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Abstract

We give an alternative definition of comprehensive Gr¨obner bases in terms of Gr¨obner bases
in polynomial rings over commutative Von Neumann regular rings. Our comprehensive Gr¨obner
bases are defined as Gr¨obner bases in polynomial rings over certain commutative Von Neumann
regular rings, hence they have two important properties which do not hold in standard comprehensive
Gröbner bases. One is that they have canonical forms in a natural way. Another one is that we
can define monomial reductions which are compatible with any instantiation. Our comprehensive
Gröbner bases are wider than Weispfenning’s original comprehensive Gr¨obner bases. That is there
exists a polynomial ideal generated by our comprehensive Gr¨obner basis which cannot be generated
by any of Weispfenning’s original comprehensive Gr¨obner bases.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Let R be a commutative ring andS be any non-empty set. Then the set of all functions
from S to R denoted byRS becomes a commutative ring by naturally defining an addition
and a multiplication of functions. Furthermore, this ring becomes a commutative Von
Neumann regular ring if R is a commutative Von Neumannregular ring. Therefore, in
case it is computable, we can construct Gr¨obner bases in polynomial rings overRS. For
such Gröbner bases, we have the following theorem.
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Theorem. Let G = {g1, . . . , gk} be a reduced Gr̈obner basis of an ideal〈 f1, . . . , fl 〉 in
a polynomial ring RS[X̄], then for each element a of S,{g1(a), . . . , gk(a)} becomes a
reduced Gr̈obner basis of the ideal〈 f1(a), . . . , fl (a)〉 in the polynomial ring R[X̄]. Here
h(a) denotes a polynomial in R[X̄] given from a polynomial h of RS[X̄] with replacing
each coefficient c in h by c(a) (see Theorem2.3of Weispfenning(1989)).

This observation leads us to an alternative definition of comprehensive Gr¨obner
bases. Let K be an infinite field and f1(A1, . . . , Am, X̄), . . . , fk(A1, . . . , Am, X̄)

be polynomials inK [A, . . . , Am, X̄] with parametersA1, . . . , Am. Considering each
polynomial f (A1, . . . , Am) in K [A1, . . . , Am] as a function from K m to K ,
f1(A1, . . . , Am, X̄), . . . , fk(A1, . . . , Am, X̄) become polynomials inK (K m)[X̄]. If wecan
construct a reduced Gr¨obner basisG of the ideal〈 f1(A1,. . . , Am, X̄), . . . , fk(A1, . . . , Am,

X̄)〉 in the polynomial ringK (K m)[X̄] over the commutative Von Neumann regular ring
K (K m) somehow, thenwe can considerG as a kind of comprehensive Gr¨obner basis of
〈 f1(A1, . . . , Am, X̄), . . . , fk(A1, . . . , Am, X̄)〉 with parametersA1, . . . , Am, sincean in-
stantiation ofA1, . . . , Am with any elementsa1, . . . , am of K becomes a reduced Gr¨obner
basis of the ideal〈 f1(a1, . . . , am, X̄), . . . , fk(a1, . . . , am, X̄)〉 in K [X̄] by the theorem
above.

In order to enable the above computation, it suffices to establish a way to handle
the smallest commutative Von Neumann regular ring extending the canonical image of
K [A1, . . . , Am]. If the quotient fieldK (A1, . . . , Am) would correspond to it, the situation
would be very nice. Unfortunately, however, it does not work. Consider the inverseA−1

1 of
A1 in the commutative Von Neumann regular ringK (K m). Since A1(a1, . . . , am) = a1
for any a1, . . . , am in K , A−1

1 should be the functionϕ from K m to K such that
ϕ(0, a2, . . . , am) = 0 andϕ(a1, . . . , am) = 1/a1 if a1 �= 0. Certainlyϕ is not a member
of K (A1, . . . , Am).

In order to overcome this situation, we define a new algebraic structure called aterrace,
which enables us to handle the smallest commutative Von Neumann regular ring extending
thecanonical image ofK [A1, . . . , Am]. Using terraces we can compute a Gr¨obner basis in
a polynomial ring overK (K m). We call it anACGB(alternative comprehensive Gr¨obner
basis). ACGB have the following two nice properties, which do not hold in standard
comprehensive Gr¨obner bases (Weispfenning, 1992).

(1) There is a canonical form of an ACGB in a natural way.
Since an ACGB is already in a form of a Gr¨obner basis in a polynomial ring over

a commutative Von Neumann regular ring, we can use a stratified Gr¨obner basis as a
canonical form of an ACGB.

(2) We can use monomial reductions of an ACGB.
Because of the same reason as above, we can use monomial reductions of an

ACGB. Moreover, it will be shown that monomial reductions are compatible with
any instantiation of parameters.

In this paper we introduce our work on ACGB. We concentrate on the case thatK
is algebraically closed. We give some algorithms to handle terraces using the classical
Gröbner bases technique.

Our plan is as follows. InSection 2, we give a quick review for Gröbner bases
for polynomial rings over Von Neumann regular rings. The reader is referred to



A. Suzuki, Y. Sato / Journal of Symbolic Computation 36 (2003) 649–667 651

Weispfenning(1989), Sato(1998), or Sato and Suzuki (2001) for moredetailed descrip-
tions. InSection 3, we give adefinition of terraces with several algorithms to handle them.
In Section 4, we give adefinition of ACGB. We prove several nice properties they have.
In Section 5, we show that the class of ACGB is wider than the class of Weispfenning’s
original comprehensive Gr¨obner bases. InSection 6, we give some computation examples
we got through our implementation. InSection 7, we show several methods to find the
properties of systems of polynomial equations over functions using ACGB.

2. Von Neumann regular ring and Gr öbner basis

A commutative ring R with identity 1 is called aVon Neumann regular ringif it has the
following property:

∀a ∈ R ∃b ∈ R a2b = a.

For such ab, a∗ = ab anda−1 = ab2 are uniquely determined and satisfyaa∗ = a,
aa−1 = a∗, and(a∗)2 = a∗.

Note that every direct product of fields is a Von Neumann regular ring. Conversely, any
Von Neumann regular ring is shown to be isomorphic to a subring of direct product of
fields as follows.

Definition 2.1. Let R be a Von Neumann regular ring. If we define¬a = 1 − a,
a ∧ b = ab anda ∨ b = ¬(¬a ∧ ¬b) for eacha, b ∈ R suchthat a2 = a, b2 = b,
({x ∈ R : x2 = x},¬,∧,∨) becomes a Boolean algebra, which is denoted byB(R).

ConsideringB(R) as a Boolean ring, the Stone representation theorem gives the
following isomorphismΦ from B(R) to a subring of

∏
I∈St(B(R)) B(R)/I by Φ(x) =∏

I∈St(B(R))[x]I , where St(B(R)) is the set of all maximal ideals ofB(R). This
representation of B(R) is extended to a representation ofR as follows.

Theorem 2.2 (Saracino–Weispfenning).For a maximal ideal I of B(R), if we put IR =
{xy : x ∈ R, y ∈ I }, then IR is a maximal ideal of R. If we define a mapΦ from R into∏

I∈St(B(R)) R/IR byΦ(x) =∏
I∈St(B(R))[x]IR, thenΦ is a ring embedding.

In the following unless mentioned, Greek lettersα, β, γ are used for terms, Roman
lettersa, b, c for elements ofR, and f, g, h for polynomials overR. Throughout this
section, we work in a polynomial ring overR and assume thatsome total admissible order
on the set of terms is given. The leading term off is denoted bylt ( f ) and its coefficient
by lc( f ). The leading monomial off , i.e., lc( f )lt ( f ) is denoted bylm( f ).

We redescribe some definitions and results which we need for our comprehensive
Gröbner bases. The detailed argument is given inWeispfenning (1989) and
Sato and Suzuki (2001).

Definition 2.3. For a polynomial f = aα + g with lm( f ) = aα, a monomial reduction
→ f is defined as follows:

bαβ + h→ f bαβ + h− ba−1β(aα + g)

whereab �= 0 andbαβ need not be the leading monomial ofbαβ + h.
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A monomial reduction→F by a setF of polynomials is also naturally defined. Using
this monomial reduction, we can construct a Gr¨obner basis of the ideal generated by a given
finite set of polynomials. Using the following properties, we can see that the algorithm is
almost the same as Buchberger’s.

Definition 2.4. A polynomial f is calledBoolean closedif (lc( f ))∗ f = f . (lc( f ))∗ f is
called aBoolean closureof f and denoted bybc( f ). Note that the Boolean closure of any
polynomial is Boolean closed.

We can construct a set of Boolean closed polynomialsH from any given set of
polynomialsF suchthat 〈F〉 = 〈H 〉. ThoughH is not determineduniquely, we abuse
the notationbc(F) to denote one of suchH .

Theorem 2.5. Let F be a setof Boolean closed polynomials. Then the equivalence relation
∗

coincides with the equivalence relation induced by the ideal〈F〉.
Using our monomial reductions, Gr¨obner bases are defined as follows.

Definition 2.6. A finite setG of polynomials is called aGröbner basis, if it satisfies the
following two properties:

• f
∗

G g iff f − g ∈ 〈G〉 for each polynomialf andg,
• →G has a Church Rosser property,

i.e., for each polynomialf andg, f
∗

G g if f there exists a polynomialh suchthat

f
∗→G h andg

∗→G h.

Definition 2.7. For each pair of polynomialsf = aαγ + f ′ andg = bβγ + g′, where
lm( f ) = aαγ , lm(g) = bβγ , and GCD(α, β) = 1, the polynomialbβ f − aαg =
bβ f ′ − aαg′ is called theS-polynomialof f andg and denoted bySP( f, g).

We can also characterize Gr¨obner bases in terms ofS-polynomials as in polynomial
rings over fields.

Theorem 2.8. Let G be afinite set of Boolean closed polynomials. Then G is a Gröbner

basisiff SP( f, g)
∗→G 0 for any pair f and g of polynomials in G.

This theorem enables us to construct a Gr¨obner basisG for a given finite setF of
polynomials such that〈G〉 = 〈F〉. We can repeat computations of Boolean closures and
S-polynomials until we get a desired Gr¨obner basisG, each element of which is Boolean
closed.

We describe some important properties of Gr¨obner bases.

Theorem 2.9. Let G be a reduced Gr̈obner basis, then any element of G is Boolean closed.

Definition 2.10. A reduced Gröbner basisG in a polynomial ring over a commutative
Von Neumannregular ring is called astratified Gröbner basis, when it satisfies the
following two properties:

• lc(g) = lc(g)∗ for eachg ∈ G,
• lt ( f ) �= lt (g) for any distinct elementsf andg in G.
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Theorem 2.11. A stratified Gröbner basis is determined uniquely. That is two stratified
Gröbner bases G and G′ suchthat 〈G〉 = 〈G′〉must be identical.

3. Terrace

In this section, we define a computable ringT and operations onT which witness that
T forms a Von Neumann regular ring. For an arbitrary polynomialf ∈ K [A1, . . . , An],
we can consider it as a mappingf : K n → K , i.e., f ∈ K (K n). So wecan define the
canonical embedding

ϕ : K [A1, . . . , An] → K (K n).

Let T be the closure of the imageϕ[K [A1, . . . , An]] under addition, multiplication, and
inverse in the Von Neumann regular ringK (K n), henceT becomes a Von Neumann regular
ring. We show a way to describe each element ofT and define computable operations
on T .

In the rest of this section, we fix an algebraically closed fieldK and a natural number
n. We use the symbols A1, . . . , An as variables. For each finite set of polynomials
{ f1, . . . , fl } in K [A1, . . . , An], we denote the affine variety byV({ f1, . . . , fl }), i.e.,

V({ f1, . . . , fl }) = {(a1, . . . , an) ∈ K n :
f1(a1, . . . , an) = · · · = fl (a1, . . . , an) = 0}.

We setV(∅) = K n andV({1}) = ∅ for convenience.

Example 3.1. Let t be a function fromC
2 to C defined by

t (a, b) =
{

a− b, if (a, b) ∈ C2\V({a− b}), i.e.,a �= b,

0, otherwise.

Then the inverse is

t−1(a, b) =
{ 1

a−b, if (a, b) ∈ C2\V({a− b}),
0, otherwise.

The addition oft andt−1 is

(t + t−1)(a, b) =
{

a2−2ab+b2+1
a−b , if (a, b) ∈ C2\V({a− b}),

0, otherwise.

And the multiplication oft andt−1 is

(t · t−1)(a, b) =
{

1, if (a, b) ∈ C2\V({a− b}),
0, otherwise.

In order to handle elements ofT suchast · t−1, we definean algebraic structure called
a terrace.
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3.1. Definition of preterraces

Definition 3.1. A triple 〈s, t, r 〉 is called apreterraceon K [A1, . . . , An] if s and t are
finite setsof polynomials inK [A1, . . . , An] andr = g/h for someg, h ∈ K [A1, . . . , An]
which satisfy

(1) V(s) ⊆ V(t),

(2) (V({g}) ∪ V({h})) ∩ (V(t)\V(s)) = ∅, i.e., g(a1, . . . , an) �= 0 and
h(a1, . . . , an) �= 0 for any(a1, . . . , an) ∈ V(t)\V (s).

For a given preterracep = 〈s, t, r 〉, thesupportof p (supp(p)) is the setV(t)\V(s) ⊆
K n. For a preterracep = 〈s, t, g/h〉 on K [A1, . . . , An] and(a1, . . . , an) ∈ K n, we define
p(a1, . . . , an) ∈ K by

p(a1, . . . , an) =
{

g(a1,...,an)
h(a1,...,an)

, if (a1, . . . , an) ∈ supp(p),

0, otherwise.

So p can be considered as a member ofT . For given preterracesp1 and p2, we define a
relation p1 ≡ p2 by supp(p1) = supp(p2) and p1(a1, . . . , an) = p2(a1, . . . , an) for any
(a1, . . . , an) ∈ supp(p1). Wecan easily check that≡ is an equivalence relation on the set
of preterraces.

For an arbitrary polynomial f ∈ K [A1, . . . , An], we define the corresponding preter-
race pre( f ) as follows:

pre( f ) = 〈{ f },∅, f/1〉.
Note that

supp(pre( f )) = V(∅)\V({ f })
= {(a1, . . . , an) ∈ K n : f (a1, . . . , an) �= 0}.

Then we can easily see thatf (a1, . . . , an) = pre( f )(a1, . . . , an) for any (a1, . . . , an) ∈
K n.

Next we define the inverse and multiplicative operations on preterraces. The inverse
p−1 of a preterracep = 〈s, t, g/h〉 is defined by p−1 = 〈s, t, h/g〉 without changing the
support. Note that we have{

p(a1, . . . , an)
−1 = p−1(a1, . . . , an), if (a1, . . . , an) ∈ supp(p) = supp(p−1)

p(a1, . . . , an) = p−1(a1, . . . , an) = 0, otherwise.

Hencep−1 represents the inverse ofp in T .
In order to define the multiplicationp1 · p2 of preterracesp1 = 〈s1, t1, r1〉 and

p2 = 〈s2, t2, r2〉 to represent the multiplication as elements ofT , we need that

(p1 · p2)(a1, . . . , an) =



p1(a1, . . . , an) · p2(a1, . . . , an),

if (a1, . . . , an) ∈ supp(p1) ∩ supp(p2),

0, otherwise.



A. Suzuki, Y. Sato / Journal of Symbolic Computation 36 (2003) 649–667 655

Note that we have

supp(p1) ∩ supp(p2) = (V(t1)\V(s1)) ∩ (V(t2)\V(s2))

= (V(t1) ∩ V(t2))\(V(s1) ∪ V(s2))

= (V(t1) ∩ V(t2))\((V(s1) ∩ V(t2)) ∪ (V(s2) ∩ V(t1)))

= V(t1 ∪ t2)\V(Prod(s1 ∪ t2, s2 ∪ t1)),

where, for a finite sets, t of polynomials,

Prod(s, t) = { f · g : f ∈ s, g ∈ t}.
So we define the multiplication by

p1 · p2 = 〈Prod(s1 ∪ t2, s2 ∪ t1), t1 ∪ t2, r1 · r2〉.
Wecan easily check thatp1 · p2 ≡ p2 · p1 (actuallyp1 · p2 = p2 · p1), (p1 · p2) · p3 ≡

p1 · (p2 · p3), andp1 · 〈{1},∅, 1〉 ≡ p1 for any preterracesp1, p2, andp3. Note that, for a
preterracep = 〈s, t, r 〉, we havep· p−1 ≡ 〈s, t, 1〉, which might not be equal to〈{1},∅, 1〉
in T in general.

3.2. Definition of terraces

A sum of two preterraces as an element ofT is not generally represented by a preterrace.
We need another definition.

Definition 3.2. A finite set {p1, . . . , pl } is called aterrace on K [A1, . . . , An] if each
pi (i = 1, . . . , l ) is a preterrace onK [A1, . . . , An] such that supp(pi ) �= ∅ and
supp(pi ) ∩ supp(pj ) = ∅ for any distinct i , j ∈ {1, . . . , l }. The support of a terracet
is defined by

supp(t) =
⋃
p∈t

supp(p) ⊆ K n.

For a given terracet and a sequence(a1, . . . , an) ∈ K n, we define

t (a1, . . . , an) =
{

p(a1, . . . , an), if ∃p ∈ t)(a1, . . . , an) ∈ supp(p),

0, otherwise.

(The well-definedness is derived from the disjunctiveness of the supports of the
preterraces.) Hence, we considert as an element ofK (K m), actually it is an element of
T since t representsp1 + · · · + pl in T . Intuitively a terrace is a representation of an
element ofT as a finite set of pairs of a rational function and a partition ofK m suchthat
the rational function is not equal to 0 everywhere on its partition.

For a given finite set of preterraces, we can decide whether it forms a terrace or not
by using the following algorithmPreterraceIsZERO. Indeed, for two given preterracesp
andq, supp(p) ∩ supp(q) = ∅ iff PreterraceIsZERO (p · q) returns True.

Algorithm (PreterraceIsZERO).

Specification: PreterraceIsZERO(P)

check whether a preterraceP satisfies supp(P) = ∅ or not
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Input: P a preterrace onK [A1, . . . , An]
Output: return True if supp(P) = ∅, return False otherwise

〈S, T, R〉 := P
IF V(S) = V(T) THEN

RETURN True
ELSE

RETURN False

For a given preterracep, we seethat p(a1, . . . , an) �= 0 for some(a1, . . . , an) ∈ K n if
and only if supp(p) �= ∅ by the definition of preterraces. So the previous algorithm works
as we desire.

The additiont1+ t2, themultiplication t1 · t2, and the inverset−1
1 of terracest1 andt2 as

elements ofT are given as follows:

(1) (t1 + t2)(a1, . . . , an) = t1(a1, . . . , an)+ t2(a1, . . . , an),
(2) (t1 · t2)(a1, . . . , an) = t1(a1, . . . , an) · t2(a1, . . . , an),

(3) t−1
1 (a1, . . . , an) =

{
1/t1(a1, . . . , an), if t1(a1, . . . , an) �= 0,

0, if t1(a1, . . . , an) = 0.

We will define t1 + t2, t1 · t2, andt−1
1 as terraces satisfying these properties. For the

addition of two terracest1 andt2, we require that,

(t1 + t2)(a1, . . . , an) =


t1(a1, . . . , an)+ t2(a1, . . . , an), if (a1, . . . , an) ∈ supp(t1) ∩ supp(t2),
t1(a1, . . . , an), if (a1, . . . , an) ∈ supp(t1)\supp(t2),
t2(a1, . . . , an), if (a1, . . . , an) ∈ supp(t2)\supp(t1),
0, otherwise,

for any(a1, . . . , an) ∈ K n.
We first concentrate on the case thatt1 andt2 are singletons of preterraces, sayt1 = {p1}

andt2 = {p2} wherep1 = 〈s1, t1, r1〉 andp2 = 〈s2, t2, r2〉. Note that supp(t1) = supp(p1)

and supp(t2) = supp(p2).
Consider the case(a1, . . . , an) ∈ supp(t1) ∩ supp(t2). Although, as we saw, supp(t1) ∩

supp(t2) = supp(p1) ∩ supp(p2) = V(t1 ∪ t2)\V(Prod(s1 ∪ t2, s2 ∪ t1)), the triple
〈Prod(s1∪ t2, s2∪ t1), t1∪ t2, r1+ r2〉might not form a preterrace, sincer1(a1, . . . , an)+
r2(a1, . . . , an) = 0 may occur for some(a1, . . . , an) ∈ supp(t1) ∩ supp(t2). So, we
shrink the support in order to ensure the definition of preterraces. Presentr1 + r2 as an
irreducible formg/h as an element ofK (A1, . . . , An). Note that we already have that
V({h}) ∩ (V(t1 ∪ t2)\V(Prod(s1 ∪ t2, s2 ∪ t1))) = ∅ by the definition of preterraces. Let

p∩p1,p2
= 〈Prod(Prod(s1 ∪ t2, s2 ∪ t1), g), t1 ∪ t2, g/h〉,

then p∩p1,p2
forms a preterrace, and we have

p∩p1,p2
(a1, . . . , an) = r1(a1, . . . , an)+ r2(a1, . . . , an)

= t1(a1, . . . , an)+ t2(a1, . . . , an)

for any(a1, . . . , an) ∈ supp(t1) ∩ supp(t2).
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For thecase(a1, . . . , an) ∈ supp(t1)\supp(t2), using the propertyV(s1) ⊆ V(t1) and
V(s2) ⊆ V(t2), wecan check the following equation byeasy calculation of elementary set
theory:

supp(t1)\supp(t2) = supp(p1)\supp(p2)

= (V(t1)\V(s1))\(V(t2)\V(s2))

= (V(t1)\(V(s1) ∪ V(t2))) � ((V(t1) ∩ V(s2))\V(s1))

= (V(t1)\(V(s1) ∪ (V(t1) ∩ V(t2)))

� ((V(t1) ∩ V(s2))\(V(s1) ∩ V(s2))),

wherea � b denotesa ∪ b with the propertya ∩ b = ∅. Then we have

V(t1) ⊆ V(s1) ∪ (V(t1) ∩ V(t2)),

V(t1) ∩ V(s2) ⊆ V(s1) ∩ V(s2).

So the following two triples are preterraces:

p\,(1)
p1,p2 = 〈Prod(s1, t1 ∪ t2), t1, r1〉,

p\,(2)
p1,p2 = 〈s1 ∪ s2, t1 ∪ s2, r1〉.

Furthermore we have

t\p1,p2 = {p ∈ {p\,(1)
p1,p2, p\,(2)

p1,p2} : supp(p) �= ∅}
forms a terrace and

t\p1,p2(a1, . . . , an) = r1(a1, . . . , an) = t1(a1, . . . , an)

for any(a1, . . . , an) ∈ supp(t1)\supp(t2) = supp(p\,(1)
p1,p2) � supp(p\,(2)

p1,p2).

For thecase(a1, . . . , an) ∈ supp(t2)\supp(t1), we define two preterracesp\,(1)
p2,p1 and

p\,(2)
p2,p1 in a similar fashion to the above case

p\,(1)
p2,p1 = 〈Prod(s2, t1 ∪ t2), t2, r2〉,

p\,(2)
p2,p1 = 〈s1 ∪ s2, t2 ∪ s1, r2〉.

Now the finite set

t = {p ∈ {p∩p1,p2
, p\,(1)

p1,p2, p\,(2)
p1,p2, p\,(1)

p2,p1, p\,(2)
p2,p1} : supp(p) �= ∅}

of preterraces forms a terrace and satisfy

t (a1, . . . , an) = t1(a1, . . . , an)+ t2(a1, . . . , an)

for any(a1, . . . , an) ∈ K n.
Using these notations, we define an additive operation on the set of the terraces. The

following algorithm computes the addition of two terraces:

Algorithm (TerraceAdd).

Specification:T ← TerraceAdd(T1, T2)

Input: T1, T2 terraces onK [A1, . . . , An]
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Output: T a terrace onK [A1, . . . , An]

R := ∅
For each〈s, t, r 〉 ∈ T1 ∩ T2 DO

R := R∪ {〈s, t, 2 · r 〉}
T1 := T1 \ {〈s, t, r 〉}
T2 := T2 \ {〈s, t, r 〉}

END
R := R∪ T1 ∪ T2

T := ∅
WHILE R �= ∅ DO

takep1 ∈ R
Found := false
FOR eachp2 ∈ R \ {p1} DO

IF (Found = false and
(PreterraceIsZERO(p1 · p2) does not hold)) THEN
Found := true
R := R \ {p1, p2}
S := {p∩p1,p2

, p\,(1)
p1,p2, p\,(2)

p1,p2, p\,(1)
p2,p1, p\,(2)

p2,p1}
FOR eachp ∈ S DO

IF PreterraceIsZERO(p) does not hold THEN
R := R∪ {p}

ENDIF
END

ENDIF
END
IF Found = false THEN

T := T ∪ {p1}
R := R \ {p1}

ENDIF
END
RETURN T

We define the terracet1+ t2 as an output ofTerraceAdd (t1, t2). It is easy to check that
property 1 holds:

1. (t1+ t2)(a1, . . . , an) = t1(a1, . . . , an)+ t2(a1, . . . , an).

The definition of multiplication is rather simple. The following algorithm computes the
multiplication of two terraces.

Algorithm (TerraceMul).

Specification: T ← TerraceMul(T1, T2)

Input: T1, T2 terraces onK [A1, . . . , An]
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Output: T a terrace onK [A1, . . . , An]

T := ∅
FOR eachp1 ∈ T1 andp2 ∈ T2 DO

p := p1 · p2
IF PreterraceIsZERO(p) does not hold THEN

T := T ∪ {p}
ENDIF

END
RETURN T

We define aterracet1 · t2 as an output ofTerraceMul (t1, t2). It is easy to check that
property 2 holds:

2. (t1 · t2)(a1, . . . , an) = t1(a1, . . . , an) · t2(a1, . . . , an).

For an arbitrary terracet , the inverset−1 of t is defined byt−1 = {p−1 : p ∈ t}. It is
trivial that t−1 forms a terrace and that property 3 holds:

3. t−1(a1, . . . , an) =
{

1/t (a1, . . . , an), if t (a1, . . . , an) �= 0,

0, if t (a1, . . . , an) = 0.

Now we have defined algorithms to compute operations on the terraces satisfying
properties 1, 2, 3.

We let TER = TER(K [A1, . . . , An]) be the set of terraces onK [A1, . . . , An]. We
should note that, for a terracet ∈ TER, there are infinitely many terracest ′ ∈ TER such
thatt (a1, . . . , an) = t ′(a1, . . . , an) for any(a1, . . . , an) ∈ K n.

Example 3.2. We consider the following two terracest andt ′ onC[A, B]:
t = {〈{5A+ B},∅, 5A+ B〉},
t ′ = {〈{B}, {A}, B〉, 〈{5A2+ AB},∅, 5A+ B〉}.

Then we have

t ′(A, B) =




B, if (A, B) ∈ V({A})\V({B}), i.e., A = 0, B �= 0,

5A+ B, if (A, B) ∈ C2\V({5A2+ AB}),
i.e., A �= 0, 5A+ B �= 0,

0, otherwise.

So t (a, b) = t ′(a, b) for anya, b ∈ C.

We define a binary relation∼ on TER by

t ∼ t ′ t + {pre(−1)} · t ′ = ∅.
Then the relation∼ is a computable equivalence relation on TER.

Proposition 3.3. For arbitrary two terraces t and t′ on K[A1, . . . , An], t ∼ t ′ if and only
if

t (a1, . . . , an) = t ′(a1, . . . , an)

for any(a1, . . . , an) ∈ K n.
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Proof. Let t0 = t+{pre(−1)} · t ′. We want to show thatt0 = ∅ iff (∀ā ∈ K n) t (ā) = t ′(ā).
First we assume thatt0 = ∅. We fix an arbitrarȳa ∈ K n. Thent0(a) = 0. And we have

0= t0(ā) = t (ā)+ ({pre(−1)})(ā) · t ′(ā) = t (a)− t ′(a).

So t (a) = t ′(a).
For the converse, we assume thatp ∈ t0. Then, by the definition of terraces, we have

thatsupp(p) �= ∅. If we fix ā ∈ supp(p), we havep(ā) �= 0 by thedefinition of preterraces.
Thus 0 �= p(ā) = t0(ā) = t (ā)− t ′(ā). Sot (ā) �= t ′(ā). �

It should be noted that there is only one terrace, namely∅, which represents 0. We
denote the set of the equivalence class TER(K [A1, . . . , An])/ ∼ by T(A1,...,An). For a
equivalence class[t]∼ ∈ T(A1,...,An) and a sequence(a1, . . . , an) ∈ K n, we define
[t]∼(a1, . . . , an) = t (a1, . . . , an) ∈ K . The previous proposition witnesses the well-
definedness of[t]∼(a1, . . . , an) ∈ K . Moreover, using the proposition, we can define
addition, multiplication, and inverse onT(A1,...,An) by [t]∼+[t ′]∼ = [t+ t ′]∼, [t]∼ ·[t ′]∼ =
[t · t ′]∼, and[t]−1∼ = [t−1]∼ for t, t ′ ∈ TER(K [A1, . . . , An]).

We can easily check thatT(A1,...,An) is a Von Neumann regular ring, actually it is
isomorphic to the ringT defined at the beginning of this section as the closure of the
imageϕ[K [A1, . . . , An]].

For a given polynomialf ∈ K [A1, . . . , An], we define the corresponding equivalence
class on terraces terT ( f ) ∈ T(A1,...,An) by

terT ( f ) =
{[{pre( f )}]∼, if f ∈ K [A1, . . . , An]\{0},

[∅]∼, if f = 0.

Note that f (a1, . . . , an) = terT ( f )(a1, . . . , an) for any (a1, . . . , an) ∈ K n. So we often
identify f with terT ( f ) if there is no confusion.

4. ACGB

We give analternative comprehensive Gr¨obner bases in this section. LetK be an
algebraically closed field, TER be the set of the terraces onK [A1, . . . , Am] where
A1, . . . , Am are variables,T = TER/ ∼, and terT : K [A1, . . . , Am] → T be the
corresponding embedding. As we have seen inSection 3, T = T(A1,...,Am) is a commutative
Von Neumannregular ring.

Definition 4.1. We extend terT to the embedding

terT : K [A1, . . . , Am, X1, . . . , Xn] → T[X1, . . . , Xn]
by

terT ( f1α1 + · · · + fl αl ) = terT ( f1)α1 + · · · + terT ( fl )αl

where f1, . . . , fl ∈ K [A1, . . . , Am] andα1, . . . , αl are terms ofX1, . . . , Xn.

Definition 4.2. For each

f (X1, . . . , Xn) = c1α1+ · · · + cl αl ∈ T[X1, . . . , Xn]
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and elementsa1, . . . , am ∈ K , we define

f(a1,...,am)(X1, . . . , Xm) ∈ K [X1, . . . , Xm]
by

f(a1,...,am)(X1, . . . , Xn) = c1(a1, . . . , am)α1 + · · · + cl (a1, . . . , am)αl

whereci ∈ T andαi are terms ofX1, . . . , Xn.

We can calculate the stratified Gr¨obner basis for a given finite set of polynomials
over a computable commutative Von Neumann regular ring. Now we prove the following
theorem.

Theorem 4.3. For an algebraically closed field K , let T be the canonical set of
equivalence classes on the terraces on K[A1, . . . , Am], and let terT : K [A1, . . . , Am,
X1, . . . , Xn] → T[X1, . . . , Xn] be the corresponding embedding. For a given set F=
{ f1(A1, . . . , Am, X1, . . . , Xn), . . . , fk(A1, . . . , Am, X1, . . . , Xn)} ⊆ K [A1, . . . , Am, X1,
. . . , Xn], we let terT (F) = {terT ( fi ) : i = 1, . . . , k} ⊆ T[X1, . . . , Xn], and let G =
{g1(X1, . . . , Xn), . . . , gl (X1, . . . , Xn)} be a Gr̈obner basis ofterT (F) in T[X1, . . . , Xn]
such that each element gi is Boolean closed. Then wehave the following properties:

(1) For arbitrary a1, . . . , am ∈ K , G(a1,...,am) = {g1(a1,...,am)
(X1, . . . , Xn), . . . , gl(a1,...,am)

(X1, . . . , Xn)}\{0} is a Gröbner basis of the ideal generated by F(a1, . . . , am) =
{ f1(a1, . . . , am, X1, . . . , Xn), . . . , fk(a1, . . . , am, X1, . . . , Xn)} in K [X1, . . . , Xn].
Moreover, G(a1,...,am) becomes a reduced Gröbner basis, in case G is stratified.

(2) For any polynomial h(X1, . . . , Xn) ∈ T[X1, . . . , Xn], wehave

(h ↓G)(a1,...,am)(X1, . . . , Xn) = h(a1,...,an)(X1, . . . , Xn) ↓G(a1,...,am).

Proof. We fix a1, . . . , am ∈ K and denotēa and X̄ for “a1, . . . , am” and “X1, . . . , Xn”
respectively.

It is easy to check thatGā and F(ā) generate the same ideal inK [X̄]. In order to see

thatGā is a Gröbner basis inK [X̄], it suffices to show thatSP( f, g)
∗→Gā 0 for any pair

f andg of polynomials inGā. This property follows from thefollowing two claims.

Claim 1. The homomorphism also preserves monomial reductions, that is pā(X̄)
∗→Gā

qā(X̄) in case p(X̄)→G q(X̄).

Proof of Claim 1. If p(X̄)→g(X̄) q(X̄), thenp, g andq must have the following forms:

p(X̄) = bαβ + p′(X̄),

g(X̄) = cα + g′(X̄),

q(X̄) = p(X̄)− bc−1βg(X̄).

An instantiation bya1, . . . , am yields the following equations:

pā(X̄) = b(ā)αβ + p′̄a(X̄),

gā(X̄) = c(ā)α + g′̄a(X̄),

qā(X̄) = pā(X̄)− b(ā)c−1(ā)βgā(X̄).
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Whenb(ā)c(ā) �= 0,c(ā) �= 0, so the leading term ofg does not vanish. In this case, we
havepā(X̄) →gā(X̄) qā(X̄). Whenb(ā)c(ā) = 0, we haveb(ā)c−1(ā) = 0. In this case,

pā(X̄) andqā(X̄) are identical.
In either case, we have

pā(X̄)
∗→gā(X̄) qā(X̄),

from which the assertion of the claim follows. �

Claim 2. Thehomomorphism also preserves S-polynomial construction, that is

SP( fā(X̄), gā(X̄)) = SP( f, g)ā(X̄)

for any pair f and g of G.

Proof of Claim 2. We first show thatSP( f, g)ā(X̄) = 0 if fā(X) = 0 or gā(X) = 0.
We first assume thatfā(X) = 0. SinceG is reduced, we know that f is Boolean closed,
and so thatlc( f )∗(ā) = 0. SoSP( f, g) = SP(lc( f )∗ f, g) = lc( f )∗SP( f, g) implies
that

SP( f, g)ā(X̄) = lc( f )∗(ā)SP( f, g)ā(X̄) = 0.

We also haveSP( f, g)ā(X̄) = 0 if gā(X̄) = 0 in the same way.
Next we assume thatfā(X̄) �= 0 andgā(X̄) �= 0. We saylm( f ) = bαγ andlm(g) =

cβγ whereb and c are coefficients andα, β, andγ are terms with GCD(α, β) = 1.
Now we note that f and g are Boolean closed sincef, g ∈ G, and sob(ā) �= 0 and
c(ā) �= 0 from the assumption. Thuslm( fā) = b(ā)αγ andlm(gā) = c(ā)βγ . Then we
haveSP( fā, gā) = c(ā)β fā − b(ā)αgā = (bβ f − aαg)ā = SP( f, g)ā. �

The last assertion of 1 follows immediately by the definition of a stratified Gr¨obner
basis.

In order to prove 2, we observe the following claim.

Claim 3. hā(X̄) is irreducible by Ḡa in K [X̄] for any polynomial h(X̄) in T[X̄] which is
irreducible byG andā ∈ K .

Proof of Claim 3. If hā were reducible by gā for someā ∈ K andg ∈ G, therewere a
monomialcα of h suchthatlt (g) | α and thatcā · lc(g)ā �= 0, and soc · lc(g) �= 0.

Then, we note that a polynomialh′ is irreducible byg′ if andonly if c′ · lc(g′) = 0 for
any monomialc′α′ of h′ suchthatlt (g′)|α′.

Therefore we had thath(X̄) were reducible by g. �

Now, byClaims 1and3, we have 2. �
By property 1,G can be considered as a kind of comprehensive Gr¨obner basis where

A1, . . . , Am are parameters, and so we callG an ACGB. Note that in the standard
comprehensive Gr¨obner bases, we can not define monomial reductions before instantiation.
In our algorithm, we can define monomial reductions, furthermore they are preserved by
any instantiation.



A. Suzuki, Y. Sato / Journal of Symbolic Computation 36 (2003) 649–667 663

5. ACGB and CGB

In this section, we give an example of ACGBG such that there does not exist a
comprehensive Gr¨obner basisG′ that generates the same ideal asG for any instantiation.

Let G be a set {(V(∅)\V({A}), 1)X, (V({A})\V({1}), 1)} of polynomials in a
polynomial ringT(A)[X], whereT(A) is a Von Neumann regular ring of the equivalence
classes of the terraces onK [A] with K an algebraically closedinfinite field. ClearlyG is
a Gröbner basis inT(A)[X]. Note that G generates an ideal〈X〉 when A takes anon-zero
value ofK and〈1〉 whenA takes a value 0.

For thisG we show that there does not exists a finite setG′ of polynomials inK [A, X]
suchthatG′ becomes a Gr¨obner basis and generates the same ideal asG in K [X] for any
instantiation ofA.

Proof. Let G′ = { f1(A, X), . . . , fl (A, X)} and suppose that{ f1(a, X), . . . , fl (a, X)}
is a Gröbner basis and generates the ideal〈X〉 when a �= 0 and the ideal 〈1〉 when
a = 0. Since{ f1(0, X), . . . , fl (0, X)} is a Gröbner basis, it must contain a non-zero
constantc ∈ K . We can assumef1(0, X) = c w.l.o.g. Hence, f1(A, X) can be
expressed asf1(A, X) = g(A, X)A + c for some polynomialg(A, X) in K [A, X].
Expressg(A, X) further asg(A, X) = g1(A, X)X + g2(A) with polynomialsg1(A, X) in
K [A, X] andg2(A) in K [A]. So, wehave f1(A, X) = g1(A, X)AX+ g2(A)A+ c. Since
{ f1(a, X), . . . , fl (a, X)} is a Gröbner basis of the ideal〈X〉 whena �= 0, there must existi
suchthat fi (a, X) = d X for some non-zero constantd ∈ K . Certainly i is not equal to 1.
Hence, we haveg2(a)a+ c = f1(a, X) − fi (a, X)g1(a, X)a/d ∈ 〈X〉 whenevera �= 0.
SinceK is infinite, there must exist a non-zero elementa of K suchthatg2(a)a+ c �= 0,
which produces a contradiction, since〈X〉 contains a non-zero constant ofK . �

For any comprehensive Gr¨obner basisG′, clearly there exists an ACGBG suchthat
they generate the same ideal for any instantiation.

In this sense, we can say the class of ACGB is widerthan the class ofWeispfenning’s
original comprehensive Gr¨obner bases.

6. Applications and examples

We implemented the algorithm to compute ACGB in the caseK is the field of
the complex numbersC. In this section, we give some computation examples of our
implementation.

Example 6.1. Find the reduced Gr¨obner basis for the ideal generated by the following
system of polynomials of the variablesx, y with parametersa, b:{

ax2y+ 1,

bxy+ abx+ b.

In order to solve them simultaneously, compute a Gr¨obner basis of the idealx in
T(a,b)[x, y] where T(a,b) is the Von Neumann regular ring of equivalence classes on
the terraces onC[a, b]. Our program written in Risa/AsirNoro and Takeshima(1992)
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produces the following Gr¨obner basis in the graded reverse lexicographic order with
x > y:

[[(V[a],1)]*1,
[(V[0]-V[b*a],1)]*x+[(V[0]-V[b*a],(-1)/(-a^2))]*y+[(V[0]-V[b*a],(-2)/(-a))]*1,
[(V[0]-V[b*a],1)]*y^2+[(V[0]-V[-b*a],3*a)]*y+[(V[0]-V[b*a],a^2)]*1,
[(V[b*a]-V[a],1)]*y*x^2+[(V[b*a]-V[a],(1)/(a))]*1]

In this output,(V[ t ] - V[ s ], r ) corresponds to the preterrace〈s, t, r 〉. So theabove
output means that the reduced Gr¨obner basis is


〈1〉, if a = 0,

〈x + 1
a2 y− 2

a , y2+ 3ay+ a2〉, if ab �= 0,

〈x2y+ 1
a〉, if ab= 0, a �= 0.

Example 6.2. Let h(a, b, x, y) ∈ C[a, b, x, y] be such that

h(a, b, x, y) = (a2+ b)x3y2+ 5a2xy+ (a− b2).

Then, for eacha, b ∈ C, find the normal form under the reduced Gr¨obner
basis for the ideal generated by the system of polynomials which appeared in
Example 6.1:{

ax2y+ 1,

bxy+ abx+ b.

Our program calculates thenormal form n f (h) of h under the ACGB which we
calculated atExample 6.1as follows:

[(V[b*a]-V[b*a,5*a^2-a],(5*a^3-a^2-b)/(a))]*y*x+
[(V[0]-V[5*b*a^6-b*a^5+5*b^2*a^4-2*b^2*a^3-b^3*a],(5*a^3-a^2-b)/(a^2)),
(V[-b*a^3-b^2*a]-V[-b*a],5*a)]*y+

[(V[b*a^3+b^2*a]-V[b*a^3+b^2*a,(-2*b^2-5*b)*a^2+(b^4+5*b^3-b)*a],5*a^2+a-b^2),
(V[0]-V[-25*b*a^10+(25*b^3+5*b)*a^9-25*b^2*a^8+(-5*b^5+25*b^4-b^3+15*b^2)*a^7+
(b^5-10*b^4-b^2)*a^6+(-5*b^6-b^4+10*b^3)*a^5+(2*b^6-10*b^5-2*b^3)*a^4+
b^5*a^3+(b^7-b^4)*a^2+b^6*a],(-5*a^3+b^2*a+b)/(-a)),

(V[5*b*a^6-b*a^5+5*b^2*a^4-2*b^2*a^3-b^3*a]-V[b*a^4-b^3*a^3+b^2*a^2-b^4*a,
5*b*a^6-b*a^5+5*b^2*a^4-2*b^2*a^3-b^3*a],a-b^2),
(V[b*a^4-b^3*a^3+b^2*a^2-b^4*a]-V[b*a^4-b^3*a^3+b^2*a^2-b^4*a,5*b*a^6-b*a^5+
5*b^2*a^4-2*b^2*a^3-b^3*a],(-5*a^3+a^2+b)/(-a)),

(V[b*a]-V[a],a-b^2),(V[a-b^2,-b*a^2-a,a^3+b*a]-V[-b,a],5*a^2)]*1

We can get much information usingn f (h). For example, we know thath ∈ 〈ax2y +
1, bxy+abx+b〉 if andonly if a = 0 or(a−b2 = 0∧5a3−a2−b = 0∧ a2+b �= 0).

Example 6.3. Find the minimal polynomial oft in the ideal〈x2 − a, y3 − a, x + y − t
with a parametera.

It suffices to calculate the Gr¨obner basis of〈x2−a, y3−a, x+ y− t〉 with a term-order
suchthatx, y � t for eacha, and find the polynomial consisting only oft . Our program
produces eight polynomials for the given polynomials{x2 − a, y3− a, x + y − t} with a
parametera in the lexicographic order withx > y > t . The following three polynomials
are the ones which contain onlyt as their variables.

[(V[-a],1)]*t^4,

[(V[-64*a^2-27*a]-V[a],1)]*t^5+[(V[-64*a^2-27*a]-V[-a],3/8)]*t^4+
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[(V[-64*a^2-27*a]-V[-a],-10/3*a)]*t^3+[(V[-64*a^2-27*a]-V[a],-13/4*a)]*t^2+
[(V[-64*a^2-27*a]-V[a],7/3*a^2-3/2*a)]*t+[(V[-64*a^2-27*a]-V[-a],-91/24*a^2)]*1,

[(V[0]-V[-64*a^2-27*a],1)]*t^6+
[(V[-4096*a^3-1536*a^2+81*a]-V[64*a^2+27*a],-9/64),
(V[0]-V[-4096*a^3-1536*a^2+81*a],-3*a)]*t^4+
[(V[0]-V[-64*a^2-27*a],-2*a)]*t^3+[(V[0]-V[28672*a^4-17984*a^3-5202*a^2+3159*a],3*a^2),
(V[-896*a^3+198*a^2+243*a]-V[-64*a^2-27*a],2/3*a^2+3/2*a),
(V[28672*a^4-17984*a^3-5202*a^2+3159*a]-V[896*a^3-198*a^2-243*a],39/32*a)]*t^2+
[(V[5248*a^3+2790*a^2+243*a]-V[64*a^2+27*a],-7/8*a^2+9/16*a),
(V[896*a^3-198*a^2-243*a]-V[-64*a^2-27*a],-41/8*a^2-9/16*a),
(V[0]-V[-73472*a^4+8172*a^3+21708*a^2+2187*a],-6*a^2)]*t+
[(V[0]-V[-64*a^3+37*a^2+27*a],-a^3+a^2)]*1.

Looking at these polynomials, for example, we can see that the degree of the minimal
polynomial is 6 if and only ifa �= 0,−27/64, and that it is 5 if and only ifa = −27/64.

Weshould note that such conditions are derived also bydispgb() of DisPGB1 Montes
(2002) or bygsys() of CGB2 as below:

DisPGB:

Case= [1, 1], [a �= 0, 27+ 64a �= 0], [t6 − 3 t4 a− 2a t3 + 3 t2 a2 − 6a2 t + a2 − a3,

− 91a2 + 24t5 − 78a t2 + 9 t4 + (56a2 − 36a) t − 80a t3 + (27a+ 64a2) y,

91a2 − 24t5 + 78a t2 − 9 t4 + (9a− 120a2) t + 80a t3 + (27a+ 64a2) x]
Case= [1, 0], [a �= 0, 27+ 64a = 0],

[32 768t5 + 12 288t4 + 46 080t3 + 44 928t2 + 34 344t − 22 113,

13 824y t − 5184y+ 4096t4 − 3456t2 + 6912t − 2187,

6912y2 − 5184y+ 4096t4 + 3456t2 + 6912t + 729, x + y− t]
Case= [0], [a = 0], [t4, 3 y t2 − 2 t3, y2 − 2 y t + t2, x + y− t]

CGB:

{{64*a + 27 <> 0 and a <> 0,
{x**2 - a,

x + y - t,
y**3 - a,
y**2 - 2*y*t + t**2 - a,
3*y*t**2 + a*y - 2*t**3 + (2*a)*t - a,
(8*a)*y*t - (3*a)*y - t**4 - (2*a)*t**2 + (4*a)*t + 3*a**2,
(64*a**2 + 27*a)*y + 24*t**5 + 9*t**4 - (80*a)*t**3 - (78*a)*t**2 + (56*a**2 - 36*a)*t
- 91*a**2,

t**6 - (3*a)*t**4 - (2*a)*t**3 + (3*a**2)*t**2 - (6*a**2)*t - (a**3 - a**2)}},
{a <> 0 and 64*a**2 + 27*a = 0,
{x**2 - a,

x + y - t,
y**3 - a,
y**2 - 2*y*t + t**2 - a,
3*y*t**2 + a*y - 2*t**3 + (2*a)*t - a,
(8*a)*y*t - (3*a)*y - t**4 - (2*a)*t**2 + (4*a)*t + 3*a**2,
(64*a**2 + 27*a)*y + 24*t**5 + 9*t**4 - (80*a)*t**3 - (78*a)*t**2 + (56*a**2 - 36*a)*t
- 91*a**2}},

{a = 0,
{x**2 - a,

x + y - t,
y**3 - a,

1 http://www-ma2.upc.es/∼montes/
2 http://www.fmi.uni-passau.de/∼redlog/cgb/

http://www-ma2.upc.es/~montes/
http://www.fmi.uni-passau.de/~redlog/cgb/


666 A. Suzuki, Y. Sato / Journal of Symbolic Computation 36 (2003) 649–667

y**2 - 2*y*t + t**2 - a,
3*y*t**2 + a*y - 2*t**3 + (2*a)*t - a,
(8*a)*y*t - (3*a)*y - t**4 - (2*a)*t**2 + (4*a)*t + 3*a**2}}}

7. Computations of functional equations

The following system of polynomial equations


f1(A1, . . . , Am, X̄) = 0
...

fk(A1, . . . , Am, X̄) = 0

(1)

in K (K m)[X̄] can be considered as a system of polynomial equations over functions, that is
eachAi represents a function fromK m to K .

In this section, we also assume thatK is an algebraically closed field. Our ACGBs
give us direct information for such systems.First, we can decide whether the system has a
solution.

We can easily extend Hilbert weak Nullstellensatz as follows.

Theorem 7.1. The system ofEq. (1) has a solution if and only if〈 f1(A1, . . . , Am, X̄), . . . ,

fk(A1, . . . , Am, X̄)〉 ∩ K (K m) = {0}.
By this theorem, we know it has a solution if and only if the ACGB of

〈 f1(A1, . . . , Am, X̄), . . . , fk(A1, . . . , Am, X̄)〉 does not contain a constant.
Secondly, for each polynomialh(A1, . . . , Am, X̄) we can decide whether it vanishes at

every solution of (1) by the following theorem.

Theorem 7.2. Suppose that the system ofEq. (1) has a solution. Then, for each polynomial
h(A1, . . . , Am, X̄), it vanishes at every solution of the system if and only if the ACGB of
〈 f1(A1, . . . , Am, X̄),. . . , fk(A1, . . . , Am, X̄), h(A1, . . . , Am, X̄) y+ 1〉 is {1}. Where y is
a new variable distinct from X̄.

Proof. Note thath(A1, . . . , Am, ᾱ) vanishesat every solution̄α of the system (1) if and
only if h(a1, . . . , am, b̄) vanishesat every solution̄b of the system of polynomial equation


f1(a1, . . . , am, X̄) = 0

...

fk(a1, . . . , am, X̄) = 0

(2)

in K [X̄] for each elementa1, . . . , am in K . We also have thath(a1, . . . , am, b̄) vanishes at
every solution b̄ of (2) if and only if the polynomial ideal〈 f1(a1, . . . , am, X̄), . . . , fk(a1,

. . . , am, X̄), h(a1, . . . , am, X̄)y + 1〉 of K [X̄] includes 1. Hence,h(A1, . . . , Am, ᾱ)

vanishes at every solution ᾱ of the system (1) if and only if the poly-
nomial ideal 〈 f1(a1, . . . , am, X̄), . . . , fk(a1, . . . , am, X̄), h(a1, . . . , am, X̄)y + 1〉 of
K [X̄] includes 1 for each elementa1, . . . , am of K , which is equivalent to
〈 f1(A1, . . . , Am, X̄), . . . , fk(A1, . . . , Am, X̄), h(A1, . . . , Am, X̄)y+ 1〉 � {1}. �
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This theorem also provide a decision procedure for ideal membership problems of the
polynomial ringK (K m)[X̄].
Theorem 7.3. Suppose the ideal〈 f1(A1, . . . , Am, X̄), . . . , fk(A1, . . . , Am, X̄)〉∩K K m =
{0}. Then,

h(A1, . . . , Am, X̄) ∈
√
〈 f1(A1, . . . , Am, X̄), . . . , fk(A1, . . . , Am, X̄)〉

if and only if the ACGB of

〈 f1(A1, . . . , Am, X̄), . . . , fk(A1, . . . , Am, X̄), h(A1, . . . , Am, X̄) y+ 1〉
is {1}. Where y is a new variable distinct from X̄.

Proof. It is a direct consequence of the above theorem since Hilbert strong Nullstellensatz
holds in the polynomial ringK (K m)[X̄] (see Theorem I.4.3. inSaracino and Weispfenning,
1975). �

8. Conclusion and remarks

Our algorithm of ACGB does not have a canonical representation in a completely
syntactic form. There are infinitely many forms of equivalent terraces, although there
is only one form (i.e. an empty set) to represent 0 as is mentioned inSection 2.
In this paper we employed rather naive methods to handle terraces. We did not use any
sophisticated technique such as polynomial factorizations or computations of radical ideals
or prime(primary) ideal decompositions. We need further computational experiments to
find the most effective way.

We described our work under the assumption thatK is algebraically closed. But this
is not indispensable. What we actually need is the computability of terraces. If we can
compute terraces, then we can define and calculate ACGB. For example, whenK is a real
closed field, we can handle terraces using standard quantifier elimination techniques.
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