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SOLVING POLYNOMIAL EQUATIONS

Abstract. Let k be a field and f : kn
→ kn be a polynomial isomorphism. We give

a formula for f−1. In particular we show how to solve the equation f = 0.

1. Introduction

Many processes in economy, engineering, or biological sciences are de-
scribed by real or complex polynomial equations. Moreover, such equations
(over fields of positive characteristic) play important role in a modern cryp-
tography.

From this point of view it is interesting and important to have an algo-
rithm to solve a system of such equations. Let us fix a field k and number
n ∈ N. Here we consider a system of polynomials f = (f1, . . . , fn) : k

n → kn

with additional assumption that f is a polynomial isomorphism. Such sys-
tems are important in cryptography. There is a well known formula based
on Gröbner basis to compute the inverse of f (see e.g. [2], p. 66), however
this kind of formulas are not convenient for effective computations.

Here, we give a different formula (which seems to be effective in many
cases) to invert f and to solve equation f = 0. Such a formula was well-known
in the characteristic zero ( see e.g. [1]). The new ingredient is a proof that
this formula is still valid in positive characteristic.

2. Polynomial isomorphisms.

Here, we recall basic properties of polynomial isomorphisms. If f is
a polynomial isomorphism and g = f−1 is a polynomial inverse of f , then
f ◦g = identity. Consequently Jac(f)Jac(g) = 1. Since we can extend both
mappings f and g to algebraic closure of k, we see that Jac(f) = const. Now
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it is easy to compute Jac(f) – it is enough to compute Jacobian of linear
parts of fi. If Jac(f) = 1 we say that f is normalized. For our purposes we
can always assume that f is normalized. Now we show how to estimate the
degree of f−1. We start with the Perron Theorem (see [4], Satz 57, p. 129,
for the classical version and [3] for short modern proof):

Theorem 2.1. (Perron Theorem) Let k be a field and let Q1, . . . , Qn+1 ∈
k[x1, . . . , xm] be non-constant polynomials with degQi = di. If the mapping
Q = (Q1, . . . , Qn+1) : kn+1 → kn+1 is generically finite, then there exists
a non-zero polynomial W (T1, . . . , Tn+1) ∈ k[T1, . . . , Tn+1] such that

(a) W (Q1, . . . , Qn+1) = 0,

(b) degW (T d1
1 , T d2

2 , . . . , T
dn+1

n+1 ) ≤
∏n+1

j=1 dj .

Now we have the following basic and well-known fact:

Theorem 2.2. Let f : kn → kn be a polynomial isomorphism. Let
deg fi = di, where d1 ≥ d2 ≥ · · · ≥ dn. If g = (g1, . . . , gn) = f−1, then
maxni=1 deg gi ≤

∏n−1
j=1 dj .

Proof. For the sake of completeness we give a proof of this theorem. Fix
a number 1 ≤ i ≤ n. Apply Theorem 2.1 to the polynomials f1, . . . , fn and xi.
Thus there exists a non-zero polynomial W (X,T1, . . . , Tn) ∈ k[X,T1, . . . , Tn]
such that

W (xi, f1, . . . , fn) = 0 and degW (X,T d1
1 , T d2

2 , . . . , T dn
n ) ≤

n
∏

j=1

dj.

Since the mapping f = (f1, . . . , fn) is an isomorphism with inverse g, we
have xi = gi(f1, . . . , fn). Hence a polynomial P (X,T ) = X − gi(T1, . . . , Tn)
is a minimal polynomial of xi over k[f1, . . . , fn]. By the minimality of P , we
have P (X,T )|W (X,T ), in particular

degP (X,T d1
1 , T d2

2 , . . . , T dn
n ) ≤

n
∏

j=1

dj .

Since P (X,T ) = X − gi(T1, . . . , TN ) we conclude that

deg gi(T
d1
1 , T d2

2 , . . . , T dn
n ) ≤

n
∏

j=1

dj

and consequently deg gi ≤
∏n−1

j=1 dj .

3. Derivations

We start with:

Definition 3.1. Let L be a k-linear operator L : k[x1, . . . , xn] → k[x1,
. . . , xn]. We say that L is a derivation if L(fg) = L(f)g + fL(g).
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It is easy to see that a derivation is determined by its values on variables
x1, . . . , xn. Moreover derivations ∂

∂xi
generate the module of derivations over

k[x1, . . . , xn], i.e., every derivation L has the form

L =
n
∑

i=1

Ai(x)
∂

∂xi
,

where Ai are polynomials. Now consider the derivation Si =
∂
∂xi

. Note that

Sa
i (x

m
i ) =

m!

(m− a)!
xm−a
i = a!Ca

mxm−a
i .

Take Sa
i /a!(x

m
i ) = Ca

mxm−a
i and Sa

i /a!(x
m
j ) = 0 for j 6= i. In this way we

can define the operator Sa
i /a! over every field. We have the following:

Theorem 3.2. (Taylor formula) Let k be a field of any characteristic. Let
F ∈ k[x1, . . . , xn]. Then for b = (b1, . . . , bn) ∈ kn we have

F (x1, . . . , xn)

=
∑

|α|≤deg F

Sα1

1

α1!

Sα2

2

α2!
. . .

Sαn
n

αn!
(F )(b)(x1 − b1)

α1(x2 − b2)
α2 . . . (xn − bn)

αn ,

where |α| = α1 + · · ·+ αn.

Proof. If char k = 0, the result is well-known. Assume that char k = p > 0.
Let

F (x1, . . . , xn) =
∑

|α|≤degF

aαx
α1

1 xα2

2 . . . xαn
n

and let Fp({aα}|α|≤degF ) be a field generated by all coefficients of F. Now
choose real numbers {bα}|α|≤degF and b′1, . . . , b

′
n, which form purely tran-

scendental system over Q. We have an epimorphism

π : Z[{bα}|α|≤degF , {b
′
k}] → Fp({aα}|α|≤degF , {bk}),

which induces the epimorphism

π′ : Z[{bα}|α|≤degF , {b
′
k}][x1, . . . , xn] → Fp({aα}|α|≤degF , {bk})[x1, . . . , xn].

It is easy to see that π′ commutes with every derivation Da/a!. Now take

F ′(x1, . . . , xn) =
∑

|α|≤degF

bαx
α1

1 xα2

2 . . . xαn
n .

Note that π′(F ′) = F and π′(b′) = b. Over R we have a classical Taylor
formula:



800 Z. Jelonek

F ′(x1, . . . , xn)

=
∑

|α|≤degF

Sα1

1

α1!

Sα2

2

α2!
. . .

Sαn
n

αn!
(F ′)(b′)(x1 − b′1)

α1(x2 − b′2)
α2 . . . (xn − b′n)

αn .

Now it is enough to apply π to both sides of this equation.

Proposition 3.3. Let f = (f1, . . . , fn) be a normalized polynomial iso-
morphism. Then

∂

∂fi
=

∑

Aij
∂

∂xj
,

where

Aij =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xj−1

0 ∂f1
∂xj+1

. . . ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

. . . ∂f2
∂xj−1

0 ∂f2
∂xj+1

. . . ∂f2
∂xn

...
... . . .

... 0
... . . .

...

∂fi
∂x1

∂fi
∂x2

. . . ∂fi
∂xj−1

1 ∂fi
∂xj+1

. . . ∂fi
∂xn

...
... . . .

... 0
... . . .

...
∂fn
∂x1

∂fn
∂x2

. . . ∂fn
∂xj−1

0 ∂fn
∂xj+1

. . . ∂fn
∂xn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Proof. Let Di =
∂
∂fi

. Derivation Di is uniquely determined by conditions

Di(fj) = δij

where δij is the Kronecker delta. This leads to the following system of linear
equations:

∑

Aik

∂fj
∂xk

= δij ,

j = 1, . . . , n. Now it is enough to solve this system using the Cramer rules
(note that the Jacobian of f is one).

In the sequel we need a generalized version of this Proposition. We have:

Proposition 3.4. Let k be a domain. Let (f1, . . . , fn) ⊂ k[x1, . . . , xn] be

a system of algebraically independent polynomials. Let δ = det[ ∂fi
∂xk

]. Then

there exists a derivation D′
i on the ring k[x1, . . . , xn]δ, which coincides on

the subring k[f1, . . . , fn] with Di =
∂
∂fi

. Moreover we have

D′
i = 1/δ

∑

Aij
∂

∂xj
,

where
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Aij =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xj−1

0 ∂f1
∂xj+1

. . . ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

. . . ∂f2
∂xj−1

0 ∂f2
∂xj+1

. . . ∂f2
∂xn

...
... . . .

... 0
... . . .

...
∂fi
∂x1

∂fi
∂x2

. . . ∂fi
∂xj−1

1 ∂fi
∂xj+1

. . . ∂fi
∂xn

...
... . . .

... 0
... . . .

...
∂fn
∂x1

∂fn
∂x2

. . . ∂fn
∂xj−1

0 ∂fn
∂xj+1

. . . ∂fn
∂xn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Proof. Exactly as in Proposition 3.3 we get:

D′
i =

∂

∂fi
= 1/δ

∑

A′
ij

∂

∂xj
,

where

A′
ij =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xj−1

0 ∂f1
∂xj+1

. . . ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

. . . ∂f2
∂xj−1

0 ∂f2
∂xj+1

. . . ∂f2
∂xn

...
... . . .

... 0
... . . .

...
∂fi
∂x1

∂fi
∂x2

. . . ∂fi
∂xj−1

1 ∂fi
∂xj+1

. . . ∂fi
∂xn

...
... . . .

... 0
... . . .

...
∂fn
∂x1

∂fn
∂x2

. . . ∂fn
∂xj−1

0 ∂fn
∂xj+1

. . . ∂fn
∂xn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

and δ=det[ ∂fi
∂xk

].The derivation D′
i is the derivation of the ring k[x1, . . . , xn]δ.

Moreover, we have D′
i(fj) = δij where δij is the Kronecker delta. Since

a derivation is uniquely determined by its values on generators, we have
that D′

i on k[f1, . . . , fn] coincides with Di =
∂
∂fi

.

Remark 3.5. The crucial point here is that even if a polynomial g ∈
k[f1, . . . , fn] is given as a sum (of polynomials from k[x1, . . . , xn]) g = g1+g2,
where gi 6∈ k[f1, . . . , fn] we have still Di(g) = D′

i(g1) +D′
i(g2).

We also need a following obvious observation:

Proposition 3.6. Let k be a domain of characteristic zero. Assume that
I ⊂ k is an ideal. If D is a k-linear derivation of the ring R = k[a1, . . . , an]
then Da/a!(IR) ⊂ IR.

Now we show how to compute Da
i /a! effectively. Of course, it is compli-

cated only for a fields of positive characteristic. We assume that Di =
∂
∂fi

,
where fi is a component of a polynomial automorphism.

Definition 3.7. The method of computing Da
i /a!(h): First, we compute

operator Di in a formal way, i.e., we leave all integral coefficients which
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appear unchanged. Next, we compute Di “a” times also in a formal way, we
receive the operator N. Then we compute formally N(h) and then divide all
formal coefficients by a!. Finally, we compute the impression in the field.

We show that this definition is stated in a correct way (i.e., fractions do
not appear in this constructions). Let

fi(x1, . . . , xn) =
∑

|α|≤degF

ai,αx
α1

1 xα2

2 . . . xαn
n

and h = H(f1, . . . , fn), where H =
∑

|α|≤degH bαx
α1

1 xα2

2 . . . xαn
n .

Take Fp({ai,α, bα}). Now choose real numbers {a′i,α}, {b
′
α}, which form

purely transcendental system over Q. We have the epimorphism

π : Z[a′i,α, {b
′
α}] → Fp({ai,α}, {bα}),

which induces the epimorphism

π′ : R = Z[{a′i,α}, {b
′
α}][x1, . . . , xn] → S = Fp({ai,α}, {bα})[x1, . . . , xn].

If I denotes ker π, then ker π′ = I[x1, . . . , xn]. It is easy to see that π′

commutes with every derivation Da/a!. Now take

f ′
i(x1, . . . , xn) =

∑

|α|

ai,αx
α1

1 xα2

2 . . . xαn
n

and

H ′(x1, . . . , xn) =
∑

|α|

b′αx
α1

1 xα2

2 . . . xαn
n .

Let f ′ = (f ′
1, . . . , f

′
n). Note that π′(f ′) = f. If we take h′ = H ′(f ′

1, . . . , f
′
n)

then π(h′) = h. Now if we compute D′
i
a/a!(h′) fractions do not appear and

it is enough to use π - Di
a/a!(h) = π(D′

i
a/a!(h′)).

Example 3.8. Let k = F2 and let (formally) D = 3x2 ∂
∂y

− ∂
∂x

. Then

formally D2 = 9x2 ∂
∂y

2
− 6x2 ∂

∂x
∂
∂y

− 6x ∂
∂y

+ ∂
∂x

2
and consequently

D2/2! = x2
∂

∂y

2

/2! + x2
∂

∂x

∂

∂y
+ x

∂

∂y
+

∂

∂x

2

/2!.

4. A formula

In this section we give a formula for the inverse of polynomial automor-
phism. We have:

Theorem 4.1. Let f = (f1, . . . , fn) be a normalized polynomial isomor-
phism. Assume that deg fi = di and d1 ≥ d2 · · · ≥ dn. Take b = (b1, . . . , bn)
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= f(0). Let Di=
∂
∂fi

be derivations as in Proposition 3.3. Let g=(g1, . . . , gn)

= f−1. Then

gj(y1, . . . , yn)

=
∑

|α|≤Q

Dα1

1

α1!

Dα2

2

α2!
. . .

Dαn
n

αn!
(xj)(0)(y1 − b1)

α1(y2 − b2)
α2 . . . (yn − bn)

αn ,

where Q =
∏n−1

j=1 dj .

Proof. First assume that char k = 0. Let us note that gi(f1, . . . , fn) = xi.
Now develop a function xi considered as a function of variables f1, . . . , fn
in a Taylor series in a center b (note that for every polynomial h we have
h(b) = h(f)(0)).

Now assume that char k = p > 0. In fact, we could repeat the previous
proof, but it does not suggest a way how to compute derivations in effective
way. Hence we use different method. Let g = f−1 and g = (g1, . . . , gn). Let

fi(x1, . . . , xn) =
∑

|α|≤degF

ai,αx
α1

1 xα2

2 . . . xαn
n

and

gi(x1, . . . , xn) =
∑

|α|≤degF

bi,αx
α1

1 xα2

2 . . . xαn
n .

Take Fp({ai,α, bi,α}, b1, . . . , bn) to be a field generated by all coefficients
of components of automorphisms f, g and by b1, . . . , bn. Now choose real
numbers {a′i,α}, {b

′
i,α}, {b

′
i}, which form purely transcendental system over

Q. We have the epimorphism

π : Z[a′i,α, {b
′
i,α}, {b

′
i}] → Fp({ai,α}, {bi,α}, {bi}),

which induces the epimorphism

π′ : R = Z[{a′i,α}, {b
′
i,α}, {b

′
i}][x1, . . . , xn]

→ S = Fp({ai,α}, {bi,α}, {bi})[x1, . . . , xn].

If I denotes ker π, then ker π′ = I[x1, . . . , xn]. It is easy to see that π′

commutes with every derivation Da/a!. Now take

f ′
i(x1, . . . , xn) =

∑

|α|

ai,αx
α1

1 xα2

2 . . . xαn
n

and

g′i(x1, . . . , xn) =
∑

|α|

b′i,αx
α1

1 xα2

2 . . . xαn
n .
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Let f ′ = (f ′
1, . . . , f

′
n) and g′ = (g′1, . . . , g

′
n). Note that π′(f ′) = f and

π′(g′) = g. Over R we have g′i(f
′
1, . . . , f

′
n) = xi+Hi, where Hi ∈ I[x1, . . . , xn].

Now we compute D′
i =

∂
∂f ′

i
. By Proposition 3.4 we get:

D′
i =

∂

∂f ′
i

= 1/δ
∑

A′
ij

∂

∂xj
,

where

A′
ij =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂f ′

1

∂x1

∂f ′

1

∂x2
. . .

∂f ′

1

∂xj−1
0

∂f ′

1

∂xj+1
. . .

∂f ′

1

∂xn

∂f ′

2

∂x1

∂f ′

2

∂x2
. . .

∂f ′

2

∂xj−1
0

∂f ′

2

∂xj+1
. . .

∂f ′

2

∂xn

...
... . . .

... 0
... . . .

...
∂f ′

i

∂x1

∂f ′

i

∂x2
. . .

∂f ′

i

∂xj−1
1

∂f ′

i

∂xj+1
. . .

∂f ′

i

∂xn

...
... . . .

... 0
... . . .

...
∂f ′

n

∂x1

∂f ′

n

∂x2
. . . ∂f ′

n

∂xj−1
0 ∂f ′

n

∂xj+1
. . . ∂f ′

n

∂xn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

and δ = det[
∂f ′

i

∂xk
]. Note that δ = 1 mod I[x1, . . . , xn] and hence, we can

extend the mapping π′ : R → S to the mapping π′ : Rδ → S. Now de-
velop a function xi + Hi considered as a function of variables f ′

1, . . . , f
′
n in

a Taylor series in a center b′ (note that for every polynomial h we have
h(b′) = h(f ′)(0)). Using rules of differentiation and facts that Hi, D

′
j(δ) =

0 mod I[x1, . . . , xn] and δ = 1 mod I[x1, . . . , xn], ( see Proposition 3.6) we
get after application of π′ that

gj(y1, . . . , yn)

=
∑

|α|≤Q

Dα1

1

α1!

Dα2

2

α2!
. . .

Dαn
n

αn!
(xj)(0)(y1 − b1)

α1(y2 − b2)
α2 . . . (yn − bn)

αn .

Now we are able to solve equation f = 0:

Corollary 4.2. If f(γ1, . . . , γn) = 0, then

γj =
∑

|α|≤Q

Dα1

1

α1!

Dα2

2

α2!
. . .

Dαn
n

αn!
(xj)(0)(−b1)

α1(−b2)
α2 . . . (−bn)

αn .

Proof. We have f(g) = identity hence f(g(0)) = 0. This means that g(0) is
a zero of f.

Corollary 4.3. Let S be the set of all coefficients of polynomials f1,
. . . , fn (notations as in Theorem 4.1). Then all coefficients of polynomials
g1, . . . , gn (where g = f−1) belong to the ring Fp[S] (where F0 = Z).
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