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HOMOGENEOUS EINSTEIN METRICS ON G,/T
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ABSTRACT. We construct the Einstein equation for an invariant Riemann-
ian metric on the exceptional full flag manifold M = G2/T. By computing
a Grobner basis for a system of polynomials on six variables we prove that
this manifold admits exactly two non-Ké&hler invariant Einstein metrics. Thus
G2 /T turns out to be the first known example of an exceptional full flag mani-
fold which admits a non-K&hler and not normal homogeneous Einstein metric.

INTRODUCTION

A Riemannian manifold (M, g) is called Einstein if the metric g has constant
Ricci curvature, that is, Ric, = Ag for some A € R, where Ric, is the Ricci tensor
corresponding to g. The question whether M carries an Einstein metric, and if so,
how many, is a fundamental one in Riemannian geometry. A number of interesting
results in geometry have been motivated and inspired by this hard problem. The
Einstein equation is a nonlinear second order PDE, and a good understanding
of its solutions in the general case seems far from being attained. It becomes
more manageable in the homogeneous setting. Most known examples of compact
simply connected Einstein manifolds are homogeneous. In the homogeneous case
the Einstein equation reduces to a system of algebraic equations for which we are
looking for positive solutions. For some cases such solutions have been obtained
explicitly. We refer to [14] and the references therein for more details on compact
homogeneous Einstein manifolds. The low-dimensional cases were also examined
in [5].

Let K be a compact, connected and semisimple Lie group. A full flag manifold is
a compact homogeneous space of the form K /T, where T is a maximal torus in K.
It is known that K /T admits a unique (up to isometry) K-invariant Kéhler-Einstein
metric (cf. [13]).

Non-Kéhler homogeneous Einstein metrics on full flag manifolds corresponding
to classical Lie groups have been studied by several authors (cf. [2], [16], [10]). Al-
though various existence results of homogeneous Einstein metrics on these spaces
have been obtained, the classification of such metrics is a demanding task which
remains widely open. In the present paper we study the classification problem of
homogeneous Einstein metrics on the full flag manifold G5/T. The isotropy rep-
resentation of this space decomposes into six inequivalent irreducible submodules.
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2486 A. ARVANITOYEORGOS, I. CHRYSIKOS, AND Y. SAKANE

There are three (nonisomorphic) flag manifolds corresponding to the exceptional
Lie group G, since there are exactly three different ways to paint black the simple
roots in the Dynkin diagram of go, as shown in Figure 1 (for the classification of
generalized flag manifolds in terms of painted Dynkin diagrams, we refer to [I] or

[6]).
a1 Qo o] Q2 Q] Qo
[ =—"6) [e=—2) —e
Ga(az) Ga(aq) G2/T

FI1GURE 1. The painted Dynkin diagrams corresponding to G5

If we paint black one simple root in the Dynkin diagram of gs, then we obtain a flag
manifold of the form G5/U(2) with two or three isotropy summands, depending on
the height of this simple root. Recall that for go we can choose a set of simple
roots by Iy = {aq, e} with (a1, 1) = 3(ag, az), so the highest root has the form
& = 2a3 + 3ay (see Section 5). Thus, the flag manifold G2(as) in Figure 1 has two
isotropy summands, and U(2) is represented by the short root of go. For this space,
all Gy-invariant Einstein metrics have been obtained explicitly in [3]. The second
flag manifold G3(«1) in Figure 1 has three isotropy summands, and the isotropy
group U(2) is represented by the long root of gs. For this space, the Go-invariant
Einstein metrics were studied in [12], [2].

The full flag manifold G2 /T, where T'= U(1) x U(1) is a maximal torus in Ga, is
obtained by painting black both simple roots in the Dynkin diagram of go. Accord-
ing to [19] a full flag manifold K/T is a normal homogeneous Einstein manifold if
and only if all roots of K have the same length, and in this case the normal metric
of K/T is never Kéhler. Therefore, if K is an exceptional Lie group, then K/T is
a normal homogeneous Einstein manifold if and only if K € {Es, E7, Es}, so Go/T
is not normal. Our main result is the following:

Theorem A. The full flag manifold Go/T admits exactly three Go-invariant Ein-
stein metrics (up to isometry). There is a unique Kdahler-Finstein metric given
(up to a scalar) by g = (3,1,4,5,6,9), and the other two are non-Kdhler. The
approzimate values of these invariant metrics are given in Theorem 11

As a consequence of Theorem [A] Go/T is the first known example of an excep-
tional full flag manifold which admits a non-Ké&hler and not normal homogeneous
Einstein metric. Also, the present work on G5/T is the first attempt towards the
classification of homogeneous Einstein metrics on generalized flag manifolds with
six isotropy summands.

The paper is organised as follows: In Section [2] we recall the Lie-theoretic de-
scription of a full flag manifold K/T of a compact and connected semisimple Lie
group K, and we study its isotropy representation. Next, following [I6], we describe
the structure constants of K/T relative to the associated isotropy decomposition,
and we give the expression of the Ricci tensor of a K-invariant metric on K/T. In
Section Bl we consider the exceptional full flag manifold G2/T and we give its Lie-
theoretic description. Then we construct the Einstein equation for a Gs-invariant
Riemannian metric. In the last section, we give the corresponding polynomial sys-
tem, and by computing a Grobner basis for this system, we prove Theorem [A] and
obtain the full classification of homogeneous Einstein metrics on Ga/T.
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HOMOGENEOUS EINSTEIN METRICS ON G3/T 2487

2. FULL FLAG MANIFOLDS

Let K/T be a full flag manifold where T is a maximal torus of a compact semisim-
ple Lie group K. We will give a characterization of K/T in terms of root system
theory, and we will describe some topics of the associated Kahler geometry. Then,
we study the isotropy representation of K /T and we give the expression of the Ricci
tensor for a K-invariant metric on K /7.

2.1. Lie-theoretic description of K/T. Assume that dimg 7' = rank G = £. We
denote by £, t the Lie algebras of K and T respectively, and by tc = £Qit, t¢ = tPit,
the corresponding complexifications. Let t* and t¢ be the dual spaces of t and fc,
respectively. The subalgebra t¢ is a Cartan subalgebra of the complex semisimple
Lie algebra £c, and thus we obtain the root space decomposition tc = tc® ), €&,
where R is the root system of £c relative to tc and €& are the corresponding root
spaces. Recall that by C-linearity, a root o € R is completely determined by its
restriction to either t or #t. Since the Killing form B of €¢ is nondegenerate, for any
A € t¢ we define Hy € it by the equation B(Hx, H) = X\(H) for all H € t¢. Let
it* denote the real linear subspace of tf which consists of all A € ti: such that the
restriction A|¢ has values in iR. Note that the restriction map A — A|;¢ defines an
isomorphism from it* onto the real linear dual space it*, which allows us to identify
these spaces. Then, it is well known that R spans it* and that R is a finite subset
of it*\{0}. Thus, if & € R, then « € it*.

Let (, ) be the bilinear form on t§ induced by the Killing form, that is, (A, u) =
B(Hx,H,), for any A, € t&. Then, since B is negative definite on t and positive

definite on it, the restriction of ( , ) on it* is a positive definite inner product.
2(\,
The weight lattice of ¢ with respect to tc is given by A = {\ € it*| % €
a, o
Z for all a € R}. Let II = {ay,...,a,} be a simple root system of R, and let R™
be the set of all positive roots with respect to II. Consider the fundamental weights

corresponding to II, that is, A;,..., Ay € A such that

2(4,, %‘)

(ajvaj)

(2.1) =6, (1<ij<o).

)

Then {Aq,...,A;} forms a Z-basis for the weight lattice A, and since it = it*,
it is it = Ele RA;. In the weight lattice A there is a distinguished subset AT
given by AT = {A € A|(\,a) > 0 forany « € RT}. One can see that AT =
ANC(II), where C(II) is the fundamental Weyl chamber corresponding to II, given
by C(II) = {\ € it* | (\, ;) > 0 for all «a; € II}. The elements of AT are usually
called dominant weights relative to R*, and any dominant weight can be expressed
as a linear combination of the fundamental weights with nonnegative coefficients.
For example, set § = > _p+ o € it*. Then, § = Zle A; and thus § € At (cf.
[8) p. 168]).

We now define the complex Lie subalgebras of ¢c by n = Y .. €& and b =
tc ®n. One can easily show that n is a nilpotent ideal of ¢¢ and that b is a maximal
solvable Lie subalgebra of fc; i.e. it is a Borel subalgebra. Let K¢ denote the
complex simply connected semisimple Lie group whose Lie algebra is c. Then, the
connected subgroup B C K¢ with Lie algebra b is a Borel subgroup of K¢ and
Kc/B = K/T as C*-manifolds.
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2488 A. ARVANITOYEORGOS, I. CHRYSIKOS, AND Y. SAKANE

Since K¢ is a complex Lie group and B a closed complex subgroup, the quotient
K¢ /B admits a K-invariant complex structure. Furthermore, the K-invariant com-
plex structures on K¢/B = K/T are in 1-1 correspondence with different choices
of positive roots for €c (cf. [7]). Since the Weyl group W (R) of the root system
of £¢ acts transitively on the sets of systems of positive roots, all these complex
structures are equivalent. Moreover, the following holds:

Theorem 2.1 ([7], [I7]). Thereis a 1-1 correspondence between K -invariant Kdihler
metrics on Kc/B and dominant weights in AT. In particular, the K-invariant
Kdhler metric on K¢ /B corresponding to 26 is a Kdhler-Einstein metric.

According to [7, p. 504] a full flag manifold admits a unique (up to equivalence)
invariant complex structure, hence a unique (up to scale) Kahler—Einstein metric
(cf. also [13]). This Kahler—Einstein metric will be computed in Section 2.

2.2. The isotropy representation of K/T. We will now examine the isotropy
representation of a full flag manifold K¢/B = K/T. Consider the reductive decom-
position £ = t@m of £ with respect to the negative of the Killing form @ = —B(, ),
that is, m = t- and Ad(T)m C m. As usual, we identify m = T,(K/T) (where
o = €T is the identity coset of K/T).

Choose a Weyl basis {Ha, , . .., Ho, }JU{E, € 8 | € R} with B(E,, E_,) = —1,
[Eo,E_o] = —H,. Recall for later use that the root vectors satisfy [Eq, Eg] =
NogEoip if a,8,a+ 5 € R and [E,, Eg] = 0 otherwise. The numbers N, g € R
satisfy Nog = —Ngo, Nog=N_n_p €R if ,,a+ B € R, and Nopg =0 if
a,f € R, a+ [ ¢ R. They can also be chosen so that Ny _g = N_, g. Then the
real subalgebra ¢ is given by

¢
(2.2) t=> RiHl, & » (RAa+RB,)=t& Y (RA,+RB,),
j=1 a€RT a€ERT
where A, = Eo + E_o and B, = i(E, — E_,) (a € RT).
Since t = spang{iH,, |1 < j < £}, the reductive decomposition g = t&m implies
that

(2.3) m=T,(K/T)= Y (RAy+RB,).

a€RT

Set m, = RA, + RB, for any o € RT. The linear space m, is an irreducible
Ad(T')-module which does not depend on the choice of an ordering in R. Further-
more, since the roots of ¢ with respect to t¢ are distinct and the root spaces are
one-dimensional, it is obvious that m, 2 mg as Ad(T)-representations, for any two
roots a, 3 € RT. Thus, by using ([Z.3)) we obtain the following:

Proposition 2.2. Let M = K/T be a full flag manifold of a compact simple Lie
group K. Then the isotropy representation of M decomposes into a direct sum of
2-dimensional pairwise inequivalent irreducible T-submodules my, as follows:

(2.4) m = Z Mgy

a€ERTt

The number of these submodules is equal to the cardinality |R™|.
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HOMOGENEOUS EINSTEIN METRICS ON G3/T 2489

2.3. The Ricci tensor for a K-invariant metric on K/T. Since K/T is a
reductive homogeneous space, there is a natural 1-1 correspondence between K-
invariant symmetric covariant 2-tensors on K /T and Ad(T)-invariant symmetric
bilinear forms on m. For example, in this correspondence a K-invariant Riemannian
metric g on K/T corresponds to an Ad(T)-invariant inner product ( , ) on m. In
particular, since m admits the decomposition ([2.4]) and the Ad(T)-submodules are
mutually inequivalent, the space of K-invariant Riemannian metrics on K/T is
given by

(2.5) {g=<, )= > 20 Q. \xaew}.

a€ERt
The K-invariant Kéhler-Einstein metric on K¢/B = K/T corresponding to 26 =
2 Zle A; is given by

(2.6) g5 = 3 2A1 ++ 4 Ara) - Qla.

a€ERT

Similarly, the Ricci tensor Ric, of a K-invariant metric g on K/T, as a K-
invariant covariant 2-tensor, will be described by an Ad(T)-invariant symmetric
bilinear form on m given by

Ricy = Z TaZo * Qlm, s

a€ERT

where 7, (v € R") are the components of the Ricci tensor on each submodule m,,.
Since m,, 2 mg for any «, 8, € R*, it is Ricy(mqy, mg) =0 (cf. [20]).

There is a useful description of the components 7, associated to the isotropy
decomposition (Z4]). Let K/L be a compact homogeneous space of a compact
semisimple Lie group K whose isotropy representation m decomposes into s pairwise
inequivalent irreducible Ad(L)-submodules m; as m = m; ®- - - ®m,. Following [20]
and [I5] we choose a @Q-orthonormal basis {e,} adapted to m = @;_, m;. Let
Apq = Q([ep, eql, €r) so that [ep, eqlm = >° Ajqer, and set

k - 2
(2.7 ] = = @t
where the sum is taken over all indices p, ¢, with e, € m;,e, € m;, and e, € my,.

k
The triples { ] are called the structure constants of K/L with respect to the

tJ
decomposition m = @;_; m; and are symmetric to all three indices.
For the case of a full flag manifold K/T we study its structure constants with

respect to the Q-orthogonal decomposition m = 3 p. my, where Q@ = —B( , )
and m, = RA, + RB,. Note that we can rewrite the previous splitting as m =
my @ --- @ m,, where s = |RY|. Since B(E,, E_g) = —d4 3 one can verify that

the vectors A, and B, are such that B(A,, Ag) = B(Ba,Bg) = —204 and
B(A4, Bg) = 0. Therefore, the set {X, = A,/V2, Yo = Bo/vV2|a € Rt} is a
Q-orthonormal basis of each m,,.

We use the notation [Jﬁ] for o, 8,7 € R instead of [z’;] for submodules m, =

m_,,mg =m_g, and m, = m_,. Recall that if o, 8, @+ 3 € R, then [Eg,?g] = Eg+ﬁ
and B(eg,€2) = 0 (cf. [T} p. 168]). Since [1;]# 0 if and only if Q([ma, mp), m,) #

0, we can easily conclude that [Jﬁ] # 0 if and only if the roots «, 3, v satisfy one of
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2490 A. ARVANITOYEORGOS, I. CHRYSIKOS, AND Y. SAKANE

the relations a4+ —~v=0,a— f+~v =0, —a+ f+ v = 0. Note that if [(]5}7&0

then we can rewrite [a"ﬁ} as [a'f/;,] with o/, 8,7 € RT by rearranging roots and

changing the sign of roots.
By using the above notation, it can be shown ([I6] p. 75]) that for each « € RT,
the Ricci component r,, corresponding to the isotropy summand m,, is given by
1 1 To | @ 1 T v
2.8 w=—+— _ 2 Ty .
(28) " 224 * 8 Z TRT~ [,87} 4 Z Talg L@B}

ByERT BYERT

Hence, a K-invariant metric (23] on K/T is an Einstein metric with Einstein
constant k if and only if it is a positive real solution of the system {r, = k|a € RT}.

Proposition 2.3. For a full flag manifold K/T the triples [?5] are given by

B
(2.9) [aa-kﬁﬂ] o2,
Proof. By definition (7)) we see that
|:O[a+/6ﬁ:| = (B([Xa7 Xﬂ]> Xa+5))2 _|_ (B([Xom Xﬂ]? Ya+ﬁ))2

+ (B([YavXﬂ]>XOé+5))2 + (B([YavXﬂLYaJrﬁ)F + (B([XMYBL Xa+ﬁ))2
+ (B([Xa, Y3, Yaip))® + (B([Ya, Ys], Xat5))? + (B([Yas Yal, Yaus))”.

Since B(Ba+8, Aa+s) = 0 and B(Aats, Aatp) = B(Ba+s, Batp) = —2, a straight-
forward computation using the properties of the root vectors and the numbers N, g

gives that
B([XmXﬁ]aXaJrﬁ) = 1/(2\/§)B(Na,ﬁAa+ﬁ + Na,-gAa—g; Aatp) = _Na,ﬁ/\/i
B([YavXﬁLYaJrﬁ) - B([Xaayﬁ]vYaJrﬁ) = _B([Ya,yﬁ]aXaJrﬁ) - aﬁ/\/a,
B([XavXﬂ]>Ya+B) = B([YmXﬁ]vXaJrﬂ)
= B([XaaYB]vXa-i-B) = B([YavYﬁ]aYa-&-B) =0,
and the result follows. O

Remark 2.4. Two roots «, 8 € R have the same length with respect to the Killing
form B if and only if there is an element w of the Weyl group W(R) of the root
system R such that 8 = w(a) (see for example [I8, p. 242]). Thus, because of
the invariance of the Killing form under W (R), it is obvious that for any element
w € W(R) we have that [w(;”)('g(ﬁ)} = [(;’B].

3. THE FULL FLAG MANIFOLD Go/T

We now study the geometry of the full flag manifold G /T, where T is a maximal
torus of G'5. We start by describing its isotropy representation.

3.1. The decomposition of the isotropy representation of G5/T. The root
system of the exceptional complex simple Lie algebra go can be chosen to be R =
{£a1, tag, (a1 + a2), (a1 + 202), £(aq + 3az), £(204 + 3az) . We fix a system
of simple roots to be II = {ay, as}. With respect to II the positive roots are given
by

(3.1) RT = {1, a9, 01 + az, a1 + 20z, a1 + 3ae, 2a1 + 3az}.
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HOMOGENEOUS EINSTEIN METRICS ON G3/T 2491

The highest root is @ = 2a; + 3ag (see Figure 2). Also, it is ||ou] = V3 |laz],
and the roots of go make succesive angles of 7/6. The Weyl group is generated by
rotations of R? about the origin through an angle m/6 and reflections about the
vertical axis.

2a1+3an

o ap +oap (o7 +2a2

Oél+30t2

(&%)

FIGURE 2. The root system of go

The full flag manifold G5 /T is obtained by painting black both simple roots in
the Dynkin diagram of g5. Proposition implies that the isotropy representation
m of G /T decomposes into six inequivalent irreducible ad()-submodules, i.e. m =
m; & me & mg & my B ms D mg, where the submodules m; (1 <14 < 6) are given by

(3 2) m; = ma17 my = ma27 msz = ma1+a27
My = Mq,; 4205, M5 = Me; 43055 W6 = M2a;43a5-

3.2. Kahler-Einstein metrics. It is well known (|7, p. 504]) that a full flag man-
ifold K/T admits |[W(K)|/2 invariant complex structures (here W(K) is the Weyl
group of K), which are all equivalent under an automorphism of K. We now
compute the unique Kéhler—Einstein metric which is compatible with the natural
complex structure Jy ¢, that is, the complex structure corresponding to the natural
invariant ordering R™ given by ([B.1). From (23] a Ga-invariant Riemannian metric
on G5/T is given by

(3.3) g=21 Qlm, + -+ 26 Qlmg»

where we have set 1 = To,, T2 = Ta,, T3 = Tay+azs T4 = Tay+2as, L5 = Tay+3as,
T6 = T2a,+3ay, and the my (kK =1,...,6) are given by (3.2). We will denote such
metrics by g = (21, x2, T3, 4, T5,26) € Ri.

Theorem 3.1. The full flag manifold G2/T admits six invariant Kdihler—FEinstein
metrics which are isometric to each other. The Kdahler-Einstein metric g,5 which
is compatible with the natural invariant ordering Jnay is given (up to a scale) by

95 = (3,1,4,5,6,9).

Proof. According to the notation of Section 2] the weight 6 for Go/T is given
by 6 = %ZaeRJr a = Z?zl A;, where A; and Ay are the fundamental weights
corresponding to the simple roots a; and s, respectively. In Figure 2 one can
easily distinguish the long roots

L1 =0a1, Lo=0a1+ 3, L3 =2a71 + 3as
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2492 A. ARVANITOYEORGOS, I. CHRYSIKOS, AND Y. SAKANE

from the short roots
S = a9, Se =g + ao, S3 = a1 + 2as.

Then ||£;|| = V3||S;|l, where 1 < 4,5 < 3 and i,j are independent. We set
(L, L£;) =3 and (S;,S;) = 1, for any 1 < i < 3. We denote the Kéahler-Einstein
metric go5 by

Gay 'Q‘ml + Gas 'Q|m2 + Gar+as 'Q|m3 + Gar+2az 'Q‘TM + a1 +3az 'Q|m5 + 9201 +3az 'Q‘mav

which is compatible with the natural invariant complex structure Jy,; defined by
the ordering R™. By using ([2.I)) and applying relation (2.6) we obtain the following
values for the components g, = (24, @), & € RT of this metric:

Goy = 2(/\1,041) = (0417041) = 37 Jas = 2(/\2,0{2) = (042,052) = 1a
gOé1+Ot2 = 2(A1>a1) + 2(A27 062) = 47 ga1+2a2 - 2(A17 Oél) + 4(A27 042) = 9,
Gor+30r = 2(A1,a1) +6(A2,a2) =6,  g2a, 430, = 4(A1, 1) +6(A2,2) = 9.

O

3.3. Homogeneous Einstein metrics. We now proceed to the calculation of the
Ricci tensor Ric, corresponding to a G-invariant metric (83) on Go/T. Following
the notation of Section 23] the tensor Ric, as a Ga-invariant symmetric covariant
2-tensor on Go/T is given by Ric, = rma1 - Qlm, + -+ + r6Zs - Q|mg, Where for
simplicity we have set 71 = 7oy,72 = Tay, T3 = Tags+ass T4 = Tay+2a25 75 = Tay+3as
and rg = 720, +3a,- 10 order to apply (Z.8]) we first need to find the nonzero structure
constants [ZI;] of G3/T. By using B1)) and ([B2]) it follows that these are

3 a1 + as 3 4 a1 + 2. 4 5 a1 + 3as 5
012 = = s 023 = = s 024 = = y
a1 Q9 12 Qg o1 + Qi 23 g a1 + 209 24

S 2ar1 + 3ap . 6 6= 2cr1 + 3ag . 6
15 a1 a1 + 3as ~|15)’ 34 a1 + as o + 20 34
By Remark[2.4land the remarks on the notation for [07[3] , we obtain the following:

Lemma 3.2. The triples ¢3,, ¢3, and c§, are equal.

Proof. The Weyl group W(R) is generated by the reflections {sq,, Sa,}, and we
have that s,, (1) = —a1, Sa, (@2) = a1 + ag, Sa, (a2) = —aw, Sa, (1) = a1 + 3as.
Now we see that s, (a1 + @) = a1 + 2a9 and hence we have that

. o1 + 3ag _ Sas (1) _ o
24 sy ay + 20 —Sa, (2) Sa, (a1 + a2) —ag a1 + ag
[oa + Oéz] 3

Qq Qg

== 012.

We also see that sq, (@1 + 3a2) = 201 + 3 and s4, (@1 + 202) = a1 + 209, and
hence we have that

6 { 201 + 3y } [ Saq (1 + 3a) ] { oy + 3ap ] 5
C34 = = = = Cy-0J
o1 + oy a1 + 2009 Saq (2) 8o, (a1 + 2a2) o9 o + 2009
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HOMOGENEOUS EINSTEIN METRICS ON G3/T 2493

For the calculation of the above triples we use Proposition 2.3l and the fact that

1
(3.4 N2 = NapNoos = 010, 0),
where p, q are the largest nonnegative integers such that § + ka € R, with —p <

k<gq.

We first proceed to the calculation of 3, = [‘i‘;fsﬂ. By using the relation
(a1,01) = 3(az, a2) and equation ([34) we obtain that N2 = 3Q(az2,a2)/2, so
Proposition 23] implies that ¢35 = 3Q(az, as). The normalizing value Q(as, az) is

given by Q(ag,az) = 1/12 (cf. [§]); thus ¢3, = 1/4. Similarly, we obtain that

4 |:Oél—|—2012:|:2N2 1 6 |:2011+3042:|: 2 1

Cog — = — Cile = = —.
23 as o +a2 Q2,001+ 37 15 a o +3()é2 aq,01+3as 4

The above computations combined with Lemma give the following:

Proposition 3.3. The nonzero triples UZ] of the full flag manifold G2 /T are given

Bl e -

Therefore, we obtain the following proposition for the Ricci tensor from (2.8)):

Proposition 3.4. The components r; (i = 1,...,6) of the Ricci tensor associated
to the G-invariant Riemannian metric g given by B3) are the following:

1 1 T T I3 1 T Is Te
) )
211 16 \zox3 x123 T122 16 \z52¢ x176 T175
1 1 Xro X1 I3 1 o T3 X4

e e i )
12 X34 X4 I2X3

+ —
2$2 16 r1x3 23 T1X2

1 ( To Ty Ts )
T - - )
16 T4T5 ToTs ToXyg

1 1 I3 X9 T I3 To T4
rg=—+— — — + = - -
2I3 16 T1T9 13 ToX3 12 oy X34 ToX3

1 X3 T4 Tg
)
16 TyTe T3Te T34
1 1 Ty To T3 1 Ty To Ts5
ry=—+— - - +— - -
21‘4 12 T2X3 T34 T2y 16 ToX5 XTyTs T4
1 ( Ty T3 Tg )
Ta - - Y
16 Ir3xe TyTg T34
1 1 Iy X Te 1 Iy To Ty
=g —+ = - + e - 7
205 16 \z12¢ X856 T1X5 16 \zoxy x475 275

1 4 1 ( Te T Ty ) n 1 ( Te T3 Ty )
re = — + — — — — — — .
6 206 16 \z125 X506 T1Xg 16 \z3x4 x42¢ T3Tg

A Ga-invariant Riemannian metric on the full flag manifold G2/T is Einstein if
and only if there is a positive constant k£ such that

(35) ™ = ka T2 = kv r3 = k;; Ty = k7 s = ka Te = ka

where r; (i =1,...,6) are given in Proposition B4
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4. PROOF OF THEOREM A

Note that the action of the Weyl group of go on its root system (cf. Figure 2)
induces an action on the components of the Go-invariant metric (83). In particu-
lar, if (x1, 22, x3, T4, 25, 26) = (a1, a2,as, a4, a5, Te) is a solution for the system of
equations (33), then

(71,72, 73, T4, T5,%6) = (a5, a2, a4, az, ay, ag)
is also a solution of the system [B.1]). In fact, if w is a reflection about 2a4 + 3z in
the root diagram of ga, then w(ay) = a1 +3as, w(ag+as) = a3 +2ay. This induces
an interchange of 1 with x5 and x3 with x4, and keeps 2, x¢ fixed. Similarly we
see that

T1,T2,T3,T4,T5,T6 ag, az, a4, a2,a,as),

( )= ( )
(21,2, 23,24, 25, 76) = (a1, a3, az, a4, ag, as),
( ) = (a )

T1,T2,T3,T4,T5,T6 as, a4, ag,as, ae, ai ),

(21, 22, T3, T4, T5, T6) = (a6, a4, a3, a2, as,a1)
are also solutions of system ([B3)). These metrics are all isometric to each other.
The above analysis using the Weyl group suggests splitting the study of solutions
for the system (B.5) into two cases: Case[Al (z1 — z5)(x1 — z6) (25 — 1) = 0 and
Case Bt (1 — =5)(z1 — 76) (w5 — wg) # 0.
Note that the system of equations (B3] is equivalent to the equations

(4.1) rM1—10=0, 1r9o—13=0, 1r3—714=0, r4—1r5=0, 7r5—16=0.

Moreover, we normalize our equations by setting z; = 1. Then the system of
equations ([.J]) is equivalent to the equations
(4.2)

f1 = —3I22I31‘6 - 61‘221‘4$5I6 - 4I22I5I6 - 3I21‘3{E4I52

+24x9x324T5T6 — 3T2T3T4Te> + 3Tox3Ts + dx3’TsTe + 3T374%%6

2 2 —

—24x3x47506 + 3x305° 26 + 44 T506 + 6242526 = 0,

fo= 3.7322.1331)6 + 61)22.1341‘5136 + 813221‘5336 — 3132])32335 + 3.732])421)5
—243?23341‘5136 + 3132.7351)62 — 613321343351‘6 — 81)321‘51‘6 - 31‘31342136
+24$3I41‘5$6 - 3{E3I52I6 = 0,

f3 = 3x222326 — 3222 TaT526 + 62ox3°Ts — 24x0x32526 — Bx2xs X5
+24xox4T5x6 + 3T32T4x5T6 + 8T32 5T — 3T3T42T6 + 3T3x52T6
—8x42x5x6 — 3xaT5Ts = 0,

f4 = —41)221)51‘6 — 31‘21332135 — 31‘2.7331)41‘52 + 3.7321‘3.1341)62
—24$2I31‘4$6 + 3$2I3I4 + 24I2I31‘5I6 + 3{E2I42I5 - 3I2I5{E62
—4$32.’[5$6 + 6$3$42$6 - 6x3x52x6 + 41’421'5£E6 = 0,

fs = —x22x326 + Toxs2x5 + 2x0x3x4T5> — SToX3TATs — 2ToT3T4Te>
+8LoX3T4Ts + ToXg2Ts — ToXs5Tee — Taxa’Ts + Taxs2xe =0

for solutions with xoxzzsr526 # 0.
To find nonzero solutions of equations ([A.2), we compute a Grdobner basis (see
for example [9]) by using algebraic manipulations in a computer system.

Case A. We may assume that 1 = x5 = 1. If z¢ = 1, we consider a polynomial
ring Ry = Qly, x2, x5, 24, T5, 6] and an ideal I; generated by

{f1, fo, f3, fa, f5, 25 — 1, w6 — 1, yxoxszazsze — 1}.
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HOMOGENEOUS EINSTEIN METRICS ON G3/T 2495

We take a lexicographic order > with y > xo > x3 > x4 > x5 > ¢ for a monomial
ordering on R;. Then a Grobner basis for the ideal I is given by

{zg — 1,25 — 1,1524% — 2024 + 9, 23 — 24, T2 — 23, —2600 4 397524 + 729y}

Now the equation 15242 — 20z4 + 9 = 0 has no real solutions. Thus there are no
Einstein metrics for this case.

If z¢ # 1, we consider an ideal I generated by

{f1, fo, f35 fas f5, 25 — 1, (w6 — 1) y wox3z40526 — 1}

We take a lexicographic order > with y > x¢ > x5 > 29 > x3 > x4 for a monomial
ordering on R;. Then we see that x3 — x4 is an element of a Grobner basis for the
ideal I5. Thus we obtain the following expression for the Ricci components in this

case:
1 + 1 1 T2 I3 Te
rn=r = = = - — — | — Ta
te 2 " 16 \ o753 T3 0 16’
1 1 [ x 2 1 /zo 3 1
"2 o 21‘2 + 12 <1‘32 Ig) + 8 (Ig xro I2I3> ’
1 + 1 I3 T2 1 T2 Tg
T =7 = —_— —_— _— — = — —
3 4 21‘3 16 T2 I3 ToX3 12.7332 161‘327
L1 2\ L (m 2
re = — +—|(x¢— — ——--1.
0 206 16 \"°  we) 16 \ws? g

Now the system of equations [B3]) is equivalent to the equations
(4.3) rL=7T2, T2=13, T3="Ts.

Moreover, we see that the system of equations (3] is equivalent to the equations

h,l = —9$22{E3 - 41‘22 - 3I2I32I6 + 24{E2I32 + 3$33 - 16I32 + 9I3 =0
(4.4) ho = 9x9%x3 + 8292 — 24xox3 + 3xowg — 923> + 16232 — 325 =0
’ hg = —3%221}3.%6 - 41‘221}6 - 31‘2.’[32.’[62 - 12$2$32 + 24552:[31'6

—6$2$62 + 3$33LL‘6 —3x3xg =0,

for solutions with xoxsze # 0.
We consider a polynomial ring Ry = Q[y, x2, x3,x¢] and an ideal I3 generated
by

{h1, ha, h3, ywoxzze — 1}.

We take a lexicographic order > with y > x2 > x3 > zg for a monomial ordering
on Re. Then a Grobner basis for the ideal I3 contains the following polynomials

P1,D2,P3:
p1 = 28431x6"* — 58903216 + 5435343x6"% — 2937902426 + 10075720826 °
— 22416317626° + 336260186x6° — 371473808z + 339968604x6° — 262478048x6°
+ 15285615226 — 6955001626 + 35706576x6° — 174078726 + 3888000,

Licensed to Johannes Kepler University. Prepared on Fri Sep 11 09:19:24 EDT 2015 for download from IP 193.170.37.5.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



2496 A. ARVANITOYEORGOS, I. CHRYSIKOS, AND Y. SAKANE

p2 = 58198531083202847398292035805427252703995763069632x2

— 3643118798497595406962507582551202073571549014597 26"

+ 7299235738847726821537410437479033962773272433107226"

— 64656772775820793500227598662803317923006565266306 126"
+ 3321518579042845371552323860647602584109650553728920x6°
— 106305246845145376410007253618095302386497406804443442:6°
+ 21417364804945911429515190574637753191025839827487192x6°
— 283890611717578121261367681274569279647128836159206382¢"
+ 28311617865989383607989773945214867782385295574349024:6°
— 24774704999202893012898243740523073131413082414850260:6°
+ 175267909611029091296228342932675252979105029414666242:6"
— 8188114481577095576234998176450007614578500056871240x6°

+ 3562379534276698939524030165567374089875873542732800:x6°
— 2298954881044018869226019836424141856363362783139696x¢
+ 738157956056149928743880926430168536213084185530880,

p3 = 2424938795133451974928834825226135529333156794568x3

+ 19029972626061774836007867169218828586354518623 16"

— 37726721802091649084429970484292312301086880157081:6"

+ 330075960010637578293059366525782191334719100585532¢

— 1670883313302270076885713259724156373976484505929852:6"°
+ 524508423670293884907483441538953074568075167613750x6°

— 1028643118190496545823481969284436484392588928255299::6°
+ 1321914168075901690582280884750861726955041116133678x¢"
— 12868261519726658394336997002239207649729869498337941:¢°
+ 1102747968247342493561980802133113539094868778040040:6
— 748737830066525920856184078153848962211101215021298x6"

+ 334500258786115622392457312297818354307784956975224 16>

— 15575921224758475508819623850982279994186662595525626
+ 95407553283841359554204716996124488446792794847168x¢
— 28083415274725086532725024624855426929207778616800.

By solving the equation p; = 0 numerically, we obtain exactly two real solutions
which are approximately given by xg =~ 0.74403477990 and xg ~ 1.789600622. We
substitute these values for zg into equations p; = 0 and p3 = 0, and we obtain
two positive solutions approximately given by zo ~ 0.21737, x3 =~ 1.02343 and
x2 &~ 0.27624, x3 ~ 1.03473. Moreover, we obtain the value for k from ([B.3]). Thus
we have the following:
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HOMOGENEOUS EINSTEIN METRICS ON G3/T 2497

Theorem 4.1. The full flag manifold Go/T admits two non-Kdhler Ga-invariant
Einstein metrics. These metrics are given approximately as follows:

T1=1, T2~ 02762, x3=x4~10347, z5=1, x5~ 1.7896, k ~ 0.3560,
=1, 2o~02173, z3=14~1.0234, x5=1, z¢~0.7440, k ~ 0.4269.

Case B. We consider a polynomial ring Ry = Q[y, 2, x3, x4, x5, 2] and an ideal I,
generated by

{f1, fo, f35 far f5, (x5 — 1) (w6 — 1) y 203247576 — 1}.

We take a lexicographic order > with y > zo > x3 > x4 > x5 > zg for a monomial
ordering on R;. Then a Grobner basis for the ideal I contains a polynomial of the
form

(IG - 3) (1‘6 - 2)(21‘6 - 3)(2176 - 1)(3176 - 2)(3I6 - 1)(]1(176),
where ¢ (x) is an explicitly given polynomial of degree 84 with integer coeflicients.
For the case when (zg — 3)(z¢ — 2)(226 — 3)(226 — 1)(3z6 — 2)(326 — 1) = 0, we
first consider an ideal I5 generated by

{f17 f2, f3, fa, [, (CCG - 3),ya?2333x4x5x6 — 1}.

We take a lexicographic order > with y > zo > x3 > x4 > x5 > zg for a monomial
ordering on R;. Then a Grobner basis for the ideal I5 is given by

{z¢ — 3,25 — 2,3x4 — 5,323 — 4,3x2 — 1,40y — 9}.

We also compute the Grobner basis for other cases and we obtain the following sets
of solutions for equations (£.2)):

— — _ 5 __ 4 _ 1 5 _ 1 __ 4

(x6 =3,25 = 2,24 = 5,23 = 3,%2 = 3), (T6 =2,05 =3, 04 = 5, T3 = 3,T2 = 3),
_ 3 _ 1 _ 2 _ 5 1 _ 3 2 1 _ 5

(336—5,435—5, Ty = 3,3 = ¢, T 6)7 ( 2,435 3:%4 = 3,23 = 5,72 g):
2 1 _ 1 _ 5 4 2 _ 1 __ 4 _ 5

(‘r6 3:%T5 = 3,T4 = §5,T3 = 3§, T §)7 ( y Ts = 3,x47§,x37§,x27§).

Note that these are the six Kdhler-Einstein metrics of Theorem [31]
Now, by solving the equation ¢;(xzg) = 0 numerically, we obtain 14 positive
solutions, which are approximately given by

6 ~ 0.1101296649906623, x6 ~ 0.1276467609933986, x¢ ~ 0.1654266507070432,
6 ~ 0.2010643285289733, x6 ~ 0.3065328288396123, z¢ ~ 0.5181203151843693,
6 ~ 0.5477334830916693, x¢ ~ 1.825705440455314, x¢ ~ 1.930053639460474,
Te ~ 3.262293320377869, w6 ~ 4.973532636625297, x¢ ~ 6.044975194298747,

Te ~ 7.834119661302769, z¢ ~ 9.080205592968872.

To get the solutions of equations ([@2]) for the variables xo,x3, 24, x5 correspond-
ing to the solution xg, we compute a Grobner basis under the condition (zg —
3)(ze — 2)(226 — 3)(2w6 — 1) (326 — 2)(3z6 — 1) # 0; that is, we consider an ideal Ig
generated by {f1, fa, fa, f1, S5, (@6 — 3)(ws — 2)(226 — 3) (226 — 1)(3z — 2)(3xs —
1)y zoxsxsxscs — 1} and take a lexicographic order > with y > xo > x5 > x4 >
x5 > wg for a monomial ordering on R;. Then ¢ is contained in this Groébner
basis, and by examining the other elements of the obtained Grobner basis, we see
that the other variables s, z3, x4, x5 can be expressed by polynomials of xg with
degree 83. Let 2 = qa(xs), 3 = q3(26), x4 = qa(x6), and x5 = ¢5(rs) be these
polynomials. Now we substitute these 14 values for zg into the expressions of the
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polynomials g2, g3, q4, g5 of xg with degree 83. Then we get the following solutions
which are approximately given by

T6 ~ 0.11013, x5 ~ 0.547733, x4 ~ 1.61358, x3 ~ 0.399131, x2 ~ —0.277481,

re ~ 0.127647, x5 ~ —0.775539, x4 ~ 0.202709, x3 ~ 1.7601, z2 ~ —0.203265,

Te ~ 0.165427, x5 ~ —0.021892, x4 ~ 0.308989, z3 ~ 0.00455279, z2 ~ 0.5435,
T6 ~ 0.201064, =5 ~ 1.82571, x4 ~ 0.728695, x3 ~ 2.94591, z2 ~ —0.506599,

z6 ~ 0.306533, =5 ~ —1.52438, x4 ~ 0.207857, z3 ~ 1.64949, x> ~ 5.33389,

z6 ~ 0.51812, x5 ~ —0.100239, x4 ~ —0.120371, z3 ~ —2.58645, z2 ~ —0.539579,
ze ~ 0.547733, =5 ~ 0.11013, x4 ~ 1.61358, z3 ~ —0.277481, x> ~ 0.399131,

Te ~ 1.82571, x5 ~ 0.201064, x4 ~ 0.728695, x3 ~ —0.506599, =2 ~ 2.94591,

ze ~ 1.93005, ~ —0.193467, x4 ~ —1.04142, z3 ~ —4.99198, z» ~ —0.232323,

8
o
2

Tg ~ 3.26229, x5 &~ —4.97297, x4 ~ 17.4007, x5 ~ 5.38113, x5 ~ 0.678092,
zg ~ 4.97353, x5 ~ 9.08021, 24 ~ —2.51959, x5 ~ 14.6516, x5 ~ 3.62419,

T6 ~ 6.04498, —0.132336, x4 =~ 3.28544, x3 ~ 0.0275215, z2 ~ 1.86783,
T6 & 7.83412, x5 ~ —6.07566, 4 ~ —1.5924, x5 ~ 13.7889, w2 ~ 1.58805,
z6 ~ 9.08021, x5 ~ 4.97353, x4 ~ —2.51959, z3 ~ 3.62419, x> ~ 14.6516.

&
2

Q

We see that at least one of the z;’s in these solutions is negative. Thus there
are no invariant Einstein metrics for these cases, and this completes the proof of
Theorem [Al
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