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Abstract. We propose an extended version of the classical Extension Theorem [2] to de-

scribe the image of an algebraic set X � A
n

� A
1 under the projection � : A n � A

1
! A

n .

Furthermore, we apply the Extended Extension Theorem to compute the image of rational

functions from A
1 to A

n and the image of a projection of Whitney's umbrella.

1 Introduction

One of the many reasons why projective space Pn is in advantage to aÆne space A n is the fact that

P
n is a complete variety, i.e., for every variety V the projection map � : V �P

n ! V is closed, i.e.,

maps closed sets onto closed sets. This is also known as the main theorem of elimination theory.

A short and elegant proof of this is easily obtained from the valuative criterion of properness

(of morphisms of schemes) [6]. However, as so often within the machinery of modern abstract

algebraic geometry, the proof produces no equations of the image of a given closed subset. To

obtain explicit equations, more elementary, constructive techniques, as resultants, lead to the aim.

These techniques are quite old, however, for computer algebra indispensable. The main ingredient

of the constructive proof (in [2]) of the main theorem of elimination theory is the so-called extension

theorem [2] which, to a given closed subset X � V �A
n , gives an explicit, suÆcient condition which

of the points of the Zariski-closure �(X) � V are already in �(X). More precisely, the extension

theorem determines in a constructive way a closed subset W of V such that �(X) nW � �(X).

The motivation for the investigations of this paper was to �nd also a necessary condition, i.e.,

to �nd an explicit description of the set �(X) n �(X) (and hence of �(X)). Since, unlike in the

projective case, the set �(X) generally isn't closed, it isn't enough to use only polynomial equations

in the description of �(X). A theorem of Chevalley [3], however, states that generally �(X) is a

constructible set, i.e., an element of the boolean lattice generated by the open (hence also closed)

subsets of V in the power set of V . Thus, a constructible set is a �nite union of locally closed

subsets of V . Now, any locally closed subset of V can be described by �nitely many equations

f = 0 and not-equations g 6= 0, where f; g are regular (polynomial) functions on V . The main

result of this paper is Theorem 2 which, for an algebraic set X � A
n � A

1 , explicitly describes

the constructible set �(X) by a simple formula consisting of �nitely many equations and not-

equations. The procedure of producing equations and not-equations which describe �(X) from the

equations describing the algebraic set X is also known as quanti�er elimination (in the theory of

algebraically closed �elds). In the literature (cf. [7] [8] [9]) there are already fast algorithms doing

this job, even for the general case of eliminating more than one variable. However, the descriptions

of �(X) are rather complicated and depend essentially on an algebraic procedure which decides the

emptiness of algebraic sets. The advantage of our approach (in the special case of eliminating only

one variable) is the simplicity and compactness of the description of the set �(X). Moreover, the

only cumbersome part in computing equations and not-equations describing the set �(X) consists

in computing Groebner bases of elimination ideals w.r.t. the projection �.

2 The Extended Extension Theorem

Let k be an algebraically closed �eld and A
n = A

n (k) the aÆne space over k. In this section we �x

a �nite, non-empty set F = ff1; : : : ; frg of non-zero polynomials of k[x1; : : : ; xn; y] (n � 1). Let

� : A n � A
1 ! A

n , (x; y) 7! x be the projection map onto the �rst n coordinates. We consider the

variety X = V (F) de�ned by the polynomials of F , and in the following we like to give an explicit
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description of the constructible set �(X).

We consider polynomials f 2 k[x1; : : : ; xn; y] = k[x; y] as polynomials in the indeterminate y

with coeÆcients in k[x]. Thus, if f =
P

N

i=0 gi(x)y
i, gN 6= 0, then deg

y
(f) = N , (deg

y
(0) = �1),

LCy(f) = gN(x), LTy(f) = gN(x)y
N and `y(f) = jfgi : gi 6= 0; i > 0gj.

We refer to [2][6] for standard notation and basic facts of algebraic geometry. As a non-standard

notation we use Vx(E) = fa 2 A
n : g(a) = 0 for all g 2 Eg (E � k[x1; : : : ; xn]) to distinguish with

V (E) = f(a; b) 2 A
n � A

1 : g(a) = 0 for all g 2 Eg which equals Vx(E)� A
1 .

The essential idea to �nd an explicit description of �(X) consists of a successive application

of the classical extension theorem to a sequence of sets of polynomials iteratively generated from

the initial set F . Hence, we �rst recall the classical extension theorem (which is a slightly modi�ed

version of the extension theorem in [2]).

Theorem 1 (Extension Theorem). Let F , X and � as above. We de�ne E = fLCy(f) : f 2
F ; deg

y
(f) > 0g. If E = ;, then �(X) = Vx(F) is closed. If E 6= ;, then �(X) n Vx(E) � �(X).

Proof. Let ~E = fLCy(f) : f 2 Fg. Then, by the extension theorem in [2], �(X) n Vx( ~E) � �(X).

If E = ; then F � k[x1; : : : ; xn] and X = Vx(F) � A
1 , and thus �(X) = Vx(F) is closed. Now,

assume that E 6= ;. One easily veri�es that �(X) n Vx(E) � �(X) n Vx( ~E), and we obtain also the

second statement. ut

Remark 1. Note that, with the notation of the proof of Theorem 1,

�(X) n Vx(E) = �(X) n Vx( ~E)

holds since �(X) � Vx( ~E n E). Thus, considering the larger set Vx(E) instead of the usually used

Vx( ~E) doesn't weaken the statement of the extension theorem (cf. [2]).

De�nition 1. Let F , X and � as above. A sequence F0; : : : ;FN of subsets of k[x1; : : : ; xn; y] is

called admissible for (F ; �) if F0 = F , Ei 6= ; (0 � i � N � 1), EN = ; and

Vx(Ei) \ �(X i) = Vx(Ei) \ �(X i+1) (0 � i � N � 1)

where Ei = fLCy(f) : f 2 Fi; deg
y
(f) > 0g and X i = V (Fi), (0 � i � N).

Lemma 1. Let F and � as above, let N = maxf`y(f) : f 2 Fg. We recursively de�ne a sequence

F0; : : : ;FN of non-zero polynomials as follows:

F0 = F ; and for i = 1; : : : ; N

Fi = ff � LTy(f) : f 2 Fi�1; deg
y
(f) > 0g [ fg 2 Fi�1 : degy(g) � 0g:

Then F0; : : : ;FN is an admissible sequence for (F ; �).

Proof. Let Ei, X i as in De�nition 1. Due to the de�nition of N we have Ei 6= ; (0 � i � N � 1)

and EN = ;. Assume P 2 A
n+1 is a point such that �(P ) 2 Vx(Ei). Then LTy(f)(P ) = 0 for all

f 2 Fi with deg
y
(f) > 0. Hence, P 2 X i i� P 2 X i+1. ut

Theorem 2 (Extended Extension Theorem). Let F , X and � as above and let F0; : : : ;FN

be an admissible sequence for (F ; �). Let X i = V (Fi) and Ei = fLCy(f) : f 2 Fi; deg
y
(f) > 0g.

Assume Gi � k[x1; : : : ; xn] is a set of polynomials such that Vx(Gi) = �(X i), and let Di = G0 [S
i

j=1 Gj [ Ej�1, 0 � i � N . Then Vx(Di) \ Vx(Ei) � Vx(Di+1) (0 � i � N + 1) and

�(X) = Vx(DN ) [
N�1[

i=0

Vx(Di) n Vx(Ei):

To prove the theorem, we need the following lemma.
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Lemma 2. Let Di, Ei, � and X i be given as in Theorem 2. Then for 0 � i � N � 1

(i) Vx(Di [ Ei) \ �(X i) = Vx(Di+1) \ �(X i+1)

(ii) Vx(Di) n Vx(Ei) � �(X i)

(iii) Vx(DN ) \ �(XN ) = Vx(DN )

Proof. (i) Since F0; : : : ;FN is an admissible sequence for (F ; �), we have

Vx(Ei) \ �(X i) = Vx(Ei) \ �(X i+1): (1)

By construction Vx(Gi+1) = �(X i+1). Hence, Vx(Di+1) \ �(X i+1) = Vx(Di) \ Vx(Ei) \ �(X i+1).

This, together with (1), gives (i).

(ii) Since i 6= N , we have Ei 6= ;. Now, by Theorem 1, �(X i) n Vx(Ei) � �(X i). Since Vx(Di) is

a subset of �(X i), we obtain (ii).

(iii) By construction, Vx(GN ) = �(XN ). Since XN = V (FN ) and FN � k[x], we have �(XN) =

�(XN ). Thus Vx(GN ) = �(XN ), from which (iii) follows. ut

Proof (of Theorem 2). If N = 0 then �(X) = Vx(F) = Vx(DN ). Now, assume N > 0. We show

per induction on i = N;N � 1; : : : ; 0 that

Vx(Di) \ �(X i) = Vx(DN ) [
N�1[

j=i

Vx(Dj) n Vx(Ej): (2)

If i = N then the assertion follows immediately from Lemma 2(iii). Now, assume i < N and (2) is

true for i+ 1. We write

Vx(Di) \ �(X i) =
�
Vx(Di) n Vx(Ei) \ �(X i)

�
[
�
Vx(Di [ Ei) \ �(X i)

�
:

By applying Lemma 2(i) and (ii), we obtain

Vx(Di) \ �(X i) = Vx(Di) n Vx(Ei) [
�
Vx(Di+1) \ �(X i+1)

�
;

and the assertion follows immediately from the induction hypothesis. The theorem is proven if we

have seen that �(X) = Vx(D0) \ �(X0). This is, however, trivial since X = X0 and Vx(D0) =

Vx(G0) = �(X0). ut

Remark 2. Using Groebner bases it is easy to get �nite sets Gi such that Vx(Gi) = �(X i) as

required in the Extended Extension Theorem (cf., e.g., [2]). Thus Theorem 2 provides an algorithm

to compute the constructible set �(X).

3 Examples and Applications

We start with an easy example to illustrate the mechanism of the Extended Extension Theorem.

The computations have been done with Singular Version 2.0.3 [4] [5].

Example 1. 1) Let F = fxy � 1g. According to Lemma 1 F0 = F , F1 = f�1g is an admissible

sequence. Now E0 = fxg, and let G0 = f0g, G1 = f1g. Then D0 = f0g and D1 = f1; xg. Hence
�(V (xy � 1)) = Vx(0) n Vx(x) [ Vx(1; x) = A

1 n f0g.
2) Now, let F = fxyg, and consider the admissible sequence F0 = F , F1 = f0g. Then again

E0 = fxg. Let G0 = G1 = f0g. We obtain D0 = f0g and D1 = f0; xg. Thus �(V (xy)) = Vx(0) n
Vx(x) [ Vx(0; x) = A

1 .

Example 2. Let F = ff1; f2g, f1 = xt2 � 2t + x, f2 = (y � 1)t2 + y + 1, and �(t; x; y) = (x; y).

Then F0 = F , F1 = f2t+ x; y + 1g, F2 = fx; y + 1g is an admissible sequence for (F ; �) due to
Lemma 1.

We compute E0 = fx; y�1g, E1 = f2g, and G0 = fx2+y2�1g, G1 = fy+1g, G3 = F2 = fx; y+1g,
and D0 = fx2 + y2 � 1g, D1 = D0 [ fx; y � 1; y + 1g. Since Vx(D1) = ;, we obtain �(V (F)) =
V(x;y)(x

2 + y2 � 1) n f(0; 1)g.



380 P. Ullrich

Remark 3. In example 2 we have computed the image of t 7! ( 2t
t2+1

; t
2
�1

t2+1
), the parametrization of

the unit-circle fx2 + y2 � 1 = 0g. We can use Theorem 2 to compute the image of any rational

function from A
1 to A

n .

Proposition 1. Let F = (f1=g1; : : : ; fn=gn) be a rational function from A
1 to A

n , where fi =P
j
cijt

j and gi =
P

j
dijt

j are relatively prime polynomials (1 � i � n).

(i) If deg(fi) > deg(gi) for some i then im(F ) is closed in A
n .

(ii) Now assume deg(fi) � deg(gi) and mi = deg(gi) � 1 (1 � i � n). We set cimi
= 0, if

deg(fi) < mi. Then im(F ) n im(F ) � fPg with P = (a1; : : : ; an) and ai = dimi
=cimi

.

Proof. Let � the projection �(t; x; y) = (x; y) and I the ideal I = (g1x1 � f1; : : : ; gnxn � fn),

then im(F ) = �(V (I)). Let E be as in Theorem 1. In situation (i) V(x;y)(E) is empty. In (ii)

V(x;y)(E) = fPg, and from Theorem 1 we obtain im(F ) n fPg � im(F ). ut

Remark 4. Proposition 1 was already shown by J.R. Sendra [10] (in the case n = 2). However, our

proof is much simpler and not restricted to n = 2.

We obtain the following result about parametrizations of aÆne curves.

Corollary 1. Assume C � A
n is an aÆne curve which admits a rational parametrization given

by F = (f1=g1; : : : ; fn=gn) where fi, gi are relatively prime (1 � i � n). Then the parametrization

covers the curve up to at most one point P 2 C Moreover, the coordinates of P are in the coeÆcient

�eld of the polynomials fi, gi.

Generally we can use Theorem 2 to compute the image of any rational function from A
1 to

A
n . For if F is a rational function and P the point as in Proposition 1, then im(F ) = V (D0) and

V (E0) = fPg, where we have set F = fg1x1 � f1; : : : ; gnxn � fng. We only need to determine the

largest i 2 f0; : : : ; Ng such that P 2 V(x;y)(Di). Note that V(x;y)(Di) \ V(x;y)(Ei) � V(x;y)(Di+1),

and hence for all i > 0 we have P 2 V(x;y)(Di) i� V(x;y)(Di) 6= ;. If we have found such an i, we

�nally have to check if P 2 V(x;y)(Ei).
In the following examples we use Lemma 1 to compute an admissible sequence (Fi).

Example 3. Consider the tacnode curve C � A
2 = A

2 (C ) given by the equation 2x4 � 3x2y +

y2 � 2y3 + y4 = 0. The curve C admits a rational parametrization (cf. [11]) given by the rational

function F = (x(t); y(t))

x(t) =
t3 � 6t2 + 9t� 2

2t4 � 16t3 + 40t2 � 32t+ 9
y(t) =

t2 � 4t+ 4

2t4 � 16t3 + 40t2 � 32t+ 9

We compute V(x;y)(D0) = C, V(x;y)(E0) = fPg where P = (0; 0). Furthermore, V(x;y)(D1) = fPg,
and V(x;y)(E1) = V(x;y)(D2) = ;. Hence, the parametrization covers the entire curve.

Example 4. The aÆne curve C given by the equation (x2+4y+ y2)2� 16(x2+ y2) = 0 admits the

following parametrization (cf. [11]):

x(t) =
�1024t3

256t4 + 32t2 + 1
y(t) =

�2048t4 + 128t2

256t4 + 32t2 + 1
:

We compute V(x;y)(D0) = C, V(x;y)(E0) = fPg with P = (0;�8). Furthermore V(x;y)(D1) = ;.
Hence we obtain im(F ) = C n fPg. One easily checks that P lies on the curve C. Thus the above

parametrization covers not the entire curve.

Remark 5. To decide whether P = (P1; : : : ; Pn) 2 im(F ), where F = (f1=g1; : : : ; fn=gn), we also

could have proceeded (even simpler) as follows:

Compute h = gcd(g1P1 � f1; : : : ; gnPn � fn) and decide whether there is some a 2 A
1 such that

h(a) = 0 and g(a) 6= 0, where g =
Q

i
gi. The latter can be done by computing the squarefree part

hred (cf. [1]) of h and testing whether hred divides g, or not. Notice that generally a parametriza-

tion of a curve of genus 0 exists only over a quadratic extension of the base �eld [11]. Thus all

computations have to be done in this quadratic extension �eld. Our intention to compute the

above examples by using the extended extension theorem consists mainly in demonstrating the

mechanism of the theorem.



An Extension of the Extension Theorem 381

Theorem 2 is not only applicable to parametrizations of (genus 0) curves, but also to para-

metrizations of \general kind" of curves, e.g., square-root parametrizations like x2 = f1(t)=g1(t),

y2 = f2(t)=g2(t).

De�nition 2. A parametrization of general kind of an aÆne curve C � A
n is a rational func-

tion F = (f1=g1; : : : ; fn=gn), where fi; gi 2 k[t] are relatively prime, together with polynomials

Q1; : : : ; Qn 2 k[x1; : : : ; xn] such that C = im(F;Q), where

im(F;Q) = fx = (x1; : : : ; xn) 2 A
n : (Q1(x); : : : ; Qn(x)) 2 im(F )g = Q�1(imF ):

Proposition 2. Assume (F;Q) is a parametrization of general kind of an aÆne curve C � A
n ,

where F = (f1=g1; : : : ; fn=gn), fi; gi relatively prime, and Q1; : : : ; Qn 2 k[x1; : : : ; xn].

(i) If deg(fi) > deg(gi) for some i then im(F;Q) = C is closed in A
n .

(ii) If deg(fi) � deg(gi), deg(gi) � 1 for all i then C n im(F;Q) � Q�1(P ),where P is as in

Proposition 1.

Proof. This follows immediately from Proposition 1 since Q is continuous. ut

Example 5. Consider the aÆne curve C of genus 1 given by the equation 5x2 � 4xy2 � 2x+ y4 +

y2 � 1 = 0. Then C admits the parametrization of general kind

x(t) =
t2 + t� 1

t2 + 1
y2(t) =

2t2 � 3

t2 + 1
:

Let (Fi) be the admissible sequence from Lemma 1. Then we compute V(x;y)(D0) = C, V(x;y)(E0) =
f(1;�

p
2)g and V(x;y)(D1) = ;. Hence we obtain im(P;Q) = C n f(1;�

p
2)g.

Example 6. As our �nal example we compute the projection �(X) of Whitney's umbrella X =

V (x2z � y2) where �(x; y; z) = (x; y) { the projection is along the stick of the umbrella. Starting

with the admissible sequence F0 = fx2z�y2g, F1 = f�y2g, we obtain V(x;y)(D0) = A
2 , V(x;y)(E0) =

V(x;y)(x
2) = f0g � A

1 and V(x;y)(D1) = V(x;y)(x
2;�y2) = f(0; 0)g. Hence �(X) = A

2 n (0 � A
1 ) [

f(0; 0)g.
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