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Abstract: We define a class of codes that we call affine variety codes. These codes are obtained by

evaluating functions in the coordinate ring of an affine variety on all the Fq-rational points of the variety.

We show that one can, at least in theory, decode these codes up to half the true minimum distance by

using the theory of Gröbner bases. We extend results of A. B. Cooper and of X. Chen, I. S. Reed, T.

Helleseth, and T. K. Truong.

We define a class of codes that we call affine variety codes. These codes are obtained by
evaluating functions in the coordinate ring of an affine variety on all the Fq-rational points
of the variety. The motivation for this definition comes from algebraic-geometric Goppa
codes and the “improved” geometric Goppa codes considered by Feng and Rao [10].

As a result of this definition, one can use ideals in polynomial rings to answer questions
about a linear code, even if the code itself does not form an ideal. We will show that one
can, at least in theory, decode these codes up to (and possibly beyond) half the true
minimum distance by using the theory of Gröbner bases. Our theorems generalize work of
X. Chen et al. [4,5] and A. Brinton Cooper [7].

We thank Heinz Kredel for help with his software MAS, Jean-Charles Faugère for help
with his software Gb, and David Bayer for help with his software Macaulay.

1. Affine Variety Codes

Let I ⊆ Fq[X1, X2, . . . , Xs] be an ideal, where Fq denotes the field with q elements. Put

Iq = I + (Xq
1 − X1, X

q
2 − X2, . . . , X

q
s − Xs).

Then it is easy to see that the points of the affine variety defined by Iq (over an algebraic
closure of Fq) are the Fq-rational points of the affine variety defined by I. Let P1, P2, . . . , Pn

denote these points.
Since Iq contains the polynomials Xq

i − Xi, i = 1, . . . , s, it is an ideal of dimension 0,
and we know, from Seidenberg’s Lemma 92 [19], that it is a radical ideal. It follows that
the coordinate ring

R = Fq[X1, X2, . . . , Xs]/Iq

of the affine variety defined by Iq is an Artin ring of length n and that we have an isomor-
phism of Fq-vector spaces

φ :R → An

f̄ 7→ (f(P1), . . . , f(Pn)),

where f is any preimage of f̄ in the polynomial ring and An denotes affine n-space over
Fq. Let L ⊆ R be an Fq-vector subspace of R.

* Most of these results are contained in the first author’s LSU Ph.D. dissertation
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Definition 1.1. We define the affine variety code C(I, L) to be φ(L), the image of L
under the evaluation map φ, and the affine variety code C⊥(I, L) to be the orthogonal
complement of C(I, L) with respect to the usual inner product on An.

Remarks 1.2.

1) A different ordering of the Pi would yield an equivalent code.
2) If f̄1, f̄2, . . . , f̄k is a basis for L, then the matrix

[fi(Pj)] i = 1, . . . , k; j = 1, . . . , n

is a generator matrix for C(I, L) and a parity check matrix for C⊥(I, L).
3) Affine variety codes are essentially the same as the evaluation codes considered in [11,
§3.2], [3, §8] (also see Saints [20]). Let f̄1, . . . , f̄k be a basis for the vector subspace L of
R/Iq. Let f̃i be a preimage in R̃ = Fq[X1, . . . , Xs]/I of f̄i, i = 1, . . . , k, under the canonical

map from R̃ to R. If f̃1, . . . , f̃k are the first k elements in an Fq-basis for R̃, then it is easy
to see that the affine variety code C(I, L) is the evaluation code Ek of [11], and the affine
variety code C⊥(I, L) is the code Ck of [11].
4) If F0 is a subfield of Fq, then we may consider the subfield subcodes obtained by taking
the intersections C(I, L) ∩ Fn

0 or C⊥(I, L) ∩ Fn
0 .

Below, we will show that every linear code may be represented as an affine variety
code, but first, we describe how some well-known classes of codes may be viewed naturally
as affine variety codes.

Examples 1.3.

1) Let I = (Xq−1 − 1) ⊂ Fq[X]. Then Iq = I, and V (I) consists of the nonzero points
on A1. Take L = 〈1, x, x2, . . . , xk−1〉, where x is the residue class of X in Fq[X]/I. Then
C(I, L) is the Reed-Solomon code of dimension k over Fq. If we start with I = (0), then
Iq = (Xq − X), V (Iq) = A1, and, with L as above, we get the extended Reed-Solomon
code of dimension k.
2) Let I = (0) ⊂ Fq[X1, . . . , Xs] and take L = 〈 polynomials of deg < some ν〉. Then
C(I, L) is a generalized Reed-Muller code, as in [9].
3) Let X be a nonsingular, absolutely irreducible, projective curve of genus g defined
over Fq. A one-point algebraic geometric code is a geometric Goppa code of the form
CL(mP,D), where P is an Fq-rational point on X and D is a divisor on X defined over
Fq (see [13]). Embed the curve into a projective space using a linear system of the form
|NP |, with N sufficiently high (N ≥ 2g + 1 will certainly suffice) so that the only point at
infinity of the embedded curve X ′ is the image of P . Let I denote the ideal of the affine
curve obtained by deleting the image of P from X ′. If D denotes the sum of the other
Fq-rational points besides P , then CL(mP,D) is the affine variety curve C(I, L), where
L consists of the polynomials that give a basis of L(mP ), the space of rational functions
over Fq that have a pole of order at most m at P and no other poles.

PROPOSITION 1.4. Every Fq-linear code may be represented as an affine variety code.

Proof. Let C be an Fq-code of dimension k and length n. Let [cij ], for i = 1, . . . , k and
j = 1, . . . , n, be a generator matrix for C. Choose s so that qs ≥ n. (In practice, one would
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want to choose the least s with this property.) Let Y = {P1, P2, . . . , Pn} ⊆ As and let I
denote the ideal of Y in Fq[X1, . . . , Xs]. (We note that there is an algorithm for finding
a Gröbner basis for such an ideal I in [15].) Let Pj = (aj1, . . . , ajs) for j = 1, . . . , n. We
have the following lemma:

LEMMA 1.5. [9, p. 406] The polynomial

χj(X1, . . . , Xs) =
s

∏

l=1

[1 − (Xl − ajl)
q−1]

has value zero at every point of As except at Pj where it assumes the value 1.

Let χ̄j , j = 1, . . . , n, denote the residue class of χj in Fq[X1, . . . , Xs]/Iq. Put

f̄i =

n
∑

j=1

cijχ̄j

for i = 1, . . . , k and take L = 〈f̄1, . . . , f̄k〉. Then C = C(I, L).

Remarks 1.6.

1) We could have started with a parity check matrix for C instead of a generator matrix
in the proof of Proposition 1.4, and thus have shown that C is of the form C⊥(I, L) for
suitable I and L.
2) Proposition 1.4 also follows from Example 1.3.3 and the proof of Theorem 2 in [16].

Example 1.7.

A parity check matrix for the ternary Golay code is:

M =











1 0 0 0 0 1 1 1 2 2 0
0 1 0 0 0 1 1 2 1 0 2
0 0 1 0 0 1 2 1 0 1 2
0 0 0 1 0 1 2 0 1 2 1
0 0 0 0 1 1 0 2 2 1 1











We order the points of F3
3 as follows:

P1 = (0, 0, 0), P2 = (0, 0, 1), P3 = (0, 0, 2), P4 = (0, 1, 0), . . . , P27 = (2, 2, 2).

Consider the first eleven points P1 = (0, 0, 0), . . . , P11 = (1, 0, 1).
The ideal I ⊆ F3[X,Y, Z, ] such that V (I3) = {P1, . . . , P11} is generated by the

polynomials χ12, . . . χ27 from Lemma (1.5). For example,

χ12 = (1 − (X − 1)2)(1 − (Y − 0)2)(1 − (Z − 2)2) = (2X2 + 2X)(1 + 2Y 2)(2Z2 + Z).

If we want, we can use software to find a smaller generating set for I, or in this case,
inspection and some experimentation reveal that we may take I to be the ideal

I = (XY,X + 2X2, XZ2 + 2XZ).

3



Next, we construct the polynomials χ1, . . . , χ11, then calculate the polynomial fi

giving the i-th row of the matrix M by

fi =

11
∑

j=1

aijχj ,

where aij is the i, j entry of the matrix M above. We obtain

f1 = 1 + X + Y − XZ + Y 2 − Z2 + Y 2Z

f2 = Y − Z + XZ − Y 2 + Y Z − Z2 + Y 2Z

f3 = X − Y + Z + XZ + Y 2 + Y Z − Z2 − Y 2Z + Y Z2 − Y 2Z2

f4 = −X + Y − XZ + Y 2Z − Y Z2 − Y 2Z2

f5 = X + Y Z2.

Thus the ternary Golay code is C⊥(I, L), where L = 〈f̄1, f̄2, f̄3, f̄4, f̄5〉.

2. Decoding Using Gröbner Bases

In this section, we generalize results of X. Chen et al. [4,5] to show how Gröbner bases
may be used to decode affine variety codes. Let C be an affine variety code of the form
C⊥(I, L), where

I = (g1, g2, . . . , gm) ⊆ Fq[X1, X2, . . . , Xs]

L = 〈f̄1, f̄2, . . . , f̄k〉

V (Iq) = {P1, P2, . . . , Pn}.

Let ŷ = (y1, y2, . . . , yn) be a received word. The syndrome of ŷ is (s1, s2, . . . , sr),
where

si =
n

∑

j=1

yjfi(Pj).

Let ŷ = ĉ + (e1, e2, . . . , en), where ĉ ∈ C⊥(I, L)q. Then

si =
n

∑

j=1

ejfi(Pj).

We need to find the values of the nonzero ei and their positions. We will assume that
precisely t errors have occurred and that there is a unique n-tuple ê such that ŷ − ê ∈ C
and such that the weight of ê at most t. This is always true if t is at most 1

2
(d(C) − 1),

where d(C) denotes the minimum distance of the code C.
Consider the polynomial ring

T = Fq[X11, . . . , X1s, . . . , Xt1, . . . , Xts, E1, . . . , Et].
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Here, we have introduced indeterminates Xk1, . . . , Xks, where k = 1, . . . , t, for the coordi-
nates at each of the t points at which errors have occurred, and indeterminates E1, . . . , Et

corresponding to the values of those errors.
For i = 1, 2, . . . , r, put

hi =
t

∑

k=1

Ekfi(Xk1, Xk2, . . . , Xks) − si.

Let Eŷ ⊆ T be the following ideal:

Eŷ = (gl(Xk1, Xk2, . . . , Xks), hi, E
q−1

k − 1)q,

where i = 1, . . . , r; k = 1, . . . , t; l = 1, 2, . . . ,m. Notice that Eŷ contains the polynomials
Xq

kj − Xkj for k = 1, . . . , t and j = 1, . . . , s.

PROPOSITION 2.1. Suppose the errors occur at the positions corresponding to the points
Puk

and that the error value euk
corresponds to Puk

for k = 1, . . . , t. Then there are
precisely t! points in V (Eŷ). These points are

{(Puσ(1)
, . . . , Puσ(t)

, euσ(1)
, . . . , euσ(t)

)|σ ∈ Sym(t)},

where Sym(t) denotes the symmetric group on t objects (and where we write Puk
in place

of the s coordinates of that point).

Proof. It is easy to see, from the symmetry of the polynomials generating Eŷ, that each
of these points is in V (Eŷ). The existence of any other point in V (Eŷ) would contradict
the assumption that there is a unique n-tuple ê of weight at most t such that ŷ − ê ∈ C.

We now define a term order on the monomials in T that will be useful for our purposes.
Let <1 be the lexicographic term order on the monomials involving only X11, . . . , X1s, E1,
which extends the ordering X11 <1 X12 <1 · · · <1 X1s <1 E1. Let <2 be any term order on
the monomials involving only the variables X21, . . . , X2s, . . . , Xt1, . . . , Xts, E2, . . . , Et. Let
< be an elimination order with the variables X11, . . . , X1s, E1 less than all the other vari-
ables. Specifically, if M1,M2 are monomials in X11, . . . , X1s, E1 and N1, N2 are monomials
in X21, . . . , X2s, . . . , Xt1, . . . , Xts, E2, . . . , Et, then

M1N1 < M2N2 ⇔

{

M1 <1 M2

or
M1 = M2 and N1 <2 N2.

We assume a familiarity with elimination theory, as developed in Chapter 3 of [8].

THEOREM 2.2. Let G be a Gröbner basis for Eŷ with respect to the order <. Then
we may solve for the error locations and values by applying elimination theory to the
polynomials in G.
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Proof. By Proposition 2.1, it suffices to find the coordinates corresponding to the variables
X11, . . . , X1s, E1 of each point in V (Eŷ) . Put

J = Eŷ ∩ Fq[X11, . . . , X1s, E1]

Jj = Eŷ ∩ Fq[X11, . . . , X1j ],

for j = 1, . . . , s.
Since < is an elimination order, the set G′ = G ∩ J is a Gröbner basis for the ideal J

by [1, Theorem 2.3.4]. It follows from the definition of < that G′ is therefore a Gröbner
basis for J with respect to the order <1. Notice that, for any j, 1 < j ≤ s, the order <1,
being a lexicographic ordering, is an elimination order with the variables X11, . . . , X1j less
than the variables X1,j+1, . . . , X1s, E1. It follows that G∩ Jj is a Gröbner basis for Jj for
j = 1, . . . , s.

Since V (Eŷ) is a finite set of points, the projection of V (Eŷ) onto the coordinates
corresponding to the variables X11, . . . , X1j is a closed set. Hence the ideal Jj is the ideal
of the projection of V (Eŷ) onto the coordinates corresponding to the variables X11, . . . , X1j

by [1, Theorem 2.5.3]. (We remark that we are actually working over the algebraic closure
of Fq, but the points of V (Eŷ) are all rational over Fq.)

Now, G∩J1 = G∩Fq[X11] is a generator f1(X11) of the principal ideal J1. The zeros
of f1(X11) in Fq are then all the first coordinates of points in V (Eŷ). By substituting
each of these first coordinates for X11 in the set G ∩ J2, we obtain univariate polynomials
in X12. By finding the zeros of these univariate polynomials in Fq, we have now found
the first two coordinates of (precisely) each point in V (Eŷ). (Here we use the fact that
the ideal J2 is the ideal of the projection of V (Eŷ) onto the first two coordinates.) By
continuing in this manner, we may find all the coordinates corresponding to the variables
X11, . . . , X1s, E1 of each point of V (Eŷ).

Remark 2.3. Theorem 2.2 generalizes results of X. Chen et al [4,5]. We note that these
authors use a pure lexicographic ordering on all the variables, while our elimination order
allows one to use a more efficient order, such as graded reverse lex (cf. [8, p. 57]), on the
variables to be “eliminated.” Also note that in Theorem 5 of [5], the authors recommend
finding a univariate polynomial in each of the variables X11, . . . , X1s to find the coordinates
of the error points. One would still need to find the precise points involved from all the
possible combinations of the zeros of these univariate polynomials and their suggestion
would involve more Gröbner basis calculations than the elimination theory described above.

Example 2.4.

Take I = (Y 2 + Y − X3) ⊂ F4[X,Y ]. Put F4[x, y] = F4[X,Y ]/I4. The eight points
of I4 are

P1 = (0, 0), P2 = (0, 1), P3 = (1, α), P4 = (1, α2),

P5 = (α, α), P6 = (α, α2), P7 = (α2, α), P8 = (α2, α2),

where α2 = α + 1.
Take L = 〈1, x, y, x2, xy〉. The code C = C⊥(L, I)4 is the same as the geometric

Goppa code
CΩ(P1 + · · ·P8, 5P∞),
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a Hermitian code. The minimum distance of C is 5 (by [21] or by using Goppa’s bound).
A parity check matrix for C is:











1 1 1 1 1 1 1 1
0 0 1 1 α α α2 α2

0 1 α α2 α α2 α α2

0 0 1 1 α2 α2 α α
0 0 α α2 α2 1 1 α











Suppose one receives the word

ŷ = (0, 0, 1, 0, 0, α, 0, 0).

The syndrome of this word is
(α2, α, α2, 0, 0).

To decode, one needs to find a Gröbner basis for the ideal in F4[X1, Y1, X2, Y2, E1, E2]
generated by:

X4
1 − X1, Y

4
1 − Y1, E

3
1 − 1, X4

2 − X2, Y
4
2 − Y2E

3
2 − 1

Y 2
1 + Y1 − X3

1 , Y 2
2 + Y2 − X3

2

E1 + E2 − α2

E1X1 + E2X2 − α

E1Y1 + E2Y2 − α2

E1X
2
1 + E2X

2
2

E1X1Y1 + E2X2Y2.

One can do this using the program MAS [12]. This program, unlike Gb or Macaulay,
can handle polynomials with coefficients that are not in the prime field Fp. We compute
a Gröbner basis of this ideal with respect to the lexicographic order that extends the
following order on the variables:

X1 < Y1 < E1 < X2 < Y2 < E2.

We find that a Gröbner basis is:

{X2
1 + α2X1 + α, Y1 + αX1, E1 + X1, X2 + X1 + α2, Y2 + αX1 + 1, E2 + X1 + α2}.

The first coordinates of the error points are the roots of X2
1 + α2X1 + α, namely

1 and α. When we substitute 1 for X1 in the polynomial Y1 + αX1, we find that the
corresponding Y1 value is α. When we substitute α for X1 in Y1 + αX1, we find that the
corresponding Y1 value is α2. Thus the two error points are P3 = (1, α) and P6 = (α, α2),
which correspond to positions 3 and 6 in our received word. From the third polynomial
in the Gröbner basis, we see that the error value at each point is the same as the first
coordinate at that point.
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3. Precomputation of Locators and Evaluators

To use Theorem 2.2, or the results in [4,5], to decode words with exactly t errors, one would
need to compute a Gröbner basis each time such a word was received. This would certainly
take too much time to be practical. Instead of computing a Gröbner basis for every such
word, it would be desirable to compute a Gröbner basis one time, and then use that result
to decode every received message with exactly t errors (with t at most 1

2
(d(C) − 1)). We

describe a method that accomplishes this, at least in theory. Our method generalizes
results of A. B. Cooper [7], who showed how one could find a “universal” error locator
polynomial for a binary BCH code by computing a Gröbner basis. The idea is simply to
replace the syndromes si in §2 by variables Si. The advantage of this is that now one
only needs to compute a single Gröbner basis for decoding words with exactly t errors.
The disadvantage is that one now must deal with a polynomial ring that involves more
variables. This results in an increase in the time and storage required for the Gröbner
basis calculation and the resulting Gröbner basis may be quite complicated; however, one
must only do such a computation once for a given code and a given t. Similar extensions
of the ideas of Cooper appear in [3, 6, 14, 17, 18].)

As in §2, let C be an affine variety code of the form C⊥(I, L), where

I = (g1, g2, . . . , gm) ⊆ Fq[X1, X2, . . . , Xs]

L = 〈f̄1, f̄2, . . . , f̄k〉

V (Iq) = {P1, P2, . . . , Pn}.

Consider the polynomial ring
T = T [S1, S2, . . . , Sr],

where we have now introduced variables S1, . . . , Sr for the syndromes of a received message
(and the ring T is the ring from §2). For i = 1, . . . , r, put

hi =
t

∑

k=1

Ekfi(Xk1, Xk2, . . . , Xks) − Si.

Let E ⊆ T be the ideal

(gl(Xk1, Xk2, . . . , Xks), hi, E
q−1

k − 1)q,

where i = 1, . . . , r; k = 1, . . . , t; l = 1, 2, . . . ,m. Notice that the polynomials Sq
i − Si, i =

1, . . . , r, are in E .
Let <s be any term order on the variables S1, . . . , Sr. Let < be the (elimination)

order defined on the variables X11, . . . , X1s, . . . , Xt1, . . . , Xts, E1, . . . , Et in §2. Let <′ be
the elimination order on the monomials in T with the variables from the ring T larger than
the variables S1, . . . , Sr. Specifically, if M1,M2 are monomials in S1, . . . , Sr and N1, N2

are monomials in X11, . . . , Xts, E1, . . . , Et, then

M1N1 <′ M2N2 ⇔

{

M1 <s M2

or
M1 = M2 and N1 < N2.
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We may view V (E) as being a family of varieties of the form V (Eŷ) that we considered
in the previous section as follows. Let St ⊂ Fr

q denote the set of all syndromes of words ŷ
such that there exists a unique n-tuple ê of weight t with ŷ − ê ∈ C. Then projection on
the first r coordinates defines a mapping π : V (E) → St, and if s ∈ St is the syndrome of
ŷ, then we have π−1(s) = V (Eŷ).

THEOREM 3.1. Let G be a Gröbner basis for E with respect to the order <′. Let ŷ be any
received word such that precisely t errors have occurred. Assume that there is a unique
n-tuple ê such that ŷ − ê ∈ C and such that the weight of ê is at most t. Then we may
solve for the error locations and values by substituting the coordinates of the syndrome of
ŷ for the variables S1, . . . , Sr in the polynomials in G and applying elimination theory.

Proof. As in Theorem 2.2, we need to find the coordinates corresponding to the variables
X11, . . . , X1s, E1 of the points in V (E) that lie over the point s ∈ St.

Put
J0 = E ∩ Fq[S1, . . . , Sr]

Jj = E ∩ Fq[S1, . . . , Sr, X11, . . . , X1j ]

J = E ∩ Fq[S1, . . . , Sr, X11, . . . , X1s, E1]

for j = 1, . . . , s. Similarly, put Gj = G ∩ Jj for j = 0, 1, . . . , s. Since <′ is an elimination
order and we are using lexicographic ordering on X11, . . . , X1s, E1, we have that Gj is a
Gröbner basis for Jj , j = 0, 1, . . . , s, and G ∩ J is a Gröbner basis for J .

When we substitute the coordinates of the syndrome s of ŷ for the variables S1, . . . , Sr,
we are obtaining a “partial solution,” using the terminology in [8, p. 116], in V (J0)
for a point in V (E) that lies over the point s ∈ St. Because we are dealing with a
finite number of points, the projection of V (E) onto the coordinates corresponding to the
variables S1, . . . , Sr, X11, . . . , X1j is precisely V (Jj) and the projection onto the coordinates
corresponding to the variables X11, . . . , X1s, E1 is precisely V (J). It follows, as in the proof
of Theorem 2.2, that this partial solution extends to give the required coordinates of all
the points of V (E) that lie over s ∈ St (cf. Theorems 2 and 3 of [8, pp. 122-123]) .

Example 3.2.

We return to the Hermitian code C of Example (2.4). We will obtain a set of polyno-
mials that can be used to decode any two errors. The ideal E is generated by

X4
1 − X1, Y

4
1 − Y1, E

3
1 − 1, X4

2 − X2, Y
4
2 − Y2E

3
2 − 1

Y 2
1 + Y1 − X3

1 , Y 2
2 + Y2 − X3

2

E1 + E2 − S1

E1X1 + E2X2 − S2

E1Y1 + E2Y2 − S3

E1X
2
1 + E2X

2
2 − S4

E1X1Y1 + E2X2Y2 − S5

(compare with the ideal in Example 2.4). We find a Gröbner basis for this ideal with
respect to the term order <′ (taking <s and <2 to be graded reverse lex) using the program
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Macaulay [2]. (Note that the computations may be done over the prime field F2 here, since
all the coefficients of all the polynomials in the ideal lie in the prime field and Gröbner bases
are well-behaved under field extension.) The Gröbner basis found by Macaulay comprises
119 polynomials! However, most of these polynomials are not useful for our purposes.
Indeed, the first 39 polynomials in the Gröbner basis only involve the syndrome variables
S1, . . . , S5. While these polynomials could potentially be used to determine if a computed
syndrome in fact comes from a received word with exactly two errors, we will not make
use of them here.

Next, there is a set of 30 polynomials that involve the variables S1, . . . , S5 and X1.
Since we are assuming two errors have occurred, the most interesting polynomials in this
set are the polynomials of degree two in X1. There are five such polynomials, one with
leading coefficient Si for each i = 1, . . . , 5. The polynomial of this type with leading
coefficient S1 is

Q1 = S1X
2
1 + (S3

1S2 + S2
1S2

4)X1 + S1S
2
2S3 + S3

1S4 + S3
2S4 + S2

1S3S4 + S1S
2
3S4 + S2

1S2
5 + S4.

From these polynomials, one can find each of the first coordinates of the error points.
Next, there is a set of 20 polynomials involving the variables S1, . . . , S5, X1, Y1. Of

course, one of these polynomials is Y 2
1 + Y1 − X3

1 . All the other polynomials in this set
of polynomials are linear in Y1. Two of the simpler polynomials that occur in this set of
polynomials are:

Q2 = (S2
2 + S1S4)Y1 + X1(S2S3 + S1S5) + S3S4 + S2S5

Q3 = (S2S3 + S1S4)Y1 + X2
1 (S2

2 + S1S4) + X1(S1S3 + S2
3 + S2S4) + S2S3 + S2

4 + S3S5.

Next comes a set of 27 polynomials involving E1 and the above variables. Some of
the simpler polynomials occurring in this set are

Q4 = S1E
2
1 + S2

1E1 + S3
1

Q5 = (S1X1 + S2)E1 + S1S2 + S2
4

Q6 = (S1Y1 + S2X
2
1 + S4X1 + S3)E1 + S1S3 + S2

3 + S2S4.

The final three polynomials in the Gröbner basis are: E2 + E1 + S1, Y2 + S3E
2
1 + (S2

1E1 +
1)Y1 + S2

1S3, and X2 + S2E
2
1 + (S2

1E1 + 1)X1 + S2
1S2.

To illustrate how one might use these polynomials, consider the syndrome

(α2, α, α2, 0, 0)

from Example (2.4). Substituting the syndrome into the polynomial Q1 above, we get the
polynomial α2X2

1 + αX1 + 1, which has roots 1 and α. Substituting the syndrome into
Q2 yields the polynomial α2Y1 − X1, so we find that when X1 = 1, Y1 = α and when
X1 = α, Y1 = α2. Finally, substituting the syndrome and X1 = 1 into Q5 yields E1 = 1,
and substituting the syndrome and X1 = α into Q5 yields E1 = α.

It is not clear if it will be practical to apply Theorem 3.1. We remark that even
though the Gröbner basis in Example 3.2 consists of 119 polynomials, a relatively small
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set of these polynomials can be used to decode all occurrences of two errors, and fewer
than ten of these polynomials could be used to decode almost all occurrences of two errors.
Notice that once a subset of polynomials from the Gröbner basis has a small number of
common roots, then these roots can be checked in the original system of equations to see
which of them correspond to the actual errors.

The usual algorithm used to find Gröbner bases can vary doubly exponentially with
the maximum degree of the polynomials generating the ideal (cf. [8, p. 110]). The presence
of the polynomials Xq

i − Xi in our ideals means that computations can be massive over
large fields. In examples we have computed, we have been able to deal with some small
codes over F16, but not with larger fields.
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preprint.
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actions on Information Theory, vol. 41, no. 6, 1733–1751, Nov. 1995.

[21] K. Yang and P. V. Kumar, “On the true minimum distance of Hermitian codes,” in
Coding Theory and Algebraic Geometry: Proceedings of AGCT-3, Luminy, France,
June 1991 (H. Stichtenoth and M. A. Tsfasman, eds.), Lecture Notes in Mathematics
no. 1518 (Springer-Verlag, New York, 1992), 99–107.

Department of Mathematics, James Madison University, Harrisonburg, VA 22807, USA

E-mail: fitzgewj@jmu.edu

Department of Mathematics, LSU, Baton Rouge, LA 70803, USA

E-mail: lax@math.lsu.edu

12


