F}_{p}\left(\left\{a_{i, \alpha}\right\},\left\{b_{\alpha}\right\}\right)
$$

which induces the epimorphism

$$
\pi^{\prime}: R=\mathbb{Z}\left[\left\{a_{i, \alpha}^{\prime}\right\},\left\{b_{\alpha\}}^{\prime}\right]\left[x_{1}, \ldots, x_{n}\right] \rightarrow S=\mathbb{F}_{p}\left(\left\{a_{i, \alpha}\right\},\left\{b_{\alpha\}}\right)\left[x_{1}, \ldots, x_{n}\right]\right.\right.
$$

If I denotes ker π, then ker $\pi^{\prime}=I\left[x_{1}, \ldots, x_{n}\right]$. It is easy to see that π^{\prime} commutes with every derivation D^{a} / a !. Now take

$$
f_{i}^{\prime}\left(x_{1}, \ldots, x_{n}\right)=\sum_{|\alpha|} a_{i, \alpha} x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \ldots x_{n}^{\alpha_{n}}
$$

and

$$
H^{\prime}\left(x_{1}, \ldots, x_{n}\right)=\sum_{|\alpha|} b_{\alpha}^{\prime} x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \ldots x_{n}^{\alpha_{n}}
$$

Let $f^{\prime}=\left(f_{1}^{\prime}, \ldots, f_{n}^{\prime}\right)$. Note that $\pi^{\prime}\left(f^{\prime}\right)=f$. If we take $h^{\prime}=H^{\prime}\left(f_{1}^{\prime}, \ldots, f_{n}^{\prime}\right)$ then $\pi\left(h^{\prime}\right)=h$. Now if we compute $D_{i}^{\prime a} / a!\left(h^{\prime}\right)$ fractions do not appear and it is enough to use $\pi-D_{i}^{a} / a!(h)=\pi\left(D_{i}^{\prime a} / a!\left(h^{\prime}\right)\right)$.
Example 3.8. Let $k=\mathbb{F}_{2}$ and let (formally) $D=3 x^{2} \frac{\partial}{\partial y}-\frac{\partial}{\partial x}$. Then formally $D^{2}=9 x^{2} \frac{\partial}{\partial y}^{2}-6 x^{2} \frac{\partial}{\partial x} \frac{\partial}{\partial y}-6 x \frac{\partial}{\partial y}+\frac{\partial}{\partial x}^{2}$ and consequently

4. A formula

In this section we give a formula for the inverse of polynomial automorphism. We have:

THEOREM 4.1. Let $f=\left(f_{1}, \ldots, f_{n}\right)$ be a normalized polynomial isomorphism. Assume that $\operatorname{deg} f_{i}=d_{i}$ and $d_{1} \geq d_{2} \cdots \geq d_{n}$. Take $b=\left(b_{1}, \ldots, b_{n}\right)$
$=f(0)$. Let $D_{i}=\frac{\partial}{\partial f_{i}}$ be derivations as in Proposition 3.3. Let $g=\left(g_{1}, \ldots, g_{n}\right)$ $=f^{-1}$. Then
$g_{j}\left(y_{1}, \ldots, y_{n}\right)$

$$
=\sum_{|\alpha| \leq Q} \frac{D_{1}^{\alpha_{1}}}{\alpha_{1}!} \frac{D_{2}^{\alpha_{2}}}{\alpha_{2}!} \ldots \frac{D_{n}^{\alpha_{n}}}{\alpha_{n}!}\left(x_{j}\right)(0)\left(y_{1}-b_{1}\right)^{\alpha_{1}}\left(y_{2}-b_{2}\right)^{\alpha_{2}} \ldots\left(y_{n}-b_{n}\right)^{\alpha_{n}}
$$

where $Q=\prod_{j=1}^{n-1} d_{j}$.
Proof. First assume that char $k=0$. Let us note that $g_{i}\left(f_{1}, \ldots, f_{n}\right)=x_{i}$. Now develop a function x_{i} considered as a function of variables f_{1}, \ldots, f_{n} in a Taylor series in a center b (note that for every polynomial h we have $h(b)=h(f)(0))$.

Now assume that char $k=p>0$. In fact, we could repeat the previous proof, but it does not suggest a way how to compute derivations in effective way. Hence we use different method. Let $g=f^{-1}$ and $g=\left(g_{1}, \ldots, g_{n}\right)$. Let

$$
f_{i}\left(x_{1}, \ldots, x_{n}\right)=\sum_{|\alpha| \leq \operatorname{deg} F} a_{i, \alpha} x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \ldots x_{n}^{\alpha_{n}}
$$

and

$$
g_{i}\left(x_{1}, \ldots, x_{n}\right)=\sum_{|\alpha| \leq \operatorname{deg} F} b_{i, \alpha} x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \ldots x_{n}^{\alpha_{n}}
$$

Take $\mathbb{F}_{p}\left(\left\{a_{i, \alpha}, b_{i, \alpha}\right\}, b_{1}, \ldots, b_{n}\right)$ to be a field generated by all coefficients of components of automorphisms f, g and by b_{1}, \ldots, b_{n}. Now choose real numbers $\left\{a_{i, \alpha}^{\prime}\right\},\left\{b_{i, \alpha}^{\prime}\right\},\left\{b_{i}^{\prime}\right\}$, which form purely transcendental system over \mathbb{Q}. We have the epimorphism

$$
\pi: \mathbb{Z}\left[a_{i, \alpha}^{\prime},\left\{b_{i, \alpha}^{\prime}\right\},\left\{b_{i}^{\prime}\right\}\right] \rightarrow \mathbb{F}_{p}\left(\left\{a_{i, \alpha}\right\},\left\{b_{i, \alpha}\right\},\left\{b_{i}\right\}\right)
$$

which induces the epimorphism

$$
\begin{aligned}
\pi^{\prime}: R=\mathbb{Z}\left[\left\{a_{i, \alpha}^{\prime}\right\},\left\{b_{i, \alpha\}}^{\prime},\left\{b_{i}^{\prime}\right\}\right]\right. & {\left[x_{1}, \ldots, x_{n}\right] } \\
& \rightarrow S=\mathbb{F}_{p}\left(\left\{a_{i, \alpha}\right\},\left\{b_{i, \alpha}\right\},\left\{b_{i}\right\}\right)\left[x_{1}, \ldots, x_{n}\right]
\end{aligned}
$$

If I denotes ker π, then $\operatorname{ker} \pi^{\prime}=I\left[x_{1}, \ldots, x_{n}\right]$. It is easy to see that π^{\prime} commutes with every derivation D^{a} / a !. Now take

$$
f_{i}^{\prime}\left(x_{1}, \ldots, x_{n}\right)=\sum_{|\alpha|} a_{i, \alpha} x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \ldots x_{n}^{\alpha_{n}}
$$

and

$$
g_{i}^{\prime}\left(x_{1}, \ldots, x_{n}\right)=\sum_{|\alpha|} b_{i, \alpha}^{\prime} x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \ldots x_{n}^{\alpha_{n}}
$$

Let $f^{\prime}=\left(f_{1}^{\prime}, \ldots, f_{n}^{\prime}\right)$ and $g^{\prime}=\left(g_{1}^{\prime}, \ldots, g_{n}^{\prime}\right)$. Note that $\pi^{\prime}\left(f^{\prime}\right)=f$ and $\pi^{\prime}\left(g^{\prime}\right)=g$. Over \mathbb{R} we have $g_{i}^{\prime}\left(f_{1}^{\prime}, \ldots, f_{n}^{\prime}\right)=x_{i}+H_{i}$, where $H_{i} \in I\left[x_{1}, \ldots, x_{n}\right]$. Now we compute $D_{i}^{\prime}=\frac{\partial}{\partial f_{i}^{\prime}}$. By Proposition 3.4 we get:

$$
D_{i}^{\prime}=\frac{\partial}{\partial f_{i}^{\prime}}=1 / \delta \sum A_{i j}^{\prime} \frac{\partial}{\partial x_{j}}
$$

where
and $\delta=\operatorname{det}\left[\frac{\partial f_{i}^{\prime}}{\partial x_{k}}\right]$. Note that $\delta=1 \bmod I\left[x_{1}, \ldots, x_{n}\right]$ and hence, we can extend the mapping $\pi^{\prime}: R \rightarrow S$ to the mapping $\pi^{\prime}: R_{\delta} \rightarrow S$. Now develop a function $x_{i}+H_{i}$ considered as a function of variables $f_{1}^{\prime}, \ldots, f_{n}^{\prime}$ in a Taylor series in a center b^{\prime} (note that for every polynomial h we have $\left.h\left(b^{\prime}\right)=h\left(f^{\prime}\right)(0)\right)$. Using rules of differentiation and facts that $H_{i}, D_{j}^{\prime}(\delta)=$ $0 \bmod I\left[x_{1}, \ldots, x_{n}\right]$ and $\delta=1 \bmod I\left[x_{1}, \ldots, x_{n}\right]$, (see Proposition 3.6) we get after application of π^{\prime} that

$$
\begin{aligned}
& g_{j}\left(y_{1}, \ldots, y_{n}\right) \\
& \quad=\sum_{|\alpha| \leq Q} \frac{D_{1}^{\alpha_{1}}}{\alpha_{1}!} \frac{D_{2}^{\alpha_{2}}}{\alpha_{2}!} \ldots \frac{D_{n}^{\alpha_{n}}}{\alpha_{n}!}\left(x_{j}\right)(0)\left(y_{1}-b_{1}\right)^{\alpha_{1}}\left(y_{2}-b_{2}\right)^{\alpha_{2}} \ldots\left(y_{n}-b_{n}\right)^{\alpha_{n}}
\end{aligned}
$$

Now we are able to solve equation $f=0$:
Corollary 4.2. If $f\left(\gamma_{1}, \ldots, \gamma_{n}\right)=0$, then

$$
\gamma_{j}=\sum_{|\alpha| \leq Q} \frac{D_{1}^{\alpha_{1}}}{\alpha_{1}!} \frac{D_{2}^{\alpha_{2}}}{\alpha_{2}!} \ldots \frac{D_{n}^{\alpha_{n}}}{\alpha_{n}!}\left(x_{j}\right)(0)\left(-b_{1}\right)^{\alpha_{1}}\left(-b_{2}\right)^{\alpha_{2}} \ldots\left(-b_{n}\right)^{\alpha_{n}}
$$

Proof. We have $f(g)=$ identity hence $f(g(0))=0$. This means that $g(0)$ is a zero of f.

Corollary 4.3. Let S be the set of all coefficients of polynomials f_{1}, \ldots, f_{n} (notations as in Theorem 4.1). Then all coefficients of polynomials $g_{1}, \ldots, g_{n}\left(\right.$ where $\left.g=f^{-1}\right)$ belong to the ring $\mathbb{F}_{p}[S]\left(\right.$ where $\left.\mathbb{F}_{0}=\mathbb{Z}\right)$.

References

[1] H. Bass, E. Connell, D. Wright, The Jacobian Conjecture: Reduction of degree and formal expansion of the inverse, Bull. AMS 7 (1982), 287-330.
[2] A. Van den Essen, Polynomial Automorphisms and the Jacobian Conjecture, Progress in Math., 190, Birkhäuser Verlag, Boston-Basel-Berlin, 2000.
[3] Z. Jelonek, On the effective Nullstellensatz, Invent. Math. 162 (2005), 1-17.
[4] O. Perron, Algebra I (Die Grundlagen), Walter de Gruyter \& Co., Berlin und Leipzig, 1927.

INSTYTUT MATEMATYCZNY PAN

ul. Śniadeckich 8
00-950 WARSZAWA, POLAND
E-mail: najelone@cyf-kr.edu.pl

Received December 12, 2010.

[^0]: 2000 Mathematics Subject Classification: 12, 14.
 Key words and phrases: polynomial mappings, polynomial equations, polynomial isomorphis.

 This paper is supported by the research project 0 R 000043 07, 2009-2011.

