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HOMOGENEOUS EINSTEIN METRICS ON G2/T

ANDREAS ARVANITOYEORGOS, IOANNIS CHRYSIKOS, AND YUSUKE SAKANE

(Communicated by Lei Ni)

Abstract. We construct the Einstein equation for an invariant Riemann-
ian metric on the exceptional full flag manifold M = G2/T . By computing
a Gröbner basis for a system of polynomials on six variables we prove that
this manifold admits exactly two non-Kähler invariant Einstein metrics. Thus
G2/T turns out to be the first known example of an exceptional full flag mani-
fold which admits a non-Kähler and not normal homogeneous Einstein metric.

Introduction

A Riemannian manifold (M, g) is called Einstein if the metric g has constant
Ricci curvature, that is, Ricg = λg for some λ ∈ R, where Ricg is the Ricci tensor
corresponding to g. The question whether M carries an Einstein metric, and if so,
how many, is a fundamental one in Riemannian geometry. A number of interesting
results in geometry have been motivated and inspired by this hard problem. The
Einstein equation is a nonlinear second order PDE, and a good understanding
of its solutions in the general case seems far from being attained. It becomes
more manageable in the homogeneous setting. Most known examples of compact
simply connected Einstein manifolds are homogeneous. In the homogeneous case
the Einstein equation reduces to a system of algebraic equations for which we are
looking for positive solutions. For some cases such solutions have been obtained
explicitly. We refer to [14] and the references therein for more details on compact
homogeneous Einstein manifolds. The low-dimensional cases were also examined
in [5].

Let K be a compact, connected and semisimple Lie group. A full flag manifold is
a compact homogeneous space of the form K/T , where T is a maximal torus in K.
It is known that K/T admits a unique (up to isometry)K-invariant Kähler-Einstein
metric (cf. [13]).

Non-Kähler homogeneous Einstein metrics on full flag manifolds corresponding
to classical Lie groups have been studied by several authors (cf. [2], [16], [10]). Al-
though various existence results of homogeneous Einstein metrics on these spaces
have been obtained, the classification of such metrics is a demanding task which
remains widely open. In the present paper we study the classification problem of
homogeneous Einstein metrics on the full flag manifold G2/T . The isotropy rep-
resentation of this space decomposes into six inequivalent irreducible submodules.
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2486 A. ARVANITOYEORGOS, I. CHRYSIKOS, AND Y. SAKANE

There are three (nonisomorphic) flag manifolds corresponding to the exceptional
Lie group G2, since there are exactly three different ways to paint black the simple
roots in the Dynkin diagram of g2, as shown in Figure 1 (for the classification of
generalized flag manifolds in terms of painted Dynkin diagrams, we refer to [1] or
[6]).

�
α1

> �
α2

G2(α2)

�
α1

> �
α2

G2(α1)

�
α1

> �
α2

G2/T

Figure 1. The painted Dynkin diagrams corresponding to G2

If we paint black one simple root in the Dynkin diagram of g2, then we obtain a flag
manifold of the form G2/U(2) with two or three isotropy summands, depending on
the height of this simple root. Recall that for g2 we can choose a set of simple
roots by ΠM = {α1, α2} with (α1, α1) = 3(α2, α2), so the highest root has the form
α̃ = 2α1 +3α2 (see Section 5). Thus, the flag manifold G2(α2) in Figure 1 has two
isotropy summands, and U(2) is represented by the short root of g2. For this space,
all G2-invariant Einstein metrics have been obtained explicitly in [3]. The second
flag manifold G2(α1) in Figure 1 has three isotropy summands, and the isotropy
group U(2) is represented by the long root of g2. For this space, the G2-invariant
Einstein metrics were studied in [12], [2].

The full flag manifold G2/T , where T = U(1)×U(1) is a maximal torus in G2, is
obtained by painting black both simple roots in the Dynkin diagram of g2. Accord-
ing to [19] a full flag manifold K/T is a normal homogeneous Einstein manifold if
and only if all roots of K have the same length, and in this case the normal metric
of K/T is never Kähler. Therefore, if K is an exceptional Lie group, then K/T is
a normal homogeneous Einstein manifold if and only if K ∈ {E6, E7, E8}, so G2/T
is not normal. Our main result is the following:

Theorem A. The full flag manifold G2/T admits exactly three G2-invariant Ein-
stein metrics (up to isometry). There is a unique Kähler-Einstein metric given
(up to a scalar) by g = (3, 1, 4, 5, 6, 9), and the other two are non-Kähler. The
approximate values of these invariant metrics are given in Theorem 4.1.

As a consequence of Theorem A, G2/T is the first known example of an excep-
tional full flag manifold which admits a non-Kähler and not normal homogeneous
Einstein metric. Also, the present work on G2/T is the first attempt towards the
classification of homogeneous Einstein metrics on generalized flag manifolds with
six isotropy summands.

The paper is organised as follows: In Section 2 we recall the Lie-theoretic de-
scription of a full flag manifold K/T of a compact and connected semisimple Lie
group K, and we study its isotropy representation. Next, following [16], we describe
the structure constants of K/T relative to the associated isotropy decomposition,
and we give the expression of the Ricci tensor of a K-invariant metric on K/T . In
Section 3 we consider the exceptional full flag manifold G2/T and we give its Lie-
theoretic description. Then we construct the Einstein equation for a G2-invariant
Riemannian metric. In the last section, we give the corresponding polynomial sys-
tem, and by computing a Gröbner basis for this system, we prove Theorem A and
obtain the full classification of homogeneous Einstein metrics on G2/T .
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HOMOGENEOUS EINSTEIN METRICS ON G2/T 2487

2. Full flag manifolds

LetK/T be a full flag manifold where T is a maximal torus of a compact semisim-
ple Lie group K. We will give a characterization of K/T in terms of root system
theory, and we will describe some topics of the associated Kähler geometry. Then,
we study the isotropy representation of K/T and we give the expression of the Ricci
tensor for a K-invariant metric on K/T .

2.1. Lie-theoretic description of K/T . Assume that dimR T = rankG = �. We
denote by k, t the Lie algebras of K and T respectively, and by kC = k⊕ik, tC = t⊕it,
the corresponding complexifications. Let t∗ and t∗

C
be the dual spaces of t and tC,

respectively. The subalgebra tC is a Cartan subalgebra of the complex semisimple
Lie algebra kC, and thus we obtain the root space decomposition kC = tC⊕

∑
α∈R kα

C
,

where R is the root system of kC relative to tC and kα
C
are the corresponding root

spaces. Recall that by C-linearity, a root α ∈ R is completely determined by its
restriction to either t or it. Since the Killing form B of kC is nondegenerate, for any
λ ∈ t∗

C
we define Hλ ∈ it by the equation B(Hλ, H) = λ(H) for all H ∈ tC. Let

it∗ denote the real linear subspace of t∗
C
which consists of all λ ∈ t∗

C
such that the

restriction λ|t has values in iR. Note that the restriction map λ �→ λ|it defines an
isomorphism from it∗ onto the real linear dual space it∗, which allows us to identify
these spaces. Then, it is well known that R spans it∗ and that R is a finite subset
of it∗\{0}. Thus, if α ∈ R, then α ∈ it∗.

Let ( , ) be the bilinear form on t∗
C
induced by the Killing form, that is, (λ, μ) =

B(Hλ, Hμ), for any λ, μ ∈ t∗
C
. Then, since B is negative definite on t and positive

definite on it, the restriction of ( , ) on it∗ is a positive definite inner product.

The weight lattice of kC with respect to tC is given by Λ = {λ ∈ it∗ | 2(λ, α)
(α, α)

∈

Z for all α ∈ R}. Let Π = {α1, . . . , α�} be a simple root system of R, and let R+

be the set of all positive roots with respect to Π. Consider the fundamental weights
corresponding to Π, that is, Λ1, . . . ,Λ� ∈ Λ such that

(2.1)
2(Λi, αj)

(αj , αj)
= δij (1 ≤ i, j ≤ �).

Then {Λ1, . . . ,Λ�} forms a Z-basis for the weight lattice Λ, and since it ∼= it∗,

it is it =
∑�

i=1 RΛi. In the weight lattice Λ there is a distinguished subset Λ+

given by Λ+ = {λ ∈ Λ | (λ, α) > 0 for any α ∈ R+}. One can see that Λ+ =
Λ∩C(Π), where C(Π) is the fundamental Weyl chamber corresponding to Π, given
by C(Π) = {λ ∈ it∗ | (λ, αi) > 0 for all αi ∈ Π}. The elements of Λ+ are usually
called dominant weights relative to R+, and any dominant weight can be expressed
as a linear combination of the fundamental weights with nonnegative coefficients.

For example, set δ = 1
2

∑
α∈R+ α ∈ it∗. Then, δ =

∑�
i=1 Λi and thus δ ∈ Λ+ (cf.

[8, p. 168]).
We now define the complex Lie subalgebras of kC by n =

∑
α∈R+ kα

C
and b =

tC⊕n. One can easily show that n is a nilpotent ideal of kC and that b is a maximal
solvable Lie subalgebra of kC; i.e. it is a Borel subalgebra. Let KC denote the
complex simply connected semisimple Lie group whose Lie algebra is kC. Then, the
connected subgroup B ⊂ KC with Lie algebra b is a Borel subgroup of KC and
KC/B ∼= K/T as C∞-manifolds.
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Since KC is a complex Lie group and B a closed complex subgroup, the quotient
KC/B admits a K-invariant complex structure. Furthermore, the K-invariant com-
plex structures on KC/B = K/T are in 1-1 correspondence with different choices
of positive roots for kC (cf. [7]). Since the Weyl group W (R) of the root system
of kC acts transitively on the sets of systems of positive roots, all these complex
structures are equivalent. Moreover, the following holds:

Theorem 2.1 ([7], [17]). There is a 1-1 correspondence between K-invariant Kähler
metrics on KC/B and dominant weights in Λ+. In particular, the K-invariant
Kähler metric on KC/B corresponding to 2δ is a Kähler-Einstein metric.

According to [7, p. 504] a full flag manifold admits a unique (up to equivalence)
invariant complex structure, hence a unique (up to scale) Kähler–Einstein metric
(cf. also [13]). This Kähler–Einstein metric will be computed in Section 2.

2.2. The isotropy representation of K/T . We will now examine the isotropy
representation of a full flag manifold KC/B = K/T . Consider the reductive decom-
position k = t⊕m of k with respect to the negative of the Killing form Q = −B( , ),
that is, m = t⊥ and Ad(T )m ⊂ m. As usual, we identify m = To(K/T ) (where
o = eT is the identity coset of K/T ).

Choose a Weyl basis {Hα1
, . . . , Hα�

}∪{Eα ∈ kα
C
|α ∈ R} with B(Eα, E−α) = −1,

[Eα, E−α] = −Hα. Recall for later use that the root vectors satisfy [Eα, Eβ] =
Nα,βEα+β if α, β, α + β ∈ R and [Eα, Eβ] = 0 otherwise. The numbers Nα,β ∈ R

satisfy Nα,β = −Nβ,α, Nα,β = N−α,−β ∈ R if α, β, α + β ∈ R, and Nα,β = 0 if
α, β ∈ R, α + β /∈ R. They can also be chosen so that Nα,−β = N−α,β . Then the
real subalgebra k is given by

(2.2) k =
�∑

j=1

RiHαj
⊕

∑
α∈R+

(RAα + RBα) = t⊕
∑

α∈R+

(RAα + RBα),

where Aα = Eα + E−α and Bα = i(Eα − E−α) (α ∈ R+).
Since t = spanR{iHαj

| 1 ≤ j ≤ �}, the reductive decomposition g = t⊕m implies
that

(2.3) m = To(K/T ) =
∑

α∈R+

(RAα + RBα).

Set mα = RAα + RBα for any α ∈ R+. The linear space mα is an irreducible
Ad(T )-module which does not depend on the choice of an ordering in R. Further-
more, since the roots of kC with respect to tC are distinct and the root spaces are
one-dimensional, it is obvious that mα � mβ as Ad(T )-representations, for any two
roots α, β ∈ R+. Thus, by using (2.3) we obtain the following:

Proposition 2.2. Let M = K/T be a full flag manifold of a compact simple Lie
group K. Then the isotropy representation of M decomposes into a direct sum of
2-dimensional pairwise inequivalent irreducible T -submodules mα as follows:

(2.4) m =
∑

α∈R+

mα.

The number of these submodules is equal to the cardinality |R+|.
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HOMOGENEOUS EINSTEIN METRICS ON G2/T 2489

2.3. The Ricci tensor for a K-invariant metric on K/T . Since K/T is a
reductive homogeneous space, there is a natural 1-1 correspondence between K-
invariant symmetric covariant 2-tensors on K/T and Ad(T )-invariant symmetric
bilinear forms on m. For example, in this correspondence a K-invariant Riemannian
metric g on K/T corresponds to an Ad(T )-invariant inner product 〈 , 〉 on m. In
particular, since m admits the decomposition (2.4) and the Ad(T )-submodules are
mutually inequivalent, the space of K-invariant Riemannian metrics on K/T is
given by

(2.5)
{
g = 〈 , 〉 =

∑
α∈R+

xα ·Q|mα
| xα ∈ R+

}
.

The K-invariant Kähler-Einstein metric on KC/B = K/T corresponding to 2δ =

2
∑�

i=1 Λi is given by

(2.6) g2δ =
∑

α∈R+

2(Λ1 + · · ·+ Λ�, α) ·Q|mα
.

Similarly, the Ricci tensor Ricg of a K-invariant metric g on K/T , as a K-
invariant covariant 2-tensor, will be described by an Ad(T )-invariant symmetric
bilinear form on m given by

Ricg =
∑

α∈R+

rαxα ·Q|mα
,

where rα (α ∈ R+) are the components of the Ricci tensor on each submodule mα.
Since mα � mβ for any α, β,∈ R+, it is Ricg(mα,mβ) = 0 (cf. [20]).

There is a useful description of the components rα associated to the isotropy
decomposition (2.4). Let K/L be a compact homogeneous space of a compact
semisimple Lie groupK whose isotropy representation m decomposes into s pairwise
inequivalent irreducible Ad(L)-submodules mi as m = m1⊕· · ·⊕ms. Following [20]
and [15] we choose a Q-orthonormal basis {ep} adapted to m =

⊕s
i=1 mi. Let

Ar
pq = Q([ep, eq], er) so that [ep, eq]m =

∑
γ A

r
pqer, and set

(2.7)

[
k

ij

]
=

∑
(Ar

pq)
2 =

∑(
Q([ep, eq], er)

)2
,

where the sum is taken over all indices p, q, r with ep ∈ mi, eq ∈ mj , and er ∈ mk.

The triples

[
k

ij

]
are called the structure constants of K/L with respect to the

decomposition m =
⊕s

i=1 mi and are symmetric to all three indices.
For the case of a full flag manifold K/T we study its structure constants with

respect to the Q-orthogonal decomposition m =
∑

α∈R+ mα, where Q = −B( , )
and mα = RAα + RBα. Note that we can rewrite the previous splitting as m =
m1 ⊕ · · · ⊕ ms, where s = |R+|. Since B(Eα, E−β) = −δα,β one can verify that
the vectors Aα and Bα are such that B(Aα, Aβ) = B(Bα, Bβ) = −2δα,β and

B(Aα, Bβ) = 0. Therefore, the set {Xα = Aα/
√
2, Yα = Bα/

√
2 |α ∈ R+} is a

Q-orthonormal basis of each mα.
We use the notation

[
γ
αβ

]
for α, β, γ ∈ R instead of

[
k
ij

]
for submodules mα =

m−α,mβ = m−β , and mγ = m−γ . Recall that if α, β, α+β ∈ R, then [kα
C
, kβ

C
] = k

α+β
C

and B(kα
C
, kβ

C
) = 0 (cf. [11, p. 168]). Since

[
γ
αβ

]
�= 0 if and only if Q([mα,mβ ],mγ) �=

0, we can easily conclude that
[
γ
αβ

]
�= 0 if and only if the roots α, β, γ satisfy one of
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the relations α + β − γ = 0, α− β + γ = 0, −α + β + γ = 0. Note that if
[
γ
αβ

]
�= 0

then we can rewrite
[
γ
αβ

]
as

[
γ′

α′β′

]
with α′, β′, γ′ ∈ R+ by rearranging roots and

changing the sign of roots.
By using the above notation, it can be shown ([16, p. 75]) that for each α ∈ R+,

the Ricci component rα corresponding to the isotropy summand mα is given by

(2.8) rα =
1

2xα
+

1

8

∑
β,γ∈R+

xα

xβxγ

[
α

βγ

]
− 1

4

∑
β,γ∈R+

xγ

xαxβ

[
γ

αβ

]
.

Hence, a K-invariant metric (2.5) on K/T is an Einstein metric with Einstein
constant k if and only if it is a positive real solution of the system {rα = k |α ∈ R+}.

Proposition 2.3. For a full flag manifold K/T the triples
[
α+β
α β

]
are given by

(2.9)

[
α+ β

α β

]
= 2N2

α,β .

Proof. By definition (2.7) we see that[
α+ β

α β

]
= (B([Xα, Xβ], Xα+β))

2 + (B([Xα, Xβ], Yα+β))
2

+ (B([Yα, Xβ], Xα+β))
2 + (B([Yα, Xβ], Yα+β))

2 + (B([Xα, Yβ ], Xα+β))
2

+ (B([Xα, Yβ ], Yα+β))
2 + (B([Yα, Yβ ], Xα+β))

2 + (B([Yα, Yβ ], Yα+β))
2.

Since B(Bα+β , Aα+β) = 0 and B(Aα+β, Aα+β) = B(Bα+β , Bα+β) = −2, a straight-
forward computation using the properties of the root vectors and the numbers Nα,β

gives that

B([Xα, Xβ], Xα+β) = 1/(2
√
2)B(Nα,βAα+β +Nα,−βAα−β, Aα+β) = −Nα,β/

√
2,

B([Yα, Xβ], Yα+β) = B([Xα, Yβ ], Yα+β) = −B([Yα, Yβ ], Xα+β) = −Nα,β/
√
2,

B([Xα, Xβ], Yα+β) = B([Yα, Xβ], Xα+β)

= B([Xα, Yβ ], Xα+β) = B([Yα, Yβ ], Yα+β) = 0,

and the result follows. �

Remark 2.4. Two roots α, β ∈ R have the same length with respect to the Killing
form B if and only if there is an element w of the Weyl group W (R) of the root
system R such that β = w(α) (see for example [18, p. 242]). Thus, because of
the invariance of the Killing form under W (R), it is obvious that for any element

w ∈ W (R) we have that
[ w(γ)
w(α) w(β)

]
=

[
γ

α β

]
.

3. The full flag manifold G2/T

We now study the geometry of the full flag manifold G2/T , where T is a maximal
torus of G2. We start by describing its isotropy representation.

3.1. The decomposition of the isotropy representation of G2/T . The root
system of the exceptional complex simple Lie algebra g2 can be chosen to be R =
{±α1,±α2,±(α1 +α2),±(α1 +2α2),±(α1 +3α2),±(2α1 +3α2)}. We fix a system
of simple roots to be Π = {α1, α2}. With respect to Π the positive roots are given
by

(3.1) R+ = {α1, α2, α1 + α2, α1 + 2α2, α1 + 3α2, 2α1 + 3α2}.
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HOMOGENEOUS EINSTEIN METRICS ON G2/T 2491

The highest root is α̃ = 2α1 + 3α2 (see Figure 2). Also, it is ‖α1‖ =
√
3 ‖α2‖,

and the roots of g2 make succesive angles of π/6. The Weyl group is generated by
rotations of R2 about the origin through an angle π/6 and reflections about the
vertical axis.

Figure 2. The root system of g2

The full flag manifold G2/T is obtained by painting black both simple roots in
the Dynkin diagram of g2. Proposition 2.2 implies that the isotropy representation
m of G2/T decomposes into six inequivalent irreducible ad(k)-submodules, i.e. m =
m1 ⊕m2 ⊕m3 ⊕m4 ⊕m5 ⊕m6, where the submodules mi (1 ≤ i ≤ 6) are given by

(3.2)
m1 = mα1

, m2 = mα2
, m3 = mα1+α2

,
m4 = mα1+2α2

, m5 = mα1+3α2
, m6 = m2α1+3α2

.

}

3.2. Kähler-Einstein metrics. It is well known ([7, p. 504]) that a full flag man-
ifold K/T admits |W (K)|/2 invariant complex structures (here W (K) is the Weyl
group of K), which are all equivalent under an automorphism of K. We now
compute the unique Kähler–Einstein metric which is compatible with the natural
complex structure Jnat, that is, the complex structure corresponding to the natural
invariant ordering R+ given by (3.1). From (2.5) a G2-invariant Riemannian metric
on G2/T is given by

(3.3) g = x1 ·Q|m1
+ · · ·+ x6 ·Q|m6

,

where we have set x1 = xα1
, x2 = xα2

, x3 = xα1+α2
, x4 = xα1+2α2

, x5 = xα1+3α2
,

x6 = x2α1+3α2
, and the mk (k = 1, . . . , 6) are given by (3.2). We will denote such

metrics by g = (x1, x2, x3, x4, x5, x6) ∈ R6
+.

Theorem 3.1. The full flag manifold G2/T admits six invariant Kähler–Einstein
metrics which are isometric to each other. The Kähler-Einstein metric g2δ which
is compatible with the natural invariant ordering Jnat is given (up to a scale) by
g2δ = (3, 1, 4, 5, 6, 9).

Proof. According to the notation of Section 2.1, the weight δ for G2/T is given

by δ = 1
2

∑
α∈R+ α =

∑2
i=1 Λi, where Λ1 and Λ2 are the fundamental weights

corresponding to the simple roots α1 and α2, respectively. In Figure 2 one can
easily distinguish the long roots

L1 = α1, L2 = α1 + 3α2, L3 = 2α1 + 3α2
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2492 A. ARVANITOYEORGOS, I. CHRYSIKOS, AND Y. SAKANE

from the short roots

S1 = α2, S2 = α1 + α2, S3 = α1 + 2α2.

Then ‖Li‖ =
√
3 ‖Sj‖, where 1 ≤ i, j ≤ 3 and i, j are independent. We set

(Li,Li) = 3 and (Si,Si) = 1, for any 1 ≤ i ≤ 3. We denote the Kähler-Einstein
metric g2δ by

gα1 ·Q|m1 + gα2 ·Q|m2 + gα1+α2 ·Q|m3 + gα1+2α2 ·Q|m4 + gα1+3α2 ·Q|m5 + g2α1+3α2 ·Q|m6 ,

which is compatible with the natural invariant complex structure Jnat defined by
the ordering R+. By using (2.1) and applying relation (2.6) we obtain the following
values for the components gα = (2δ, α), α ∈ R+ of this metric:

gα1
= 2(Λ1, α1) = (α1, α1) = 3, gα2

= 2(Λ2, α2) = (α2, α2) = 1,

gα1+α2
= 2(Λ1, α1) + 2(Λ2, α2) = 4, gα1+2α2

= 2(Λ1, α1) + 4(Λ2, α2) = 5,

gα1+3α2
= 2(Λ1, α1) + 6(Λ2, α2) = 6, g2α1+3α2

= 4(Λ1, α1) + 6(Λ2, α2) = 9.

�

3.3. Homogeneous Einstein metrics. We now proceed to the calculation of the
Ricci tensor Ricg corresponding to a G2-invariant metric (3.3) on G2/T . Following
the notation of Section 2.3, the tensor Ricg as a G2-invariant symmetric covariant
2-tensor on G2/T is given by Ricg = r1x1 · Q|m1

+ · · · + r6x6 · Q|m6
, where for

simplicity we have set r1 = rα1
, r2 = rα2

, r3 = rα1+α2
, r4 = rα1+2α2

, r5 = rα1+3α2

and r6 = r2α1+3α2
. In order to apply (2.8) we first need to find the nonzero structure

constants
[
k
ij

]
of G2/T . By using (3.1) and (3.2) it follows that these are

c312 =

[
α1 + α2

α1 α2

]
=

[
3

12

]
, c423=

[
α1 + 2α2

α2 α1 + α2

]
=

[
4

23

]
, c524 =

[
α1 + 3α2

α2 α1 + 2α2

]
=

[
5

24

]
,

c615 =

[
2α1 + 3α2

α1 α1 + 3α2

]
=

[
6

15

]
, c634 =

[
2α1 + 3α2

α1 + α2 α1 + 2α2

]
=

[
6

34

]
.

By Remark 2.4 and the remarks on the notation for
[
γ
αβ

]
, we obtain the following:

Lemma 3.2. The triples c312, c
5
24 and c634 are equal.

Proof. The Weyl group W (R) is generated by the reflections {sα1
, sα2

}, and we
have that sα1

(α1) = −α1, sα1
(α2) = α1 + α2, sα2

(α2) = −α2, sα2
(α1) = α1 + 3α2.

Now we see that sα2
(α1 + α2) = α1 + 2α2 and hence we have that

c524 =

[
α1 + 3α2

α2 α1 + 2α2

]
=

[
sα2

(α1)

−sα2
(α2) sα2

(α1 + α2)

]
=

[
α1

−α2 α1 + α2

]

=

[
α1 + α2

α1 α2

]
= c312.

We also see that sα1
(α1 +3α2) = 2α1 +3α2 and sα1

(α1 + 2α2) = α1 + 2α2, and
hence we have that

c634 =

[
2α1 + 3α2

α1 + α2 α1 + 2α2

]
=

[
sα1

(α1 + 3α2)

sα1
(α2) sα1

(α1 + 2α2)

]
=

[
α1 + 3α2

α2 α1 + 2α2

]
= c524.�
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For the calculation of the above triples we use Proposition 2.3 and the fact that

(3.4) N2
α,β = Nα,βN−α,−β =

q(p+ 1)

2
Q(α, α),

where p, q are the largest nonnegative integers such that β + kα ∈ R, with −p ≤
k ≤ q.

We first proceed to the calculation of c312 =
[
α1+α2

α1 α2

]
. By using the relation

(α1, α1) = 3(α2, α2) and equation (3.4) we obtain that N2
α1,α2

= 3Q(α2, α2)/2, so

Proposition 2.3 implies that c312 = 3Q(α2, α2). The normalizing value Q(α2, α2) is
given by Q(α2, α2) = 1/12 (cf. [8]); thus c312 = 1/4. Similarly, we obtain that

c423 =

[
α1 + 2α2

α2 α1 + α2

]
= 2N2

α2,α1+α2
=

1

3
, c615 =

[
2α1 + 3α2

α1 α1 + 3α2

]
= 2N2

α1,α1+3α2
=

1

4
.

The above computations combined with Lemma 3.2 give the following:

Proposition 3.3. The nonzero triples
[
k
ij

]
of the full flag manifold G2/T are given

by [
3

12

]
=

[
5

24

]
=

[
6

34

]
=

[
6

15

]
=

1

4
and

[
4

23

]
=

1

3
.

Therefore, we obtain the following proposition for the Ricci tensor from (2.8):

Proposition 3.4. The components ri (i = 1, . . . , 6) of the Ricci tensor associated
to the G-invariant Riemannian metric g given by (3.3) are the following:

r1 =
1

2x1
+

1

16

( x1

x2x3
− x2

x1x3
− x3

x1x2

)
+

1

16

( x1

x5x6
− x5

x1x6
− x6

x1x5

)
,

r2 =
1

2x2
+

1

16

( x2

x1x3
− x1

x2x3
− x3

x1x2

)
+

1

12

( x2

x3x4
− x3

x2x4
− x4

x2x3

)
+

1

16

( x2

x4x5
− x4

x2x5
− x5

x2x4

)
,

r3 =
1

2x3
+

1

16

( x3

x1x2
− x2

x1x3
− x1

x2x3

)
+

1

12

( x3

x2x4
− x2

x3x4
− x4

x2x3

)
++

1

16

( x3

x4x6
− x4

x3x6
− x6

x3x4

)
,

r4 =
1

2x4
+

1

12

( x4

x2x3
− x2

x3x4
− x3

x2x4

)
+

1

16

( x4

x2x5
− x2

x4x5
− x5

x2x4

)
+

1

16

( x4

x3x6
− x3

x4x6
− x6

x3x4

)
,

r5 =
1

2x5
+

1

16

( x5

x1x6
− x1

x5x6
− x6

x1x5

)
+

1

16

( x5

x2x4
− x2

x4x5
− x4

x2x5

)
,

r6 =
1

2x6
+

1

16

( x6

x1x5
− x1

x5x6
− x5

x1x6

)
+

1

16

( x6

x3x4
− x3

x4x6
− x4

x3x6

)
.

A G2-invariant Riemannian metric on the full flag manifold G2/T is Einstein if
and only if there is a positive constant k such that

(3.5) r1 = k, r2 = k, r3 = k, r4 = k, r5 = k, r6 = k,

where ri (i = 1, . . . , 6) are given in Proposition 3.4.
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4. Proof of Theorem A

Note that the action of the Weyl group of g2 on its root system (cf. Figure 2)
induces an action on the components of the G2-invariant metric (3.3). In particu-
lar, if (x1, x2, x3, x4, x5, x6) = (a1, a2, a3, a4, a5, x6) is a solution for the system of
equations (3.5), then

(x1, x2, x3, x4, x5, x6) = (a5, a2, a4, a3, a1, a6)

is also a solution of the system (3.5). In fact, if w is a reflection about 2α1+3α2 in
the root diagram of g2, then w(α1) = α1+3α2, w(α1+α2) = α1+2α2. This induces
an interchange of x1 with x5 and x3 with x4, and keeps x2, x6 fixed. Similarly we
see that

(x1, x2, x3, x4, x5, x6) = (a6, a3, a4, a2, a1, a5),

(x1, x2, x3, x4, x5, x6) = (a1, a3, a2, a4, a6, a5),

(x1, x2, x3, x4, x5, x6) = (a5, a4, a2, a3, a6, a1),

(x1, x2, x3, x4, x5, x6) = (a6, a4, a3, a2, a5, a1)

are also solutions of system (3.5). These metrics are all isometric to each other.
The above analysis using the Weyl group suggests splitting the study of solutions

for the system (3.5) into two cases: Case A: (x1 − x5)(x1 − x6)(x5 − x6) = 0 and
Case B: (x1 − x5)(x1 − x6)(x5 − x6) �= 0.

Note that the system of equations (3.5) is equivalent to the equations

(4.1) r1 − r2 = 0, r2 − r3 = 0, r3 − r4 = 0, r4 − r5 = 0, r5 − r6 = 0.

Moreover, we normalize our equations by setting x1 = 1. Then the system of
equations (4.1) is equivalent to the equations
(4.2)

f1 = −3x2
2x3x6 − 6x2

2x4x5x6 − 4x2
2x5x6 − 3x2x3x4x5

2

+24x2x3x4x5x6 − 3x2x3x4x6
2 + 3x2x3x4 + 4x3

2x5x6 + 3x3x4
2x6

−24x3x4x5x6 + 3x3x5
2x6 + 4x4

2x5x6 + 6x4x5x6 = 0,
f2 = 3x2

2x3x6 + 6x2
2x4x5x6 + 8x2

2x5x6 − 3x2x3
2x5 + 3x2x4

2x5

−24x2x4x5x6 + 3x2x5x6
2 − 6x3

2x4x5x6 − 8x3
2x5x6 − 3x3x4

2x6

+24x3x4x5x6 − 3x3x5
2x6 = 0,

f3 = 3x2
2x3x6 − 3x2

2x4x5x6 + 6x2x3
2x5 − 24x2x3x5x6 − 6x2x4

2x5

+24x2x4x5x6 + 3x3
2x4x5x6 + 8x3

2x5x6 − 3x3x4
2x6 + 3x3x5

2x6

−8x4
2x5x6 − 3x4x5x6 = 0,

f4 = −4x2
2x5x6 − 3x2x3

2x5 − 3x2x3x4x5
2 + 3x2x3x4x6

2

−24x2x3x4x6 + 3x2x3x4 + 24x2x3x5x6 + 3x2x4
2x5 − 3x2x5x6

2

−4x3
2x5x6 + 6x3x4

2x6 − 6x3x5
2x6 + 4x4

2x5x6 = 0,
f5 = −x2

2x3x6 + x2x3
2x5 + 2x2x3x4x5

2 − 8x2x3x4x5 − 2x2x3x4x6
2

+8x2x3x4x6 + x2x4
2x5 − x2x5x6

2 − x3x4
2x6 + x3x5

2x6 = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

for solutions with x2x3x4x5x6 �= 0.
To find nonzero solutions of equations (4.2), we compute a Gröbner basis (see

for example [9]) by using algebraic manipulations in a computer system.

Case A. We may assume that x1 = x5 = 1. If x6 = 1, we consider a polynomial
ring R1 = Q[y, x2, x3, x4, x5, x6] and an ideal I1 generated by

{f1, f2, f3, f4, f5, x5 − 1, x6 − 1, y x2x3x4x5x6 − 1}.
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HOMOGENEOUS EINSTEIN METRICS ON G2/T 2495

We take a lexicographic order > with y > x2 > x3 > x4 > x5 > x6 for a monomial
ordering on R1. Then a Gröbner basis for the ideal I1 is given by

{x6 − 1, x5 − 1, 15x4
2 − 20x4 + 9, x3 − x4, x2 − x3,−2600 + 3975x4 + 729y}.

Now the equation 15x4
2 − 20x4 + 9 = 0 has no real solutions. Thus there are no

Einstein metrics for this case.

If x6 �= 1, we consider an ideal I2 generated by

{f1, f2, f3, f4, f5, x5 − 1, (x6 − 1) y x2x3x4x5x6 − 1}.

We take a lexicographic order > with y > x6 > x5 > x2 > x3 > x4 for a monomial
ordering on R1. Then we see that x3 − x4 is an element of a Gröbner basis for the
ideal I2. Thus we obtain the following expression for the Ricci components in this
case:

r1 = r5 =
1

2
+

1

16

(
1

x2x3
− x2

x3
− x3

x2

)
− x6

16
,

r2 =
1

2x2
+

1

12

(
x2

x3
2
− 2

x2

)
+

1

8

(
x2

x3
− x3

x2
− 1

x2x3

)
,

r3 = r4 =
1

2x3
+

1

16

(
x3

x2
− x2

x3
− 1

x2x3

)
− x2

12x3
2
− x6

16x3
2
,

r6 =
1

2x6
+

1

16

(
x6 −

2

x6

)
+

1

16

(
x6

x3
2
− 2

x6

)
.

Now the system of equations (3.5) is equivalent to the equations

(4.3) r1 = r2, r2 = r3, r3 = r6.

Moreover, we see that the system of equations (4.3) is equivalent to the equations

(4.4)

h1 = −9x2
2x3 − 4x2

2 − 3x2x3
2x6 + 24x2x3

2 + 3x3
3 − 16x3

2 + 9x3 = 0
h2 = 9x2

2x3 + 8x2
2 − 24x2x3 + 3x2x6 − 9x3

3 + 16x3
2 − 3x3 = 0

h3 = −3x2
2x3x6 − 4x2

2x6 − 3x2x3
2x6

2 − 12x2x3
2 + 24x2x3x6

−6x2x6
2 + 3x3

3x6 − 3x3x6 = 0,

⎫⎪⎪⎬
⎪⎪⎭

for solutions with x2x3x6 �= 0.
We consider a polynomial ring R2 = Q[y, x2, x3, x6] and an ideal I3 generated

by

{h1, h2, h3, y x2x3x6 − 1}.

We take a lexicographic order > with y > x2 > x3 > x6 for a monomial ordering
on R2. Then a Gröbner basis for the ideal I3 contains the following polynomials
p1, p2, p3:

p1 = 28431x6
14 − 589032x6

13 + 5435343x6
12 − 29379024x6

11 + 100757208x6
10

− 224163176x6
9 + 336260186x6

8 − 371473808x6
7 + 339968604x6

6 − 262478048x6
5

+ 152856152x6
4 − 69550016x6

3 + 35706576x6
2 − 17407872x6 + 3888000,
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p2 = 58198531083202847398292035805427252703995763069632x2

− 3643118798497595406962507582551202073571549014597x6
13

+ 72992357388477268215374104374790339627732724331072x6
12

− 646567727758207935002275986628033179230065652663061x6
11

+ 3321518579042845371552323860647602584109650553728920x6
10

− 10630524684514537641000725361809530238649740680444344x6
9

+ 21417364804945911429515190574637753191025839827487192x6
8

− 28389061171757812126136768127456927964712883615920638x6
7

+ 28311617865989383607989773945214867782385295574349024x6
6

− 24774704999202893012898243740523073131413082414850260x6
5

+ 17526790961102909129622834293267525297910502941466624x6
4

− 8188114481577095576234998176450007614578500056871240x6
3

+ 3562379534276698939524030165567374089875873542732800x6
2

− 2298954881044018869226019836424141856363362783139696x6

+ 738157956056149928743880926430168536213084185530880,

p3 = 2424938795133451974928834825226135529333156794568x3

+ 190299726260617748360078671692188285863545186231x6
13

− 3772672180209164908442997048429231230108688015708x6
12

+ 33007596001063757829305936652578219133471910058553x6
11

− 167088331330227007688571325972415637397648450592985x6
10

+ 524508423670293884907483441538953074568075167613750x6
9

− 1028643118190496545823481969284436484392588928255299x6
8

+ 1321914168075901690582280884750861726955041116133678x6
7

− 1286826151972665839433699700223920764972986949833794x6
6

+ 1102747968247342493561980802133113539094868778040040x6
5

− 748737830066525920856184078153848962211101215021298x6
4

+ 334500258786115622392457312297818354307784956975224x6
3

− 155759212247584755088196238509822799941866625955256x6
2

+ 95407553283841359554204716996124488446792794847168x6

− 28083415274725086532725024624855426929207778616800.

By solving the equation p1 = 0 numerically, we obtain exactly two real solutions
which are approximately given by x6 ≈ 0.74403477990 and x6 ≈ 1.789600622. We
substitute these values for x6 into equations p2 = 0 and p3 = 0, and we obtain
two positive solutions approximately given by x2 ≈ 0.21737, x3 ≈ 1.02343 and
x2 ≈ 0.27624, x3 ≈ 1.03473. Moreover, we obtain the value for k from (3.5). Thus
we have the following:
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Theorem 4.1. The full flag manifold G2/T admits two non-Kähler G2-invariant
Einstein metrics. These metrics are given approximately as follows:

x1 = 1, x2 ≈ 0.2762, x3 = x4 ≈ 1.0347, x5 = 1, x6 ≈ 1.7896, k ≈ 0.3560,
x1 = 1, x2 ≈ 0.2173, x3 = x4 ≈ 1.0234, x5 = 1, x6 ≈ 0.7440, k ≈ 0.4269.

Case B. We consider a polynomial ring R1 = Q[y, x2, x3, x4, x5, x6] and an ideal I4
generated by

{f1, f2, f3, f4, f5, (x5 − 1)(x6 − 1) y x2x3x4x5x6 − 1}.

We take a lexicographic order > with y > x2 > x3 > x4 > x5 > x6 for a monomial
ordering on R1. Then a Gröbner basis for the ideal I4 contains a polynomial of the
form

(x6 − 3)(x6 − 2)(2x6 − 3)(2x6 − 1)(3x6 − 2)(3x6 − 1)q1(x6),

where q1(x6) is an explicitly given polynomial of degree 84 with integer coefficients.

For the case when (x6 − 3)(x6 − 2)(2x6 − 3)(2x6 − 1)(3x6 − 2)(3x6 − 1) = 0, we
first consider an ideal I5 generated by

{f1, f2, f3, f4, f5, (x6 − 3), y x2x3x4x5x6 − 1}.

We take a lexicographic order > with y > x2 > x3 > x4 > x5 > x6 for a monomial
ordering on R1. Then a Gröbner basis for the ideal I5 is given by

{x6 − 3, x5 − 2, 3x4 − 5, 3x3 − 4, 3x2 − 1, 40y − 9}.
We also compute the Gröbner basis for other cases and we obtain the following sets
of solutions for equations (4.2):

(x6 = 3, x5 = 2, x4 = 5
3
, x3 = 4

3
, x2 = 1

3
), (x6 = 2, x5 = 3, x4 = 5

3
, x3 = 1

3
, x2 = 4

3
),

(x6 = 3
2
, x5 = 1

2
, x4 = 2

3
, x3 = 5

6
, x2 = 1

6
), (x6 = 1

2
, x5 = 3

2
, x4 = 2

3
, x3 = 1

6
, x2 = 5

6
),

(x6 = 2
3
, x5 = 1

3
, x4 = 1

9
, x3 = 5

9
, x2 = 4

9
), (x6 = 1

3
, x5 = 2

3
, x4 = 1

9
, x3 = 4

9
, x2 = 5

9
).

Note that these are the six Kähler-Einstein metrics of Theorem 3.1.
Now, by solving the equation q1(x6) = 0 numerically, we obtain 14 positive

solutions, which are approximately given by

x6 ≈ 0.1101296649906623, x6 ≈ 0.1276467609933986, x6 ≈ 0.1654266507070432,

x6 ≈ 0.2010643285289733, x6 ≈ 0.3065328288396123, x6 ≈ 0.5181203151843693,

x6 ≈ 0.5477334830916693, x6 ≈ 1.825705440455314, x6 ≈ 1.930053639460474,

x6 ≈ 3.262293320377869, x6 ≈ 4.973532636625297, x6 ≈ 6.044975194298747,

x6 ≈ 7.834119661302769, x6 ≈ 9.080205592968872.

To get the solutions of equations (4.2) for the variables x2, x3, x4, x5 correspond-
ing to the solution x6, we compute a Gröbner basis under the condition (x6 −
3)(x6 − 2)(2x6 − 3)(2x6 − 1)(3x6 − 2)(3x6 − 1) �= 0; that is, we consider an ideal I6
generated by {f1, f2, f3, f4, f5, (x6 − 3)(x6 − 2)(2x6 − 3)(2x6 − 1)(3x6 − 2)(3x6 −
1) y x2x3x4x5x6 − 1} and take a lexicographic order > with y > x2 > x3 > x4 >
x5 > x6 for a monomial ordering on R1. Then q1 is contained in this Gröbner
basis, and by examining the other elements of the obtained Gröbner basis, we see
that the other variables x2, x3, x4, x5 can be expressed by polynomials of x6 with
degree 83. Let x2 = q2(x6), x3 = q3(x6), x4 = q4(x6), and x5 = q5(x6) be these
polynomials. Now we substitute these 14 values for x6 into the expressions of the
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polynomials q2, q3, q4, q5 of x6 with degree 83. Then we get the following solutions
which are approximately given by

x6 ≈ 0.11013, x5 ≈ 0.547733, x4 ≈ 1.61358, x3 ≈ 0.399131, x2 ≈ −0.277481,

x6 ≈ 0.127647, x5 ≈ −0.775539, x4 ≈ 0.202709, x3 ≈ 1.7601, x2 ≈ −0.203265,

x6 ≈ 0.165427, x5 ≈ −0.021892, x4 ≈ 0.308989, x3 ≈ 0.00455279, x2 ≈ 0.5435,

x6 ≈ 0.201064, x5 ≈ 1.82571, x4 ≈ 0.728695, x3 ≈ 2.94591, x2 ≈ −0.506599,

x6 ≈ 0.306533, x5 ≈ −1.52438, x4 ≈ 0.207857, x3 ≈ 1.64949, x2 ≈ 5.33389,

x6 ≈ 0.51812, x5 ≈ −0.100239, x4 ≈ −0.120371, x3 ≈ −2.58645, x2 ≈ −0.539579,

x6 ≈ 0.547733, x5 ≈ 0.11013, x4 ≈ 1.61358, x3 ≈ −0.277481, x2 ≈ 0.399131,

x6 ≈ 1.82571, x5 ≈ 0.201064, x4 ≈ 0.728695, x3 ≈ −0.506599, x2 ≈ 2.94591,

x6 ≈ 1.93005, x5 ≈ −0.193467, x4 ≈ −1.04142, x3 ≈ −4.99198, x2 ≈ −0.232323,

x6 ≈ 3.26229, x5 ≈ −4.97297, x4 ≈ 17.4007, x3 ≈ 5.38113, x2 ≈ 0.678092,

x6 ≈ 4.97353, x5 ≈ 9.08021, x4 ≈ −2.51959, x3 ≈ 14.6516, x2 ≈ 3.62419,

x6 ≈ 6.04498, x5 ≈ −0.132336, x4 ≈ 3.28544, x3 ≈ 0.0275215, x2 ≈ 1.86783,

x6 ≈ 7.83412, x5 ≈ −6.07566, x4 ≈ −1.5924, x3 ≈ 13.7889, x2 ≈ 1.58805,

x6 ≈ 9.08021, x5 ≈ 4.97353, x4 ≈ −2.51959, x3 ≈ 3.62419, x2 ≈ 14.6516.

We see that at least one of the xi’s in these solutions is negative. Thus there
are no invariant Einstein metrics for these cases, and this completes the proof of
Theorem A.
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Unión Mathemática Argentina, 47 (2006) 77–84. MR2301378 (2008b:53061)

11. S. Helgason: Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, New
York, 1978. MR514561 (80k:53081)

12. M. Kimura: Homogeneous Einstein metrics on certain Kähler C-spaces, Adv. Stud. Pure
Math. 18-I, Academic Press, Boston, MA, 1990, 303–320. MR1145261 (93b:53039)

13. J. L. Koszul: Sur la forme hermitienne canonique des espaces homogènes complexes, Can. J.
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