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COMPUTATIONS IN MULTIVARIATE QUATERNIONIC
POLYNOMIAL RING

DANG TUAN HIEP

In this paper we study division algorithm and Gröbner bases in the
multivariate quaternionic polynomial ring.

1. Multivariate quaternionic polynomial ring

Let H denote the algebra of real quaternions. This algebra is generated by three
elements i, j,k, called imaginary units since they satisfy the relations i2 = j2 =
k2 =−1, i j =− ji = k, jk =−k j = i, and ki =−ik = j. The elements in H can
be written as q = x0 + ix1 + jx2 + kx3 where x0,x1,x2 and x3 are real. Then we
also define q = x0− ix1− jx2− kx3 and check easily that

qq = qq = x2
0 + x2

1 + x2
2 + x2

3 ∈ R.

Thus, if q 6= 0 then q−1 = (x2
0 + x2

1 + x2
2 + x2

3)
−1q. In particular, H is a four–

dimensional division algebra over R.
Technically, polynomials over the quaternions could be finite sums of ele-

ments of the type aqα1
1 . . .qαn

n or qα1
1 . . .qαn

n a, with a ∈ H, or, more in general,
words of the type

a0qα1
1 . . .qαn

n a1qβ1
1 . . .qβn

n . . .ak−1qγ1
1 . . .qγn

n ak,
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with al ∈ H. However, we only focus on the powers of q1, . . . ,qn with left
coefficients in H.

Definition 1.1. The ring of multivariate quaternionic polynomials H[q1, . . . ,qn]
is the set whose elements are of the type

∑
α=(α1,...,αn)∈Nn

aαqα1
1 . . .qαn

n ,

where aα ∈H, endowed with the noncommutative product defined by the linear
extension of

(aαqα1
1 . . .qαn

n )∗ (aβ qβ1
1 . . .qβn

n ) = aαaβ qα1+β1
1 . . .qαn+βn

n .

As in every noncommutative ring, ideals of H[q1, . . . ,qn] can be left, right
or bilateral, depending on which side one allows multiplication. For the sake of
simplicity, most of the times we will consider left ideals only. Unless otherwise
specified, our results on left ideals will translate into the corresponding ones for
right ideals in a straightforward manner.

2. Division algorithm and Gröbner bases

In [2], the authors showed that the ring of one variable quaternionic polynomials
H[q] be an (left or right) Euclidean domain.

Proposition 2.1 (Euclidean Division). Let F,G ∈ H[q] with deg(G) > 0. Then
there exist Q,R,Q′ and R′ in H[q], with max(deg(R),deg(R′)) < deg(G), such
that

F = Q∗G+R and F = G∗Q′+R′.

Moreover, such polynomials are uniquely determined.

Then they gave an algorithm for the calculation of the greatest common di-
visor using Euclidean division and proved immediately the following corollary.

Corollary 2.2. Every left or right ideal of H[q] is principal.

Thus, in the ring of one variable quaternionic polynomials, division algo-
rithm and stucture of the left or right ideals look like as in the ring of polynomi-
als with coefficients over a field. In order to do calculations we need a system
for ordering the terms of a polynomial. For polynomials in one variable, the
natural order is by degree, i.e.,

qm > qn if m > n.
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However, for polynomials in many variables, we have seen that the order is
essentially arbitrary. We first fix terminology. Given a polynomial

∑
α=(α1,...,αn)∈Nn

aαqα1
1 . . .qαn

n ,

with aα ∈H, each aαqα1
1 . . .qαn

n is a term. A polynomial of the form

qα = qα1
1 . . .qαn

n

is called a monomial.

Definition 2.3. A monomial order > on H[q1, . . . ,qn] is a total order on mono-
mials satisfying the following:

(i) If qα > qβ then qαqγ > qβ qγ (for any α,β ,γ).

(ii) An arbitrary set of monomials {qα}α∈A has a least element.

We give a basic example of monomial orders:

Example 2.4 (Lexicographic order). This is basically the order on words in a
dictionary. We have qα >lex qβ if the first nonzero entry of (α1−β1, . . . ,αn−βn)
is positive. For example, we have

q1 >lex q3
2 >lex q2q3 >lex q5

3.

It is easy to prove this is a monomial order.

Definition 2.5. Fix a monomial order on H[q1 . . . ,qn] and consider a nonzero
polynomial

f = ∑
α

aαqα .

The leading monomial of f (denoted LM( f )) is the largest monomial qα such
that aα 6= 0. The leading term of f (denoted LT( f )) is the corresponding term
aαqα .

Definition 2.6. We say that a left (resp. right) ideal is finitely generated if there
is a finite set of nonzero polynomials f1, . . . , fr ∈ H[q1, . . . ,qn] such that each
g ∈ I has a representation

g = h1 ∗ f1 + · · ·+hr ∗ fr (resp. g = f1 ∗h1 + · · ·+ fr ∗hr),

where h1, . . . ,hr ∈H[q1, . . . ,qn]. Then we denote

I = 〈 f1, . . . , fr〉l (resp. I = 〈 f1, . . . , fr〉r).
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Definition 2.7. Let f ,g∈H[q1, . . . ,qn]. We say that f divides g on the left (resp.
on the right) if there exists h ∈H[q1, . . . ,qn] such that g = h∗ f (resp. g = f ∗h).
Then we denote h = g/ f .

Algorithm 2.8 (Division algorithm). Fix a monomial order > on H[q1, . . . ,qn]
and nonzero polynomials f1, . . . , fr ∈H[q1, . . . ,qn]. Given g ∈H[q1, . . . ,qn], we
want to determine whether g ∈ 〈 f1, . . . , fr〉l:

Step 0. Put g0 = g. If there exists no f j with LM( f j) divides LM(g0) on the left
then we stop. Otherwise, pick such an f j0 and cancel leading terms by
putting

g1 = g0− (LT(g0)/LT( f j0))∗ f j0 .

. . .

Step i. Given gi, if there exists no f j with LM( f j) divides LM(gi) on the left then
we stop. Otherwise, pick such an f ji and cancel leading terms by putting

gi+1 = gi− (LT(gi)/LT( f ji))∗ f ji . (1)

As we are cancelling leading terms at each stage, we have

LM(g) = LM(g0)> LM(g1)> · · ·> LM(gi)> LM(gi+1)> · · · .

By the well-ordering property of the monomial order, such a chain of de-
creasing monomials must eventually terminate. If this algorithm does not stop,
then we must have gN = 0 for some N. Back-substituting using equation (1), we
obtain

g =
N−1

∑
i=0

(LT(gi)/LT( f ji))∗ f ji

=
r

∑
j=1

(
∑
ji= j

(LT(gi)/LT( f ji))

)
∗ f j

=
r

∑
j=1

h j ∗ f j.

Unfortunately, this algorithm often stops prematurely. Even when

g ∈ 〈 f1, . . . , fr〉l,

it may happen that LM(g) is not divisible by any LM( f j).

Example 2.9. Let f1 = (1+ i+ 2k)q− i, f2 = (2i+ j)q and g = 1. We cer-
tainly have g ∈ 〈 f1, f2〉l but LM(g) is not divisible by LM( f1) or LM( f2), so the
procedure stops at the initial step.
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To understand better why this breakdown occurs, we make the following
definitions:

Definition 2.10. A left (resp. right) monomial ideal I ⊂ H[q1, . . . ,qn] is a left
(resp. right) ideal generated by a collection of monomials {xα}α∈A. Fix a mono-
mial order > and let I ⊂ H[q1, . . . ,qn] be a left (resp. right) ideal. We denote
LLT(I) (resp. RLT(I)) the left (resp. right) monomial ideal generated by leading
terms of the polynomials in I.

Definition 2.11 (Gröbner bases). Fix a monomial order > and let

I ⊂H[q1, . . . ,qn],

be a left (resp. right) ideal. A left (resp. right) Gröbner basis for I is a collection
of nonzero polynomials { f1, . . . , fr} ⊂ I such that LT( f1), . . . ,LT( fr) generate
LLT(I) (resp. RLT(I))).

Nothing in Definition 2.11 says that a left Gröbner basis actually generates
I. We prove this is also true later.

Remark 2.12. In the one variable case, every generator for a left (resp. right)
principal ideal is a left (resp. right) Gröbner basis.

Proposition 2.13. Let I ⊂H[q1, . . . ,qn] be a left ideal and { f1, . . . , fr} be a left
Gröbner basis for I. The division algorithm terminates in a finite number of
steps, with either gi = 0 or LT(gi) not divisible by any of the leading terms
LT( f j).

1. In the first case, the algorithm returns a representation

g = h1 ∗ f1 + · · ·+hr ∗ fr,

where h j ∈H[q1, . . . ,qn], and g ∈ I.

2. In the second case, we obtain an expression

g = h1 ∗ f1 + · · ·+hr ∗ fr +gi,

where LT(gi) 6∈ 〈LT( f1), . . . ,LT( fr)〉l , hence g 6∈ I.

This proposition immediately implies the following corollary.

Corollary 2.14. Fix a monomial order >. Let I ⊂ H[q1, . . . ,qn] be a left ideal
and { f1, . . . , fr} be a left Gröbner basis for I. Then I = 〈 f1, . . . , fr〉l .

The proof of Proposition 2.13 will use the following lemma.
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Lemma 2.15. Let I be a left monomial ideal generated by a collection of mono-
mials {qα}α∈A. Then every monomial in I is a left multiple of some qα .

Proof. Let qβ be a monomial in I. Then we can write

qβ = ∑
i

wi ∗qα(i),

where the wi are polynomials. In particular, qβ appears in the right-hand side
and hence it is a monomial of wi ∗qα(i) for some i. Thus it is divisible by qα(i)

on the left.

Proof of Proposition 2.13. We have already shown that we obtain a representa-
tion

g = h1 ∗ f1 + · · ·+hr ∗ fr

unless the algorithm stops. We need to show the algorithm terminates with
gi = 0 for some i whenever g ∈ I. If g ∈ I then the intermediate gi ∈ I as well.
We now use the definition of a left Gröbner basis: If, for some i, the leading
term LT(gi) is not divisible by LT( f j) for any j, then

LT(gi) 6∈ 〈LT( f1), . . . ,LT( fr)〉l

by Lemma 2.15. It follows that gi 6∈ I; the formula relating g and gi guarantees
that g 6∈ I.

3. Existence of Gröbner bases

We have not yet established that left (resp. right) Gröbner bases exist, or even
that each left (resp. right) ideal of H[q1, . . . ,qn] is finitely generated. In this
section, we shall prove the following theorem.

Theorem 3.1 (Existence Theorem). Fix a monomial order > and a nonzero left
(resp. right) ideal I ⊂ H[q1, . . . ,qn]. Then I admits a finite left (resp. right)
Gröbner basis.

Corollary 3.2. Every left (resp. right) ideal in multivariate quaternionic poly-
nomial ring is finitely generated.

It suffices to show that LLT(I) is finitely generated. Indeed, if f1, . . . , fr ∈ I
are chosen such that

LLT(I) = 〈LT( f1), . . . ,LT( fr)〉l
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then Corollary 2.14 implies

I = 〈 f1, . . . , fr〉l.

Thus the proof of the existence theorem is reduced to the case of left (resp. right)
monomial ideals:

Proposition 3.3. Every left (resp. right) monomial ideal in a multivariate
quaternionic polynomial ring is generated by a finite collection of monomials.

Proof. Let I ⊂ H[q1, . . . ,qn] be a left monomial ideal. We want to find a finite
number of monomials in I generating I. The proof is by induction on n, the
number of variables. If n = 1, by Corollary 2.2, every left ideal in H[q1] is
principal: If qα

1 is the monomial of minimal degree in I and qβ

1 ∈ I, then α ≤ β

and qα
1 | q

β

1 . For the inductive step, we assume the result is valid for H[q1, . . . ,qn]
and deduce it for H[q1, . . . ,qn,qn+1]. Consider the following set of auxiliary left
monomial ideals Im ⊂H[q1, . . . ,qn]:

Im = 〈qα ∈H[q1, . . . ,qn] | qαqm
n+1 ∈ I〉l.

Note that we have an ascending chain of left monomial ideals:

I0 ⊂ I1 ⊂ I2 ⊂ ·· · Im ⊂ Im+1 ⊂ ·· · .

Consider
I∞ =

⋃
m

Im,

which is also a left monomial ideal in H[q1, . . . ,qn]. By inductive assumption,
I∞ = 〈g1, . . . ,gr〉l . Each gi ∈ Ini for some ni. If N =max(n1, . . . ,nr) then I∞ = IN .
The sequence of left monomial ideals Im ⊂H[q1, . . . ,qn] terminates at some IN .
Therefore, there is a finite sequence of monomials:

〈qα(0,1), . . . ,qα(0,n0)〉l = I0

〈qα(1,1), . . . ,qα(1,n1)〉l = I1

...

〈qα(N,1), . . . ,qα(N,nN)〉l = IN

generating each of the Im for m ≥ N. The left monomial ideal I is therefore
generated by the terms qα(m, j)qm

n+1 for m = 0, . . . ,N; j = 1, . . . ,nm.

Let H be the R−algebra generated by i, j,k,q1, . . . ,qn and satisfying the
following relations
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(a) qtqs = qsqt for all 1≤ s < t ≤ n,

(b) qsi = iqs,qs j = jqs,qsk = kqs for all 1≤ s≤ n,

(c) ji =−i j,k j =− jk,ki =−ik.

Notice that the relations of (c) in the above proposition make i, j and k into
anti-commutative variables, while (a) and (b) say that q1, . . . ,qn behave like n
variables in a multivariate commutative polynomial ring. Let I be the two-sided
ideal of H generated by i2 + 1, j2 + 1,k2 + 1, i j− k, jk− i, ik+ j. We can state
the next result.

Proposition 3.4. H[q1, . . . ,qn]'H/I.

We omit its proof since it is straightforward.
Since H[q1, . . . ,qn] is a quotient of the R−algebra H, every left (resp. right)
ideal admits a left (resp. right) Gröbner basis.

4. Computations using SINGULAR

If we use SINGULAR, the ring H[q1, . . . ,qn] can be introduced via a sequence of
commands. For instance, if n = 2, the ring of the quaternionic polynomials in
two variables can be defined as follows.

> ring r=0,(x,y,i,j,k),lp;

> matrix C[5][5] = 0,1,1,1,1,0,0,1,1,1,0,0,0,-1,-1,

0,0,0,0,-1,0,0,0,0,0;

> ncalgebra(C,0);

> ideal I=i2+1,j2+1,k2+1,ij-k,jk-i,ik+j;

> qring H=twostd(I);

Note that, where x,y are two variables and i, j,k are three imaginary units in H.
Let f1 = ix+ jy and f2 = kx+ iy are two polynomials in H[x,y], then we can

compute the left Gröbner basis for left ideal generated by f1, f2 via the following
commands.

> setring H;

> option(redSB);

> option(redTail);

> ideal b=ix+jy,kx+iy;

> ideal I=std(b);

> I;

//-> I[1]=y

//-> I[2]=x
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Remark 4.1. After computing, the results will give the polynomials with the
right coefficients. So we must take the same polynomials with the left coeffi-
cients. For instance, let us compute the left Gröbner basis for left ideal generated
by g1 = ix4 + jxy3,g2 = kx3 + iy2.

> ideal c=ix4+jxy3,kx3+iy2;

> ideal J=std(c);

> J;

//-> J[1]=y4

//-> J[2]=xy2

//-> J[3]=x3-y2j

This means that {y4,xy2,x3 − jy2} is a left Gröbner basis for the left ideal
〈g1,g2〉l .
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