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Abstract. Approximate singularity is defined for bivariate and multivariate polynomials.
For bivariate polynomials, approximately singular points in weak and strong senses are de-
fined, and a method to determine an approximately singular point in weak sense is given. For
bivariate and multivariate polynomials, a method to expand the roots into (fractional-)power
series at a singular point is presented, in which the small (erroneous) terms are treated as
perturbations. Furthermore, a concept of approximate unconjugacy of power-series roots is
introduced.
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1 Introduction

¿From the late 1980’s, the author has been studying approximate algebraic computation [11],
and he and his coworkers introduced so far concepts of approximate greatest common divisor (GCD)
of multivariate as well as univariate polynomials [15, 9, 10], approximate square-free decomposition
[15] and approximate multivariate factorization [17, 16, 12]. Corless et al. introduced a concept
of approximate decomposition of multivariate as well as univariate polynomials [2]. We call the
algebra based on such approximate operations approximate algebra.

The main purpose of approximate algebra is not to handle polynomials with coefficients of
floating-point numbers, as in [18], although it is an important purpose. The main purpose is, given
a polynomial or a set of polynomials not having a desirable property, to find another polynomial
or a set of polynomials which has a desirable property, by changing the coefficients slightly. For
example, factorizability is a desirable property because we can separate a system into simpler sub-
systems. Thus, given a multivariate polynomial which is nearly factorizable, we want to obtain a
factorizable polynomial by changing the coefficients slightly. Then, as a natural development of
approximate algebra, we are led to concepts of approximate singularity.

We have already several such concepts; the nearest polynomial [25, 4, 5, 20] and the pseudo-
variety [8, 22, 23, 21, 6, 3]. If a univariate polynomial has multiple roots then it is called singular.
Then, we can say that a polynomial is approximately singular if it has no multiple root but close
roots. Given a non-singular univariate polynomial, the nearest polynomial is a singular polynomial
obtained by changing the coefficients minimally in the sense of some norm. The nearest polyno-
mial plays an important role in control theory; see [1], for example. The approximate square-free
decomposition with the minimum tolerance is then a generalization of the nearest polynomial,
although the theory is not developed yet. Note that the approximate square-free decomposition is
applicable to polynomials with inexact coefficients, while the nearest polynomial can be defined
only for exact polynomials. The pseudo-variety is a set of algebraic varieties of a polynomial system
and its nearby systems, where the nearby systems are obtained by changing the coefficients of the
given system slightly. Stetter and Thallinger [19] called a multivariate polynomial system singular
if it has an infinite number of solutions.

In this paper, we consider bivariate and multivariate polynomials, with small perturbations. The
coefficients may be exact or inexact. Singularity of a polynomial may be changed even by a small
perturbation, as we will see in 2 for bivariate polynomials. Furthermore, a small perturbation often
� Work supported in part by Japanese Ministry of Education, Science and Culture under Grants 15300002.
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makes the algebraic curve pretty complicated in structure. Therefore, given a polynomial with a
small perturbation, we want to determine a polynomial which gives an algebraic curve of a simple
structure and which represents a set of nearby polynomials. This desire leads us to a concept
of approximately singular point, in weak and strong senses. Converting approximately singular
polynomials to singular ones, we will be able to see and treat characteristic behaviors of algebraic
curves (surfaces) defined by the original polynomials. In 2, we will give a method to determine
approximately singular points (in weak sense only) and corresponding perturbations.

Next, we investigate the power-series expansion of the roots of bivariate and multivariate poly-
nomials with perturbations. As is well-known, the roots of bivariate polynomial can be expanded
at a singular point into Puiseux series (fractional-power series). As we will show by an example in
2, if a given polynomial contains small (erroneous) terms, the resulting series becomes sometimes
strange in that the convergence radius is very small. In 3, we will present an expansion method,
both for bivariate and multivariate polynomials, in which the small (erroneous) terms are treated
as perturbations. The resulting series reproduces the global structure of the curve, and converges
to the power series with no perturbation; it, however, diverges at the singular point. Then, we will
be led to a concept of approximate unconjugacy of power-series roots.

This paper is of such a kind that presents new basic concepts and imposes related problems,
hence we explain them by many examples. The concepts presented will become important in
approximate algebra.

2 Approximately Singular Bivariate Polynomial

Let F (y, x) be a bivariate polynomial over C. Singularity is one of the most important concept
in algebraic geometry, see [24] for example. A point (x̂, ŷ) ∈ C2 satisfying

F (x̂, ŷ) =
∂F

∂y
(x̂, ŷ) =

∂F

∂x
(x̂, ŷ) = 0 (2.1)

is called a singular point of F (y, x), and F (y, x) is called singular at (x̂, ŷ). For the later use, we
define a point (x̃, ỹ) ∈ C2 to be semi-singular if it is a solution of one of the above three systems,
i.e. if (x̃, ỹ) ∈ V1 ∪ V2 ∪ V3, where

V1 = variety( {F =0, ∂F/∂y=0} ),
V2 = variety( {∂F/∂y=0, ∂F/∂x=0} ),
V3 = variety( {F =0, ∂F/∂x=0} ).

(2.2)

Throughout this paper, by ‖ · ‖ we denote a norm (the infinity norm in examples).
Let us consider what happens on the singularity if F (y, x) is perturbed slightly.

Example 1 F (y, x) = y2 − x3 − δ2x
2 − δ1x, 0 ≤ |δ1|, |δ2| ≤ ε � 1.

Let F0(y, x) = y2 − x3, F1(y, x) = y2 − x3 − δ1x, and F2(y, x) = y2 − x3 − δ2x
2. Figures 1-1, 1-2

and 1-3 show the curves determined by F0(y, x) = 0, F1(y, x) = 0 and F2(y, x) = 0, respectively.

Fig.1-1 δ1 =δ2 =0
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Fig.1-2 δ1 = 0.05
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Fig.1-3 δ2 = 0.10
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F0(y, x) has only one singular point at (0, 0), F1(y, x) has no singular point, and F2(y, x) has only
one singular point at (0, 0). F (y, x) has no singular point if δ2

2 −3δ1 = 0, and it has a singular
point at (x, y) = (−δ2/2, 0) if δ2

2 −4δ1 = 0. In fact, if δ2
2 −4δ1 = 0, we can rewrite F (y, x) as

F (y, x) → y2−x (x+δ2/2)2 def= F3(y, x). F3(y, x) is obtained from F by the minimum perturbation
∆ = (δ1 − δ2

2/4)x : F3(y, x) = F (y, x) + ∆(y, x). ♦

As Example 1 shows, the singular point may move, appear or disappear if F (y, x) is perturbed
even slightly. However, the global structure of the curves determined by F0(y, x) = 0, F1(y, x) = 0
and F2(y, x) = 0 are approximately the same. Furthermore, among the polynomials which give
curves of a globally similar structure, one polynomial (F0(y, x) in the above example) gives a
curve of extremely simple structure. So, we want to treat the curves determined by F (y, x) = 0,
with 0 ≤ |δ1|, |δ2| ≤ ε � 1, as a set of curves which are represented by a curve determined by
F0(y, x) = 0, for example. Thus, we are led to a concept of approximate singularity, in weak and
strong senses, as follows.

Definition 1 (approximate singularity in weak sense) Let F (y, x) and ∆(y, x) be{
F (y, x) =

∑
i,j cijy

ixj ,

∆(y, x) =
∑

i,j δijy
ixj ,

‖∆‖/‖F‖ < ε � 1. (2.3)

(The support of ∆, supp(∆) = { xiyj | δij �= 0 }, may be chosen rather arbitrarily such as supp(∆) ⊆
supp(F ) or supp(∆) �⊂ supp(F )). If we can choose ∆(y, x) such that F+∆ is singular at (x̂, ŷ) ∈ C2

then we say that F (y, x) is approximately singular at (x̂, ŷ) in weak sense, with tolerance ε and
that (x̂, ŷ) is an approximately singular point of F (y, x).

Definition 2 (approximate singularity in strong sense) Let F (y, x) and ∆(y, x) be the
same as in Def. 1. Suppose that, for a suitably chosen ∆(y, x), (x̂, ŷ) is a singular point of F̃ (y, x) def=
F (y, x)+∆(y, x). Furthermore, suppose that we can choose a small domain D(x̂, ŷ) such that, for
every ∆(y, x) satisfying (2.3), D(x̂, ŷ) contains only one or no singular point around (x̂, ŷ) and it
contains all the semi-singular points around (x̂, ŷ). If we can choose ∆(y, x) so that F̃ (y, x) has
a singular point at (x̂, ŷ) and no other semi-singular point in D(x̂, ŷ), then we say that F (y, x) is
approximately singular at (x̂, ŷ) in strong sense, with tolerance ε.

Example 2 Approximately singular point of F (y, x) in Example 1.
Semi-singular points (x̃i, ỹi) ∈ Vi (i = 1, 2, 3) of F (y, x) are computed as follows.

(x̃1, ỹ1) : (
1
2

(
− δ2 ±

√
δ2
2 − 4δ1

)
, 0 ), (0, 0),

(x̃2, ỹ2) : (
1
3

(
− δ2 ±

√
δ2
2 − 3δ1

)
, 0 ),

(x̃3, ỹ3) : (
1
3

(
− δ2 +

√
δ2
2 − 3δ1

)
, ±1

9

√
6δ3

2 − 27δ2δ1 − 6
√

(δ2
2 − 3δ1)3 ),

(
1
3

(
− δ2 −

√
δ2
2 − 3δ1

)
, ±1

9

√
6δ3

2 − 27δ2δ1 + 6
√

(δ2
2 − 3δ1)3 ).

Points (x̃i, ỹi) (i = 1, 2, 3) become identical only when ỹ3 = 0, or (6δ3
2 − 27δ2δ1)2 = 36(δ2

2 − 3δ1)3

=⇒ 27δ2
1(δ2

2 − 4δ1) = 0. Setting δ1 = 0, we obtain F (y, x) = F2(y, x) and we know that F2(y, x)
has a singular point at (0, 0). This approximately singular point is, unless δ2 = 0, not in strong
sense because there are several semi-singular points around (0, 0). Setting δ2

2 − 4δ1 = 0, we obtain
F (y, x) = y2−x (x+δ2/2)2 = F3(y, x) and we know that F3(y, x) has a singular point at (−δ2/2, 0).
This point is also not approximately singular in strong sense. The approximately singular point in
strong sense is obtained only by setting δ1 = δ2 = 0. ♦

The above definitions impose us the following problems immediately.
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Problem 1 Given a bivariate polynomial F (y, x) which has an approximately singular point at
(x̂, ŷ) with tolerance ε, determine a polynomial F̃ (y, x) which has a singular point at (x̂, ŷ).

Problem 2 Determine a polynomial F̃ (y, x) which shows approximate singularity in strong sense
and a corresponding approximately singular point (x̂, ŷ).

Problem 3 Determine the minimum value of the tolerance ε and the corresponding perturbation
∆(y, x), for which F (y, x) has an approximately singular point.

Problem 1 is not difficult to solve. Here, we describe a numerical method.

Procedure ApproxSPweak(F (y, x), ε) ==

Step 1 : Compute the semi-singular points numerically ;
If V1, V2 and V3 in (2.2) contain no mutually close solution then there is no possibility that
F (y, x) has an approximately singular point ;

Step 2 : Suppose that V1, V2 and V3 contain solutions (x̃i, ỹi) ∈ Vi (i = 1, 2, 3) such that
(x̃1, ỹ1) � (x̃2, ỹ2) � (x̃3, ỹ3), then put G(y, x) = F (y+ỹ, x+x̃), where

x̃ = (x̃1 + x̃2 + x̃3)/3, ỹ = (ỹ1 + ỹ2 + ỹ3)/3 ;

Step 3 : Put ∆ = d0 + d1y + d2x + · · ·, and determine d0, d1, d2, . . . so as to satisfy (not only the
followings but also higher derivatives, if ∆ contains higher degree terms)

(G+∆)(0, 0) = 0, ∂(G+∆)/∂y(0, 0) = 0, ∂(G+∆)/∂x(0, 0) = 0 ;

Step 4 : Check the tolerance, and repeat the above procedure if necessary. (In the repetition,
choose a semi-singular point which is not equal to but nearest to (x̃, ỹ) as a candidate of an
approximately singular point.) ♦

The merit of utilizing semi-singular points is not only easiness of computation but also that,
even if F (y, x) is approximately singular, the system (2.1) may have no solution because it is an
over-determined one. The reason for moving the origin is that, if the singular point is near the
origin, higher total-degree terms are ineffective for determining the singular point, and we may
determine perturbations only for lower total-degree terms.

Example 3 Let F (y, x) be as follows (F has a singular point at (−0.51, 0.49)).

F (y, x) = y3 − 2y2x2 + 1.96y2x + 1.0498y2 + yx3 − 3.51yx2 + 2.7195yx
+ 0.172847y + 0.51x3 − 2.2699x2 + 1.857149x− 0.29235001 .

Suppose that, by computing semi-singular points numerically, we find (−0.5, 0.5) as a candidate
of an approximately singular point of tolerance O(0.01). Moving the origin to (−0.5, 0.5), we put
G(y, x) = F (y−0.5, x+0.5). Then, putting ∆ = d0 + d1y + d2x + d3y

2 + d4yx + d5x
2 + · · ·, we

determine d0, d1, d2, . . . as follows.

(G+∆)(0, 0) = 0 ⇒ d0 = 0.000099 · · · ,
∂(G+∆)/∂y(0, 0) = 0 ⇒ d1 = 0.00029 · · · ,
∂(G+∆)/∂y(0, 0) = 0 ⇒ d2 = 0.020001,

∂2(G+∆)/∂y2(0, 0) = 0 ⇒ d3 = −0.0298,
∂2(G+∆)/∂y∂x(0, 0) = 0 ⇒ d4 = 0.00049 · · · ,

∂2(G+∆)/∂x2(0, 0) = 0 ⇒ d5 = 0.9999 .

Among these, d5 is too large, so should be abandoned. ♦

In the above Example 3, we obtain the following polynomial

G+∆ = y3 − 2y2x2 − 0.04y2x + yx3 − 0.01yx2 + 0.01x3 − 0.9999x2.
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This polynomial has only one singular point at (0, 0); we can check this by computing the Gröbner
basis w.r.t. the lexicographic order. However, the origin is a singular point in weak sense and not in
strong sense; each of V1, V2, V3 for G+∆ contain several semi-singular points around the origin. As
this example shows, for a given polynomial, there are usually infinitely many nearby polynomials
which have approximately singular points in weak sense. Hence, the important and interesting
problem is to find a polynomial having approximately singular points in strong sense. We will be
able to obtain required polynomials by such an algebraic method that was described in Example
2, but the method seems to be time-consuming and Problems 2 and 3 are open now.

The next important problem is on the solution y = φ(x) of the equation F (y, x) = 0. Once
an approximately singular point in strong sense and the corresponding polynomial F̃ (y, x) are
determined, the solution y = φ̃(x) of F̃ (y, x) = 0 will show a simple analytic behavior around
the singular point. However, if F (y, x) has several semi-singular points around a point, φ(x) may
show a complicated behavior around the point. The function φ(x) can be expanded into Taylor
series if the expansion point is not a semi-singular point. If the expansion point is a semi-singular
point in V1, φ(x) is expanded into fractional-power series or Puiseux series in general. A well-
known classical method for computing the Puiseux-series solution is Newton-Puiseux’s method.
Being applied to approximately singular polynomials, Newton-Puiseux’s method sometimes gives
unexpected results, as the following example shows.

Example 4 Power-series solutions by Newton-Puiseux’s method.

F0 = y2 − x3 : y0 = ±√
x3,

F1 = y2 − x3 − δx : y1 = ±√
δ
√

x (1 +
x2

2δ
− x4

8δ2
+ · · ·),

F2 = y2 − x3 − δx2 : y2 = ±√
δ x (1 +

x

2δ
− x2

8δ2
+ · · ·).

The convergence radii of y0, y1 and y2 are ∞,
√

δ and δ, respectively. ♦
The above solutions y1 and y2 may be useful if δ is a definite number, but they are completely

nonsense if δ is an error. Even if δ is not an error, the solutions will be very erroneous if δ is an
erroneous number. On the other hand, we want to treat all the solutions of F (y, x) = 0 with small
δ1 and δ2 as a set of solutions which are approximately the same to one representative solution (y0

in the above example). Therefore, we impose the following problem.

Problem 4 Determine (fractional-)power series solutions of F (y, x) = 0 (and solutions of
F (y, x1, . . . , x�) = 0 w.r.t. y in the multivariate case), which converge to those of the equation
with no perturbation.

We can give a definite answer to this problem. Required solutions can be obtained by the
extended Hensel construction proposed independently by Kuo [7] for bivariate polynomial and
Sasaki-Kako [14] for multivariate polynomials; we will explain the extended Hensel construction
and give the answer to Problem 4 in the next section. Here, we give one example.

Example 5 F (y, x) = y2 + yx2 − x3 − δx2 (δ is a small number).

We determine fractional-power series φ
(k)
1 (x) and φ

(k)
2 (x), with k ∈ N, such that

F (y, x) ≡ [y − φ
(k)
1 (x)] · [y − φ

(k)
2 (x)] (mod xk+1+3/2).

For k = 2, for example, the following series satisfy this equality.


φ
(2)
1 (x) = +x3/2 − x2/2 + x5/2/8 − x7/2/128 + O(x9/2)

+ δx1/2/2 − δx3/2/16 + δ2x−1/2/8 + O(δx5/2, δ2x1/2, δ3x−3/2)),

φ
(2)
2 (x) = −x3/2 − x2/2 − x5/2/8 + x7/2/128− O(x9/2)

− δx1/2/2 + δx3/2/16 − δ2x−1/2/8 − O(δx5/2, δ2x1/2, δ3x−3/2)).

We note that these power series converge to the solution of F0(y, x) = y2 + yx2 − x3 = 0 as δ → 0.
However, they diverge as x → 0. ♦
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3 Power-Series Roots with Error Terms

In this section, by “multivariate polynomials” we mean polynomials in three or more variables.
We denote the main variable and sub-variables by y and x1, . . . , x�, respectively, and abbreviate
x1, . . . , x� to x. Let F (y, x) be a given multivariate polynomial over C. In algebraic geometry, the
point (ŷ, x̂) ∈ C�+1 that satisfies

F (ŷ, x̂) =
∂F

∂y
(ŷ, x̂) =

∂F

∂x1
(ŷ, x̂) = · · · =

∂F

∂x�
(ŷ, x̂) = 0 (3.1)

is called a singular point of F (y, x). Note that singular points of F (y, x) may form a curve or a
surface (for example, the singular points of F (z, y, x) = z3 − (y − x)2 form a line (x= y, z =0)).
This fact makes the choice of the “small domain D(x̂, ŷ)” in Definition 2 complicated. Except for
this complication, we can define approximate singularity for multivariate polynomials, just as we
have done for bivariate polynomials.

We do not consider the approximate singularity of multivariate polynomial any more, but we
investigate how to compute the power-series solutions of F (y, x) = 0, which converge to those of
the equation with no perturbation. If such a method is developed, the resulting power series will
be quite useful for visualizing pseudo-varieties.

We can expand the solutions of F (y, x) = 0 w.r.t. y in fractional-power series in x1, . . . , x�

(multivariate Puiseux series). Unfortunately, the fractional-power series expansion of multivariate
polynomial at a singular point is not unique, and the analytic structure of the solutions in the
neighborhood of the singular point is not easy to see from the expansion. We use a rather new
expansion method called the extended Hensel construction which is a Hensel construction at a
“singular point” (see below). With this method, we can obtain the solutions of fractional-power
series in the total-degree variable, with coefficients of algebraic functions in x1, . . . , x�; see [14, 13]
for details. Furthermore, the solutions manifest the analytic structure in the neighborhood of the
singular point, as we will see below.

Definition 3 (singular point for Hensel construction) Let F (y, x) be

F (y, x) = fn(x)yn + fn−1(x)yn−1 + · · · + f0(x), fn(x) �= 0. (3.2)

A point (x̆) = (x̆1, . . . , x̆�) ∈ C� is called a singular point for Hensel construction if it satisfies one
or both of the conditions (C1) fn(x̆) = 0 and (C2) F (y, x̆) is not square-free.

Remark Condition (C2) means that x̆ satisfies F (α, x̆) = ∂F
∂y (α, x̆) = 0 for some α ∈ C. There-

fore, if (y̆, x̆) is a singular point of F (y, x) then (x̆) is a singular point for the Hensel construction.
Condition (C2) implies further that F (y, x̆) = (y−α)mF̃ (y, x̆), m ≥ 2, and the generalized Hensel
construction cannot be applied for the factor corresponding to (y−α)m. This is the reason why
(x̆) is called a singular point for the Hensel construction. ♦

In this paper, for simplicity, we consider F (y, x) satisfying

fn(0) �= 0, F (y,0) = fn(0) yn. (3.3)

Note that the origin (0) is a singular point for Hensel construction of F (y, x). Choosing the origin
as the expansion point, we explain the extended Hensel construction of F (y, x). (See [13] for a
treatment of the case of fn(0) = 0). In the extended Hensel construction, the so-called “Newton
polynomial” plays an essential role.

Definition 4 (Newton line and Newton polynomial) For each nonzero term
cyeyxe1

1 · · ·xe�

� of F (y, x), we plot a dot at the point (ey, et), where et = e1 + · · ·+e�, in (ey, et)
plane. Let L be a straight line such that it passes the point (n, 0) as well as another dot plotted and
that no dot is plotted below L. The line L is called Newton line for F . The sum of all the terms
plotted on L is called Newton polynomial for F and abbreviated to FNew.
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Example 6 Newton line L for F2 and F3, where

F2 = y3 + 2y2x2 − yx2 + δ2y
2x + δ0x

3 (left figure)
F3 = y3 + 2y2(x2

1+x2
2) − yx2

1 + δ2y
2(x1−x2) + δ0x

3
2 (right figure)

�

�

ey

ex

•

•

◦

•

◦

�
�

�
�

�
�

��
L

�

�

ey

et (total-degree)

•

•

◦

•

◦

�
�

�
�

�
�

��
L

Each dot shows a bivariate term (left figure) or multivariate terms (right figure). White dots
indicate terms with small coefficients δ0 and δ2. ♦

As Example 6 suggests, we can perform the extended Hensel construction for both bivariate and
multivariate polynomials. In the case of multivariate polynomials, it is convenient to introduce the
total-degree variable t for sub-variables x1, . . . , x�: (x1, . . . , x�) �→ (tx1, . . . , tx�) (we may define t
by weighting variables as (x1, . . . , x�) �→ (tw1x1, . . . , t

w�x�), where w1, . . . , w� are natural numbers).
Observing only the main variable y and the total-degree variable t, we see a close similarity between
the extended Hensel construction of bivariate and multivariate polynomials.

Let the Newton line L and a set of integers (n̂, ê) be

L :
ey

n
+

et

e0
= 1,

n̂

n
=

ê

e0
, gcd(n̂, ê) = 1. (3.4)

The procedure of extended Hensel construction is as follows.

Procedure ExtHensel(F (y, x), κ) ==
% Construct G

(κ)
1 , . . . , G

(κ)
r s.t. F ≡ G

(κ)
1 · · ·G(κ)

r (mod Jκ+1). (Jk is given below)

Step 1 : Determine the Newton polynomial FNew by introducing the total-degree variable t for
x1, . . . , x�, and set the ideal Jk as Jk = 〈tk/n̂〉 · 〈ynt0, yn−1tê/n̂, · · · , y0te0〉 ;

Step 2 : Factorize FNew into mutually prime factors: FNew = G
(0)
1 · · ·G(0)

r ;

Step 3 : Compute Moses-Yun’s polynomials W
(l)
1 , . . . , W

(l)
r satisfying

W
(l)
1

FNew

G
(0)
1

+ · · · + W (l)
r

FNew

G
(0)
r

= yl (l = 0, 1, . . . , n) ; (3.5)

Step 4 : For k = 1 ⇒ 2 ⇒ · · · ⇒ κ, do 4.1 and 4.2 iteratively:

4.1 Compute δF (k) ≡ F − G
(k−1)
1 · · ·G(k−1)

r (mod Jk+1) = δf
(k)
n yn + · · · + δf

(k)
0 ;

4.2 Set G
(k)
i = G

(k−1)
i + δG

(k)
i , where δG

(k)
i = δf

(k)
n W

(n)
i + · · · + δf

(k)
0 W

(0)
i . ♦

Remark Consider a bivariate polynomial F (y, x) and assume that FNew = yn − xe0 , hence
F (y, x) is singular at the origin. Put x̂ = xe0/n, then the factorization of F (y, x) in C[y, x̂] is

FNew = (y − ω1x̂) · · · (y − ωnx̂), ωn
i = 1 (i = 1, . . . , n).

Performing the extended Hensel construction with initial factors (y−ω1x̂), . . . , (y−ωnx̂), we obtain
the Puiseux-series expansion of the solutions of F (y, x) = 0. Similarly, we can compute power-series
solutions of F (x, x) = 0; see [14] for details. ♦

Now, we consider how to compute the power-series roots of F (y, x) with perturbation terms.
We assume for simplicity that the perturbation terms are proportional to a parameter δ repre-
senting a small number. Procedure ExtHensel tells us that, if the Newton polynomial FNew is
well-determined, the power-series roots of F (y, x) do not show such pathological behaviors as in
Example 4. Thus, our method consists of the following two operations.
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(O1) Set a weight wδ for δ so that no perturbation term is plotted below the Newton line.
(O2) Perform the extended Hensel construction with this weight.

For example, the solutions φ
(2)
1 and φ

(2)
2 in Example 5 were computed by setting the weights as

(wx, wy , wδ) = (1, 3/2, 2). We give another example of three variables.

Example 7 F (y, u, v) = y3 + 2y2(u2 + v2) − yu2 + δv3 = (y − φ1) (y − φ2) (y − φ3).
We set wδ = 0, then the Newton polynomial and its factorization are

FNew = y3 − yu2 + δv3 def= (y−θ1) (y−θ2) (y−θ3).

Here, θi (i = 1, 2, 3) are algebraic functions the minimal polynomial of which is FNew. Performing
the extended Hensel construction, we obtain the power-series roots φi(u, v) (i = 1, 2, 3) of F (y, u, v)
as

φi = θi − 2(u2+v2)
4u6−27δ2v6

(2u4 θ2
i + 3δu2v3 θi − 9δ2v6) + · · · .

Higher order terms of φi are also expressed by θ2
i and θi, and we see that φi (i = 1, 2, 3) manifest

the conjugacy clearly. Furthermore, they show singularity, too: each φi diverges as 4u6−27δ2v6 → 0,
showing that the singular points for the Hensel construction constitute hyper-surfaces determined
by 4u6−27δ2v6 = 0. Expression 4u6−27δ2v6 is the discriminant of FNew. If 4u6−27δ2v6 = 0 then
we need another technique to obtain the power-series roots; see [14] for details. ♦

As this example shows, the Newton polynomial FNew determines the conjugacy of the roots; if
FNew is square-free, it determines the conjugacy fully. In particular, if FNew is irreducible in C[y, x]
then the roots of F (y, x) w.r.t. y are conjugate one another (see [14] for details). The viewpoint of
approximate algebra then leads us to a concept of approximate unconjugacy, as follows.

Definition 5 (approximate unconjugacy) Let the Newton polynomial FNew be irreducible
in C[y, x], but be approximately factolizable at tolerance ε as FNew = G

(0)
1 · · ·G(0)

r + ∆(0), where
G

(0)
i and G

(0)
j (∀i �= j) have no approximate GCD at tolerance ε and ‖∆(0)‖/‖FNew‖ ≤ ε. Then,

we say that roots of F (y, x) which correspond to the roots of G
(0)
i are approximately unconjugate

at tolerance ε, to others which correspond to the roots of G
(0)
j (j �= i).

Example 8 Consider polynomial F (y, u, v) in Example 7.
Discarding the term δv3, we have F (y, u, v) � F̃ (y, u, v), where

F̃ (y, u, v) = y3 + 2y2 (u2 + v2) − yu2 = y (y − φ̃2) (y − φ̃3).

Since F̃New = y3 − yu2 = y (y−u) (y+u), the roots of F (y, u, v) are approximately unconjugate
each other at tolerance δ. In fact, the power-series roots of F̃ are


φ̃1 = 0,

φ̃2 = u − (u2+v2) + (u2+v2)2/2u + (u2+v2)4/8u3 + · · · ,
φ̃3 = −u − (u2+v2) − (u2+v2)2/2u − (u2+v2)4/8u3 + · · · ,

and we see that these approximate roots are not algebraic. ♦

Remark If we set wδ as wδ > 0 in Example 7, we obtain mutually unconjugate roots in which
the term δv3 is treated as a perturbation. The resulting power-series roots are much simpler than
those in Example 7. Thus, there is a freedom in setting the weights in our method. ♦

Although multivariate power-series roots computed by the extended Hensel construction are
pretty complicated, we think that they play important roles in analyzing algebraic varieties of
positive dimensions.
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