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Summary

In 2009, La Scala and Levandovskyy introduced a new approach for the com-
putation of Grobner bases of graded ideals in the free associative algebra. The
approach utilizes so-called letterplace correspondence and thus the computations
take place over a commutative polynomial ring. The latter is very important
for applied computer algebra, since data structures and algorithms have been
intensively studied in the last 50 years by numerous people. In 2012, La Scala
presented the generalized letterplace correspondence for general, not necessarily
graded ideals, where the homogenization was used.

In this thesis, an alternative approach has been studied, with the aim of direct
computations, which do not use homogenization and thus are more effective and
less complex. At first, the explicit isomorphism of the free associative algebra to
a subalgebra of letterplace ring, equipped with the nonstandard multiplication is
given. This lies in the heart of further constructions, data structures, algorithms
and implementation. Moreover, the very important question on the presenta-
tion of monomial ordering for the free algebra is addressed. The embedding into
letterplace ring allows the partial use of Robbiano’s Theorem in the latter, re-
sulting in the partial classification of orderings, in particular also of elimination
orderings.

The images of ideals of the free algebra in the letterplace ring have additional
structure, being shift-invariant. The new data structure was developed in order
to encode an infinite orbit under the action of the shift via the single element
and to transfer the fundamental operations into the new setting. Based on this
data structure, the algorithms for the computation of a two-sided Grobner basis
of an ideal and of a left Grobner basis of a left ideal in a finitely presented algebra
were designed. Both algorithms are not using homogenization and can be applied
to arbitrary ideals. Moreover, algorithms, important in applications, such as the
computations of elimination, syzygies, Gel'fand-Kirillov dimension and the upper
bound for the global homological dimension were considered and implemented.

The data structures and the Grobner basis algorithms, mentioned above, were
thoroughly implemented in the kernel of computer algebra system SINGULAR.
The implementation was extensively tested and compared to all major computer
algebra systems, featuring similar functionality. The comparison demonstrated,
that the implementation competes with and sometimes outperforms the fastest
systems available. Further applied algorithms were implemented in SINGULAR
libraries.

The implemented tools were applied to numerous problems, ranging from group



theory (word problem and conjugator search problem for given elements in a
given finitely presented group as well as the question of the finiteness of the
latter group) with interest towards cryptography to the design of new generalized
inverses in monoids (due to Drazin). Moreover, the state-of-the-art concerning the
applications of generic tools like Grobner bases to some important open problems
in computational theory of finitely presented groups is established.



Zusammenfassung

In 2009 stellten La Scala und Levandovskyy einen neuen Weg zur Berechnung von
Grobnerbasen graduierter Ideale in der freien, assoziativen Algebra vor. Dieser
Ansatz benutzt die sogenannte Letterplace Korrespondenz und deswegen wer-
den die Berechnungen iiber einen kommutativen Polynomring ausgefiihrt. Dieser
ist duerst wichtig fiir angewandte Computeralgebra, da Datenstrukturen und
Algorithmen in den letzten 50 Jahren von zahlreichen Wissenschaftlern inten-
siv studiert wurden. 2012 prasentierte La Scala die verallgemeinerte Letterplace
Korrespondenz fiir allgemeine, nicht zwingend graduierte Ideale vor, wobei Ho-
mogenisierung benutzt wurde.

In dieser Arbeit wurde ein alternativer Weg untersucht, mit dem Ziel, direkte
Berechnungsverfahren zu entwickeln, welche nicht Homogenisierung nutzen und
deswegen effektiver und weniger komplex sind. Zunachst wird ein expliziter Iso-
morphismus zwischen der freien, assoziativen Algebra und einer Unteralgebra
des Letterplace Ringes, welche versehen ist mit einer alternativen Multiplikation,
angegeben. Dieser Isomorphismus liegt allen weiteren Konstruktionen, Daten-
strukturen, Algorithmen und Implementationen zu Grunde. Dariiber hinaus wird
die wichtige Frage nach einer Darstellung von Monomordnungen fiir die freie, as-
soziative Algebra angesprochen. Die Einbettung in den Letterplace Ring erlaubt
eine teilweise Nutzung des Satzes von Robbiano, wodurch eine partielle Klassi-
fikation der Ordnungen, insbesondere von Eliminationsordnungen, moglich ist.

Die Bilder der Ideale der freien Algebra im Letterplace Ring haben zusétzliche
Struktur, denn diese sind shift-invariant. FEine neue Datenstruktur wurde en-
twickelt, um die unendliche Bahn unter der Shift-Operation mittels eines Ele-
mentes darzustellen und um fundamentale Prozeduren in diese neue Situation
zu libertragen. Basierend auf dieser Datenstruktur wurden die Algorithmen fiir
die Berechnung einer zwei-seitigen Grobnerbasis eines Ideals und einer Links-
Grobnerbasis eines Links-Ideals in einer endlich prasentierten Algebra gestaltet.
Beide Algorithmen benutzen keine Homogenisierung und kénnen auf beliebige
Ideale angewendet werden. Weiterhin wurden weitere Algorithmen, welche fiir
wichtige Anwendungen wie Berechnung von Elimination, Syzygien, Gel’fand-
Kirillov Dimension und eine obere Schranke der globalen Dimension benutzt
werden, betrachtet und implementiert.

Die oben erwéhnte Datenstruktur und der Grébnerbasen Algorithmus wurden
sorgfaltig in der Kern des Computeralgebra Systems SINGULAR implementiert.
Das Programm wurde dann intensiv getestet und mit anderen wichtigen Comput-
eralgebra Systemen verglichen. Dieser Vergleich zeigte, dass die Implementation



mit den anderen Systemen mithalten und in einigen Fallen sogar tibertreffen kann.
Die weiteren Algorithmen wurden in SINGULAR Bibliotheken implementiert.

Diese neuen Verfahren wurden auf zahlreiche Probleme, reichend vom Bereich
der Gruppentheorie (Wort-Problem, Konjugator-Such-Problem fiir gegebene El-
emente einer gegebenen endlich prasentierten Gruppe, sowie die Frage nach der
Endlichkeit dieser Gruppe) unter Beriicksichtigung kryptographischer Fragestel-
lungen bis hin zur Gestaltung neuer, verallgemeinerter Inversen in Monoiden
(gegeben durch Drazin), angewendet. Dariiber hinaus wird der Stand der Dinge
beziiglich der Anwendbarkeit von generischen Methoden wie Grobnerbasen auf
einige wichtige Probleme der Berechnungen von endlich prasentierten Gruppen
neu definiert.



Introduction

Any finitely generated associative algebra can be presented as a factor of the free
associative algebra. Therefore computations in the free algebra have many appli-
cations in different areas of mathematics, like cryptography, ring theory, homo-
logical algebra, representation theory of monoids, groups and algebras, algebraic
system and control theory, quantum algebras, in mathematical and theoretical
physics.

Many of those computations rely on Grobner bases, that is a Grobner basis is
needed as input for an algorithm or at some point during the computations a
Grobner basis must be computed.

In theory the question of Grobner bases computations was studied since the early
years of computer algebra: Mora ([Mor86, Mor88, Mor94]), E. Green (|Gre93,
Gre00]), Ufnarovskij ([Ufn95), [Ufn9g]) and Cojocaru et al. (J[CPU99]) presented
different facets of what we call today non-commutative Grébner basis theory.
In particular Mora discussed free non-commutative algebras and their quotient
rings endowed also with negative (non-well-)orderings. and further extended this
theory. Other important contributions were made by Apel and Lassner (JALSS]),
moreover Apel further extended the theory in [Ape00].

In the last years there has been more progress in theoretical, implementational
and practical directions. Notably, the interest in free associative algebras grew
stronger, as indicated by e. g. the book of D. Green ([Gre03]), where the author
considers also negative (non-well-)orderings for certain non-commutative cases
with a very different motivation and meaning, compared to the theory of Mora
([Mor88|) and Apel (JApe00]) and with the commutative case as in Greuel et al.
([GP08]). Evans and Wensley investigated in [EW0T7] involutive bases in non-
commutative algebras.

Computer algebra systems like MAGMA [BCP97] and GAP [GAP13] now include
packages which allow the user to compute Grobner bases over the free algebra.
However, there is less progress towards applications of these Grobner bases. No-
tably, Xiu, under the supervision of Kreuzer, implemented a variety of algorithms
for APCOCOA which can be used for the most common applications of Grobner
bases ([Xiul2]).

With the recent work of La Scala and Levandovskyy [LL09] a new way to compute
Grobner bases emerged, where non-commutative Grobner bases of graded ideals
in free algebras are computed via the letterplace correspondence. The most im-



portant point for practical computer algebra is that the computations take place
in a commutative ring, where the data structures as well as many fundamental
algorithms have been deeply studied and enhanced in the past 40 years. Using
homogenization La Scala generalized this approach to the case of non-graded
ideals ([Scal2]).

In this work we continue this research direction and present novel ideas, supported
by an implementation, for effective computations with general non-graded ideals
in the free algebra by utilizing the generalized letterplace correspondence. In par-
ticular, we provide a direct algorithm to compute Grobner bases of non-graded
ideals. Surprisingly we realize its behavior as “homogenizing without a homoge-
nization variable”. Moreover, we develop new shift-invariant data structures for
this family of algorithms and discuss them.

The computations of Grobner bases rely heavily on the choice of an ordering. For
the commutative case there is a classification of term orderings due to Robbiano
([Rob85]). In the non-commutative case however there is no such classification
and most works simply assume that there exists a good ordering, which is true
for the most situations. The lack of such a classification motivated us to study
orderings and we came up with an efficient way to represent good orderings using
the letterplace ring.

There are many applications for the computation of Grobner bases and many
of these problems, for instance as collected in the famous Kourovka Notebook
(cf. [MKQ2]) fall into one of the following categories: determine whether a given
presentation defines a finite or infinite group, solve the (generalized) word prob-
lem, solve the conjugator search problem, or solve the isomorphism problem. All
these questions can be readily formulated in the monoid ring (or the group ring)
corresponding to the given presentation. Most of them boil down to computing
a single (one- or two-sided) Grobner basis. As shown in [KB07], the conjugator
search problem corresponds to the computation of a certain two-sided syzygy
module.

These results have important applications in cryptography. Since the compu-
tational hardness of certain computations in finitely presented groups has been
at the core of several proposals for non-commutative cryptosystems (see for in-
stance [AAG99], [KLCT00| and the proposals in [GGKT06]), it is important
to examine the feasibility of a straightforward attack via computing a non-
commutative Grobner basis.

Here we present the methods, based on the letterplace approach, which can be
used to study those problems.

Grobner basics were coined by Buchberger and Sturmfels to denote the most
fundamental applications of Grobner bases. In this work we concentrate on elim-
ination, syzygies and left Grobner bases in factor algebras. Notably, Grobner
basics were also recently studied by Xiu ([Xiul2]).
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1 Basic Structures

In this chapter we will briefly present the basic structures we are dealing with as
well as lay down some notations. Then we will discuss the notion of orderings for
the free algebra which will lead to the theory of Grobner bases.

1.1 Monoids, Groups and Rings

In the first section we present notations and basic structures which are the the-
oretical layout for our work. While most of this should be known to the reader
we like to introduce the setup which will be needed in a later chapter when the
applications of this work are discussed.

1.1 Definition. Let M be a set.

e If thereisamap - : M x M — M satisfying a-(b-¢) = (a-b)-¢ Va,b,c € M
then (M, -) is called a semi-group.

e If in addition there is an element e € M such thate-a =a-e=a Va & M
then (M, ) is called a monoid.

e A monoid (M, ) is called group if for any element a € M there is an element
a! € Msuchthata-a™ ' =a?'-a=e.

1.2 Remark. Often one refers to - as multiplication and the sign is omitted
whenever there is no confusion possible. For simplicity we often identify M with
(M,-). Let M be a monoid.

e M is called commutative or abelian if ab = ba holds for all a,b € M.

e An element a € M is called unit if there exists b € M such that ab = ba = e.
The element b is called the inverse of a. If only ab = e holds we call b a
right inverse and a right invertible.

Of course one can also introduce the notion of left invertible when ba = e holds.
1.3 Definition. Let M be a monoid.

e A subset N C M is called a submonoid of M if e € N and ab€e N Va,b €
N.
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e A subset G C M is called generating set for the submonoid N of M if N
is the smallest submonoid containing G. We write N = (G) and we have
N={gig2--gr | 9: € G,k € N}.

It is important to note that everything we state for monoids also holds for groups.
The following example of a monoid will be at the center of our studies.

1.4 Definition. Let M be a group.

e A subset N C M is called a subgroup of M ife € N andab™' € N Va,b¢€
N.

e A subset G C M is called generating set for the subgroup N of M if N is
the smallest subgroup containing GG. Again, we write N = (G) and we have
N ={g192-"-gr | 9 € G,k € N}.

1.5 Example. Let X be a set and denote by xq,xs, ... the elements of X. By
(X) we denote the set of all words xj, ---x;, in X, including the empty word,
denoted by 1. We define a multiplication on (X) by concatenation of words.
With the identity element 1 (X) becomes a monoid, the so called free monoid.
For a word w = z;, - - - ¥, we call k the length of w, denoted by 1g(w).

For two words w,w’ € (X) we call w" a prefiz or left-divisor of w if w = w'u for
some u € (X) and suffiz or right-divisor if w = uw’ for some u € (X). Finally,
w' divides w, if there are u,v € (X) such that w = uw'v and we write v’ | w.
For a subset S C (X) we call a word w € (X) normal with respect to S, if there
is no s € S such that s | w.

1.6 Definition. Let M be a monoid and X be aset. Amap -: M x X — X
is called a (left) action if (mn)-z=m-(n-x) VYmn € M,z € X and 1 -z =
x Vx € X. Theset M -x:={m-x|me M} is called the orbit of x.

Equivalently the notion of right action can be introduced.

1.7 Definition. e Assume we have a set R equipped with two composition
maps + and *, such that (R, +) is a group and (R\ {0}, %) is a monoid. We
call (R, +, %) a ring, if we have ax(b+c) = axb+axc and (b+c)*a = bxa+cxa.
We refer to 4 as addition and * as multiplication and skip the multiplication
sign whenever there is no confusion possible.

e Let (R,+,x*) be aring. If (R\ {0}, %) is an abelian group we call R a field.

e Let (R,+,*) be a ring and (M, +) be an abelian group. If (R, ) is acting
on M (from the left) such that (r+s)-m=r-m+s-m Vr,s€ R,me M
and r- (my+mg) =r-my+r-mg Vr € R, my,my €M then M is called
a R (left) module.

e A R-module M is called a R-algebra if M itself is a ring.
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1.8 Remark. One often calls the underlying set ring (module, monoid) if the
composition does not need to be introduced or is clear from the context.

If the ring R acts from the right on the R-module M such that m - (r + s) =
m-r4+m-s Vr,s€ Rom e M and (my+my)-r=(my-r)+ (mg-r) Vre
R,my,my € M we call M a right module and if M is a left and a right module
we call M a bi-module.

Assume we have a ring (R, +, *). We can define the opposite ring RP := (R, +, )
by setting a xb = b* a. Therefore, every right R-module M is a left R°?? module
and a bi-module can be viewed as a R x RPP left module.

1.9 Definition. e Let (M,-) and (N, *) be two monoids. A map f: M — N
is called monoid homomorphism if f(x -y) = f(z) x f(y) Vo,y € M and

f(ly) = 1n.

e A monoid homomorphism between two groups M and N is called group
homomorphism.

e Let (M,+,-) and (N,+,x) be two rings. A map f : M — N is called
ring homomorphism if it is a monoid homomorphism between (M, +) and
(N, +) as well as between (M, -) and (N, *).

If f is bijective, then its inverse f~! is also a homomorphism and f is called an
1somorphism in this case.

1.10 Definition. Let R be a ring and M be a R-module.

o A subset S C R is called a subring of R, if 1z,ab,a+b € SVa,b € S and S
is a ring.

e A subset N C M is called a (left) submodule of M, if N is a subgroup of
M and rm € NVr € R,n € N.

e A subset I C R is called a two-sided ideal, if sr,rs € I Vs € I,7 € R and
(I,+) is a subgroup of (R, +). An ideal I is called proper, if I # R.

Again, one can introduce the notion of right and bi-submodule as well as right
and left ideals. Note that if R is viewed as a R-module than two-sided ideals are
exactly the sub-bimodules of R and we can define left and right ideals accordingly.
If I is an (two-sided) ideal in R we write I < R.

1.11 Remark. We like to point out two special kinds of modules. Let M be a
R-module.

e We call M a free module if there exists a generating set F for M such that

for all finite subsets E C E we have that > rie; = 0 implies r; = 0 Vi.
e¢€E~'
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e A R-module P is called projective if there is a free R-module M and another
R-module N such that M = P& N.

1.12 Remark. Let S be a submodule of the R-module M. Then we have an
equivalence relation on M given by a ~b < a—b € S.

1.13 Definition. Let S be a submodule of the R-module M. Then the factor
module M/S is defined by the equivalence relation given by S. The elements
of M/S are the equivalence classes [a] = {a +0b | b € S} and M/S is again a
R-module.

This definition extends to algebras and rings and we call the corresponding struc-
tures factor algebra or factor ring respectively.

1.14 Definition. Given a monoid M and a field K we can define the monoid
ring KM as the set of all formal sums {> a;m; | a; € K;m; € M}. It is a
K-vector space via k) a;m; = > (ka;)m; Yk € K, (D> a;m;) € KM and a ring

7

(2
via (Z azmz)(z bjnj) = Z(CLJ%)(TTL@TLJ)
7 J ]
As an application of the structures and to conclude this section we present the
free algebra which will be the main tool throughout this work.

1.1.1 The free associative algebra

From now on let K be an arbitrary field and (X) be the free monoid in a countable
numbers of generators, denoted by z1,...,2,,....
We define the free algebra as the monoid ring

K(X) := {Z am; | a; € Kym; € (X), T an arbitrary index set,
i€l

only finitely many «; # 0}

and call the elements of K(X) polynomials and the elements of (X) embedded in
K(X) together with the identity 1 monomials.

Note that everything we say about left ideals can be easily translated to right
ideals.

Again, one can consider the enveloping algebra K(X) ® K(X)°, where K(X)°P
denotes the opposite algebra, that is, K(X) endowed with the multiplication
axb=">0-aVa,be K(X). Then K(X) is a K(X) ® K(X)°? module and the
action of K(X) ® K(X)°P on K(X) is given by:

K(X) @ K(X)?P? x K(X) - K(X): (I®r,p)—1-p-r.

As an example we state a theorem which shows how the free algebra can be used
to study general structures.

16



1.15 Proposition. Any finitely presented algebra A is isomorphic to a factor of
the free algebra.

Proof: Say A is generated by {e; | i € S C N} and take K(X) in the same
number of variables. Then one has a homomorphism ¢ : K(X) — A : z; — ¢;
and the Homomorphism Theorem holds the claim. q.e.d.

This can be used to study many interesting rings, like group and monoid rings,
and different kinds of algebras, like G-algebras or path algebras. We will see in
a later chapter some of those examples. For now we show how a group can be
represented as a factor of the free algebra.

1.16 Example. Consider a group G generated by {a,...,a,}. Moreover, as-
sume G is finitely presented, so we have finitely many relations {ry,...,rs} on
the generators. Consider the ring homomorphism ¢ : K(z1,...,z,) = KG. We
then have K(X)/ker(¢) = KG. Since the group G itself forms a K-basis of KG
a K-basis of K(X)/ker(¢) will represent the elements of the group.

1.2 Orderings

We now introduce orderings. While the definition works for (non-empty) sets in
general, we will study orderings for the free algebra in detail.

1.17 Definition. An (strict total) ordering < is a total, transitive and asym-
metric relation on a non-empty set X, that is

o If a < bthen —(b < a) (asymmetry);
o If a <bandb < cthen a < ¢ (transitivity);

e Eithera <borb<a Va,be X, a#b (totality).

From now on let (X) be a monoid with neutral element 1 € (X).
1.18 Definition. A total ordering < on (X) is called a

e well-ordering, if every non-empty subset of X has a least element with
respect to <.

e reduction ordering or compatible with multiplication, if for all my, mo, [, r €
X with my < ms we have Imir < Imar.

e monomial ordering, if it is a well-ordering and a reduction ordering. In
particular, 1 < x Vz € X.
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Note that for a reduction ordering we have if m,n € (X) are such that n divides
m, that is, if there exists [, € (X) with m = Inr, denoted by n | m, then we
have n < m, because for 1 < [,r € (X) we have n = 1n < In = Inl < lnr = m.
With a given strict and total ordering on (X) we can write each polynomial
f € K(X)\ {0} in the free algebra K(X) over (X) uniquely as f = S2%  ¢my,
such that ¢; € K\ {0} and m; € (X) with m; < --- < my.

1.19 Example. Let (X) be the free monoid generated by {z,...,z,} and as-
sume that r1 < 9 < ... < x,, so we have a so-called linear preordering.

e Let p,v € (X)\ {1}, such that u = zj, 2, - x5, v =221, 7. Then
we have:

I <pex V = Ellgigmin{k,l;:}: xj, =2, Yw <i A xj, <

w

or v =ur for some v € (X).

This is called the left lexicographical ordering.
Analogously one can define the right lexicographical ordering:
U <pex ¥V <= 31 <i<min{k, l%} DTy, =T

Y such that min{k, k} —w >i A z;, <

7

or v =y for some v € (X).
e Take u,v as before. We define:

k< k , OT

W <gradlex V < ~
praciex k =k and p <pex V.

This is called the graded or degree (left) lexicographical ordering.
e Take w = (wy,...,w,) € R"\ {0} and again let u, v € (X) as before.

k k
Z Wi, < Z wi; or
=1 =1

k =k and W <lex V-

nw<y,lV <

This is called the weighted degree (lexicographical) ordering with weight
vector w.

1.20 Remark. The degree lexicographical ordering is a monomial ordering and
enjoys many nice properties.

The (left or right) lexicographical ordering is not a monomial ordering, in fact
it is not even multiplicative: Take K(z,y) with the left lexicographical ordering.
Then we have y? > y, but y?z < yz. Nevertheless, the lexicographical ordering
gives rise to many other orderings and for that it is of interest.

It is important to note that there are different meanings of the word degree, which
are commonly confused with one another.
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1.21 Definition. For a given ordering < we define the multi-degree of a monomial

m =i SCZJ as the j-tuple (ki,...,k;) and the total degree as Zj: k.. If <isa
r=1

weighted degree ordering we also define the weighted total degree of m as Zj: wi, ki

=1

and denote it by deg,(m). Moreover, by deg, (m) we denote the number of

occurrences of x; in m.

We define the leading monomial of a polynomial f = Zle cim; # 0 as the

maximum (with respect to <) of the set {m; | ¢; # 0} and denote it by 1m(f).

Also we call the coefficient by 1m(f) the leading coefficient, denoted by 1lc(f) and

we define the leading term of f as 1t(f) = 1c(f) - Im(f). The (total) degree of

a polynomial f is defined to be the (total) degree of its leading monomial. We

denote the total degree of f by tdeg(f) and the multi-degree by deg(f).

Finally we will denote with L((G)) the leading ideal of (G), which is the ideal of

K(X) generated by the leading monomials of G.

Since K is a field there is no loss of generality to assume that all polynomials of

a given generating set are monic, that is the leading coefficient equals 1.

1.22 Definition. Consider the elements of K(X) as elements of K(X,Y). If
K(X,Y) is equipped with a monomial ordering < we denote the restriction of <
on K(X)by <x. For m,n € K(X) holds: m <jx n = m <nVm,n € K(X).

1.23 Lemma. If < is a monomial ordering on K(X,Y), then the restriction <y
of < on K(Y) is again a monomial ordering.

Proof: By definition we have m; <y my & m; < my VYmy, my € (Y),
henceforth the properties of < can be easily translated to <|y. q.e.d.

As we will see in a later chapter, another important type of ordering are elimi-
nation orderings.

1.24 Definition. Let K(X,Y) be a free algebra in the variables X = {z1,...,z,}
and Y = {y1,...,ym}. An ordering < is called elimination ordering for X if Vf €
K(X,Y) \ {0} the property 1m(f) € (Y) already implies f € K(Y) C K(X,Y).

1.25 Lemma. Assume we have an elimination ordering < for X on (X,Y), then
we have z > m Ve € X,m € (Y).

Proof: Take arbitrary x € X and m € (Y). In order to fulfill the elimination
property we have 1m(x + m) = x, since m is a monomial in (Y). q.e.d.

1.26 Corollary. Let K(X,Y) be as before and take an elimination ordering <
for X. Then o > y;, -y, Ve € X,y;, € Y, 1 <j<rrelN

In commutative algebra an easy way to obtain an elimination ordering is to
introduce weights for the variables: those of X will have weight one and those of
Y will have weight zero. However, in the non-commutative case this leads to a
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ordering which is not a reduction ordering.
One way to get to a monomial ordering which has the elimination property is to
start with a preordering and use the multiplication rule to expand it.

1.27 Example. Take K(x,y) and say we want an elimination ordering for . We
know that x > ¢y Vn € N and y"! > ¢", the latter one being a consequence of
multiplicativity.

Then we can extend z > 3% > ¥y to

2 Ty 2
x >{y$}>x>y >y

using multiplicativity. In order to get a complete ordering for all monomials up
to total degree 2 we have to choose either xy > yx or xy < yx. For this example
we choose zy > yx.

Applying left and right multiplication of the variables one more time we will get

Y

:c3>x2y>a:yx>yx2>x2>xy2>yxy>{ygx}>yx>:c>y3>y2>y.

So we have to choose whether zy > y2x or y*xr > zy, each choice giving us an
elimination ordering up to total degree 3.

Continuing this procedure one has to make more choices, depending on the total
degree (and in the general case on the number of variables). In a later chapter
we will discuss the notion of a good representation for an ordering. For now we
will just give two examples of a monomial elimination ordering.

e For my,my € (X) we say my >gim Mg if we have deg, (m1) > deg, (ms) for
some 7 € n and deg, (m1) = deg,, (m)Vl € {1,...,i — 1} or deg, (m1) =
deg, (mg)Vi € n and m; >pex mp. This ordering works similar to the
lexicographical ordering that is for any chosen 7 € N with 1 < 7 < n it is
an elimination ordering for z;, ..., z,.

e For my,my € (X,Y) we say m; >eim M2 if we have degy (my) > degx (mo
or degx (mq) = degx(ms) and my = Imgr for some [, r € (X) or degx (m;) =
degx (ms), mq # Imgr for all [,r € (X) and my >pex mo.

The first example corresponds to the choice y%x > xy, while the second ensures
that zy > y%x.

Since we have chosen 1 < z for each variable x it is clear that >gu, and >qim
are well orderings.

To see that these are indeed reduction orderings it is sufficient to check the
condition for each variable z € X and = € {X U Y} respectively. So assume we
have mq,my € K(X) with m; >gjm me and take x; € X. Since multiplication
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from left or right does not change the relation between deg, (m;) and deg, (m2)
we only have to prove the claim in the case of deg, (m:) = deg,.(m2)Vi € n, which
also implies tdeg(m;) = tdeg(ms) and so the claim follows from fact that the
degree lexicographical ordering is a reduction ordering. Note that we could change
the second condition into deg, (m) = deg, (m2)Vi € n and m; >gadiex M2 to
get the exact same ordering.

For <gim the proof follows similarly.

Before we conclude this section with some very interesting examples of orderings
we like to introduce the notion of gradings here.

1.28 Definition. e A ring R is called graded if there is a decomposition into

additive groups R = @ R, such thatr € Ry, s € R; = rs € Ry Vk,j €
ieN

N, that is RyR; C Rjy,;. Elements of any factor R; of the decomposition

are known as homogeneous elements of degree i. An ideal I < R is called

homogeneous if every element p € I is the sum of homogeneous elements

that belong to I.

e Let R be a ring and A be a R-algebra. A filtration of A is an increasing
sequence of subspaces {0} C A; C Ay C ... C A such that A = [J A; and

€N
A;AL C Ay Vi keN

Note that each graded ring is also a filtered algebra.

It is easy to see that on the free algebra monomial orderings induce a grading
whenever one has the notion of a (weighted) total degree. However, not every
grading is induced by an ordering. We will need this in a later chapter.

To close this section we present an overview of some examples of orderings.

1.2.1 An overview on orderings

E.L. Green stated in [Gre96] that one of the problems with answering questions
about universal Grobner bases is that admissible orderings are not classified. In
fact most works about non-commutative Grobner basis theory do not focus on
the question of orderings and it is often assumed that a good ordering exists and
even monomial elimination orderings are not studied well.

While we do not intend to work on a complete classification we want to give
an overview on some somehow unusual examples we encountered to encourage
further studies.

1.29 Example. Assume we have the free algebra K(X) generated by n vari-
ables. We define an ordering inductively. For monomials mq, mqy € K(z;) we
set m; = xlfl > my = :E]fQ < ki > ke, Let 1 < k < n. Then every
monomial m € K(xy,...,zx) can be written as m = mixpmsexy ... rpm, with
m; € K{zq,...,25_1). Say m = myxgmozy ... xpm, and n = nixpnoly . .. TN
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are two monomials. Then m > n if r > [ or if r = [ and there exists j such that
m; = n,; for ¢ > j and n; < m;.

This ordering can be used to present so called G-algebras as factors of the free
algebra and was discovered by Mora and presented in [KRW9(]. Examples for
G-algebras include Weyl algebras and Ore extensions of associative rings (see for
example [Lev05]).

Note that this ordering has also the elimination property and was studied in this
regard in [BB9S].

1.30 Example.

For n > 2 define O, (\;;) as the K-algebra generated by xz1,...,z, with the
relations z;x; = A\jrixy, N € K, 1 <i<j<n. Wecal O,()\;;) the skew
polynomial algebra.

Obviously there is an canonical K-algebra epimorphism 7 : K(X) — O,();;). For
any given ordering < on O, ();;) we define a new ordering on K(X) by setting

m(u) < 7(v), or

U <e v if for any two monomials u,v € (X).

m(u) =7(v) and u <, v
We call <., the lexicographic extension. If < is a monomial ordering on O, (\;;)
then <., is a monomial ordering as well as proven in [Lil2].
This ordering is used to determine the correlation between Grobner bases in K(X)
and O, ()\;;). This examples gives rise to whole class of examples by extending
orderings from other algebras to K(X), whenever there is an epimorphism.

1.31 Example. Consider a free algebra A := K(xy,...,2p,91,...,y,) in n+r
variables and take the set A<y := K(z1,...,2,,y1,...,Yr)<a, that is the set of all
polynomials with unweighted total degree less or equal than d € N.

Equip A with a weighted degree orderings, where the x; get the weight 1000d and
the y; the weight 1. Because this is a positive weight ordering on A it is a well
ordering, as stated before.

On A<, on the other hand this ordering behaves like an elimination ordering,
since there is no monomial in K(yi,...,y,)<q that is greater or equal to any
monomial containing at least one z;. This can be used to mimic an elimination
ordering when a degree bound is applied. For a detail description we refer to
[Tra07].

1.32 Example. Let X and Y be to disjoined sets of variables and consider K(X)
and K(Y) equipped with monomial orderings <x and <y.

Suppose u € (X,Y). Then u can be written as u = agbyaibs - - - a,_1b,a,, where
b; € (Y) and a; € (X). Let v € (X,Y) be another monomial and write it as
v = codicy - - - cs_1dgcs corresponding to the decomposition before. Now we say

b by <y di---dy, or

u < v if
by---b,=d;---d, and (ao, ..., a,) <jezx (Coy---,Cr),

where <., x is the lexicographic ordering on ((X))"*! induced by <x. We call

22



<x ! <y:=< the wreath product ordering of <x and <y.
Sims proved in [Sim94] that if <x and <y are monomial orderings then so is
<x ! <vy.

1.3 Grobner Bases

This section introduces the general theory of non-commutative Grobner bases.
We go along the lines of [Stul(], where a similar section was presented. We will
omit some of the details here and refer the interested reader to the original source.

1.33 Definition. Let G € K(X)\{0} and (G) =: I. A normal form of f € K(X)
with respect to G is an element g € K(X) such that f — g € I and either g = 0
or 1m(g;) 1 Im(g) Vg; € G. We denote a normal form of f with respect to G by
NF(f, G).

A subset G C [ is called a Grobner basis of I if the leading monomial of an

arbitrary element in I is a multiple of the leading monomial of an element in G.
Equivalently, G is a Grobner basis if ({1m(g) | g € G}) = L(]).

1.34 Remark. Note that a Grobner basis always exists, since we can take G =
I'\ {0}. This is due to the fact that we do not demand our Grébner basis to be
finite. In fact there are some ideals, which do not posses a finite Grobner basis.
One can easily see the relevance of Grobner bases: If GG is a Grobner basis of 1
then a normal form for f € I is given by 0 and this is the only choice we have.
However, neither the normal form nor the Grobner basis are unique in general.
In order to get uniqueness we refine the definition a little bit.

k
1.35 Definition. A normal form g = > a;t;, a; € K, t; € X of f € K(X)
i=0
with respect to G is called reduced, if g is monic, that is, its leading coefficient is
1, and if Im(g,) 1t; Vi=0,...,k, g, € G. We often speak about the normal

form.

Before we solve our uniqueness problem, let us see the general idea on constructing
normal forms.

1.36 Definition. Let {g; | i € J,J an arbitrary index set} = G C K(X) and
(G)y =:1.

o Let 7;: X — K(X):
A(lm(g;) — 1c(gs)'g:)B, if x = Alm(g;)B for some A, B € X
x otherwise

and let 7; : K(X) — K(X) be the K-linear continuation of 7. One calls 7;
a reduction with g;.

T +—r
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o Let f € K(X). One says that 7; acts trivially on f, if the coefficient
of Alm(g;)B is zero in f for all A,B € X. f is called irreducible, if all

reductions act trivially on f.
In other words 7;(f) = f Vi € J.

It is important to note that Grébner bases are a special generating set.

1.37 Lemma. Let G be a Grobner basis of a given ideal I. Then I = (G).

Proof: Since G C I we have (G) C I, so take f € I\ (G) with minimal degree,

that is f := min{f € I\ (G)} (the minimum exists because we assume that <
deg(f)

is a monomial ordering) and say without loss of generality that f is monic. By
the definition of a Grobner basis there exists g € G such that 1m(g) | 1m(f), say

In(f) = Alm(g)B for some A,B € X. Then f = f — AgB € I and deg(f) <

deg(f), so by minimality fe (G). But then f = AgB+f = AgB+ > aypb, €
pePC(G)
(G), which is a contradiction. q.e.d.

We now state an algorithm which allows one to compute normal forms with
respect to an arbitrary set of polynomials. We will focus on the case that this
set is a generating set, although this is not necessarily a requirement.

1.38 Algorithm.
Input: An ideal I < K(X) with a given generating set G = {g; | i € J},
[ e K(X)
Output: g, a reduced normal form of f w.r.t. G
Set g = f.
while 7; acts non-trivially on ¢ for some ¢ € J do
9=Ti(9);
end while;

return g;

1.39 Remark. It is still not clear that the normal form is unique and in fact
it is not. This is due to the fact that GG is an arbitrary generating set and the
construction of the normal form given in the algorithm depends on the choice
of the reductor. The normal form will become unique once we find a special
Grobner basis, such that the choices we have to make are minimal.

Moreover we have no guarantee that the procedure terminates. Therefore one
needs to introduce the notion of reduction-finite elements, which is in general a
property induced by the ordering. For details we refer the interested reader to
[Stul0]. For now we just introduce the properties which are required for a normal
form in order to be unique.
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1.40 Definition. Let G C K(X) and (G) =: I.
o G is called simplified or minimal, if Im(g) ¢ L(G \ {g}) Vg€ G.

e (G is called reduced Grobner basis, if G is simplified, a Grobner basis and
for every g € G we have:

1. g is monic.

2. g — 1m(g) is in reduced normal form with respect to I.

1.41 Remark. Note that we build the normal form with respect to I. This is only
a technical issue: in fact it would be absolutely equivalent if we had demanded a
normal form with respect to G, since a Grobner basis is a generating set and if
a monomial is divisible by some leading monomial of a polynomial contained in
I, then it is divisible by a leading monomial of an element of the Grébner basis.
However, with this formulation the reduction of g — 1m(g) does not depend on
the choice of the Grébner basisas long as the ordering is fixed.

In order to prove the existence of a unique normal form one has to introduce the
term of reduction-unique elements. We will not go into detail about that here,
as stated before, but it is important that a reduced Grobner basis allows one to
compute a unique normal form with respect to a fixed monomial ordering.

1.3.1 The Grobner basis algorithm

For this section we will always assume that our ideal [ is finitely generated, due
to the fact that we want to do some computations, which would be quite difficult
if we start with an infinite generating set. Nevertheless this assumption is not
necessary. Note that even with a finite generating set we may get a Grobner basis
which is infinite, as we will see in an example later on. We will follow mainly
[Stuld].

Again we may assume that all polynomials in a generating set are monic.

1.42 Definition. Let G = {¢1,..., 9.} C K(X).

We call a polynomial f weak with respect to G, if f = > > ¢k ilk jgkrs,j, where
k=1 j

crj € Kand Iy j, 7. ; € X such that [, ;1m(gy)re; < Im(f) Ve =1,...,w.

Let H C K(X). A polynomial f is called reducible from H with respect to G,

if weakness with respect to G of all elements of H implies weakness of f with

respect to G.

Note that weakness is a special form of generating f with elements of G. Since it
is allowed to use the same generator more than one time it should be allowed for
weakness as well. For example the polynomial p := zy + yx + zyx € (y) should
be weak with respect to {y}.

Again one may avoid the twin-sum in the definition of weakness by considering
the enveloping algebra.
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1.43 Definition. Let G = {g; | 1 < ¢ < w} be a set of monic polynomials. An
obstruction of G is a six-tuple (1,4,r; A, 7,p) with 1 < i, j <w and [,r,\,p € X
such that 1m(g;) < 1lm(g;) and /1m(g;)r = Alm(g;)p. For any given obstruction we
define the corresponding S-polynomial as s(l,i,7; A, j, p) = lgir — Agjp. A set D
of polynomials is called basic for G if every S-polynomial of G is reducible from
D with respect to G.

1.44 Motivation. Starting with a generating set for I the set of all non-weak
S-polynomials will be a Grobner basis. This seems to be an easy way to compute
a Grobner basis, since one only has to compute all S-polynomials and check if
they are weak or not. This procedure has the disadvantage that it would take
forever, literally, since the set of all obstructions is infinite. So our medium-term
issue is to discard most of these obstructions.

1.45 Lemma. Let G = {g; | 1 < i < w} be a set of monic polynomials and
(I,i,7; A, J, p) & weak obstruction, that is, the corresponding S-polynomial is weak
with respect to G. Then all obstructions (1,4, 7; X, j,p) with | = wil, 7 = rws,
)= wi A and p = pwsy, where wy, ws are arbitrary monomials, are also weak.

Proof: Set s := s(I,i,7; )\, j, p) and 5 := s(I,4,7; X, j, p). Because the obstruction
is weak we can write s = lg;r—Ag;p = i > ckaliageres with ey € Kilg g, miy € X,
lealm(gr)res < 1m(s) Ve = 1,...,w. T\T;Wl we have 5 = lgi7 — Ag;p = wi(lgir —
Agjp)ws = wiswy = wl(kZ1 > Coali gk w2 = Z Z Ch il 19k TRy With

lk,l = wllk,l and 7’ Tkl = Tk,leZ

Furthermore we see that Iy ;1m(gx)7x; < wilm(s)we = 1m(§), which shows that s
is weak with respect to G. q.e.d.

So multiples of obstructions need not be considered. However the set we have to
consider is still infinite. But the lemma helps us to prove our claim in [I.44]

1.46 Theorem. For a set G of polynomials generating an ideal I of K(X), the
following statements are equivalent:

(i) G is a Grobner basis.

)
(ii) The reduced normal form of each polynomial in I is equal to 0.
(iii) Each S-polynomial of G is weak with respect to G.

)

(iv) The empty set is a basic set for G.
Proof:

(i) = (i7): Induction with respect to the monomial ordering <:
The normal form of 0 equals 0. Take 0 # f € I and assume f is monic.
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Since G is a Grobner basis there exists ¢ € G such that 1m(g) | 1m(f), that

is, 3,7 € X : 1m(g)r = 1m(f). Because of f,g € I we have f := f —lgr € I
and deg(f) < deg(f). By the induction hypothesis, the normal form of f equals
zero and we obtain that the normal form of f equals zero as well.
(1) = (4i7): Suppose s = s(l,4,7; A, j, p). By assumption the normal form of s
with respect to G equals 0, so s is weak by the definition of weakness.
(1) <= (iv): Clear by definition.
(i4i) = (i): Suppose f € I, but Im(f) ¢ ({Im(g) | ¢ € G}) and 1m(f) is
minimal with respect to <. Now there are at least two polynomials g;,g; € G,
gi # gj, such that f = > c;iliigirig + > cjuljigiria + > > Crli i Gk,

! ! 9k€G,gk7#gi-g; 1
Ck,l € K, lk,l?r’%l € X Vkand t:= lm(z lugﬂ'“) = lm(z lj,lgjrj,l> > lm(f).

l l

Now by assumption s := s(1m(l;;), %, 1m(r;;); 1m(l;;), j, 1m(r;;)) is weak and s =

> > akigrbr,, where J is an arbitrary set of indices and g € G, such that all
kel 1

leading terms of g are smaller than t. Then f =" Lc(liyri)le(lrin) gm0+
]

Y le(liarig) Do akigrbey + > Y lhigarhy is an expression of f with fewer sum-
l kel hij 1

mands with leading term equal to ¢. If we do this iteratively until we have only

one term equal to t left, we reach a contradiction and we can conclude that G is

a Grobner basis. q.e.d.

Note that the generating set is not taken to be finite. If we do not enumerate the
polynomials in a generating set G, we often write (I, g,r; A, p, p) for the obstruc-
tion of g,p € G.

Now we focus on finding a finite set of obstructions, from which we can construct
a Grobner basis. Therefore we introduce the concept of overlap.

1.47 Definition. We say two monomials t1,t, € X have overlap b € X or overlap
at b € X if there are a,c € X such that t; = ab and t3 = bc or t; = ba and t5 = ¢b
or ty = b and ty = abc. If 1 is the only overlap between t; and t5 we say the
monomials have no overlap. Equivalently the monomials are called coprime.

An obstruction (,4,7; A, 7, p) is said to have no overlap if there exists w € X such
that {1m(g;)r = [1m(g;)wlm(g;)p or {1m(g;)r = Alm(g;)wlm(g;)r.

This generalizes the notion of a common divisor. As in the commutative case one
wants to construct only those S-polynomials which do not reduce to zero or at
least as few as possible more. Therefore the next propositions are useful.

1.48 Lemma (Product Criterion). Let g1, go € K(X) be such that {; := 1m(g)
and [y := 1m(go) have no overlap. Then every obstruction (I, g1, 7; A, g2, p) with
l,r7; A\, p € X has no overlap.

Proof: Since [; and [y have no overlap 1m(lgir) = 1lm(Ag2p) implies that either
ll; and X\ or [17r and p have overlap [;.
Assume the first case is true. Then r and [y overlap at ls, say r = ;7. Then
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7 = p and therefore ll;r = ll11o57 = ll;lop which shows that (I, g1, 7; A, g2, p) has
no overlap.

Now if [y7 and p overlap at [y then [ and Al have overlap I, and [ = Iy = M.
Hence we get llyr = Mylyr and again we obtain that (I, g;,7; A, g2, p) has no
overlap. q.e.d.

1.49 Theorem. Let G ={g; | i =1,...,w} C K(X). Every obstruction without
overlap is reducible from an S-polynomial with overlap with respect to G.

Proof: Let b = (I,4,7; ), j, p) be an obstruction without overlap and denote by
s its S-polynomial. Since /1m(g;)r = Alm(g;)p we have either r = wlm(g;)p or
[ = An(g;)w

If the former is valid then we also have A = [1m(g;)w and by Lemma [1.45|
b = (I,i,wlm(g;)p; 11m(g;)w, j, p) is reducible from (1,7, wlm(g;);1m(g;)w,7,1).
Therefore we assume [ = p = 1.

Write ¢; = > entn, 9; = Y. dyu, with t,,u, € (X), ¢, d, € K\ {0}, such

B P

that ¢, > tp41 and u, > upyy. Now s = g;ir — A\g; = g;wlm(g;) — 1m(g;)wg; =
w(g;— > dyuy) — (g — DY entn)wg; = Y. cpthwg; — Y dpgiwu,. Assume

p,p#1 h,h#1 h,h#1 p,p#1

cotowuy = dotjwusg, that is the leading terms towlm(g;) and 1m(g;)wus of the
two summations cancel each other. Since t5 < t; and us < wuy this only occurs
if ¢3 = dy and there are vy,vo € (X), such that t; = tyv; and u; = veugs with
vyw = wug. If w is a left divisor of vy, say v; = wv), then vy = vhw, which
implies that vj = v} and therefore (1,4, wlm(g;);1m(g;)w,J,1) is reducible from
(1,4, v{1m(g;); Im(g;)vf, 4, 1) by Lemma [1.45] If w is not a left divisor of vy, then
w has a self overlap, that is, w = viw’ = w'vy. and again we apply Lemma [1.45]
So we may assume w = 1 that is, b = (1,4, 1Im(g;); 1m(g;), j, 1). We find

s = gilm(g;) — 1m(g;)g; = Im(g:)1m(g;) + Y catnlm(g;) — Im(g;)1m(g;)

h,h#1
— Z 1m(g;)dpu, = Z cntn(g Z dyuy,) Z (9; — Z chtn)dpuy
p,p#1 h,h#1 p,p#1 p,p#l h,h#1
= (Z chtn)gj — i Z dpup) € (i, 95)

h,h#1 p,p#1
so s is weak with respect to GG, which implies that it is reducible from G. q.e.d.

The theorem states: If an S-polynomial s(l, g;, 7; A, g;, p) is not weak with respect
to G, then the leading monomials of the two polynomials g; and g; have an
overlap. This will help us to find a finite basic set.

1.50 Lemma. Let G ={g; |i=1,...,w} C K(X). There is a finite basic set D
of S-polynomials of G, such that every S-polynomial of G in D corresponds to an
obstruction (1,4, 7; A, j, p) with overlap and with either one of the two parameters
{l,\} and one of {r,p} equal to 1 or A = p = 1.
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Proof: We write s = s(l,7,7; A, 7,p), 1m(g;) = my...m, and 1m(g;) = ny...n,
with my,n;, € (X) of degree 1, k =1,... pk=1...4¢ (this means that each
my, and nj corresponds to an z;,4 = 1,...,n). Now if s is not weak, then it must
have some overlap. In particular, 1m(g;) and 1m(g;) must overlap. This can occur
in three ways:

My My = Ng_pg1 Ny, 1 <h<p,
Ny MNp = Mp_py1 My, 1§h<p7
My - My = Npy1 " ** Nhps 1<h<q—np.

In particular, for every two polynomials the number of possible overlaps is finite.
We show that D needs to contain at most one S-polynomial for every overlap,
which completes the proof. Assume 1m(g;) and 1m(g;) have nontrivial overlap. To
satisfy the equation (1m(g;)r = Alm(g;)p, the factors that are not in the overlap
have to be in A or p respectively in [ or r (cf. proof of Lemma . So for every
obstruction corresponding to some overlap the monomials /1m(g;)r and Alm(g;)p
have to be equal to lwi and S\wﬁ, respectively, with w equal to

w=mny - ng_p1m(g;) = 1m(g;)Mpy1 - - My,

w = 1m(gi)npt1 - ng =my - myplm(g;),

w =nq - nplm(g) Npgprr - - - g = 1m(g;),
in the respective cases. Now by Lemma these obstructions are weak except
when | =7 = A = p = 1. So for every possible overlap there exists a single

S-polynomial such that all other obstructions are reducible from it with respect
to {gi, g;}. In the respective cases, the corresponding obstructions are

(nl o 'nq—hvia 17 17j7 mp4q - 'mp)7
(172>nh+1 te 'nq;ml o 'mpfhyj? 1)7
(711 C My by Mpypr 7 Ngs 1, 1)-

This means that s need only to be in D if at least one of the two parameters [
and A and one of the two parameters r and p are equal to 1. q.e.d.

We refer to the S-polynomial corresponding to an overlap w = (I, g,7; A, ¢, p), we
have to consider, as S(w).

We distinguish between three kinds of obstructions:

1.51 Definition. Let s = (I,4,7; A, j, p) be an obstruction of the set G = {g; |
1 <4 < w} of monic polynomials in K(X).

o If [ =1, then we call s a right obstruction.

o If [ # 1 and r =1, then we call s a left obstruction.
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e If 5 is not a right nor a left obstruction and A = p = 1, then we call s a
central obstruction.

1.52 Corollary. Let G be a set of polynomials in K(X) and let D be the set of
all non-zero normal forms of S-polynomials with respect to GG corresponding to
all left, right and central obstructions of G. Then D is a basic set for G.

In the definition above the restriction to a finite set (G is not necessary, since an
obstruction includes only two polynomials. However, as stated before, for “real-
life” computations finiteness is required and so we will assume for the rest of this
section that G = {g; | 1 <7 < w}.

We finally introduce an algorithm that computes a reduced Grébner basis.

1.53 Definition. Let [ be a two-sided ideal of K(X) and let G, D be subsets
of K(X). We say that (G, D) is a partial Grébner pair for I if the following
properties are satisfied:

1. All polynomials in G U D are monic.
2. G is a generating set of I.

3. Every element of D belongs to I and it is in normal form with respect to
the polynomials in G.

4. The set D is basic for G.

5. For every f € GG the normal form with respect to G U D of the normal form
with respect to G \ {f} equals zero.

1.54 Remark. Let I be a two-sided ideal in K(X) and let (G, D) be a partial
Grobner pair for 1. If D is the empty set, then G is a Grobner basis.

Since K(X) is not Noetherian, for example the ideal (xiz5z; | n € N) can not
be finitely generated, our algorithm may not terminate in all cases. However, we
will see later that we can use this algorithm to get some important results after
finitely many steps.

1.55 Algorithm.

Input: a (finite) generating set G for I < K(X)

Output: a reduced Grobner basis for 1
Compute all non-zero normal forms of S-polynomials with respect to G corre-
sponding to all left, right and central obstructions of G and call the resulting
set D. Then (G, D) is a partial Grobner pair. Construct a new partial Grébner
pair (G, D) as follows:

1. Take f € D and set G = {g1, -, Gu, Gurr1 := f}-
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2. Compute the left, right and central obstructions of G of the form
(l,i,m; A\, w+1,p) and (Il,w+1,r; A, 7, p) for certain i, 7 € {1,...,w} and
l,r, A\, p € (X) and put the non-zero normal forms of their S-polynomials
with respect to GU D in D, such that D becomes a basic set for G. Call
this new basic set D.

3. For each i € {1,...,w} compute the normal form g; with respect to
G\ {gi} of g;. If g; = 0 remove g; from G. Otherwise, if ¢} is distinct
from g;,

a) replace g; by gi;
b) compute the left, right and central obstructions of the new G in-
volving gi;

¢) if the normal form with respect to GUD of an S-polynomial of such
an obstruction is non-zero then add its normal form to D.

4. Replace each d € D by its normal form with respect to (G'U D)\ {d}.

1.56 Theorem. In the situation of [1.55] the ideal generated by the leading mono-
mials of G is strictly contained in the ideal generated by the leading monomials
of G. If D = () then G is a Grébner basis for I (and the routine stops).

Proof: First we have to show that (é [?) is a partial Grobner pair, which means
we have to verify condition one to five of Definition [1.53

Since all polynomials in G and D are normal forms, they are monic, we get
condition 1.

If g, € G adjusted as in step 4 of the algorithm, then the ideal generated by
{g;} U (G \ {gi}) coincides with I, so we get condition 2.

Clearly all elements of D belong to I and are in normal form with respect to G
and this is condition 3.

Because of , D is a basic set for G and hence condition 4.

For every element g € G \ G, the normal forms of the newly computed central
obstructions of G involving ¢ take care of condition 5.

That L(G) C L(G) is valid follows immediately from the construction we have
made.

The final assertion is a consequence of Remark [1.54] g.e.d.

1.57 Example. For all examples we take the lexicographical ordering with
Ty > X9 > ... > X, Or x >y > 2z respectively.

o Take K(z,y) and G, = {xyx + y*}.
There is only one obstruction to consider, since the only central obstruction
are the trivial ones and every left obstruction is equal to a right obstruction,
namely (zy,1,1;1,1,y2) = 2y® — y3x. = Dy = {zy® — y3z}.
Now Gy = {zyx + y* zy® — y3x}, since zy® — y®z is in normal form with
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respect to g;.

Because our new gy only has trivial obstruction with itself, there is only
one new obstruction: (1,1,y3; 2y,2,1) = y° + xy*z, which has normal form
0 with respect to Gg, so G is a Grobner basis for I = (Gy).

Take G = {zx; —zjz; | 1 <i < j <n} C K(X). We claim that G is
already a Grobner basis.

The only non-trivial overlaps are given by the polynomials x;x; — z;z; and
TjTy — TyT;, Where 1 < ¢ < 7 < w < n. The S-polynomial can be
computed by (2;2; — 2;2;) Ty — Ti(TjTy — LX) = TiTyXj — T;2;2,, Which
reduces to zero, using the leading monomials of z;x,, — Ty, ;T4 — T
and z;x; — zjz; € G.

Note that G generates the commutator ideal, so we have K|zy, ..., n]

K(X)/(G).

>~

Let us consider the generating set B = {yzry — vyzz, zayz — xyzx, zoyz —
yzry} C K(z,y,z), which consists of braid relations (cf. [Gar07]). Then
the unique reduced Grébner basis is given by G = {yzay — zzyz, xyze —
zryz, x2TYz — 2wyzy, y2tayz — zeyzlen w2 wyz — zeyzya™ ' | n € N
Obviously, none of the elements of G is redundant.

To see that G is in fact a Grobner basis one has to consider all pairs (g;, g;)
of elements of G and check if all possible obstructions of (g;,g;) vanish
to zero. We demonstrate this for w; := yz"ayz — zayz?2" ! and wy =
yz"ayz — zoyz?az™ ! for arbitrary n,m € N. We only have to worry about
the right overlap, since n and m are arbitrary elements in N (so we can
exchange their places for the left overlap). Now w; and ws overlap at yz
and we have:

2 n—l).

(yz"ryz — zxyz“w Zgm=h

2 layy —y2w - (y2"ayz — 2oy

2 n—1_m—1

= — zay2a" " ay s + 2wyt a™ !

TZTYZ—2TYZY _ _ _
—_ y2"Mayzyza™ ! — zay2ta" 2 ey s
yz"tloyz—zayz2a” _ _ _

- zry2iatyza™ T — oyl e ay 2

TYZT—2TYZ 2, n—1_m—1

zry2la tzayza™? — 2oyt 2 ey 2

ZYRITELYE, zay22a ey za™ 3 — oyl e ey 2
r22ryz—zeyzyc nyZ2In_2Z[Ey2yIm_2 B Z(I,’y22l’n_12m_1$y2
TZXYZ—2TYZY ZIyZ2$n_3ZZEyZ:y2l’m_2 . Z.I‘yZ2ZL’n_IZm_1IyZ
w2 layz—zayzya™ 2 cay 2wy eyt — 2y Ry sy
TZTYZ—2TYZY 0.
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This example also shows that a Grobner basis does not need to be finite, even if
the ideal is finitely generated.

1.3.2 Improvement to the algorithm

In commutative as well as non-commutative Grobner basis theory it is well-
known, that the practical use of criteria to reduce the set of critical pairs has
very effective impact on the performance. Out of several criteria, first formulated
by Buchberger, the product criterion in the case of free algebras is naturally ap-
pearing during the consideration of overlaps of polynomials. The chain criterion
applies, but it can be refined further, following the work of Gebauer and Moller
[GMSS] in the commutative case.

Gebauer-Moller’s criterion has been generalized to the setup of modules in
[KROO] and [KRO5], while in the non-commutative case Mora gave a detailed
presentation of superfluous pairs in [Mor94], which was adapted to fit practical
computations, as for example in [Xiul2].

Here we will presented the theoretical layout and then study the practical use of
the criterion in a later chapter.

For this section we will assume that each set P C K(X) is interreduced, meaning
Vp,q € P,p # q : 1m(p) 1 1m(g) and that each p € P is monic.

Recall that the Product Criterion Theorem [[.48] states that only those pairs
involving an overlap need to be considered, that is 1m(p) = ab and 1lm(q) =
bc for some monomials a,b,c. Therefore one only has to consider pairs © =
(1,pi, 73 A\, pj, 1), such that 1m(p;r) = Im(Ap;).

1.58 Definition. For an obstruction 7 = (1, p;, 7; A, p;, 1) we denote by cm(rw) :=
1m(p;r) = 1m(p;)r = Alm(p,;) the common multiple of p; and p; with respect to
the overlap considered in 7.

Let us consider a set of polynomials P and construct the set of all critical pairs
7m(P) by searching for overlaps in the leading monomials, that is 7 (P) contains
all those elements we want to compute S-polynomials to enter the set D in the
algorithm. We want to apply the criteria to 7(P) to reduce its size.

1.59 Theorem. Assume we have a set of polynomials P, its set of critical pairs
7m(P) and a pair m = (1, p;, 745 A\, Pk, 1) € w(P).

1. If there exist two pairs m = (1,p;,75; Aj,pj, 1), m2 = (1, pj, 755 N, Pes 1) €
7(P) \ {r}, such that 1m(p;)|cm(7), then the S-polynomial s(7) of 7 will
reduce to zero.

2. If there exists a pair m = (1,pj,7j; A}, P, 1) € m(P)\ {7}, such that cm(m)
divides cm(7) from the right, then the S-polynomial s(7) of 7 will reduce
to zero.
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Proof:

1. Because of the assumptions we have 1m(f;) = abc, 1m(f;) = bet, and
1m(f;) = t;ab for some monomials a, b, ¢, t;, t;. Since P is interreduced, none
of the leading monomials can divide the overlap cofactors. This implies
A = t;a and r; = ct. Moreover, the existence of m and my and the form
of the leading monomials imply that there exist pairs 77 = (1, p;, ¢; t;, pj, 1)
and 75 = (1, p;, tg; a, p, 1). Then

s(m) = picty — tiapy, = t;abcty, + tail(p;)cty — t;abety — t;atail(py)
— —t;tail(p;)ty + tail(p;)cty + titail(p;)ty — tiatail(py)
= —s(m))ty — tis(w) — 0.

Note that the reductions used are performed according to the fixed mono-
mial ordering.

2. We first note that 1m(p;)r; = 1m(p;7;) = Im(\,px) = A, 1m(px) and
m(p;)r; = AN 1m(py) = M\elm(pg) = 1m(p;)r; for some monomials [, \. This
already implies [ = A and A\ = )\,. Moreover, Zlm(pj)rj = 1m(p;)r; implies
that one of the following holds:

e [1m(p;)|1m(p;). Then the set of polynomials is not interreduced, which
leads to a contradiction.

e There exists 7; such that r; = 7;r;. This implies the existence of a pair
(1, pi, 7451, p;,1) and the claim follows from the first case. q.e.d.

1.60 Remark. One can apply these criteria in a straightforward way: If the set
of critical pairs during some step of Buchberger’s algorithm has been constructed,
then one can just check the pairs and search for redundant ones. However, to de-
cide if a monomial divides another is not as cheap and easy as in the commutative
case.

In the next chapter we will study a new approach to Grobner basis theory and
will later on investigate the possibilities this holds to apply the criteria.

1.4 Conclusion

While the aim of this chapter is to introduce Grobner basis theory over the free
algebra and there are several works which have similar chapters (for example
[Li12] and [StulQ]) the translation of the Gebauer-Méller criteria is rather new.
We like to point out that this was also studied in [Xiul2] and later published
in [KX13] and that this work was developed in parallel to our approach. The
results presented for the implementation in APCOCOA show, similarly to ours,
that those criteria are indeed speeding up the computations by quite a lot.
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As mentioned before there is a deficit in proper studies of orderings over the free
algebra. While we are not able to give a full classification in the frame of this
work we hope to motivate further studies with this first approach to present more
than one useful ordering.

Since orderings have a huge impact on the complexity of computations it is nec-
essary to get a good insight into the topic. In the next chapter we will discuss
how orderings for the free algebra can be represented over the letterplace ring.
This is done to understand the properties of orderings.
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2 The Letterplace Ring

In this chapter we present the letterplace correspondence as it was studied in
[LLO9] and [SL13] and give a detailed overview on how to present orderings for
the free algebra over the letterplace ring. We then introduce the new approach
to non-graded ideals presented by Roberto La Scala in [Scal2] and show how
this can be used for a new way to compute Grobner bases using the letterplace
paradigm. The structure of the letterplace ring can be exploited in a very natural
way to get an efficient way to avoid the classical homogenization.

2.1 Letterplace Correspondence for graded ldeals

It is a well known fact that there exists a one to one correspondence between all
ideals J < K[X] and certain ideals I < K(X). The question, if there is an ideal .J
in some commutative ring K[Y] for each I < K(X), such that one can construct
a one to one correspondence between those ideals and especially their Grobner
bases was studied by Roberto La Scala and Viktor Levandovskyy and led to the
introduction of the letterplace ring (cf. [LLO09]), which provides a commutative
analogon of the free algebra. The basic idea, going back to Richard Feynman and
Gian-Carlo Rota, is pleasingly simple: one enumerates the variables occurring in
a monomial by their position in the monomial. Then one may commute the
variables. In this section we will introduce this corresponding, following mainly
[LLO9] and [Stul(]. We start with the basic definition.

2.1 Definition. We call X and P C N respectively the set of letters and places.
We write for the elements of the product set X x P: x;(j) := (4, 7). Furthermore
we denote by K[X | P] the polynomial ring in the commuting variables z;(j) and
by [X | P] the set of all monomials in K[X | P].

Let p = (pr)ken, ¥ = (Vk)ken be two sequences of non-negative integers with finite
support. We can consider (u, ) as a multi-degree for the monomials

m = x4 (j1) ... 2, (Jr) € [X | P]. Precisely, we define py, = #{a | x;, = 1},
v, = #{B | js = k}.

Often one chooses P = N for theoretical questions and switchesto P =d, d &€ N
for practical comp