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On the Complexity of Gröbner Bases Conversion
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In this paper, the complexity of the conversion problem for Gröbner bases is investigated.
It is shown that for adjacent Gröbner bases F and G, the maximal degree of the poly-
nomials in G, denoted by deg(G), is bounded by a quadratic polynomial in deg(F ). For
non-adjacent Gröbner bases, however, the growth of degrees can be doubly exponential.
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1. Introduction

In recent years, several algorithms for converting a Gröbner basis (Buchberger, 1965;
Buchberger, 1970) for one term order to a Gröbner basis for a different term order have
been developed; see, for instance, Faugère et al. (1993), Faugère (1994), Traverso (1996),
Noro and Yokoyama (1995) and Collart et al. (1997). The main reason is the obvious
demand for fast conversion algorithms. For instance, if for some polynomial ideal, a
Gröbner basis with respect to a lexicographic term order is sought, it may well be more
efficient to compute first a Gröbner basis with respect to a total degree order, and then to
convert, since the former bases are generally much faster to compute than the latter. More
specialized applications, which by nature involve basis conversions, might for instance be
the implicitization of varieties (Hoffmann, 1989; Licciardi and Mora, 1994; Kalkbrener,
1996) and the inversion of polynomial isomorphisms.

Practical experiments with conversion algorithms have been very successful. In this
paper we will investigate the theoretical complexity of the conversion problem. We will
deal with the following question: let F and G be two reduced Gröbner bases of a polyno-
mial ideal. How much can the maximal degree of the polynomials in F and the maximal
degree of the polynomials in G differ? We will prove that for every natural number m
there is a prime ideal P and two reduced Gröbner bases F and G of P , such that F has
bounded degree and O(m) cardinality and G has degree and cardinality at least 22m . We
will easily derive this doubly exponential lower bound from a theorem in Huynh (1986).

The following doubly exponential upper bound is an immediate consequence of results
in Bayer (1982), Möller and Mora (1984) and Giusti (1988): let I be a homogeneous ideal
in the polynomial ring K[x0, . . . , xn] over the field K and F and G two reduced Gröbner
bases of I, and define the degree of F by deg(F ) := max({deg(f) | f ∈ F}). Then

deg(G) < ((n+ 1)(deg(F ) + 1) + 1)(n+1)2dim(I)+1
,

where dim(I) denotes the projective dimension of I.
Now the question arises of whether this doubly exponential behaviour can be improved

if, instead of two arbitrary Gröbner bases, two adjacent Gröbner bases F and G are
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considered. The notion of adjacent Gröbner bases can be formulated using the concept of
the Gröbner fan (Mora and Robbiano, 1988): F and G are called adjacent if their cones
C1 and C2 in the Gröbner fan of I are adjacent, i.e. if the intersection of C1 and C2

generates an n-dimensional subspace in Qn+1. We will show that for adjacent Gröbner
bases F and G, the quadratic bound

deg(G) < 2 · deg(F )2 + (n+ 1) · deg(F ) (1.1)

holds.
Bound (1.1) can be used for a local complexity analysis of the Gröbner walk (Amrhein

et al., 1996; Collart et al., 1997). In this algorithm, the Gröbner bases conversion is
performed in several steps following a path in the Gröbner fan of I. Bound (1.1) shows
that the path can always be chosen in such a way that the growth of the degrees in each
conversion step is at most quadratic.

2. A Doubly Exponential Lower Bound

In this section we derive a doubly exponential lower bound on Gröbner bases conversion
from a result in (Huynh, 1986).

The natural numbers are denoted by N, the non-negative integers by N0 and the ratio-
nal numbers byQ. The set of terms in the variables x0, . . . , xn is denoted by T (x0, . . . , xn).
Let f be an element of the polynomial ring K[x0, . . . , xn], where K is an arbitrary field,
and I an ideal in K[x0, . . . , xn]. For an admissible term order ≺ on T (x0, . . . , xn), the
initial term of f is denoted by in≺(f) and the ideal generated by {in≺(f) | f ∈ I} by
in≺(I).

Let f1, . . . , fr be homogeneous polynomials in K[x0, . . . , xn] \K and define

gi := fi − yi for i ∈ {1, . . . , r}. (2.1)

Denote the ideal generated by f1, . . . , fr in K[x0, . . . , xn] by I and the prime ideal
generated by g1, . . . , gr in K[x0, . . . , xn, y1, . . . , yr] by P . Let ≺x be a graded order on
T (x0, . . . , xn), ≺y an order on T (y1, . . . , yr) and ≺ the order on T (x0, . . . , xn, y1, . . . , yr)
defined by

u1v1 ≺ u2v2 if u1 ≺x u2 or (u1 = u2 and v1 ≺y v2)
for u1, u2 ∈ T (x0, . . . , xn) and v1, v2 ∈ T (y1, . . . , yr).

Lemma 2.1. For u ∈ T (x0, . . . , xn)

u ∈ in≺x(I) iff u ∈ in≺(P ).

Proof. If u = in≺(f) for some f(x0, . . . , xn, y1, . . . , yr) ∈ P , then

u = in≺x(f(x0, . . . , xn, 0, . . . , 0)) and f(x0, . . . , xn, 0, . . . , 0) ∈ I.
On the other hand, let u ∈ in≺x(I). Then there exists a homogeneous f ∈ I with

in≺x(f) = u. Write f in the form

f =
∑

hifi,

where every hi is either homogeneous of degree deg(f)− deg(fi) or 0. Define

g =
∑

higi =
∑

hifi −
∑

hiyi ∈ P.
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Since the degree of f =
∑
hifi in x0, . . . , xn is greater than the degree of

∑
hiyi in

x0, . . . , xn we obtain
u = in≺x(f) = in≺(g).2

Based on the construction in Mayr and Meyer (1982), the following result was shown
in Huynh (1986).

Theorem 2.1. For every m ∈ N there is an ideal basis F with bounded degree and O(m)
cardinality, such that any Gröbner basis equivalent to F has degree and cardinality at
least 22m .

Together with the above lemma we immediately obtain the following corollary.

Corollary 2.1. For every m ∈ N there is a prime ideal P and two reduced Gröbner
bases F and G of P , such that F has bounded degree and O(m) cardinality and G has
degree and cardinality at least 22m .

Obviously, Lemma 2.1 remains true if we replace definition (2.1) by

gi := fi − ydeg(fi)
i for i ∈ {1, . . . , r}. (2.2)

In this case we obtain from Theorem 2.1 that for every m ∈ N there is a homogeneous
ideal P and two reduced Gröbner bases F and G of P , such that F has bounded degree
and O(m) cardinality and G has degree and cardinality at least 22m .

We want to mention that the constructions (2.1) resp. (2.2) are standard tools in
Gröbner basis theory.

3. A Quadratic Upper Bound

In this section we construct a quadratic upper bound for the conversion of adjacent
Gröbner bases. Before we give the details of the construction we outline the basic steps.

Let F and G be two adjacent Gröbner bases of a homogeneous ideal I in K[x0, . . . , xn]
with respect to term orders ≺1 and ≺2, respectively. It follows from basic properties
of the Gröbner fan that there exists a homogeneous ideal J in K[x0, . . . , xn] with the
following properties:

in≺1(I) = in≺1(J), in≺2(I) = in≺2(J),

and Ψ generates an n-dimensional subspace in Qn+1, where Ψ is the set of those weight
vectors ω such that J is ω-homogeneous. Now we define an equivalence relation ∼ on
T (x0, . . . , xn) by u ∼ v iff u and v have the same ω-degree for every ω ∈ Ψ. This
equivalence relation has the following important property (see Corollary 3.1): for every
equivalence class E in T (x0, . . . , xn)

|E ∩ 〈{in≺1(f) | f ∈ F}〉| = |E ∩ 〈{in≺2(g) | g ∈ G}〉|,
where 〈{in≺1(f) | f ∈ F}〉 denotes the set of terms which are divisible by an element
of {in≺1(f) | f ∈ F}. Note that this property is a generalization of the well-known fact
that in≺1(I) and in≺2(I) have the same Hilbert function. In the next step we construct
a partition (Er)r∈R of T (x0, . . . , xn) such that each element Er of this partition is order-
isomorphic to T (x0, x1) and for every i ∈ N0 the set {u ∈ Er | deg(u) = i} is an
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equivalence class with respect to ∼ (see Lemma 3.2). In this way we are able to reduce
the original problem in T (x0, . . . , xn) to the case of two variables. It is easy to show that
for T (x0, x1) a linear bound exists (Lemma 3.3). From this linear bound, which holds
in each of the Er, we construct the quadratic bound for T (x0, . . . , xn) in the proof of
Proposition 3.1.

The whole proof only uses rather elementary and purely combinatorial arguments. In
the following subsection, the theorem we want to prove is translated into the language
of combinatorics.

3.1. from commutative algebra to combinatorics

Let I 6= {0} be a proper homogeneous ideal in the polynomial ring K[x0, . . . , xn]. We
first recall the definition of the Gröbner fan of I.

The set Ω := {(ψ0, . . . , ψn) ∈ Qn+1 | ψi ≥ 0 for every i ∈ {0, . . . , n}} is called the set
of weight vectors. Let ω = (ω0, . . . , ωn) ∈ Ω. For a term u = xi00 · · ·xinn we denote its
ω-degree by

degω(u) :=
n∑
j=0

ijωj .

The ω-degree of a non-zero polynomial f , abbreviated degω(f), is the maximum of the
ω-degrees of the terms which occur in f with non-zero coefficients. The initial form of
f with respect to ω, abbreviated inω(f), is the sum of all those monomials in f with
maximal ω-degree. Furthermore, degω(0) := −1 and inω(0) := 0. The ideal generated
by {inω(g) | g ∈ I} is denoted by inω(I). A polynomial f is called ω-homogeneous if
f = inω(f). An ideal in K[x0, . . . , xn] is called ω-homogeneous if it has a basis consisting
of ω-homogeneous polynomials.

For a term order ≺, let C≺(I) be the topological closure in Qn+1 of

{ω ∈ Ω | in≺(I) = inω(I)}.
This is a convex polyhedral cone in Qn+1 with a non-empty interior called the Gröbner
cone of I with respect to the term order ≺. The Gröbner fan of I is the finite set
{C≺(I) | ≺ a term order} (see Mora and Robbiano, 1988). Let ≺1 and ≺2 be term
orders and F and G the reduced Gröbner bases of I with respect to ≺1 resp. ≺2. It can
be easily shown that C≺1(I) = C≺2(I) iff F = G.

We call the term orders ≺1 and ≺2 (resp. the Gröbner bases F and G) adjacent if
C≺1(I) ∩ C≺2(I) generates an n-dimensional subspace in Qn+1.

We will prove the following bound.

Theorem 3.1. Let F and G be reduced Gröbner bases of I. If F and G are adjacent,
then

deg(G) < 2 · deg(F )2 + (n+ 1) · deg(F ),

where deg(F ) := max({deg(f) | f ∈ F}).

For proving this bound we will first transform Theorem 3.1 into a purely combinatorial
statement (see Proposition 3.1).

Let ≺1 and ≺2 be adjacent term orders. It follows from basic properties of the Gröbner
fan (see, for instance, Collart and Mall, 1997) that we can choose an appropriate
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ψ ∈ C≺1(I) ∩ C≺2(I) such that the ideal J := inψ(I) in K[x0, . . . , xn] has the following
three properties:

(a) in≺1(I) = in≺1(J) and in≺2(I) = in≺2(J);
(b) (1, 1, . . . , 1) ∈ Ψ, where Ψ := {ω ∈ Ω | J is ω-homogeneous};
(c) Ψ generates an n-dimensional subspace H in Qn+1.

We define the following equivalence relation ∼ on T (x0, . . . , xn): u ∼ v for u, v ∈
T (x0, . . . , xn) if

degω(u) = degω(v) for every ω ∈ Ψ.
Let A be a non-empty subset of T (x0, . . . , xn). We denote the linear hull of A in the
K-vector space K[x0, . . . , xn] by K(A), i.e.

K(A) :=
{ r∑
i=1

hiai | r ∈ N, a1, . . . , ar ∈ A, h1, . . . , hr ∈ K
}
.

It is well known that the ideals in≺1(I) and in≺2(I) have the same Hilbert function.
Since they can be regarded as initial ideals of J , it follows from Lemma 3.1 that these
ideals even satisfy the stronger condition

dim(in≺1(I) ∩K(E)) = dim(in≺2(I) ∩K(E)) for every equivalence class E. (3.1)

Lemma 3.1. Let ≺ be a term order and E ⊆ T (x0, . . . , xn) an equivalence class with
respect to ∼. Then the subvector spaces J ∩K(E) and in≺(J)∩K(E) in K(E) have the
same dimension.

Proof. For f ∈ K(E) we denote the equivalence class of f in the factor space K(E)/
(J∩K(E)) by [f ]. We want to show that the set C := {[u] | u ∈ E, u /∈ in≺(J)} is a basis
of the vector space K(E)/(J ∩ K(E)). Denote the elements of C by [u1], . . . , [ur] and
choose h1, . . . , hr ∈ K such that

∑r
i=1 hi[ui] = [0]. Then

∑r
i=1 hiui ∈ J and therefore

reducible to 0 modulo the reduced Gröbner basis G≺ of J with respect to ≺. By definition
of C, h1 = · · · = hr = 0. Hence, C is linearly independent. Let f ∈ K(E) and f ′ the
normal form of f modulo G≺. Since every polynomial in G≺ is ω-homogeneous for every
ω ∈ Ψ, f ′ ∈ K(E) and [f ] = [f ′]. Hence, C is a basis of K(E)/(J ∩K(E)) and

dim(J ∩K(E)) = |E| − dim(K(E)/(J ∩K(E)))
= |E| − |C| = dim(in≺(J) ∩K(E)).2

We define a partial order ¿ on T (x0, . . . , xn) by u ¿ v if u divides v. Let A be a
subset of T (x0, . . . , xn). A is called an upset or order filter if a ¿ u implies u ∈ A for
every a ∈ A and u ∈ T (x0, . . . , xn). A is called an antichain if any two distinct elements
of A are incomparable w.r.t. ¿. Let 〈A〉 be the smallest upset which contains A, i.e.

〈A〉 := {u ∈ T (x0, . . . , xn) | a¿ u for some a ∈ A}.
We say that A generates 〈A〉. Obviously, every upset in T (x0, . . . , xn) is generated by a
uniquely defined antichain. Furthermore, a subset A of T (x0, . . . , xn) is a minimal basis
of a monomial ideal in K[x0, . . . , xn] iff A is an antichain in T (x0, . . . , xn).
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Corollary 3.1. Let F and G be reduced Gröbner bases of I with respect to the adjacent
term orders ≺1 and ≺2. Then for every equivalence class E in T (x0, . . . , xn)

|E ∩ 〈{in≺1(f) | f ∈ F}〉| = |E ∩ 〈{in≺2(g) | g ∈ G}〉|.

Proof. Since E ∩ 〈{in≺1(f) | f ∈ F}〉 is a basis of in≺1(I) ∩ K(E), the corollary
immediately follows from (3.1). 2

Hence, for proving Theorem 3.1 it suffices to show the following result:

Proposition 3.1. Let A and B be antichains in T (x0, . . . , xn) with |E∩〈A〉| = |E∩〈B〉|
for every equivalence class E in T (x0, . . . , xn). If A 6= {1}, then

deg(B) < 2 · deg(A)2 + (n+ 1) · deg(A). (3.2)

3.2. proof of the bound

Before we are able to prove this proposition we need more information about the
equivalence relation ∼.

The subspace H ⊆ Qn+1 is the variety of a linear form f = m0x0 + · · ·+mnxn, where

(1) m0, . . . ,mn are integers,
(2) gcd(m0, . . . ,mn) = 1,
(3) at least one of the mi is positive,
(4) at least one of the mi is negative.

Without loss of generality we assume that the variables are ordered in such a way that
there exists an l ∈ {0, . . . , n− 1} with

mi > 0 for i ∈ {0, . . . , l} and mj ≤ 0 for j ∈ {l + 1, . . . , n}.

We define s :=
∏l
i=0 x

mi
i and t :=

∏n
j=l+1 x

−mj
j . Let R ⊆ T (x0, . . . , xn) be the set of

terms which are neither divisible by s nor by t. For every r ∈ R and k ∈ N0 define

Er,k := {rsitk−i | i ∈ {0, . . . , k}} and Er :=
⋃
k∈N0

Er,k.

Obviously, for every u ∈ T (x0, . . . , xn) there exist uniquely determined i, j ∈ N0 and
r ∈ R with u = rsitj . Hence,

(1)
⋃
r∈REr = T (x0, . . . , xn),

(2) Er1 ∩ Er2 = ∅ for r1, r2 ∈ R with r1 6= r2,
(3) for every r ∈ R the function o, defined by o(rsitj) := xi0x

j
1, is an order isomorphism

between the posets Er and T (x0, x1).

Hence, (Er)r∈R is a partition of T (x0, . . . , xn) and each of the Er is isomorphic to the
poset T (x0, x1). We will show in Lemma 3.2 that for every r ∈ R and every k ∈ N0 the
set Er,k, which is the set of elements of rank k in the poset Er, is an equivalence class. By
means of this result we will reduce the problem of proving bound (3.2) to the construction
of a bound for antichains in T (x0, x1). This bound will be given in Lemma 3.3.



On the Complexity of Gröbner Bases Conversion 271

Lemma 3.2. For every r ∈ R and k ∈ N0 the set Er,k is an equivalence class.

Proof. By definition, degω(s) = degω(t) for every ω ∈ Ψ. Let u = rsitk−i and v =
rsjtk−j be elements of Er,k. Then degω(u) = degω(r) + k · degω(s) = degω(v) for every
ω ∈ Ψ and therefore u ∼ v.

On the other hand, assume that u = xi00 · · ·xinn and v = xj00 · · ·xjnn are elements of
T (x0, . . . , xn) with i0 ≥ j0 and u ∼ v. Then there exists an l ∈ N0 with

(l ·m0, . . . , l ·mn) = (i0 − j0, . . . , in − jn).

Hence, utl = vsl and therefore u, v ∈ Er,k for some r ∈ T (x0, . . . , xn) and k ∈ N0. 2

The degree of f ∈ K[x0, . . . , xn] in the variable xi is denoted by degi(f).

Lemma 3.3. Let A,B be antichains in T (x0, x1) such that |{u ∈ 〈A〉 | deg(u) = k}| =
|{u ∈ 〈B〉 | deg(u) = k}| for every k ∈ N0. If A 6= {1}, then

deg(B) < 2 · deg(A).

Proof. For C ⊆ T (x0, x1) and k ∈ N0 define ∇k(C) := {u ∈ 〈C〉 | deg(u) = k}. Note
that for every i ≥ 2 · deg(A)− 1 the set

{deg0(a) | a ∈ ∇i(A)}
is an interval in N0. Therefore,

|∇i+1(B)| = |∇i+1(A)| = |∇i(A)|+ 1 ≤ |∇i+1(∇i(B))| ≤ |∇i+1(B)|.
Thus, deg(B) ≤ i and the lemma is proved. 2

By proving Proposition 3.1 we will now complete the proof of Theorem 3.1.

Proof of Proposition 3.1. Let A and B be antichains in T (x0, . . . , xn) with
|E ∩ 〈A〉| = |E ∩ 〈B〉| for every equivalence class E in T (x0, . . . , xn) and assume that
A 6= {1}. Let b ∈ B and write it in the form b = rsitk−i for some r ∈ R and i, k ∈ N0.
We will prove this proposition by giving bounds for deg(r), k and deg(s) and deg(t) (see
(3.3), (3.5) and (3.6)).

Denote deg(A) by α and max({degi(a) | a ∈ A}) by αi for every i ∈ {0, . . . , n}. First,
we show that for every r = (r0, . . . , rn) ∈ R

Er ∩B 6= ∅ implies ri ≤ αi for every i ∈ {0, . . . , n}. (3.3)

Let r = (r0, . . . , rn) ∈ R, k ∈ N0 with Er,k ∩ B 6= ∅ and i ∈ {0, . . . , n}. If ri = 0, then
(3.3) obviously holds. Therefore assume ri > 0 and let ei ∈ Nn+1

0 be the vector which is
1 on the i-th position and 0 everywhere else. Obviously,

Er,k ∩ 〈B〉 6= {u+ ei | u ∈ Er−ei,k ∩ 〈B〉}
and therefore

|Er,k ∩ 〈A〉| = |Er,k ∩ 〈B〉| > |Er−ei,k ∩ 〈B〉| = |Er−ei,k ∩ 〈A〉|.
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Hence there exists v ∈ Er ∩ 〈A〉 and a ∈ A such that a divides v but does not divide
v − ei. Thus,

degi(a) = degi(v) ≥ ri
and (3.3) is proved.

Let r ∈ R. Obviously, Er ∩ 〈A〉 is an upset in the poset Er. Let C be the antichain
which generates this upset in Er. We will show that

Er,k ∩ C = ∅ for k > α. (3.4)

Let k > α and u ∈ Er,k ∩ 〈A〉. Then there exists an a = r1s
i1tj1 ∈ A which divides u.

Let v = r2s
i2tj2 such that u = av. From av ∈ Er we obtain r1r2 ∈ Er. Write r1r2 in the

form rsltl
′
. Since s and t do not divide r2 we have l + l′ ≤ deg(r1). Hence, a′ := ar2 is

an element of Er,l+l′+i1+j1 ∩ 〈A〉 and

l + l′ + i1 + j1 ≤ deg(a) ≤ α.
Since a′ divides u, u /∈ C and (3.4) is proved.

Let C ′ ⊆ Er be the antichain which generates the upset Er ∩ 〈B〉 in Er. Since Er is
isomorphic to T (x0, x1) and

|Er,k ∩ 〈C〉| = |Er,k ∩ 〈C ′〉|
we obtain from Lemma 3.3 and (3.4)

Er,k ∩ C ′ = ∅ for k ≥ 2α. (3.5)

If A 6= B, there exist a ∈ A \ B, b ∈ B \ A, r ∈ R and i, j, k ∈ N0 with k > 0 and
a = rsitk−i and b = rsjtk−j . In particular,

deg(s) = deg(t) ≤ α. (3.6)

Let b ∈ B and write it in the form b = rsitk−i for some r ∈ R and i, k ∈ N0. By (3.3)
and (3.5), deg(r) ≤ (n+ 1)α and k < 2α. Together with (3.6),

deg(b) < 2α2 + (n+ 1)α.2

We finish this paper by presenting for every d ∈ N, adjacent Gröbner bases Ad and Bd
with deg(Ad) = d and deg(Bd) = d2.

In Möller and Mora (1984), a class of homogeneous ideals (Idn)d,n∈N in n+ 1 variables
is given. Each of these ideals has reduced Gröbner bases Adn and Bdn with deg(Adn) = d
and deg(Bdn) = dn. If n = 2, the Gröbner bases

Ad2 = {xd0 − x1x
d−1
2 , xd1},

Bd2 = {xd0 − x1x
d−1
2 , xd1, xd0x

d−1
1 , x2d

0 x
d−2
1 , . . . , xd

2

0 }
are adjacent.
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——Kalkbrener, M. (1996). Implicitization by Gröbner basis conversion. Euromath. Bull., 2, 197–204.
——Licciardi, S., Mora, T. (1994). Implicitization of hypersurfaces and curves by the Primbasissatz and basis

conversion. In Proceedings ISSAC’94, Oxford, U.K., pp. 191–196.
——Mayr, E.W., Meyer, A.R. (1982). The complexity of the word problem for commutative semigroups and

polynomial ideals. Adv. Math., 46, 305–329.
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