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Gröbner Bases over Galois Rings with an Application
to Decoding Alternant Codes

EIMEAR BYRNE† AND PATRICK FITZPATRICK†

Department of Mathematics, National University of Ireland, Cork, Ireland

We develop a theory of Gröbner bases over Galois rings, following the usual formula-
tion for Gröbner bases over finite fields. Our treatment includes a division algorithm,

a characterization of Gröbner bases, and an extension of Buchberger’s algorithm. One
application is towards the problem of decoding alternant codes over Galois rings. To
this end we consider the module M = {(a, b) : aS ≡ b mod xr} of all solutions to the
so-called key equation for alternant codes, where S is a syndrome polynomial. In decod-
ing, a particular solution (Σ,Ω) ∈M is sought satisfying certain conditions, and such a

solution can be found in a Gröbner basis of M . Applying techniques introduced in the
first part of this paper, we give an algorithm which returns the required solution.

c© 2001 Academic Press

1. Introduction

The theory of Gröbner bases has been applied in several ways to error correcting codes.
For example, in Fitzpatrick (1995) new algorithms corresponding to the Euclidean,
Berlekamp–Massey, and Peterson–Gorenstein–Zierler algorithms for the solution of the
key equation that arises in decoding alternant codes were derived from the perspective
of Gröbner bases. Each of these algorithms is computationally at least as efficient as its
classical analogue (Fitzpatrick, 1995; Fitzpatrick and Jennings, 1998; Fitzpatrick, 1999).
The Gröbner basis approach has been extended to rational approximation and inter-
polation problems and to the solution of multivariable congruences (Fitzpatrick, 1996,
1997). Motivated by this research, we apply similar principles to the problem of decod-
ing alternant codes defined over a Galois ring. The reader is referred to Shankar (1979),
Hammons et al. (1994), Calderbank and Sloane (1995), Kanwar and Lopez-Permouth
(1997) for review of the literature on the theory of codes over rings.

Whereas the classic theory of Gröbner bases assumes the coefficients lie in a field (see
Cox et al., 1992; Becker and Weispfenning, 1993; Adams and Loustaunau, 1994, for a
review of the literature), in these investigations we extend the theory to the specific
context of a Galois ring R. Many of our results are exact analogues of those holding
over a field. However, their proofs are complicated by the change in significance of the
coefficients, which may be zero divisors in R.

First we consider the notion of division in R[x], and generalize the division algorithm
over a field to one for R[x]. A central part of this task involves the idea of reducing
the coefficients of a polynomial with respect to the coefficients of the division set and
exploits the canonical representations of elements in R. We next establish the existence
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of Gröbner bases for arbitrary non-zero ideals in R[x], and characterize such bases. Since
it is essential for our purposes to be able to compute a Gröbner basis from any given
generating set, we develop an analogue of Buchberger’s algorithm, and give conditions
under which a generating set is indeed a Gröbner basis.

In the final part of the paper we summarize results presented in Byrne and Fitzpatrick
(preprint) which give an application of the principles derived in Section 2 to the decoding
problem. The procedure used is locator decoding, and is dependent on finding a particular
solution of a key equation. It turns out that the required solution is minimal in a subset
of the module of all solutions to the key equation (under a certain monomial ordering)
and is thus contained in a Gröbner basis for the module. Using a known basis, and the
extension of Buchberger’s algorithm presented in Section 2.5 we compute the desired
Gröbner basis.

We conclude this Introduction by recalling some of the basic properties of Galois rings.
These have been well documented in McDonald (1974) and Raghavendran (1969), the for-
mer giving an explicit development along the lines of the theory of Galois fields. There are
a number of equivalent descriptions of Galois rings: they are the separable extensions of fi-
nite, unital, local, commutative rings and the unramified extensions of such rings. Hence-
forth we assume that all rings R and T are finite, local, commutative rings with unity. We
refer to an element of an arbitrary ring as regular if it is not a zero divisor in that ring.

Let T have maximal ideal 〈p〉 for some prime p. The polynomial f ∈ T [x] is called a
basic irreducible if it is irreducible modulo p. We construct the Galois ring as a quotient
ring of Zpn [x] as follows. Let m,n be positive integers and let f ∈ Zpn [x] be a monic basic
irreducible polynomial of degree m. The quotient ring Zpn [x] /〈f〉, denoted GR(pmn, pn),
is called the Galois ring of order pmn and characteristic pn.

The integers p,m and n chosen as above determine uniquely (up to isomorphism) the
Galois ring GR(pmn, pn) (Raghavendran, 1969, p. 207). For the remainder of the text the
symbol R will denote a Galois ring, R∗ its multiplicative group of units, kR the residue
field of R, and µ the natural epimorphism defined by

µ : R→ kR : a 7→ a+ 〈p〉.

The residue field of the ring R is unique and isomorphic to the finite field GF(pm) of pm

elements.
Let f̄ be a monic irreducible divisor of xN −1 in Zp[x] of degree m where N = pm−1.

Then Hensel’s Lemma (McDonald, 1974, p. 256, Theorem XIII.4), ensures the existence
of a unique monic irreducible f ∈ Zpn [x] such that f divides xN − 1 in Zpn [x] and
µf = f̄ . There is thus a one-to-one correspondence between the irreducible factors of
xN − 1 modulo p and the irreducible factors of xN − 1 modulo pn. If f is a primitive
basic irreducible, and ξ is a root of f , then kR = Zp[µξ] and R = Zpn [ξ].

Let T be a transversal on the cosets of 〈p〉 in R, so that if υ, ρ ∈ T then υ− ρ ∈ 〈p〉 if
and only if υ = ρ. There are two ways of uniquely representing an element θ in R. The
first expression comes from adjoining the root ξ to the ring Zpn , as illustrated below.

θ =
m−1∑
j=0

ajξ
j , aj ∈ Zpn . (1)

We refer to this representation of an element θ of R as the additive normal form of θ,
since it is preserved under component-wise addition. Given a specified transversal T , the
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second type has the form

θ =
n−1∑
j=0

pjθj , θj ∈ T , (2)

which we call the p-adic representation of θ with respect to the transversal T (or simply
the p-adic representation where it is assumed that an arbitrary transversal has been
selected). That an element θ has this latter unique representation can be proved by an
inductive argument. For a given θ ∈ R, the element θj (or (θ)j if parentheses are required
to avoid ambiguity) is the uniquely determined jth component of θ in T . Note that the
p-adic representation is not preserved under addition.

2. Gröbner Bases in R[x]R[x]R[x]

2.1. notation

A term in R[x] is an element of the form xi11 x
i2
2 · · ·ximm for some integers ij ≥ 0. In

general, an arbitrary term will be denoted by X. A monomial in R[x] is a non-zero
constant multiple of a term in R[x]. Throughout this paper < denotes an arbitrary fixed
term order. Let a ∈ R[x]. The expressions leading term, lt(a), leading coefficient, lc(a),
and leading monomial, lm(a) = lc(a)lt(a) have the usual meanings.

Given any non-empty subset S of R[x], we denote by lt(S) (respectively lm(S)) the
set of leading terms (respectively monomials) of the elements of S. The ideal of R[x]
generated by the elements of S is denoted 〈S〉 and we write Lt(S) for 〈lt(S)〉 and Lm(S)
for 〈lm(S)〉.

2.2. division in R

Central to the task of describing our division in R[x] is a description of a division
process in R. In the presence of the zero divisors in R, we generalize the notion of
division of one element by another to that of reduction.

Let θ ∈ R\{0}. Define the map

νp : R\{0} −→ N0 : θ 7−→ min{t : θ ∈ 〈pt〉}.

Then νp(θ) denotes the highest power of p which divides θ (θ = βpνp(θ) for some β ∈ R∗),
and ann(θ) = 〈pn−νp(θ)〉. We extend this to a map on R by setting νp(0) = −1.

Let θ ∈ R and let T be a transversal on the cosets of 〈p〉 in R. It has already been
noted that θ can be expressed uniquely in its additive normal form and p-adically by
Equations (1) and (2). For 1 ≤ k ≤ n, denote by θ(k) the truncation of θ modulo pk+1,
with respect to its p-adic representation:

θ(k) =
k∑
i=0

θip
i.

For 1 ≤ k ≤ n, denote by θ|k| the sum

θ|k| =
m−1∑
j=0

ājξ
j
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where āj is the unique element of {0, . . . , pk − 1} satisfying the relation aj ≡ āj mod pk.
We also define the following maps:

ηp : R\{0} → N0 : θ =
n−1∑
i=0

θip
i 7−→ max{i : θi 6= 0}

κp : R\{0} → N0 : θ =
m−1∑
j=0

ajξ
j 7−→ max{ηp(aj) : aj 6= 0}.

Note that if νp(θ) = k for some non-negative integer k, then θ = θkp
k if and only if

ηp(θ) = k, and θ = θkp
k if and only if κp(θ) = k. We extend these to mappings defined

on R by setting ηp(0) = κp(0) = n.
We now introduce the notion of reduction in R.

Definition 2.2.1. Let θ, λ, ρ ∈ R, with λ 6= 0. We say that θ reduces to ρ modulo λ
with respect to the p-adic representation if there exists υ ∈ R such that

θ = υλ+ ρ

where ηp(ρ) < νp(λ) or ρ = 0. We say that θ is reduced modulo λ with respect to the
p-adic representation if the only solution of this equation satisfying ηp(ρ) < νp(λ) is given
by υ = 0, θ = ρ. Thus θ is reduced modulo λ with respect to the p-adic normal form if
and only if ηp(θ) < νp(λ).

We say that θ reduces to ρ′ modulo λ with respect to the additive normal form if there
exists υ′ ∈ R such that

θ = υ′λ+ ρ′

where κp(ρ′) < νp(λ) or ρ′ = 0. We say that θ is reduced modulo λ with respect to the
additive normal form if the only solution of this equation satisfying κp(ρ′) < νp(λ) is
given by υ′ = 0, θ = ρ′. Thus θ is reduced modulo λ with respect to the additive normal
form if and only if κp(θ) < νp(λ).

Lemma 2.2.2. Let θ, λ ∈ R, λ 6= 0. Then there exist unique ρ, ρ′ such that:

(i) θ reduces to ρ modulo λ with respect to a p-adic representation;
(ii) θ reduces to ρ′ modulo λ with respect to the additive normal form.

Proof. The proof is outlined in the reduction process. For θ, λ ∈ R, with λ 6= 0, write

θ =
n−1∑
i=0

θip
i, λ = βpk

where θi ∈ T for some transversal T on the cosets of 〈p〉 in R, νp(λ) = k and β ∈ R∗.
Then we write

θ =

(
n−1∑
i=k

θip
i−k

)
β−1λ+ θ(k−1)

= υλ+ ρ

where υ = β−1
(∑n−1

i=k θip
i−k) and ρ = θ(k−1) =

∑k−1
i=0 θip

i, as defined earlier. Then
ηp(ρ) < νp(λ) unless ρ = 0, and it is clear that θ reduces to ρ uniquely. This proves (i).
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Similarly, expressing θ in additive normal form we have

θ =
m−1∑
j=0

ajξ
j , λ = βpk

where νp(λ) = k. Then

θ =

(
m−1∑
j=0

a′jξ
j

)
β−1λ+ θ|k|

= υ′λ+ ρ′

where υ′ =
(∑m−1

j=0 a′jξ
j
)
β−1, and ρ′ = θ|k| =

∑m−1
j=0 ājξ

j , where for each j ∈ {0, . . . ,
m−1}, aj = a′jp

k+ āj for some a′j ∈ Zpn and āj ∈ {0, . . . , pk−1} satisfying aj ≡ āj mod
pk. Then κp(ρ′) < νp(λ) unless ρ′ = 0, and ρ′ is uniquely determined by this reduction
process, proving (ii). 2

Remark 2.2.3. The remainder produced in the reduction of θ modulo λ, is simply θ(k−1)

or θ|k|, depending on the procedure chosen, and depends only on k = νp(λ). When λ
is a unit both reduction procedures are identical to ordinary division. Note, however,
that in general these two reduction procedures do not lead to the same remainder, since
for any α ∈ R, the values ηp(α) and κp(α) do not necessarily coincide. For example,
in GR(83, 8) ' Z8[ξ] the element ξ6 is in p-adic representation with respect to the
transversal T = {0, 1, ξ, . . . , ξ6}, and is expressed in additive normal form as 5 + 6ξ+ ξ2.
However, ηp(ξ6) = 0, while κp(ξ6) = 2. According to the first reduction process, ξ6 is
reduced modulo 2, while in the latter, we find that 5 + 6ξ + ξ2 reduces to 1 + ξ2 modulo
2. On some occasions one reduction procedure may be more convenient to use than the
other; what is vital is that the process selected must be adhered to for the duration of
the calculations. Henceforth, any statements made regarding division where we do not
specify which reduction procedure is being implemented can be assumed to be true for
the exclusive use of either procedure.

An exception to this general rule is illustrated by the following. Let R = Z9. Consider
the element 7. It has additive normal form 7, and is expressed in p-adic representation
as 1 + (2)(3), with respect to the transversal {0, 1, 2}. Now 7 reduces to 1 modulo 3
with respect to the additive normal form, and 7 reduces to 1 modulo 3 with respect
to this p-adic representation, so in this case both reduction procedures lead to the same
remainder. In general, if R = Zpn then reduction with respect to the additive normal form
is identical to reduction with respect to the p-adic representation when the transversal
chosen is {0, 1, . . . , p− 1}. We state this as follows.

Lemma 2.2.4. Let R = Zpn . Let θ, λ ∈ R such that λ 6= 0. Then there exists ρ ∈ R such
that θ reduces to ρ modulo λ with respect to the additive normal form, and θ reduces
to ρ modulo λ with respect to the p-adic representation when the transversal chosen is
{0, 1, . . . , p− 1}.

Proof. We show for θ ∈ R, that θ(k) = θ|k+1| for all k ∈ {0, . . . , n} when R = Zpn . In
p-adic notation θ is given by θ0 + pθ1 + · · · + pn−1θn−1, with each θi ∈ {0, . . . , p − 1}.
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Now θ|k+1| = θ̄ where θ̄ is the unique element of {0, . . . , pk+1 − 1} such that θ ≡ θ̄ mod
pk+1, and θ(k) = θ0 + · · ·+ pkθk ∈ {0, . . . , pk+1 − 1}. It follows that θ(k) = θ|k+1|. 2

Lemma 2.2.5. Let θ = λ1 + · · · + λs where θ, λj ∈ R and λj 6= 0 for any j. Then θ
reduces to 0 modulo λj (i.e. θ is divisible by λj) for at least one j.

Proof. Let j ∈ {1, . . . , s} such that νp(λj) = min{νp(λi) : i ∈ {1, . . . , s}}, and let
νp(θ) = t. Then k ≤ t, and writing λj = βpk, θ = γpt for some β, γ ∈ R∗, we have that
θ = (γβ−1pt−k)λj . 2

In other words an element of R is a sum of a set of non-zero elements in R if and only
if it is divisible by at least one element in the set. In particular it must be divisible by
the element λ with νp(λ) minimal.

Lemma 2.2.6. Let θ, θ′, λ ∈ R with λ 6= 0. Then θ and θ′ have the same remainder with
respect to the p-adic representation if and only if θ and θ′ have the same remainder with
respect to the additive normal form.

Proof. Let νp(λ) = k for some integer k. Then θ(k−1) = θ′(k−1) if and only if θ+ 〈pk〉 =
θ′ + 〈pk〉 if and only if θ|k| = θ′|k|. The result follows. 2

Lemma 2.2.7. Let νp(λ) = k. Then θ + 〈pt〉 = θ′ + 〈pt〉 for some t ≥ k, if and only if θ
and θ′ both have the same remainder modulo λ.

Proof. Suppose θ + 〈pt〉 = θ′ + 〈pt〉 for some t ≥ k. Then θ(t−1) = θ′(t−1), and hence
θ(l) = θ

′(l) for all l ∈ {0, . . . , t − 1}. In particular θ(k−1) = θ′(k−1) and θ|k| = θ′|k| since
k ≤ t, so that θ and θ′ both have the same remainder modulo λ. Conversely, suppose that
θ and θ′ both have the same remainder modulo λ. Then θ(k−1) = θ′(k−1), and θ|k| = θ′|k|.
Set t = k. Then θ + 〈pt〉 = θ′ + 〈pt〉 and the result is proved. 2

2.3. division in R[xxx]

We introduce a division algorithm in R[x]. We emphasize that since in general p-adic
representation reduction will lead to a different remainder from the additive normal form
reduction, the algorithm admits the use of only one pre-selected reduction process.

Definition 2.3.1. Let a, b, r be monomials in R[x] with b 6= 0. We say that a reduces
to r modulo b if there exists θ ∈ R, and a term X ∈ R[x], such that

a = θXb+ r

lt(a) = max{Xlt(b), lt(r)}
and lt(r) = Xlt(b) only if lc(r) is reduced modulo lc(b). The monomial a is said to be
reduced modulo b if the only solution satisfying the given criteria is θ = 0 and r = a.
Otherwise we say that a is reducible modulo b.

Definition 2.3.2. Let a, b, r ∈ R[x] with b 6= 0. We say that a reduces to r in one step
modulo b, denoted a→b r, if there exists a monomial a1 of a that reduces to a monomial
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r1 of r modulo lm(b), that is, if there exist θ ∈ R, and X ∈ R[x], such that

a = θXb+ r

a1 = θXlm(b) + r1

lt(a) = max{Xlt(b), lt(r)}

where Xlt(b) occurs as a term of r only if the coefficient of that term is reduced modulo
lc(b). The element a is reduced modulo b if every monomial of a is reduced modulo lm(b).

The division algorithm now follows in the usual way. Let a, r ∈ R[x], G = {bi}s1 ⊆ R[x]
with G 6= {0}. We write a→+G r if r can be obtained by a sequence of one-step reductions.
If a →+G r, and r is reduced modulo G, then r is called a remainder of a with respect
to G, and we write remG(a). Note that remG(a) is not unique for an arbitrary set G. The
division algorithm is stated as follows.

Theorem 2.3.3. Given a ∈ R[x],G = {bi}s1 ⊆ R[x], there exist {fi}s1 ⊆ R[x], r ∈ R[x]
satisfying

a =
s∑
1

fibi + r

where lt(a) = max{lt(fi)lt(bi), lt(r)} and either each monomial of r is reduced modulo G
or r = 0.

2.4. characterization of Gröbner bases in R[xxx]

Definition 2.4.1. Let A be an ideal in R[x]. A set G = {bi}s1 ⊆ A of non-zero elements
is called a Gröbner basis of A if for each a ∈ A there exists an i ∈ {1, . . . , s} such that
lm(a) is divisible by lm(bi). An arbitrary subset G of R[x] is called a Gröbner basis if it
is a Gröbner basis of 〈G〉.

From Lemma 2.2.5 it follows that if a monomial a can be reduced to zero by the action
of some non-empty set of monomials G then a must be divisible by some member of G,
in other words:

Lemma 2.4.2. Let a, G = {bi}s1 be monomials in R[x]. Suppose that a →+G 0. Then
there exists i ∈ {1, . . . , s} such that a→bi 0.

The following theorem gives the expected characterization of a Gröbner basis of an
ideal in R[x].

Theorem 2.4.3. Let A be an ideal in R[x], G = {bi}s1 ⊆ A. The following statements
are equivalent.

(i) G is a Gröbner basis of A.
(ii) a ∈ A if and only if a→+G 0.

(iii) For all a ∈ A there exist {fi}s1 ⊂ R[x] satisfying

a =
∑

fibi

lt(a) = max{lt(fi)lt(bi)}.

(iv) Lm(G) = Lm(A).
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Clearly if G is a Gröbner basis of an ideal A then 〈G〉 = A.
Since our definition of reduction of a polynomial in R[x] permits us to reduce a poly-

nomial a by some set G by reducing any monomial of a, we can implement a straight-
forward adaptation of (Adams and Loustaunau, 1994, Corollary 1.8.6), to generate a
reduced Gröbner basis from a minimal Gröbner basis of an ideal in R[x]. It is easy to
show that any ideal in R[x] has a unique reduced Gröbner basis.

We have already mentioned that for an arbitrary set G the division algorithm may not
yield uniquely defined remainders. However, in the case where G is a Gröbner basis then
the remainder found on division of a by G is indeed unique.

Theorem 2.4.4. Let G = {bi}s1. If G is a Gröbner basis then a →+G r uniquely for all
a ∈ R[x].

Proof. Suppose that two different sequences of reductions yield:

a =
s∑
1

fibi + r

=
s∑
1

f ′ibi + r′

where

lt(a) = max{lt(fi)lt(bi), lt(r)}
= max{lt(f ′i)lt(bi), lt(r′)}

and each monomial of r and r′ is reduced modulo bi for i = 1, . . . , s. Then

r − r′ =
s∑
1

(f ′i − fi)bi ∈ 〈G〉.

Since G is a Gröbner basis, it follows that lm(r − r′) is divisible by lm(bi) for some
i ∈ {1, . . . , s} unless r − r′ = 0. Now

lt(r − r′) ≤ max{lt(r), lt(r′)}

and if lt(r) > lt(r′) then lm(r − r′) = lm(r) which is not divisible by the leading term
of any element of G so that a contradiction results. It follows that lt(r) = lt(r′). If
lc(r) 6= lc(r′) then

lm(r − r′) = lm(r)− lm(r′)
= (lc(r)− lc(r′))lt(r).

By hypothesis, the monomials of both r and r′ are reduced with respect to the leading
monomial of each element of G. In particular, if lt(bi) divides lt(r) for some i ∈ {1, . . . , s}
then lc(r) and lc(r′) must be reduced modulo lc(bi). Then lc(r) 6= lc(r′) implies that
lc(r − r′) = lc(r) − lc(r′) is divisible by lc(bj) for some j ∈ {1, . . . , s}, and therefore
lc(r)− lc(r′) ∈ 〈pl〉 where lc(bj) = βpl for some β ∈ R∗, l ≥ 1. But then by Lemma 2.2.7,
lc(r) and lc(r′) both have the same remainder modulo bj . Since lc(r) and lc(r′) are both
reduced modulo lc(bj), it follows that lc(r) = lc(r′) and thus lm(r) = lm(r′). Repeated
applications of the same argument yield that r and r′ agree at each coefficient and the
remainder is unique. 2
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Definition 2.4.5. Let G be a Gröbner basis and let f ∈ R[x]. The normal form of f
with respect to G, denoted NfG(f), is the unique remainder found in the application of
the division algorithm to f and G.

Theorem 2.4.4 guarantees the existence of a well defined normal form, with respect to
a given Gröbner basis G. The set of normal forms with respect to G forms a complete set
of coset representatives for R[x]/〈G〉.

Example 2.4.6. Let R[x] = Z27[x, y] and let G = {gj}4j=1 where g1, g2, g3, g4 are the
polynomials 9, x+ 1, 3y2, y3 + 13y2 − 12, respectively. Endowing the terms of R[x] with
graded lex order with y < x gives

1 < y < x < y2 < xy < x2 < y3 < xy2 < · · · .

Let F = {f1, f2} where f1 = x5y2 + 2y3 + 3x2 + 6x+ 6 and f2 = 3y2 + x+ 1. Then

f1 = (x4y2 − x3y2 + x2y2 − xy2 + y2 + 3x− 3)g2 + 2g4, and
f2 = g3 + g2,

so that G generates 〈F〉. In fact it can be shown (see Example 2.5.11) that G is a Gröbner
basis of 〈F〉. Let f = x6+x5−9x2+2xy+9x+2y+9. Then f = (x5+2y)f2−3f1 ∈ 〈F〉, but
applying the division algorithm to f and F , we find that f →+F f, since each monomial
of f is reduced modulo lm(f1) and lm(f2). However, f →+G 0 via the reduction

f →g2 18x2 + 2xy + 9x+ 2y + 9→g2 2xy + 18x+ 2y + 9→g2 18x+ 9→+g1 0

so that

f = (x5 − 9x+ 2y)g2 + (2x+ 1)g1

and lt(f) = x6 = lt(x5 − 9x + 2y) lt(g2), as predicted by Theorem 2.4.3. Since G is a
Gröbner basis, the remainder produced in the application of the division algorithm to G
and an element of R[x] must be unique. Consider the following reduction:

f →g2 18x2 + 2xy + 9x+ 2y + 9→+g1 2xy + 2y →g2 0.

So

f = (x5 + 2y)g2 + (x2 + 1)g2

and lt(f) = x6 = lt(x5 + 2y)lt(g2). Although the sequence of reductions differs, we still
get a zero remainder. We can always determine whether or not an element f is contained
in 〈F〉 by checking its remainder on division by the set G.

2.5. computing Gröbner bases in R[xxx]

Having established the existence of a Gröbner basis for every non-zero ideal in R[x]
and devised a division algorithm, it remains to show how to compute a Gröbner basis
for an ideal from a given generating set. Our approach is essentially a generalization of
Buchberger’s algorithm. We denote by ei the vector with 1 in position i and 0 elsewhere
(and length implied by the context). Our algorithm is based on the following theorem
(Adams and Loustaunau, 1994, p.213, Theorem 4.2.3).
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Theorem 2.5.1. Let G = {gi}si=1 be a set of non-zero polynomials in R[x]. Let B be a
homogeneous generating set for Syz(lm(g1), . . . , lm(gs)). Then G is a Gröbner basis for
〈G〉 if and only if for all [h1, . . . , hs] ∈ B

h1g1 + · · ·+ hsgs −→+G 0.

In what follows we find a homogeneous generating set for the syzygy module of an
ordered s-tuple of monomials in R[x], and hence develop an appropriate algorithm for
the computation of a Gröbner basis in R[x]. In particular, we shall prove the follow-
ing theorem.

Theorem 2.5.2. Let υiXi, i = 1, . . . , s be monomials in R[x]. Express υi as υi = θip
ti

for some θi ∈ R∗, ti ≥ 0. Then the syzygy module Syz(υ1X1, . . . , υsXs) is generated by

{pn−tiei : i = 1, . . . , s} ∪
{
pti,j−tiθ−1

i

Xij

Xi
ei − pti,j−tjθ−1

j

Xij

Xj
ej : 1 ≤ i < j ≤ s

}
where ti,j = max{ti, tj}, Xij = lcm{Xi, Xj}.

Before proving this result we consider the nature of generating sets of the related
syzygy module Syz(υ1, . . . , υs) ⊆ Rs.

Definition 2.5.3. Let υi = θip
ti as above. Let λ = (λ1, . . . , λs) ∈ Syz(υ1, . . . , υs) with

λi = βip
ki , βi ∈ R∗ ∪ {0}. We say that λ is homogeneous of degree pl if ki + ti = l for

each i = 1, . . . , s for which βi 6= 0.

Lemma 2.5.4. With the notation above, let λ ∈ Syz(υ1, . . . , υs) be homogeneous of degree
pl. Then λ can be expressed as a linear combination of

{pn−tiei : i = 1, . . . , s} ∪ {pti,j−tiθ−1
i ei − pti,j−tjθ−1

j ej : 1 ≤ i < j ≤ s}

where ti,j = max{ti, tj}.

Proof. By definition pl = pki+ti for i = 1, . . . , s. Thus

λ = (β1p
k1 , . . . , βsp

ks)

=
s∑
i=1

βip
kiei =

s∑
i=1

βiθip
l−tiθ−1

i ei

= β1θ1p
l−t1,2(pt1,2−t1θ−1

1 e1 − pt1,2−t2θ−1
2 e2)

+(β1θ1 + β2θ2)pl−t2,3(pt2,3−t2θ−1
2 e2 − pt2,3−t3θ−1

3 e3) + · · ·
+(β1θ1 + · · ·+ βs−1θs−1)pl−ts−1,s(pts−1,s−ts−1θ−1

s−1es−1 − pts−1,s−tsθ−1
s es)

+(β1θ1 + · · ·+ βsθs)pl−tsθ−1
s es.

Since β1θ1 + · · ·+ βsθs ∈ 〈pn−l〉 it follows that (β1θ1 + · · ·+ βsθs)pl−tsθ−1
s ∈ 〈pn−ts〉 and

the result follows. 2

Next we show that any element of Syz(υ1, . . . , υs) is generated by a set of homogeneous
syzygies.
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Lemma 2.5.5. Let λ ∈ Syz(υ1, . . . , υs). Then λ can be expressed as a linear combination
of homogeneous syzygies.

Proof. We prove the result by induction on s. For s = 1, Syz(υ1) = annR(υ1) =
〈pn−t1e1〉, and the hypothesis is satisfied. For s = 2, Syz(υ1, υ2) = {(λ1, λ2) : λ1υ1 +
λ2υ2 = 0}. If λi = βip

ki , υi = θip
ti for i = 1, 2 as before, then λ1υ1 = −λ2υ2 implies

β1θ1p
t1+k1 = −β2θ2p

t2+k2 . Unless some βi = 0 or ti + ki ≥ n for each i, we have
t1 + k1 = t2 + k2. If βi = 0 for some i then λ has only one non-zero component and
thus must be homogeneous. If ti + ki ≥ n for each i then we may write (λ1, λ2) as a sum
of homgeneous syzygies: (λ1, λ2) = (λ1, 0) + (0, λ2). Thus each element of Syz(υ1, υ2) is
homogeneous.

Now suppose the result holds for s = l, so that any element of Syz(υ1, . . . , υl) can
be expressed as a linear combination of homogeneous syzygies. Let λ = (λ1, . . . , λl+1) ∈
Syz(υ1, . . . , υl+1) with λi = βip

ki , υi = θip
ti and βi ∈ R∗ ∪ {0}, θi ∈ R∗, for

i = 1, . . . , l+1. If λl+1 = 0, then λ can be viewed as an element of Syz(υ1, . . . , υl) and so is
a linear combination of homogeneous syzygies by hypothesis. Otherwise, we show that it
is possible to choose a homogeneous syzygy λh = (λh1 , . . . , λ

h
l+1) such that λl+1 ∈ 〈λhl+1〉.

Then λ = aλh+(λl, 0) for some a ∈ R, λl ∈ Syz(υ1, . . . , υl), and so λ is a linear combina-
tion of homogeneous syzygies. We can always find an appropriate λh ∈ Syz(υ1, . . . , υl+1)
in the form of either pn−tl+1el+1 or pti,l+1−tiθ−1

i ei−pti,l+1−tl+1θ−1
l+1el+1, and then we de-

termine λl by (λl, 0) = λ− aλh. Indeed, if the only homogeneous syzygy with a non-zero
(l+ 1)th coefficient has all other entries zero then we may take λh = pn−tl+1el+1. Other-
wise, choose i ∈ {1, . . . , l} such that ti,l+1 is minimal. We claim that pkl+1 ∈ 〈pti,l+1−tl+1〉,
so that kl+1 ≥ ti,l+1 − tl+1, and thus λl+1 ∈ 〈λhl+1〉. This is trivially true if ti,l+1 = tl+1.
Suppose otherwise, so that ti,l+1 = ti > tl+1, and kl+1 + tl+1 < ti for i = 1, . . . , l. Then
there exist τi ∈ R∗ such that

λ1υ1 + · · ·+ λlυl = −λl+1υl+1 = −τl+1p
kl+1+tl+1 /∈ 〈pki+ti〉 for each i ∈ {1, . . . , l}

while on the other hand

λ1υ1 + · · ·+ λlυl = τ1p
k1+t1 + · · ·+ τlp

kl+tl ∈ 〈pki+ti〉 for each i ∈ {1, . . . , l}.
This gives a contradiction and the result follows. 2

Lemmas 2.5.4 and 2.5.5 have the following consequence.

Corollary 2.5.6. Syz(υ1, . . . , υs) has the homogeneous generating set

{pn−tiei : i = 1, . . . , s} ∪ {pti,j−tiθ−1
i ei − pti,j−tjθ−1

j ej : 1 ≤ i < j ≤ s}.

Definition 2.5.7. Let υiXi, i = 1, . . . , s be monomials and let h = (h1, . . . , hs) be
contained in Syz(υ1X1, . . . , υsXs). We say that h is homogeneous of degree X if each
non-zero hi is a monomial and X is a term in R[x] such that lt(hi)Xi = X for all
i = {1, . . . , s}.

Lemma 2.5.8. With notation as above Syz(υ1X1, . . . , υsXs) has a finite generating set
of homogeneous syzygies.

Proof. Since R[x]s is Noetherian, Syz(υ1X1, . . . , υsXs) has a finite generating set. Let
h ∈ Syz(υ1X1, . . . , υsXs) so that h1υ1X1 + · · ·+ hsυsXs = 0. By expanding the polyno-
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mials hi we may collect together all those monomials in the sum which share the same
term X. Let the corresponding vector be denoted by hX . Then

hX1 υ1X1 + · · ·+ hXs υsXs = 0

and the required representation is
∑
X hX . 2

We return now to the proof of Theorem 2.5.2. The argument given here is a direct
proof, avoiding the complexity of the saturated subsets approach taken, for example, in
Adams and Loustaunau (1994, Section 4.2).

Proof of Theorem 2.5.2. It is clear that〈
{pn−tiei : i = 1, . . . , s} ∪

{
pti,j−tiθ−1

i

Xij

Xi
ei − pti,j−tjθ−1

j

Xij

Xj
ej : 1 ≤ i < j ≤ s

}〉
is contained in Syz(υ1X1, . . . , υsXs). For the converse, let h = (ρ1Y1, . . . , ρsYs) be a
homogeneous element of Syz(υ1X1, . . . , υsXs) for monomials ρiYi with XiYi = Y for
i = 1, . . . , s. Then

υ1ρ1X1Y1 + · · ·+ υsρsXsYs = (υ1ρ1 + · · ·+ υsρs)Y = 0

so (ρ1, . . . , ρs) ∈ Syz (υ1, . . . , υs). Now
s∑
i=1

ρiei =
s∑
i=1

βip
n−tiei +

∑
i<j

δij(pti,j−tiθ−1
i ei − pti,j−tjθ−1

j ej)

=
s∑
i=1

βip
n−tiei +

s∑
i=1

∑
j 6=i

εijδijp
ti,j−tiθ−1

i ei

for some βi, δij ∈ R, where εij = 1 for i < j, εij = −1 for i > j and δij = δji. But then
s∑
i=1

ρiYiei =
s∑
i=1

βip
n−tiYiei +

s∑
i=1

∑
j 6=i

εijδijp
ti,j−tiθ−1

i Yiei

=
s∑
i=1

βip
n−tiYiei +

∑
i<j

δij(pti,j−tiθ−1
i Yiei − pti,j−tjθ−1

j Yjej)

=
s∑
i=1

βip
n−tiYiei +

∑
i<j

δij

(
pti,j−tiθ−1

i

Xij

Xi
ei − pti,j−tjθ−1

j

Xij

Xj
ej

)
Y

Xij
.

By Lemma 2.5.8, Syz(υ1X1, . . . , υsXs) has a finite generating set of homogeneous syzygies
so that

{pn−tiei : i = 1, . . . , s} ∪
{
pti,j−tiθ−1

i

Xij

Xi
ei − pti,j−tjθ−1

j

Xij

Xj
ej : 1 ≤ i < j ≤ s

}
forms a homogeneous generating set for Syz(υ1X1, . . . , υsXs), as required. 2

Definition 2.5.9. Let f1, f2 be non-zero elements of R[x] with lm(fi) = θip
tiXi,

i = 1, 2. Then

S(f1, f2) = pt1,2−t1θ−1
1

X12

X1
f1 − pt1,2−t2θ−1

2

X12

X2
f2

is called the S-polynomial of f1 and f2, where t1,2 = max{t1, t2}, andX12 = lcm{X1, X2}.
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We give our extension of Buchberger’s algorithm in the form of the following theorem,
which is a direct result of Theorems 2.5.1 and 2.5.2.

Theorem 2.5.10. Let G = {gi}s1 be a set of non-zero polynomials in R[x] with lm(gi) =
θip

tiXi, i = 1, . . . , s. Then G is a Gröbner basis if and only if

S(gi, gj)→+G 0
pn−tigi →+G 0

for all 1 ≤ i < j ≤ s.

Example 2.5.11. Let R[x] = Z27[x, y] and let < denote degree lexicographic term order
with y < x. Let G = {gj}4j=1 = {9, x + 1, 3y2, y3 + 13y2 − 12} as in Example 2.4.6. We
apply Theorem 2.5.10 to show that G is a Gröbner basis. The S-polynomial of g3 and g4

is given by
S(g3, g4) = yg3 − 3g4 = 15y2 + 9

and is reducible modulo G : 15y2 + 9→g3 9→g1 0. Similarly

S(g2, g4) = y3g2 − xg4 = 14xy2 + y3 + 12x,

and
14xy2 + y3 + 12x→g4 14xy2 + 14y2 + 12x+ 12→g2 12x+ 12→g2 0.

Clearly S(g1, gj)→+g1 0, pn−kjgj = 0 where νp(lc(gj)) = pkj for j ∈ {1, 2, 3, 4}, and

S(g2, g3) = 3y2g2 − xg3 = g3 →g3 0,

so we conclude that G is a Gröbner basis.

Algorithm 2.5.12.

Input:

F = {fi}li=1 a subset of R[x], a term order <
Output:

G = {gi}si=1, a Gröbner basis of 〈f1, . . . , fl〉
Initialization:

G:=F ,S = {{f} : f ∈ G} ∪ {{g, h} : g, h ∈ G}
Main Program:

WHILE S 6= ∅ DO
Choose any {f} ∈ S
Choose any {g, h} ∈ S
k := νp( lc(f))
u := remG(pn−kf), v := remG(S(g, h))
S := S \({f} ∪ {{g, h}})
IF u 6= 0 THEN

S := S ∪ ({u} ∪ {{a, u} : a ∈ G})
IF v 6= 0 THEN

S := S ∪ ({v} ∪ {{a, v} : a ∈ G})
G := G ∪ {u, v}
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3. Hamming Metric Decoding of an Alternant Code

We summarize results presented in Byrne and Fitzpatrick (preprint), giving an ap-
plication of the Gröbner basis theory presented in Section 2 toward the decoding of an
alternant code over a Galois ring.

3.1. construction and minimum distance of the code

We assume the reader is familiar with the basic ideas of coding theory (see, for example,
MacWilliams and Sloane, 1977; Pless and Huffman, 1998, for a review of the literature).
Let R = GR(pmn, pn) be a separable extension of a Galois ring T, so T = GR(pm

′n, pn)
where m′ divides m. Let H be the matrix

H =


γ0 γ1 ... γN−1

γ0α0 γ1α1 ... γN−1αN−1

...
...

...
...

γ0α
r−1
0 γ1α

r−1
1 ... γN−1α

r−1
N−1


where r ≤ N ≤ pm − 1, γ =(γ0, . . . , γN−1), α =(α0, . . . , αN−1) ∈ (R∗)N , and αi − αj is
a unit for i 6= j. We define the alternant code C(N, r, α, γ,T ) of length N with symbols
in T as the T -submodule

C(N, r, α, γ, T ) = {c ∈ TN : Hc = 0}.

Note that the condition αi − αj ∈ R∗ for i 6= j is equivalent to the requirement that
the set {αj}n−1

j=0 be contained in a transversal of the cosets of 〈p〉 in R. We have the
following lower bound on the minimum Hamming distance of the code (de Andrade et
al., preprint; Norton and Salagean-Mandache, 1999).

Theorem 3.1.1. Let C(N, r, α, γ, T ) be the alternant code defined by the parity check
matrix H as above. Let dH(N, r, α, γ, T ) denote the minimum Hamming distance of the
code C(N, r, α, γ, T ). Then dH(N, r, α, γ, T ) > r.

3.2. decoding procedures

Theorem 3.1.1 shows that C(N, r, α, γ, T ) is a t-error correcting code where t = b r2c.
In this section we present a decoding algorithm which determines all error patterns of
Hamming weight at most t.

Let v = c + e be a received word, where c ∈ C and the error vector e has Hamming
weight at most t, and let s = Hv = He be the syndrome vector. Let J ⊆ {0, . . . , N−1} be
the set of indices of non-zero coefficients of e, so that |J | ≤ t. The decoding problem seeks
initially to determine J , the set of error locations of the error pattern e, and subsequently
the error magnitudes ej for each j ∈ J . Define the error polynomial e =

∑
j∈J ejx

j and
the syndrome polynomial S =

∑r−1
i=0

∑
j∈J ejγjα

i
jx
i in the usual way. The error locator

polynomial is

Σ =
∏
j∈J

(1− αjx),

and the error evaluator polynomial is

Ω =
∑
j∈J

ejγj
∏

k∈J,k 6=j

(1− αkx).
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These polynomials are related by the well known key equation

ΣS ≡ Ω mod xr

and the decoding problem is equivalent to solving this congruence subject to certain
conditions.

Consider the R[x]-submodule M ⊆ R[x]2 consisting of all solutions of the key equation

M = {(a, b) : aS ≡ b modxr}.

It is easy to see that M is generated by the set {(1, S), (0, xr)}. Using the following
theorem and the results of the next section we show that the particular solution (Σ,Ω)
can be identified in a Gröbner basis of M with respect to a specified term order. Given
the generating set {(1, S), (0, xr)} we invoke Algorithm 2.5.12 to compute the required
basis.

Theorem 3.2.1. Let R = Rn = GR(pmn, pn). For each i = 0, . . . , n−1, let ai, bi ∈ R[x],
satisfy:

(i) lc(ai) ∈ R∗ for each i ∈ {0, . . . , n− 1}.
(ii) 〈ai, aj〉 = R[x] for each i, j ∈ {0, . . . , n− 1} such that i 6= j.

(iii) 〈ai, bi〉 = R[x] for each i ∈ {0, . . . , n− 1}.

Define a, b by

a =
n−1∏
i=0

ai and b =
n−1∑
i=0

piAibi, where Ai =
n−1∏

j=0,j 6=i

aj .

Then 〈a, b〉 has a Gröbner basis of the form

{a1 · · · an−1, pa2 · · · an−1, . . . , p
n−1an−2, p

n−1}.

3.3. the solution module

The module of all solutions of the key equation

M = {(a, b) : aS ≡ bmodxr}

has the following related structures:

Mk = M ∩ 〈pk〉
Lk = M\Mk

L∗ = L1 = M\M1.

Definition 3.3.1. Let l be an integer. The term order <l on R[x]2 is defined as follows:

(i) (xi, 0) <l (xj , 0) and (0, xi) <l (0, xj) for i < j.
(ii) (0, xj) <l (xi, 0) if and only if j ≤ i+ l.

Explicitly the terms are ordered as

(0, 1) <l (0, x) <l · · · <l (0, xl) <l (1, 0) <l (0, xl+1) <l (0, x) <l · · · for l ≥ 0
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(1, 0) <l (x, 0) <l · · · <l (x−(l+1), 0) <l (0, 1) <l (x−l, 0) <l (0, x) <l · · · for l < 0.
An element (a, b) ∈ R[x]2 has the leading term on the left (respectively on the right) if
lt(a, b) has the form (xi, 0) (respectively (0, xj)).

We note the general structure of a Gröbner basis of an arbitrary R[x]-submodule of
R[x]2.

Theorem 3.3.2. Let A be an R[x]-submodule of R[x]2. Then A has a Gröbner basis of
the form

{(a0, b0), . . . , (an−1, bn−1), (c0, d0), . . . , (cn−1, dn−1)}
satisfying

(i) for all i, j ∈ {0, . . . , n− 1}, lm(ai, bi) = (pix∂ai , 0), lm(cj , dj) = (0, pjx∂dj ).
(ii) ∂ai ≤ ∂aj for i ≥ j, ∂di ≤ ∂dj for i ≥ j.

In what follows we show that the particular solution (Σ,Ω) required in the decoding
problem, as formulated previously, is minimal in L∗ with respect to the term order <−1,
defined by

(1, 0) < (0, 1) < (x, 0) < (0, x) < · · · .
The next result gives some conditions under which an element is minimal in some Ll.
Recall the natural homomorphism, defined in the Introduction:

µ : R→ kR : f → f mod p

which we extend in the obvious way to R[x], and write f̄ for µf .

Theorem 3.3.3. Let (a, b) ∈M satisfy the following for some integer k ≥ 0:

(i) ∂b < ∂a = ∂(ā) ≤ t.
(ii) 〈pk〉 ⊆ 〈a, b〉.

Then (a, b) is minimal in Ln−k with respect to the term order <−1.

Remark 3.3.4. The quotient module, given by

M/Mk = {(a, b) +Mk : (a, b) ∈M}
= {(a, b) +Mk : (a, b) ∈ Ln−k},

defines an equivalence relation for each k ∈ {0, . . . , n}. If Gk is a Gröbner basis for Mk,
then (a, b) +Mk = (a′, b′) +Mk if and only if NfGk(a, b) = NfGk(a′, b′), so that

M/Mk = {NfGk(a, b) +Mk : (a, b) ∈ R[x]2}.

If (a, b) and (a′, b′) are both minimal in Ln−k, then it is not hard to see that (a, b)+Mk =
(a′, b′) +Mk.

If an element (a, b) satisfies the conditions of Theorem 3.3.3 then it is the minimal
element of some subset Ln−k of M, and thus contained, up to equivalence, in a Gröbner
basis G of M. Moreover, if (a, b) is minimal in Ln−k, it is certainly minimal in L1 = L∗

and therefore identifiable, up to equivalence, as the minimal regular element of G.
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Given an arbitrary vector v ∈ RN , write v = v〈0〉 + pv〈1〉 + · · ·+ pn−1v〈n−1〉 where

vj = υ
〈i〉
j pi for some υ

〈i〉
j ∈ R

∗ ∪ {0}.

Note that this representation is not unique since the υ〈i〉j are not necessarily chosen from
among a transversal on the cosets of 〈p〉. For a received word v ∈ RN , corresponding to
an error vector e, we decompose the syndrome s in the same way, as follows:

s = vHt = eHt

= e〈0〉Ht + pe〈1〉Ht + · · ·+ pn−1e〈n−1〉Ht

= s〈0〉 + ps〈1〉 + · · ·+ pn−1s〈n−1〉.

Theorem 3.3.5. Let Σ and Ω be the error locator and error evaluator polynomials for
some error pattern e. Then for each i ∈ {0, . . . , n − 1} there exist polynomials Σ〈i〉 and
Ω〈j〉 ∈ R[x] satisfying the following:

(i) Σ =
n−1∏
j=0

Σ〈j〉.

(ii) Ω =
n−1∑
i=0

piΨ〈i〉Ω〈i〉, where Ψ〈i〉 =
n−1∏

j=0,j 6=i
Σ〈j〉 = Σ/Σ〈i〉.

(iii) 〈Σ〈i〉〉+ 〈Σ〈j〉〉 = R[x] for i 6= j.
(iv) 〈Σ〈i〉〉+ 〈Ω〈i〉〉 = R[x] for each i ∈ {0, . . . , n− 1}.
(v) lc(Σ〈j〉) ∈ R∗ for each j ∈ {0, . . . , n− 1}.

Moreover, if for each j ∈ {0, . . . , n−1} we let Ji = {j : e〈i〉j 6= 0} then suitable polynomials
are given by Σ〈i〉 =

∏
j∈Ji(1 − αjx) and Ω〈i〉, the unique polynomial of degree less than

r such that S〈i〉Σ〈i〉 ≡ Ω〈i〉 mod xr.

From Theorem 3.2.1 we deduce that 〈Σ,Ω〉 has a Gröbner basis of the form

{Ψ〈0〉, pΣ〈2〉 · · ·Σ〈n−1〉, p2Σ〈3〉 · · ·Σ〈n−1〉, . . . , pn−2Σ〈n−1〉, pn−1}.

In particular, pn−1 is contained in 〈Σ,Ω〉, so the pair Σ,Ω satisfy Condition (ii) of
Theorem 3.3.3. We have now proved the following theorem.

Theorem 3.3.6. The solution (Σ,Ω) of the key equation required for decoding the alter-
nant code C(N, r, α, γ, S) is, up to equivalence, the minimal regular element of a Gröbner
basis for the solution module M, under the term order <−1.

Given an element (a, b), minimal in L∗, we compute the roots of Σ as follows. Since
µ(a, b) = µ(Σ,Ω) for all (a, b) minimal in L∗ then in particular

ā = Σ̄ =
∏
j∈J

(1− ᾱjx).

The roots αj are then determined uniquely from the roots ᾱj and location vector α =
[α0, . . . , αN−1], whose components comprise a set of distinct coset representatives for the
cosets of 〈p〉 in R.
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Example 3.3.7. Let R be the Galois ring Z4[x]/〈f〉 ' Z4[ξ] where ξ is a root of the
primitive basic irreducible f = x4 − 2x2 + 3x+ 1. Let C(15, 4, α, γ, Z4) be the alternant
code whose parity check matrix is defined by α = [1, ξ, ξ2, . . . , ξ14] and γ = 1. Suppose
that a codeword c is sent and the vector v received. Let e denote the corresponding error
pattern, and suppose that

e = [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0].

The error locator polynomial is given by

Σ = (1− ξ3x)(1− ξ10x) = ξ13x2 + (ξ12 + 2ξ5)x+ 1

and the syndrome polynomial is

S = (ξ9 + 2)x3 + (ξ6 + 2ξ5)x2 + (ξ3 + 2ξ10)x+ 3.

Multiplying Σ by S and reducing modulo x4 we find that

Ω = (ξ10 + 2ξ12)x+ 3.

With the notation of Theorem 3.3.5, J0 = {3},J1 = {10},Σ〈0〉 = 1 − ξ3x and Σ〈1〉 =
1− ξ10x. If we choose

e〈0〉 = [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
e〈1〉 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0]

then the corresponding values for the S〈i〉 are given by

S〈0〉 = ξ9x3 + ξ6x2 + ξ3x+ 1
S〈1〉 = x3 + ξ5x2 + ξ10x+ 1

and we get the equations

Σ〈0〉S〈0〉 ≡ 1 modx4

Σ〈1〉S〈1〉 ≡ 1 mod x4.

Then

Ψ〈0〉Ω〈0〉 + 2Ψ〈1〉Ω〈1〉 = Σ〈1〉Ω〈0〉 + 2Σ〈0〉Ω〈1〉

= 1− ξ10x+ 2(1− ξ3x)
= (ξ10 + 2ξ12)x+ 3
= Ω.

From Theorem 3.2.1, we deduce that {Σ〈1〉, 2} is a Gröbner basis of 〈Σ,Ω〉 so that by
Theorem 3.3.3, the pair (Σ,Ω) is minimal in L∗ with respect to the term order <−1,
and is thus contained, up to equivalence, in a Gröbner basis of M. We now start the
decoding proper, applying Theorem 2.5.10 in order to compute the required basis. The
module M is generated by {(1, S), (0, x4)}. Let b1 = (0, x4) and let b2 = (1, S). Then

S(b1, b2) = (3x, (ξ6 + 2ξ9)x3 + (ξ3 + 2ξ12)x2 + x).

Applying the division algorithm to S(b1, b2) and we find that

S(b1, b2)→ b2((ξ9 + 2ξ7)x+ ξ6 + 2ξ5, 2ξ7x2 + 2ξ6x+ ξ6 + 2ξ9)
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which is reduced modulo {b1, b2, b3}. We normalize the remainder, denote it by b3 and
add it to the generating set

b3 = ((ξ2 + 2ξ8)x+ (ξ14 + 2ξ2), 2x2 + 2ξ14x+ ξ14 + 2ξ13).

Multiplying by 2 annihilates the leading coefficient, and we obtain

b4 = (2x+ 2ξ12, 2ξ12)

after multiplication by an appropriate unit in R. Now

S(b2, b3) = ((ξ2 + 2)x2 + (ξ14 + 2ξ13)x+ 2ξ6, 2ξ5x2 + (ξ14 + 2ξ11)x+ 2ξ6)

and

S(b2, b3)→+{b3,b4} (ξ2x2 + (ξ + 2ξ4)x+ ξ4 + 2ξ11, (ξ14 + 2)x+ ξ4 + 2ξ13).

For convenience, we multiply by ξ13 to get

b5 = (x2 + (ξ14 + 2ξ2)x+ (ξ2 + 2ξ9), (ξ12 + 2ξ14)x+ (ξ2 + 2ξ11))

with which we augment the generating set. The S-polynomial

S(b1, b3) = ((ξ2 + 2)x3 + (ξ14 + 2ξ13)x2, 2ξ14x3 + (ξ14 + 2ξ2)x2)

reduces to (0, 0) modulo {b3, b4, b5} and

S(b4, b5) = (2ξ5x+ 2ξ2, 2ξ2)→b4 (0, 0).

Thus the set {b1, b2, b3, b4, b5} and hence the set {b2, b3, b4, b5} is a Gröbner basis for
M . Note that the form of this basis has been predicted in Theorem 3.3.2. The minimal
regular element of this basis is b5, so that b5 +M1 = (Σ,Ω) +M1, where M1 = M ∩ 〈2〉.
The roots of x2 + ξ̄12x + ξ̄2 are {ξ̄5, ξ̄12}, where ξ̄ = µξ, and correspond to the error
locations {3, 10} . We implement a modification of Forney’s procedure (Forney, 1965;
Interlando et al., 1997) to recover the error magnitudes

ei =
S1+Σi,1S0

αi + Σi,1
where the coefficients Σi,1 are determined by the relation

Σi,1 = Σ1 + αi.

Then

e3 =
S1 + Σ3,1S0

ξ3 + Σ3,1

=
ξ3 + 2ξ10 − (ξ13 + 2ξ5 + ξ3)

ξ3 + ξ12 + 2ξ5 + ξ3

= (ξ12 + 2ξ11)(ξ3 + 2ξ2) = 1

and

e10 =
S1 + Σ10,1S0

ξ10 + Σ10,1

=
ξ3 + 2ξ10 − (ξ12 + 2ξ5 + ξ10)

ξ10 + ξ12 + 2ξ5 + ξ10

= (2ξ12)(ξ3 + 2ξ6) = 2.
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