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Abstract

We give an dternative definition of comprehensive @nier bases in terms of Guher bases
in polynomial rings over commutative Von Neumann regular rings. Our comprehensoené&r”
bases are defined as d@brier bases in polynomial rings over certain commutative Von Neumann
regular rngs, hence they have two important properties which do not hold in standard comprehensive
Grobner bases. One is that they have canonical forms in a natural way. Another one is that we
can define monomial reductions which are compatible with any instantiation. Our comprehensive
Grobner bases are wider than Weispfenning’s original comprehensivenéir'bases. That is there
exists a polynomial ideal generated by our comprehensivelBEr basis which cannot be generated
by any of Weispfenning’s original comprehensiveoBmnér bases.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Let R be a commutative ring an8be any non-empty set. Then the set of all functions
from Sto R denoted byRS becomes a commutative ring by naturally defining an addition
and a multiplication of functions. Furthermore, this ring becomes a commutative Von
Neumann rgular ring if R is a commutative Von Neumamegular ring. Therefore, in
case it is computable, we can construcoér bases in polynomial rings oveP. For
such Gobner bases, we have the following theorem.
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Theorem. Let G = {01, ..., gk} be a reduced Gybner basis of an idea|fs, ..., f|) in
a polynomial ring F[X], then br each element a of Sgi(a), ..., gk(@)} becomes a
reduced Gobner basis of the idedlf1(a), . .., f(a)) in the polynomial ring RX]. Here
h(a) denotes a polynomial in [X] given from a polynomial h of ®X] with replacing
each coefficient ¢ in h by(a) (see Theorer.3 of Weispénning(1989).

This observation leads us to an alternative definition of comprehensigbn@r”
bass. Let K be an ifinite field and fi(Ad, ..., Am, X), ..., fc(A1, ..., Am, X)
be polynomials inK[A, ..., Am, X] with parametersAy, ..., Am. Considering each
polynomial f(Ag,..., Am) in K[Az,...,An] as a function fromK™ to K,
f1(A1, ..., Am, X), ..., Tk(A1, ..., Am, X) become polynomials itk ™[ X]. If wecan
construct a reduced @bher basi§ of the ideal( f1(A4,. .., Am, X), ..., fk(Ad, ..., Am,

X)) in the polynomial ringK (K™[X] over the commutative o Neumann rgular ring

K (K™ somehow, therwe can conside6 as a kind of comprehensive &tier basis of
(f1(A1, ..., Am, X), ..., fk(Aq, ..., Am, X)) with parametersAy, . .., Am, sincean in-

stantiation ofA1, . .., An with any elementsy, . . ., an of K becomes a reduced Gbrier

basis of the ideal fi(as, ..., am, X), ..., fk@1, ..., am, X)) in K[X] by the theorem
alove.

In order to enable the above computation, it suffices to establish a way to handle
the gmallest commutative Von Neumann regular ring extending the canonical image of
K[Ag, ..., Anl. If the quotient fieldK (Ag, ..., Am) would correspond to it, the situation
would be very nice. Unfortunately, however, it does not work. Consider the in#q‘r%ef
A1 in the commutative Von Neumann regular rikgk™. Since Ai(ay, ..., am) = a1
for any az,...,am in K, AIl should be the functionp from K™ to K such that
¢(0,az,...,am) = 0ande(ay, ...,an) = 1/a; if a3 # 0. Certainlyg is not a member
of K(A1, ..., Am).

In order to overcome this situation, we define a new algebraic structure caiedee
which en&les us to handle the smallest commutative Von Neumann regular ring extending
the canonical image oK [Ay, ..., An]. Using terraces we can compute aoBnér basis in
a polynomial ring overk K™ We call it anACGB(alternative comprehensive @brier
basis). ACGB have the following two nice properties, which do not hold in standard
comprehensive @bner bases\feispenning 1992).

(1) There is a canonical form of an ACGB in a natural way.
Since an ACGB is atrady in a form of a Gabiner basis in a polynomial ring over
a canmutative Von Neumann regular ring, we can use a stratifietb @i’ basis as a
canonical form of an ACGB.
(2) We can use monomial reductions of an ACGB.
Because of the same reason as above, we can use monomial reductions of an
ACGB. Moreover, it will be shown that monomial reductions are compatible with
any instantiation of parameters.

In this paper we introduce our work on ACGB. We concentrate on the cas&that
is algebraically closed. We give some aligoms to handle terraces using the classical
Grobner bases technique.

Our plan is as follows. InSection 2 we give aquick review for Gobner bases
for polynomial rings over Von Neumann regular rings. The reader is referred to
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Weispfenning (1989, Sato(1998, or Sato anl Suaiki (2001 for moredetaled descrip-
tions. InSection 3we gve adefinition of terraces with several algorithms to handle them.
In Section 4 we gve addfinition of ACGB. We prove several nice properties they have.
In Section 5 we show hat the class of ACGB is wider than the class of Weispfenning’s
original comprehensive @bher bases. |Bection § we give sone conputation examples
we got through our implementation. I8ection 7 we ow several methods to find the
properties of systems of polynomial equations over functions using ACGB.

2. Von Neumann regular ring and Gr 6bner basis

A commutdive ring R with identity 1 is called a/on Neurann regular ringif it has the
following property:

YVae RaIbe R &b =a.

For such &, a* = abanda—! = ab? are uniquely determined and satisfg* = a,
aa 1l =a* and(@*)? = a*.

Note that every direct product of fields is a Von Neumann regular ring. Conversely, any
Von Neumann regular ring is shown to be isomorphic to a subring of direct product of
fields as follows.

Definition 2.1. Let R be a Von Neumann regular ring. If we defirea = 1 — a,
aAb = abandav b = —(—a A —b) for eacha,b € R suchthata? = a, b? = b,
({x € R : x2=x},—, A, V) becomes a Boolean algebra, which is denote86R).

ConsideringB(R) as a Boolean ring, the Stone representation theorem gives the
following isomorphism¢ from B(R) to a subring of]'[|€St(B(R)) B(R)/I by &(x) =
]_[|63t(B(R))[x]|, where St(B(R)) is the set of all maximal ideals oB(R). This
represetation of B(R) is extended to a representation®fs follows.

Theorem 2.2 (Saracino—Weispfenningfor a maximal ideal | of B(R), if we put Ir =
{xy : x € R,y € I}, then k is a maximal ideal bR. If we cfine a map? from R nto

In the following unless rantioned, Greek letters, 8, v are used for tens, Roman
lettersa, b, ¢ for elements ofR, and f, g, h for polynomials overR. Throughout this
section, we work in a polynomial ring ové® and assume thabme total admissible order
on the set of terms is given. The leading termfois denoted bylt (f) and its coefficient
bylc(f). The leading monomial of , i.e., lc(f)It () is denoted byim( f).

We redesibe some definitions and results which we need for our comprehensive
Grobner bases. The detailed argument is given Weispenning (1989 and
Sato ad Suzaiki (2007).

Definition 2.3. For a polynomial f = ax 4+ g with Im(f) = a«a, amonomial reduction
— ¢ is defined as follows:

bag +h — ¢ bag +h —ba 1g(ax + g)
whereab # 0 andba8 need not be the leading monomialmis + h.
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A monomial reduction- g by a setF of polynomials is also naturally defined. Using
this monomial reduction, we can construct aoBnér basis of the ideal generated by a given
finite s of polynomials. Using the following properties, we can see that the algorithm is
almost the same as Buchberger's.

Definition 2.4. A polynomial f is calledBoolean closedf (Ic(f))*f = f. (c(f))*f is
called aBoolean closuref f and denoted bic( f). Note hat the Boolean closure of any
polynomial is Boolean closed.

We can construct a set of Boolean closed polynomidlsfrom any gven set of
polynomialsF suchthat (F) = (H). ThoughH is not determinediniquely, we abuse
the notatiorbc(F) to denote one of such.

Theorem 2.5. Let F be a sebf Boolean closed polynomials. Then the equivalence relation
& coincides with the equivalence relation induced by the idEal

Using our monomial reductions, @bher bases are defined as follows.

Definition 2.6. A finite setG of polynomials is called &rdbner basisif it satisfies the
following two properties:

o f <i>G g iff f —g e (G) for each polynomiaf andg,

e — has a Church Rosser property,
i.e., for each polynomiaf andg, f <i>G g iff there exists a polynomidl suchthat
f 5ghandg 5g h.

Definition 2.7. For each pair of polynomial§ = aay + f’ andg = bgy + ¢, where
Im(f) = aay, Im(g) = by, and GCQw, B) = 1, the polynomialbgf — aag =
bsf’ — aag’ is called theSpolynomialof f andg and denoted b P(f, g).

We can also characterize @bier bases in terms &polynomials as in polynomial
rings over fields.

Theorem 2.8. Let G be &finite set of Boolean closed polynomials. Then G is aliaer
basisiff SP( f, g) 56 Ofor any pair f and g of polynomialsin G.

This theorem enables us to construct al@rér basiss for a given finite setF of
polynomials such thafG) = (F). We can repeat computations of Boolean closures and
S-polynomials until we get a desired @rier basiss, each element of which is Boolean
closed.

We descttbe some important properties of @arier bases.

Theorem 2.9. Let G be aeduced Gobner basis, then any element of G is Boolean closed.

Definition 2.10. A reduced Gobner basissG in a polynomial ring over a commutative
Von Neumannregular ring is called astratified Grobner basis, when it satisfies the
following two properties:

e lc(g) =lc(g)* foreachg € G,
o It (f) # It (g) for any distinct element$ andg in G.
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Theorem 2.11. A straified Grobner basis is determined uniquely. That is two stratified
Grobner bases G and’Guchthat (G) = (G’) must be identical.

3. Terrace

In this section, we define a computable rifgand operations ofi which witness that
T forms a Von Neumann regular ring. For an arbitrary polynonfiad K[Ag, ..., Anl,
we can consider it as a mappirfg: K" — K, i.e, f € K(K". So wecan define the
canonical embedding

¢ K[AL, ..., An] — KKD,

Let T be the ¢osure of the image[K[Ay, ..., An]] under addition, multiplication, and
inverse in the Von Mumann regular ring(K”), herceT becomes a Von Neumann regular
ring. We show a way to describe each elemenfodnd define computable operations
onT.

In the rest of this section, we fix an algebraically closed fi€lénd a natural number
n. We use tle synbols Aj, ..., Ay as variables. For each finite set of polynomials
{f1,..., fitin K[Ag, ..., Anl, we denote the affine variety by ({ f1, ..., fi}), i.e,

V{fy,..., i) ={@,...,an) e K":
fi(@l,...,an)=---= fi(ay,...,an) = 0}.

We setV () = K" andV ({1}) = @ for convenience.

Example 3.1. Lett be a function fronC? to C defined by

_fa—b, if(a,b)eC?\V({a-b}),ie,a#bh,
t@ b = {O, otherwise.

Then the inverse is

1 : 2
trap = {8 otherwise.

The addition ot andt—1 is

a?—2ab+b3+1 ; 2
0, otherwise.

And the multiplication ot andt—1 is

1, if (a,b) e CA\V({a—b}),

-1 —
t-t7H@b) = {0, otherwise.

In order to handle elements &fsuchast - t—1, we definean algebraic structure called
a terrace.
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3.1. Definition of preterraces

Definition 3.1. A triple (s, t,r) is called apreterraceon K[Ag, ..., An] if s andt are
finite sets of polynomials inK[Ag, ..., Aql andr = g/h for someg, h € K[Ag, ..., An]
which satisfy

(1) V(s) VD),

(2) V{ghuVvEhp)) N(VO\V(s) =0, i.e,g(@,...,a) #0and
h(ai,...,an) #0forany(as,...,an) € VIO\V(S).

For a given peterracep = (s, t, r), thesupportof p (supgp)) is the setv (t)\V (s) C
KN. For a préerracep = (s, t,g/h) onK[Aq, ..., An]and(ay, ..., an) € K", we define
p(ay,...,an) € K by

, if(a,...,an) € supp(p),
ai, ..., = { h(a,...,an) ;
P &) 0, ' otherwise.

So p can be considered as a membefTofFor given preterracep; and pp, we define a

relaion p1 = pz by supfgp1) = supp(p2) and pi(a, ..., an) = pz(a, ..., an) for any
(a1, ...,an) € supp(p1). We can easily check that is an equivalence relation on the set
of preterraces.

For an arbitrary polynomialf € K[Ag, ..., Ay], we define the corresponding preter-
race préf) as follows:

pre(f) = ({f}. 0, f/1).
Note that

supp(pre(f)) = VO\V{ f}
={(a,...,an) e K" : f(ay,...,an) #0}.

Then we can easily see thatas, ..., an) = pre(f)(ai, ..., an) forany(as,...,an) €
K",

Next we define the inverse and multiplicative operations on preterraces. The inverse
p~1 of a preterrace = (s, t, g/h) is defired by p~1 = (s, t, h/g) without changing the
support. Note that we have

p(a].’""arl)_l: p_l(a]-’""arl)’ If (al’ "'7a{1) E S"Ipqp) ZS'ngp_]-)
p@,...,an) = p ag,...,a,) =0, otherwise.

Hencep~! represents the inverse pfin T.
In order to define the multiplicationpy - p2 of preterracesps = (s1,t1,r1) and
p2 = (S, t2, r2) to represent the multiplication as elementg ofve reed that

if (@1, ...,an) € supp(p1) N sUPP(p2),
0, otherwise.

pl(alv ey an) ° pz(alv ceey an)7
(p1-p2)@,...,an) =
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Note that we have

supp(p1) Nsupp(p2) = (V(t)\V(s) N (V(©2)\V(s2)
= V() NV @)\ (V(s) U V(s2)
= (V) NV @)\ ((V(s) NV(t2)) U (V(s2) NV (1))
= V(1 Ut)\V (Prod(sy U ty, s, Uty)),

where, for a finite ses, t of polynomials,
Prod(s,t) ={f-g : fes get}.
So we define the multiplication by
p1- P2 = (Prod(s; Uty, s Uty), t Utp, 1y - 12).

We can easily check thaty - pz = p2- p1 (actuallyps - p2 = p2- p1), (P1- P2) - Ps =
p1- (P2 p3), andp: - ({1}, ¥, 1) = p; for any preterracep:, pz, andps. Note hat, for a
preterracep = (s, t,r), we havep- p~1 = (s, t, 1), which might not be equal t¢{1}, 4, 1)
in T in general.

3.2. Definition of terraces

A sum of two preterraces as an elementdé not generally represented by a preterrace.
We reed another definition.

Definition 3.2. A finite set{p1,..., pi} is called aterraceon K[Ag, ..., Ay] if each
pi i = 1,...,1) is a preerrace onK[Ag, ..., Ay] such that supgpi) # ¢ and
supp(pi) N supp(pj) = ¥ for any dstincti, j € {1,...,1}. Thesupportof a terracet
is defired by

supp(t) = Jsupp(p) < K".

pet
For a given terracet and a sequend@y, . .., ay) € K", we define

_Jp(@,...,an), ifdpet)(a,...,an) esupp(p),
t@, ... a) = {O, otherwise.

(The well-definedness is derived fronmet disjunctiveness of the supports of the
preterraces.) Hence, we consideats an element oK (K™ actually it is an element of
T sincet represent; + --- + pi in T. Intuitively a terrace is a representation of an
element ofT as a finite set of pairs of a rational function and a partitioiK8F suchthat
the rational function is not equal to O everywhere on its partition.

For a given finite set of preterraces, we can decide whether it forms a terrace or not
by using the following algorithnPreterracelsZERO. Indeed, for two given preterraces
andq, supp(p) N supp(q) = ¢ iff PreterracelsZERO (p - q) returns True.

Algorithm (PreterracelsZERO).

Specification: PreterracelsZERQ(P)
check whether a preterragesatisfies sup@®) = ¢ or not
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Input: P a preterace onK[Aq, ..., An]
Output: return True if suppP) = ¢, return False otherwise

(ST,R =P
IFV(S) = V(T) THEN
RETURN True
ELSE
RETURN False

For a given peterracep, we seghatp(ay, . .., an) # 0 for some(ay, ..., an) € K" if
and only if supp) # ¥ by the definition of preterraces. So the previous algorithm works
as we desire.

The additiort; + to, themultiplication t; - tp, and the inversel‘l of terraceg; andt; as
elements ofl are given as follows:

(1) (tl + tz)(al7 AR a‘n) = tl(a11 AR ] a‘n) + t2(a17 AR a‘n)l
(2) (t1-t2)(a1,...,an) T ttl(al, .oy @n) -tz(f_ifl,t. .., an), 0
3) tl‘l(al, ...,8n) = {0’/ HEL - B0, :f tig: Z; i oj

We will definety + to, tg - to, andtl‘l as terraces satisfying these properties. For the
addition of two terracey andty, we require that,
t+t)@,....an) =
ti@g,...,ap) +t2(ay, ..., an), if (ag,...,an) € suppty) Nsupptz),

ti(ag, ..., an), if (ag,...,an) € supp(ty)\supp(to),
t2(ag, ..., an), if (@i, ..., an) € supp(tz)\supp(ty),
0, otherwise,

forany(as,...,an) € K"

We first cortentrate on the case thatndt, are singletons of preterraces, say= {p1}
andty = {p2} wherepy = (s1, t1, r1) andpz = (s, tz, r2). Note hat supiits) = supp(p1)
and supjtz) = supp(pz).

Consider the cas@, . . ., an) € supp(t1) N supp(tz). Although, as we saw, sufip) N
supptz) = supp(p1) N supp(p2) = V(i1 U t2)\V(Prod(sy U tz, 52 U tp)), the tiple
(Prod(sy Utp, spUtg), t1 Uta, r1 4 r2) might not form a preterrace, sincgas, ..., an) +

r.(as,...,ap) = 0 may acur for some(as,...,an) € supp(ty) N supptz). So, we
shrink the support in order to ensureetliefinition of preterraces. Presemt+ r as an
irreducible formg/h as an element oK (Ay, ..., Ay). Note hat we already have that

V({h) N (V(t1 Utx)\V (Prod(sy U ty, s, Ut1))) = @ by the definition of preterraces. Let
Ph,.p, = (Prod(Prod(s; Utz, s, Uty), @), t1 Utz, g/h),
then pgl’ n, forms a preterrace, and we have
Py pp(@L: -+ 8n) =T1(a1, ..., @) +r2(a1, ..., an)
=ti1(a1,...,an) +t2(@y,...,an)
forany(ag, ..., an) € supp(ty) N suppta).
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For thecase(ay, ..., an) € supp(ty)\supp(tz), using the popertyV (s1) € V(t1) and
V(s) C V(t2), wecan check the following equation lBasy calculation of elementary set
theory:

supp(ty) \supp(tz) = sUpp(P1)\SUpPP(P2)
= (VI)\VED\(V (©2)\V (52))
= (V(ID\(V(s1) U V(12))) u ((V(t1) NV ($2))\V(s1))
= (V(\(V(s) U (V(t1) N V(t2)))
U (V) NV )\ (V(s) NV ())),
wherea U b denotesa U b with the propertya N b = ¢J. Then we have
V(ty) € V(s) U (V(t) NV (t2)),
V() NV(s) € V(s1) NV(s).
So the following two triples are preterraces:
Pbip, = (Prod(sy. t1 Uty), g, 1),
i, = (U S U, ).
Furthemore we have
thipe = (P € (PRLpe: PPl po)  SUPR(P) # )
forms a terrace and

toy.pp (@, - 8n) =121, ..., a0) = t1(a1, .. ., an)

for any (as, ..., &) € SUPP(ts) \SUPP(tz) = SUPP(PR; py) LI SUPP(Pp, ).
\l(—‘zc))r thecase(ay, ..., an) € supptz)\suppty), we define two preterracep})’;,lg1 and

Pp,.p, IN @ similar fashion to the above case

1
Phs s = (Prod(sz. ti U ). ta. T2),
2
p}fz(, F)>1 =(S1USp, tp Usy, o).
Now the finite set

(1 ,(2 (1 ,(2
t={pe {pgl,pz’ p}Jl(sSZ’ p}Jl(!gZ’ pgz(-,giﬂ p}Jz(-,gi} : supp(p) # ¥}

of preterraces forms a terrace and satisfy
t@,...,an) =ta(@,...,an) +t2(a1, ..., an)

forany(as,...,an) € K"
Using these notations, we define an additive operation on the set of the terraces. The
following algorithm computes the addition of two terraces:

Algorithm (TerraceAdd).

Specification: T <« TerraceAdd(Ty, T)
Input: Ty, To terraces orK[Ag, ..., An]
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Output: T aterlace onK[Ag, ..., An]

R:=¢

For each(s,t,r) e T: N T> DO
R:=RU{(s,t,2-1)}
Ti:=Ti\{(s,t,r)}
T2:=T2\ {(s,t,r)}

END

R:=RUT1UT2

T:=0
WHILE R # ¢ DO

takepr € R

Found := false

FOR eachp; € R\ {p1} DO

IF (Found = false and
(PreterracelsZERO(pz - p2) does not hold)) THEN
Found :=true

Ri=RAipn RZ(}l) V@ D @
S:= (P}, p,» Pp1.p2> P12 Ppo.prs Pro.pr)

FOR eachp € SDO
IF PreterracelsZERO(p) does not hold THEN
R:= RU{p}
ENDIF
END
ENDIF
END
IF Found = false THEN
T:=TU{p1}
R:= R\ {p1}
ENDIF
END
RETURNT

We define he terrace; + t2 as an output oferraceAdd (t1, t2). It is easy to check that
property 1 holds:

1 (t+W)@,...,an) =t(@,...,an) + 2@, ..., an).
The definition of multiplication is rather simple. The following algorithm computes the

multiplication of two terraces.

Algorithm (TerraceMul).

Specification: T < TerraceMul(Ty, T2)
Input: Ty, To terraces orK[Ayg, ..., An]
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Output: T aterlace onK[Ag, ..., An]

T:=0
FOR eachp; € T andp, € T, DO
p:=p1-p2
IF PreterracelsZERO(p) does not hold THEN
T:=TU{p}
ENDIF
END
RETURNT

We define derracet; - tp as an output offerraceMul (i1, tp). It is easy to check that
property 2 holds:

2. (t1-t)@1,...,an) =t(a,....an) 2@, ..., an).

For an arfitrary terracet, the inversa 1 of t is defired byt~ = {p~1: p e t}. Itis
trivial thatt—1 forms a terrace and that property 3 holds:

-1 _Jyt@, ... an),  ift(a, ..., a0) #0,
3t (al""’a”)—{o, ift(ay,...,an) =0.

Now we have defined algorithms to comeubperations on the terraces satisfying
properties 1, 2, 3.

We let TER = TER(K[A4,..., Aq]) be the set of terraces dl[Ay, ..., An]. We
should note that, for a terradee TER, there are infinitely many terracé¢se TER such
thatt(ag,...,an) =t'(@1,...,ay) forany(as, ..., an) € K".

Example 3.2. We consider the following two terracésandt’ onC[ A, B]:
t = {{{5A+ B}, ¥, 5A+ B)},
t' = {({B}, {A}, B), ({5A% + AB}, ¥, 5A + B)}.
Then we have
B, if (A, B) e V{AD\V({B}), i.e, A=0,B#0,
5A+ B, if (A, B) e C3A\V({5A?+ AB}),

i.e., A#0,5A+ B #0,
0, otherwise.

Sot(a, b) =t'(a, b) foranya,b € C.

t'(A, B) =

We defire a binary elation~ on TER by
t~t < t4{pre(=1)} -t' =0.
Then the relation- is a conputable equivalence relation oreRr.
Proposition 3.3. For arbitrary two terraces t andton K[Ag, ..., An], t ~ 1" if and only
if
t@,...,an) =t'@,...,an)
forany(as, ..., an) € K.
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Proof. Lettg =t+{pre(—1)}-t’. We want to Row thattg = @ iff (va € K")t(a) =t'(a).
First we assume th& = . We fix an arbitrarya € K". Thentg(a) = 0. And we have

0=1(a) =t(@ + ({pre(=D)})(@) - t'(@) = t(a) — t'(a).

Sot(a) =t'(a).

For the conerse, we asume thap € tg. Then, by the definition of terraces, we have
thatsupp(p) # @. Ifwe fix & € supp(p), we havep(d) # 0 by theddfinition of preterraces.
Thus 0# p(@) = tp(a) =t(@) —t’(a). Sot(a) #t'(a). O

It should be noted that there is only one terrace, narfielywhich reresents 0. We
denote the set of the equivalence clagsRTK[Ag, ..., Anl)/ ~ by Ta,,... A, FOr a
equivalence clas$t]~ € Ta,,.. A, and a sequencéay,...,an) € K", we define
[t]~(a1,...,an) = t(as,...,an) € K. The previous proposition witnesses the well-
definedness oft]~(ai,...,ay) € K. Moreover, using the proposition, we can define
addition, multiplication, and inverse Gha, . ... Ay bY [t~ +[t']~ = [t+t']~, [t]~-[t']~ =
[t-t']~, and[t]Z! = [t~1]~ fort,t’ € TER(K[Aq, ..., Anl).

We can easily check thal(a,,.. A, is @ Von Neimann regular ring, actually it is
isomorphic to the ringT defined at the beginning of this section as the closure of the
imagep[K[A1, ..., Anll.

For agiven polynomialf € K[A1, ..., An], we define the corresponding equivalence
class onterraces teff) € Tia,,.. A, DY

tery () — H‘{;])ie(f)}]m :I I ilé.[Al,...,An]\{O},

Note thatf (az, ..., an) = terr(f)(ay,...,an) forany(a,...,a,) € K". So we often
identify f with terr () if there is ro confusion.

4. ACGB

We give analternative comprehensive @rier bases in this section. L&t be an
algebraically closed field, HR be the set of the terraces df[A4,..., Am] where
A1, ..., An are variablesT = TeErR/ ~, and tef : K[A1,..., Am] — T be the
corresponding embedding. As we have seeddation 3T = Tia,, .. A, IS @ coOmmutative
Von Neumanrregular ring.

.....

Definition 4.1. We extend ter to the emledding
terr : K[A1, ..., Am, X1, ..., Xn]l = T[Xq, ..., Xn]
by
terr (frar + -+ -+ fla) =terr (f)ay + - - +terr (o
wherefq, ..., fi e K[Aq, ..., An]anday, ..., are terms ofXq, ..., Xn.
Definition 4.2. For each

f(X1,...,Xp)=Clag1+---+Qqoy € T[Xq,..., Xn]
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and elementsy, ..., am € K, we define

fag,...am (X1, ..., Xm) € K[Xq, ..., Xm]
by

fag...am X1, ..., Xn) =C1(@1, ..., 8m)a1 + - -+ C(ag, ..., am)o
wherec; € T anda; are terms ofX4, ..., Xp.

We can calculate the stratified @iter basis for a given finite set of polynomials
over a compuble commutative Von Neumann regular ring. Now we prove the following
theorem.

Theorem 4.3. For an algebraically closed field K, let T be the canonical set of
equivalence classes on the terraces ofAK ..., Am], and letterr : K[Ag, ..., Am,
X1,..., Xpl = T[Xq1,..., Xn] be the corresponding embedding. For a given setF
{f1(AL .. Amy X, oo, Xn), e, TR(AL oo Amy Xe, oo, X)) € KA ..., Am, X1,
..., Xnl, we letterr (F) = {terr(fj) : i =1,...,k} € T[Xq,...,Xpl, and let G =
{01(X1, ..., Xn), ..., G (X1, ..., Xp)} be a Gibbner basis oferr (F) in T[X4, ..., Xp]
such hat each element; gs Boolean clged. Then whave the following properties:

(1) Forarbitrary ay, ..., am € K, Geay,...am = {91, ..am X1 -5 Xn)s oo, Oy,
(X1, ..., Xp)}\{0} is a Grobner basis of the i&eal generated byadr, ..., an) =
{fr(@, ..., am, X1, ..., Xn), ..., fk@1, ..., am, X1, ..., Xp)}in K[ X1, ..., Xu].
Moreover, G, ... an) becomes a reduced Gloner basis, in case G is stratified.

(2) For any polynomial 18Xq, ..., X,) € T[Xq, ..., Xu], wehave

(h &) @..am (X1, -, Xn) = heay,..a (X1, - Xn) 4Gay. . am).

Proof. We fix a1, ..., am € K and denoté and X for “ay, ..., an" and “X1, ..., Xu"
respectively. .
It is easy to check thaBs and F(a) generate theasne ideal inK [X]. In order to see

thatGj; is a Goobner basis ik [ X], it suffices to show tha® P( f, g) —*>Gél 0 for ary pair
f andg of polynomials inGz. This pioperty follows from thdollowing two claims.

Claim 1. The homomorphism also preserves monomial reductions, thagqs_()oi(;é
ga(X) in case gX) —>g q(X).
Proof of Claim 1. If p(X) —g(%) q(X), thenp, g andq must have the filowing forms:
P(X) = bap + p'(X),
9(X) = ca +g'(X),
q(X) = p(X) — beBg(X).
An instantiation byay, . . ., an yields the following equations:
pa(X) = b@ap + p5(X),
ga(X) = c(@a + g5(X),
da(X) = pa(X) — b@c *(@)Bga(X).
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Whenb(a)c(a) # 0,c(d) # 0, so the leading term @f does not vanish. In this case, we
have ps(X) = 6a(%) ga(X). Whenb(d)c(@) = 0, we haveb(a)c=1(a) = 0. In this case,
pa(X) andga(X) are identical.

In either case, we have

pé()-() i’gé()_() QaO_(),
from which the ass#ion of the claim follows. O
Claim 2. Thehomomorphism also preserves S-polynomial construction, that is

SP(fa(X), ga(X)) = SP(f, g)a(X)
for any pair f and g of G.

Proof of Claim 2. We firstshow thatSP(f, g)s(X) = 0 if fa(X) = 0 orga(X) = 0.

We first assume thatf5(X) = 0. SinceG is reduced, w know that f is Boolean closed,
and so thatc(f)*(@) = 0. SoSP(f,g) = SPdlc(f)*f,g) = lc(f)*SP(f, g) implies

that

SP(f, 9)a(X) =lc(F)*@SP(f, g)a(X) = 0.

We also haveés P(f, g)a(X) = 0if gs(X) = 0 in the same way.

Next we assume thafts(X) # 0 andga(X) # 0. We sayim(f) = bay andim(g) =
cBy whereb andc are coefficients and, 8, andy are terms with GCQr, 8) = 1.
Now we note thatf andg are Boolean closed sinck g € G, and sob(d) # 0 and
c(a) # 0from the assumption. Thum(fz) = b(@)«ay andlm(gs) = c(@)By. Then we
haveSP(fa, ga) = c(@)Bfa — b(@)aga = (bBf —aag)a = SP(f,g)a. O

The last assertion of 1 follows immediately by the definition of a stratifiedb@er
bass.
In order to prove 2, we observe the following claim.

Claim 3. h5(X) is irreducible by G in K[X] for any polynomial iX) in T[X] which is
irreducible by G anda € K.

Proof of Claim 3. If hz were reduible by g; for somed € K andg € G, therewere a
monomialce of h suchthatlt (g) | « and thatc; - 1c(g)a # 0, and sac - lc(g) # 0.

Then, we note that a polynomial is irreducible byg’ if andonly if ¢’ - Ic(g’) = 0 for
any monomiat’a’ of h’ suchthatlt (g') |’

Therefore we had théit(X) were reduible byg. O

Now, by Claims land3, we have 2. [

By property 1,G can be considered as a kind of comprehensiveb@er basis where
A1, ..., An are parameters, and so we cé@l an ACGB Note hat in the standard
comprehensive @bner bases, we can not define monomial reductions before instantiation.
In our algorithm, we can define monomial reductions, furthermore they are preserved by
any instantiation.
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5. ACGB and CGB

In this section, we give an example of ACGB such ttat there does not exist a
comprehensive @bner basiss’ that generates the same ideal&for any insantiation.

Let G be a set{(V@®\V{A}D, DX, V{AH\V({1}), 1)} of polynomials in a
polynomial ring T¢a)[ X1, whereTa) is a Von Neximann regular ring of the equivalence
classes of the terraces & A] with K an algebraically closemfinite field. ClearlyG is
a Gobner basis i a)[ X]. Note hatG generates an ide&K) when A takes anon-zero
value ofK and(1) when A takes a value 0.

For thisG we show that there does not exists a finiteGebf polynomials inK [A, X]
suchthatG’ becomes a Gibiner basis and generates the same ide@ msK [ X] for any
instantiation ofA.

Proof. Let G’ = {f1(A, X),..., fi(A, X)} and suppose thdtfi(a, X), ..., fi(a, X)}
is a Gobner basis and generates the ideé] whena # 0 and the ideal (1) when
a = 0. Since{f1(0, X), ..., fi(0, X)} is a Gobner basis, it must contain a non-zero
constantc € K. We can assumef1(0, X) = c¢ w.l.o.g. Hence, f1(A, X) can be
expressed asf1(A, X) = g(A, X)A + ¢ for some polynomialg(A, X) in K[A, X].
Expresgy(A, X) further asg(A, X) = gi1(A, X)X + g2(A) with polynomialsgi (A, X) in
K[A, X]andgz(A) in K[A]. So, wehave f1(A, X) = g1(A, X)AX + g2(A)A+c. Since
{fi(a, X), ..., fi(@a, X)} is a Giobner basis of the ide&K) whena # 0, there must exist
suchthat fj (a, X) = d X for some non-zero constadte K. Certanly i is not equal to 1.
Hence, we havegz(a)a + ¢ = fi(a, X) — fi(a, X)gi(a, X)a/d € (X) whenevem # 0.
SinceK is infinite, there must exist a non-zero elemartf K suchthatgx(a)a + ¢ # 0,
which produces a contradiction, sin¢¥) contains a non-zero constantkf [

For any compreensive Gobner basisa’, clearly there exists an ACGB suchthat
they generate the same ideal for any instantiation.

In this sense, we can say the class of ACGBviderthan the class oiVeispfenning’s
original comprehensive @bner bases.

6. Applications and examples

We implenented the algorithm to compute ACGB in the cdseis the field of
the conplex numbersC. In this sectn, we give some computation examples of our
implementation.

Example 6.1. Find the reluced Gobner basis for the ideal generated by the following
system of polynomials of the variables y with parameters, b:

ax?y + 1,
bxy+ abx+ b.

In order to solve them simultaneously, compute ali€r basis of the ideal in
Ta,blX, yl where Tgp) is the Von Neumannegular ring of equivalence classes on
the terraces ort[a, b]. Our program written in Risa/AsirNoro and Takeshim#1992
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produces the following Giner basis in the graded reverse lexicographic order with
X > y:

[[(V[al,1)]x1,

[(V[0]-V[b*al ,1)1*x+[(VI0]-VIb*al, (-1)/(-a"2)) xy+ [(V[0]-V[bxal, (-2)/(-a))]*1,

[(v[0]-V[b*al,1)1*y~2+[(V[0]-V[-b*a],3*a)]*y+[(V[0]-V[b*al,a"2)]*1,
[(V[b*al-V[al,1)]*y*x"2+[(V[b*al-V[a], (1)/(a))]*1]

In this output,(V[t]1 - V[ s], r) corresponds to the preterraget,r). So theabove
output means that the reducedoBneér basis is

(1), if a=0,
(x+5y—2,y?+3ay+a?), ifabs0,
<X2y+%>’ if ab= 073.750.

Example 6.2. Leth(a, b, x, y) € C[a, b, X, y] be such that
h(a, b, x, y) = @+ b)x3y? + 5a’xy + (a — b?).

Then, for eacha,b e C, find the normal form under the reduced oBnér
basis for the ideal generated by the system of polynomials which appeared in
Example 6.1

ax?y + 1,
bxy+ abx+ b.

Our program calcutas thenormal formnf(h) of h under the ACGB which we
calculated aExample 6.1as follows:
[(V[b*al-V[b*a,5%a~2-a], (5%a~3-a"2-b)/(a) ) 1 xy*x+
[(V[0]-V[5*b*a~6-b*a~5+5*b~2%a"4-2%b~2*%a"3-b"3*a] , (5xa~3-a"2-b)/(a"2)),
(V[-bxa~3-b~2*a]l-V[-bxa] ,5*a)]*y+
[(V[b*a~3+b~2%a] -V [b*a~3+b~2%a, (-2%¥b~2-5%b) *a~2+ (b~ 4+5%b"~3-b) *a] ,5%a"2+a-b"2) ,
(V[0]-V[-25%b*a~10+(25*%b"~3+5*b) *a~9-25%b~2*a "8+ (-5*b~5+25*b~4-b"3+15%b"2) xa~ 7+
(b~5-10%b~4-b"2) *a"~6+(-5%b~6-b"4+10%b"3) ¥a"5+(2%b~6-10%b"5-2%b"3) *a 4+
b 5*a”3+(b"7-b"4)*a"2+b"6*al, (-5*a"3+b"2*a+b)/(-a)),
(V[5%b*a~6-bka"~5+5%b~2%a~4-2¥b~2%a~3-b~3%a] -V [b*a~4-b~3%a"3+b"2%a"~2-b"4x*a,
5xbka”~6-bxa~5+5%b~2*a~4-2%b~2*a~3-b"3x*al ,a-b"2),
(V[b*a~4-b~3*a"~3+b~2*a"2-b"4*a] -V[b*a~4-b~3*a"3+b"~2*a"2-b"4*a,5*b*a~6-b*a 5+
5xb~2%a"4-2%b"2%a"3-b"3*a] , (-5*a~3+a"2+b)/(-a)),
(V[b*al-V[a],a-b"2), (V[a-b"2,-b*a"2-a,a"3+b*a]-V[-b,a] ,5*a"2)]*1

We can get much information usingf (h). For exanple, we know thah € (ax?y +
1, bxy+abx+b) ifandonlyifa=0or(a—b?=0A5a3—a?—b =0A a2+b # 0).

Example 6.3. Find the minimal polynomial of in the ideal(x? —a,y® —a,x +y —t
with a parametea.

It suffices to calculate the @bher basis ofx? —a, y3 —a, x+ y —t) with a tem-order
suchthatx, y > t for eacha, and find the polynomial consisting only of Our program
produces eight polynomials for the given polynomigd$ — a, y® — a, x + y — t} with a
parametea in the lexicographic order witlh > y > t. The following three polynomials
are the ones which contain ortlyas their variables.

[(V[-al,1)]1*t"4,

[(V[-64*a~2-27*a]-V[al,1)]*t 5+ [(V[-64*a"2-27*a]-V[-a],3/8)]*t 4+



A. Suzuki, Y. Sato / Journal of Symbolic Computation 36 (2003) 649-667 665

[(V[-64*a~2-27*a]-V[-al,-10/3*a)]*t"3+[(V[-64*a~2-27*xa]l-V[a],-13/4%a)]*t"2+
[(V[-64*%a~2-27*a]-V[a],7/3*a~2-3/2%a)]*t+[(V[-64*a~2-27*a]-V[-a],-91/24*a"2)]*1,

[(VI[0]-V[-64*a~2-27*a],1)]*t"6+

[(V[-4096%a"~3-1536*a~2+81*a]-V[64*a~2+27*a] ,-9/64),

(V[0]-V[-4096%a~3-1536%a~2+81*a] ,-3*a)]*t"4+

[(V[0]-V[-64*a~2-27*a] ,-2*a)]*t~3+[(V[0]-V[28672*a"4-17984*a~3-5202*a~2+3159*a] ,3*a"2),
(V[-896*a~3+198*a"2+243*a] -V [-64*a~2-27*a] ,2/3*a~2+3/2*a) ,
(V[28672%a~4-17984%a"3-5202%a~2+3159%a] -V [896%a~3-198*a~2-243*a] ,39/32%a) ] ¥t~ 2+
[(V[5248%a~3+2790%a~2+243*a] -V [64*a"~2+27*a] ,-7/8*a~2+9/16%a),

(V[896%*a~3-198*a~2-243*a] -V[-64*a~2-27*a] ,-41/8%a"2-9/16%*a) ,
(V[0]-V[-73472*a~4+8172%a"~3+21708*a"~2+2187*a] ,-6*a"~2) ] *t+

[(V[0]-V[-64*a~3+37*a"2+27*a] ,-~a~3+a"2)]*1.

Looking at these polynomials, for example, we can see that the degree of the minimal

polynomial is 6 if and only ifa # 0, —27/64, and that it is 5 if and only ik = —27/64.

We should note that such conditis are derived also i spgb () of DisPGB Montes

(2002 or by gsys () of CGB? as below:

DisPGB:

Case=[1, 1], [a#0, 27+ 64a 0], [t® —3t*a—2at3 + 3t2a2 — 6a%t + a2 — &S,
—91a® + 24t5 — 78at? + 9t + (5622 — 36a)t — 80atd + (27a+ 64a?) y,

91a? — 24t° 4+ 78at? — 9t* + (9a — 120a2)t + 80at3 + (27a + 64a2) x]
Case=[1, 0], [a# 0, 27+ 64a = 0],

[32768t° + 12 288t* + 46 080t3 + 44 92812 + 34 344t — 22113

13824yt — 5184y + 4096t% — 3456t2 + 6912t — 2187,

6912y2 — 5184y + 4096t* + 3456t2 + 6912t + 729, X + y —t]
Case=[0], [a=0], [t4 3yt? —2t3, y2 — 2yt +t2, x+y—t]

CGB:

{{64*a + 27 <> 0 and a <> O,
{x*x*2 - a,

xX+y-t,

y**3 - a,

yH*k2 - 2%y*t + tx*2 - a,

BkyrktH*2 + axy - 2%t**3 + (2*a)*t - a,

(8*a)xy*t — (3xa)*y - t*kd - (2ka)xt**2 + (4*a)xt + 3kaxx*2,

(64xa*xx2 + 27*a)xy + 24xt**5 + Okt**4 - (80*a)*t**3 - (78*xa)*t**2 + (56ka**2 — 36%a)*t
- 9lxax*2,

t**6 - (3ka)*xtx*k4d - (2*a)*xt**x3 + (Bka*x*2)*xt*x*2 — (6*a*x*2)*t - (ax*3 - a*x*2)}},

{a <> 0 and 64*a*x*2 + 27xa = 0,
{x*x*2 - a,

{a
{x

xX+y-t,
y**3 - a,
yH*k2 - 2%y*t + tx*2 - a,
BkyxtH*2 + axy - 2%t*k*3 + (2*a)*t - a,
(8*a)xy*t — (3xa)*y - th*kd - (2ka)*xt**2 + (4*a)xt + Jkax*2,
(64xa*xx2 + 27*a)xy + 24xt**5 + Okt**4 - (80*a)*t**3 - (78*xa)*t**2 + (56ka**2 — 36%a)*t
- 9lxax*2}},
=0,
**2 - a,
xX+y-t,
y**3 - a,

1 http://www-ma2.upc.es/montes/

2 http://www.fmi.uni-passau.defedlog/cgb/
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yHR*2 - 2kyxt + tk*2 - a,
BkyRLRR2 + aky — ktkk3 + (2ka)*t - a,
(8xa)*y*t — (B*a)*y - tx*x4 - (2¥a)*t**2 + (4*a)*t + 3*kax*2}}}

7. Computations of functional equations
The following system of polynomial equations

fl(A17 ceey Amv )_() = O

: (1)
fic(AL, ..., Am, X) =0

in K (K™[X] can be considered as a system of polynomial equations over functions, that is
eachA; represents a function frold™ to K.

In this section, we also assume thatis an algebraically closed field. Our ACGBs
give us direct information for such systeridist, we can decide whether the system has a
solution.

We can easily extend Hilbert weak Nullstellensatz as follows.

Theorem 7.1. Tr]e system d&q. (1) has a solution if and only iffy (Aq, ..., Am, X), ...,
fi(Ad, - .., Am, X)) N KED = (0},

By this theorem, we know it has aolstion if and only if the ACGB of
(f1(AL, ..., Am, X), ..., f(A1, ..., Am, X)) does not contain a constant.

Secondly, for each polynomidl(Ag, ..., Am, X) we can decide whether it vanishes at
every solition of (1) by the fdlowing theorem.

Theorem 7.2. Suppose that the systermtaf. (1) has a solution. Then, for each polynomial
h(Aq, ..., Am, X), it vanishes at every solution of the system if and only if the ACGB of
(fu(AL ..., Am, X, (A ..o, Ay X), h(AL ..., Am, X) y+ 1) is {1}. Whee y is

a new varable diginct from X..

Proof. Note thath(Ag, ..., Am, @) vanishesat every solutior of the system (1) if and
only if h(ay, ..., am, b) vanishesat every solutiorb of the system of polynomial equation

fl(als"'vamv )_():O
: 2)
fk@g,...,am, X) =0

in K[X] for each elemerdy, ..., am in K. We also have thdt(ay, .. ., am, b) vanistes at
every solition b of (2) if and only if the polynomial ideal f1(ay, . .., am, X), ..., fk(as,

..,am, X),h@1,...,am, X)y + 1) of K[X] includes 1. Henceh(A1, ..., Am, &)
vanishes at every solution« of the system 1) if and only if the poly-
nomial ideal (fi(a,...,am, X), ..., fk(@s, ..., am, X),h(@ay, ..., am, X)y + 1) of
K[X] includes 1 for each elemend,...,am of K, which is equivalent to
(fe(Az, ..o, Am, X), o, Tk(AL, .o, Am, X),h(Ag, .., A, X)Yy+1) o {1). O
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This theorem also provide a decision procedure for ideal membership problems of the
. . m v
polynomial ringK K™ [X].

Theorem 7.3. Suppose the idedlf{ (Aq, . .., Am, X), ..., fk(A1, ..., Am, X)NKK™ =
{0}. Then,

h(A1, ..., Am, X) € \/<f1(A1,..., Am, X), ..y f(Ag, ..o, Am, X))
if and only if the ACGB of

(fr(AL .o, Ama XD, oo, fi(Ag, oo, Amy X)L (AL . A, X) Yy + 1)
is {1}. Whee y is a new ariable didinct from X.

Proof. Itis a direct consequence of the above te@o since Hibert strong Nullstellensatz
holds in the polynomial ring((Km)[X] (see Theorem 1.4.3. iBaracino and Weispfenning
1975. O

8. Conclusion and remarks

Our algorithm of ACGB does not have a canonical representation in a completely
syntactic form. There are infinitely many forms of equivalent terraces, although there
is only one form (i.e. an empty set) to represent 0 as is mentione8eition 2
In this paper we employed rather naivethmds to handle terraces. We did not use any
sophisticated technique such as polynomial factorizations or computations of radical ideals
or prime(primary) ideal decompositions. We need further computational experiments to
find the most effective way.

We described our work under the assumption tkais algebraically closed. But this
is not indispensable. What we actually need is the computability of terraces. If we can
compute terraces, then we can define and calculate ACGB. For examplekwikenreal
closed field, we can handle terraces usitasndard quantifier elimination techniques.
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