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Abstract. The problem of computing a characteristic set of a radical differential ideal in
Kolchin’s sense is studied. A special class of radical differential ideals is introduced. These
ideals satisfy a special property of consistency. For this class of ideals a theorem establish-
ing a “distribution” of leaders of a characteristic set among the leaders of a characteristic
decomposition is proved. In connection to this problem the usefulness of a characteristic
decomposition is discussed. For the class of ideals satisfying the property of consistency an
algorithm for computing a characteristic set in Kolchin’s sense w.r.t. an orderly ranking is
presented.

1 Introduction

This paper is devoted to the study of radical differential ideals and their characteristic sets. The
concept of a characteristic set introduced by Ritt and Kolchin is one of the most important no-
tions in differential algebra. The problem of computing a characteristic set of a radical differential
ideal represented by a finite set of its generators is not completely solved yet especially in the
partial differential case. In the case of ideals in rings of polynomials in a finite number of variables
this problem was studied and completely solved by Gallo and Mishra [6],[7], and [8]. It was also
investigated by Aubry, Lazard, and Moreno Maza [2].

So, it is very natural to study this problem in rings of differential polynomials. The most
important contribution of our article is an algorithm for computing characteristic sets of radical
differential ideals satisfying the property of consistency (see Definition 4) w.r.t. orderly rankings
in the partial differential case. We use other technique and methods than that used by Gallo and
Mishra. However, their algorithm for computing a characteristic set of an algebraic ideal plays an
important role in Algorithm 5 of this paper.

Summarizing, we have proved that there exists an algorithm computing a characteristic set of a
radical differential ideal. Due to Ritt and Kolchin everybody knows that a characteristic set exists
but as to my knowledge the existence of an algorithm was not proved before.

Ten years ago a technique for effective and factorization-free computations in the radical dif-
ferential ideal theory was developed by Boulier, Lazard, Ollivier, and Petitot (see [4] and [5]). In
[9] and [10] Hubert continued to study this problem and introduced the notions of characterizable
ideal and characteristic decomposition of a radical differential ideal. This decomposition of the ideal
helps us to solve many problems concerning the system of differential equations associated with
the ideal and to test the radical membership.

It should be emphasized that a characteristic decomposition of a radical differential ideal does
not give us full information about the ideal. In some important cases a representation of this ideal
by characteristic components cannot replace a representation of the ideal by its generators as a
radical differential ideal. For example, at this moment one cannot check the inclusion of a radical
differential ideal to another radical differential ideal knowing only a characteristic decomposition of
the first one (see [12, 14, 15]). This problem is closely related to the well-known Ritt problem (see
[16]). In this case it is necessary to know generators of the ideal and characteristic decomposition
is partially useless.
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Nevertheless, in this paper we show that a characteristic decomposition of a radical differential
ideal knows a lot about the ideal. Indeed, characteristic decomposition allows us not only to test
membership to this ideal but also to compute its characteristic set in Kolchin’s sense. Hence, the
main contribution of this paper can also be considered as another application of a characteristic
decomposition. Such a decomposition tells us a lot about a system of partial differential equations
and we study what else one can do using a characteristic decomposition.

In Algorithm 5 we show how this work can be done. Theorem 4 in Section 3 provides a theoretical
basis for it. Radical differential ideals, for which we propose the algorithm, satisfy the property
of consistency (see Definition 4) w.r.t. an orderly ranking. Our aim is not to present an efficient
algorithm for computing a characteristic set. Algorithm 5 works approximately as slow as such
algorithms as Rosenfeld Groebner (see [4, 5]) or χ-Decomposition (see [9]). So, the primary purpose
of the article is to constructively prove that there exists an algorithm computing characteristic sets
of radical differential ideals.

In summary, although a characteristic decomposition cannot replace the ideal in computational
sense, this decomposition allows us to compute such an important subset of a radical differential
ideal as its characteristic set.

2 Preliminaries

2.1 Basic Definitions

Differential algebra deals with differential rings and fields. These are commutative domains with 1
and a basic set of differentiations ∆ = {δ1, . . . , δn} on a ring. The ring of differential polynomials
was introduced to deal with algebraic differential equations.

Recent tutorials on constructive differential ideal theory are presented in [10] and [17]. We also
use the Gröbner bases technique discussed in detail in [3]. The definition for the ring of differential
polynomials in l variables over a differential field k is given in [11], [13], and [16]. This ring is
denoted by k{y1, . . . , yl}. We denote polynomials by f, g, h, . . . and use the notation I, J, P,Q for
ideals.

We need the notion of reduction for algorithmic computations. First, we introduce a rank-
ing on the set of differential variables of k{y1, . . . , yl}. Construct the multiplicative monoid Θ =
(δk1

1 δk2
2 · · · δkn

n , ki � 0). The ranking is a total ordering on the set {θyi} for each θ ∈ Θ and 1 � i � l
satisfying the following conditions:

θu � u , u � v =⇒ θu � θv.

In later discussions we suppose that a ranking is fixed.
Let u be a differential variable in k{y1, . . . , yl}, that is u = θyj for a differential operator

θ = δk1
1 δk2

2 · · · δkn
n ∈ Θ and 1 � j � l. Set ordw u =

n∑
i=1

wiki, where wi are positive integers for

1 � i � n. From now we suppose that some w is fixed and denote ordw simply by ord. A ranking
is said to be orderly iff ordu > ord v implies u > v for all differential variables u and v.

The highest ranked derivative θyj appeared in a differential polynomial f ∈ k{y1, . . . , yl} \ k is
called the leader of f . We denote the leader by uf . Represent f as a univariate polynomial in uf :

f = Ifu
n
f + a1u

n−1
f + . . .+ an .

The polynomial If is called the initial of f .
Apply any δ ∈ Θ to f :

δf =
∂f

∂uf
δuf + δIfu

n
f + δa1u

n−1
f + . . .+ δan .

The leading variable of δf is δuf and the initial of δf is called the separant of f . We denote it by
Sf . Note that for all θ ∈ Θ, θ �= 1, each θf has the initial equal to Sf .

Define the ranking on differential polynomials. We say that f > g iff uf > ug or in the case of
uf = ug we have degug

f > degug
g. Let F ⊂ k{y1, . . . , yl} be a set of differential polynomials. For
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the differential and radical differential ideal generated by F in k{y1, . . . , yl}, we use the notation
[F ] and {F}, respectively.

We say that a differential polynomial f is partially reduced w.r.t. g iff no proper derivative of
ug appears in f . A differential polynomial f is reduced w.r.t. g iff f is partially reduced w.r.t. g
and degug

f < degug
g. Consider any subset A ⊂ k{y1, . . . , yl}. We say that A is autoreduced iff

A ∩ k = ∅ and each element of A is reduced w.r.t. all the others. Every autoreduced set is finite.
For autoreduced sets we use capital letters A,B,C, . . . .

We denote the product of the initials and the separants of A by IA and SA respectively. Denote
IA · SA by HA. Let S be a finite set of differential polynomials. Denote by S∞ the multiplicative
set containing 1 and generated by S. Let I be an ideal in a commutative ring R. Let I : S∞ =
{a ∈ R | ∃s ∈ S∞ : sa ∈ I}. If I is a differential ideal then I : S∞ is also a differential ideal.

If we want to enumerate the elements of A we write the following: A = A1, A2, . . . , Ap. Let
A = A1, . . . , Ar and B = B1, . . . , Bs be autoreduced sets. Let the elements of A and B be arranged
in order of increasing rank. We say that A has lower rank than B iff there exists k � r, s such that
rankAi = rankBi for 1 � i < k and rankAk < rankBk, or if r > s and rankAi = rankBi for
1 � i � s. We say that rankA = rankB iff r = s and rankAi = rankBi for 1 � i � r.

Consider two differential polynomials f and g in R = k{y1, . . . , yl}. Let I be the differential
ideal in R generated by g. Applying a finite number of differentiations and pseudo-divisions one
can compute a differential partial remainder f1 and a differential remainder f2 of f w.r.t. g such
that there exist s ∈ S∞

g and h ∈ H∞
g satisfying sf ≡ f1 and hf ≡ f2 mod I with f1 and f2 partially

reduced and reduced w.r.t. g, respectively. If A is an autoreduced set then the reduction w.r.t. A

is defined as it was done by Ritt [16, pp. 5-7].
Let A be an autoreduced set in k{y1, . . . , yl}. Consider the polynomial ring k[x1, . . . , xn] with

x1, . . . , xn belong to ΘY for Y = y1, . . . , yl. Let U, V ⊂ {x1, . . . , xn} be the sets of “leaders” and
“non-leaders” appearing in the autoreduced set A, respectively. We denote k[x1, . . . , xn] by k[V ][U ]
and the leader of Ai by uAi or ui for each 1 � i � p.

Example 1. Let A = A1, A2 ⊂ k{v, u1, u2}, where A1 = vu2
1 + u1 + v2, A2 = u1u

3
2 + v and

v < u1 < u2. We have U = u1, u2 and V = v.

The notion of a characteristic set in Kolchin’s sense in characteristic zero is important in our
further discussions.

Definition 1. [11, page 82] An autoreduced set of the lowest rank in an ideal I is called a char-
acteristic set of I.

As it is mentioned in [11, Lemma 8, page 82], in characteristic zero A is a characteristic set of
a proper differential ideal I iff each element of I reduces to zero w.r.t. A. Consider the definition
of a characterizable radical differential ideal.

Definition 2. [9, Definition 2.6] A radical differential ideal I in k{y1, . . . , yl} is said to be char-
acterizable iff there exists a characteristic set A of I in Kolchin’s sense such that I = [A] : H∞

A
.

The following definition makes a bridge between differential and commutative algebra. Let v
be a derivative in k{y1, . . . , yl}. Av is the set of the elements of A and their derivatives that have
a leader ranking strictly lower than v.

Definition 3. [11, III.8] A is coherent iff whenever A,B ∈ A are such that uA and uB have a
common derivative: v = ψuA = φuB, then SBψA− SAφB ∈ (Av) : H∞

A
.

We emphasize that a characteristic set of a differential ideal is a coherent autoreduced set.

2.2 Important Assertions

Consider several important results concerning radical differential ideals in rings of differential
polynomials. The technique described in [9] and [11] helps us to cover some properties of these
ideals.
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Theorem 1. [11, III.8, Lemma 5] Let A be a coherent autoreduced set in k{y1, . . . , yl}. Suppose
that a differential polynomial g is partially reduced w.r.t. A. Then g ∈ [A] : H∞

A
iff g ∈ (A) : H∞

A
.

Note that Theorem 1 is also known as Rosenfeld’s lemma.

Theorem 2. [9, Theorem 3.2] Let A be an autoreduced set of k[V ][U ]. If 1 /∈ (A) : S∞
A

then any
minimal prime of (A) : S∞

A
admits the set of non-leaders of A, V , as a transcendence basis. More

specially, any characteristic set of a minimal prime of (A) : S∞
A

has the same set of leaders as A.

Theorem 3. [9, Theorem 4.5] Let A be a coherent autoreduced set of R = k{y1, . . . , yl} such that
1 /∈ [A] : H∞

A
. There is a one-to-one correspondence between the minimal primes of (A) : H∞

A
in

k[V ][U ] and the essential prime components of [A] : H∞
A

in R. Assume Ci to be a characteristic
set of a minimal prime of (A) : H∞

A
then Ci is the characteristic set of a single essential prime

component of [A] : H∞
A

(and vice versa).

Lemma 1. Let A = A1, . . . , Ap be an autoreduced set in k[x1, . . . , xm] = R and a characteristic
set of (A) : I∞

A
. Suppose that a polynomial f = amx

m
t + . . .+ a0 ∈ R is reducible to zero w.r.t. A

and the indeterminate xt does not appear in Ai for each 1 � i � p. Then aj is reducible to zero
w.r.t. A for all 0 � j � m.

Proof. Since f is reducible to zero w.r.t. A, there exists I ∈ I∞
A

such that

I · f =
p∑

i=1

giAi .

Let gi =
ti∑

j=1

hjx
j
t for each 1 � i � p. Thus, we have I ·

m∑
k=0

akx
k
t =

q∑
k=0

dkx
k
t with dk ∈

(A1, . . . , Ap). Hence, I · ai ∈ (A) for each 0 � i � m, that is, ai ∈ (A) : I∞
A

. Since A is a
characteristic set of (A) : I∞

A
, we have all ai are reducible to zero w.r.t. A.

3 The Principal Result

Denote [9, Algorithm 7.1] by χ-Decomposition. An input of this algorithm is a finite set of differential
polynomials F and its output is a set C = C1, . . . ,Cn of characteristic sets Ci of characterizable
ideals [Ci] : H∞

Ci
forming a characteristic decomposition of the radical differential ideal {F} in

k{y1, . . . , yl}:
{F} = [C1] : H∞

C1
∩ . . . ∩ [Cn] : H∞

Cn
.

Introduce a special class of radical differential ideals.

Definition 4. We say that a radical differential ideal I satisfies the property of consistency iff
there exists a characteristic set C ⊂ I such that 1 /∈ [C] : H∞

C
.

It is clear that any characterizable radical differential ideal satisfies the property of consistency.
Moreover, it follows from Theorem 2 and Theorem 3 that any proper regular differential ideal (an
ideal of the form [A] : H∞

A
for a coherent autoreduced set A) satisfies this property. Consider an

example of non-regular radical differential ideal satisfying the property of consistency.

Example 2. Let A = x(x−1), xy, xz in k{x, y, z} with x < y < z. We have 1 /∈ [A] : H∞
A

. Consider
the minimal prime decomposition:

{A} = [x] ∩ [x− 1, y, z] .

We see A is a characteristic set of {A}. Then the radical differential ideal {A} satisfies the property
of consistency. Nevertheless, since minimal primes of {A} have different sets of leader, {A} is not
a regular ideal due to Theorem 2 and Theorem 3.
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So, we are ready to prove Theorem 4. Let θyi be a differential variable in k{y1, . . . , yl}. Then,
by definition its order equals ord θ. Characteristic sets of polynomial ideals (in rings of polynomials
in a finite number of variables) are called algebraic characteristic sets.

Theorem 4. Let I be a radical differential ideal in k{y1, . . . , yl} satisfying the property of consis-
tency and a characteristic set C ⊂ I with 1 /∈ [C] : H∞

C
.

1. Let U be the set of leaders of C and U ′ be the set of leaders of any characteristic decomposition
of I. Then U ⊂ U ′.

2. Let I =
⋂n

i=1[Ci] : H∞
Ci

be a characteristic decomposition w.r.t. an orderly ranking with Ci =
C1

i , . . . , C
pi

i . Let h be the maximal order of differential variables appearing in the elements of Ci

for 1 � i � n. Then the lowest differentially autoreduced subset of an algebraic characteristic
set of the ideal

⋂n
i=1(θiC

j
i , ord θiuCj

i
� h) : H∞

Ci
is a characteristic set of I in Kolchin’s sense

w.r.t. the orderly ranking.

Proof. We have [C] ⊂ I ⊂ [C] : H∞
C

. Consider the minimal prime decomposition I =
⋂m

i=1 Pi. We
have

I =
n⋂

i=1

[Ci] : H∞
Ci

=
m⋂

i=1

Pi .

Some components of the characteristic decomposition may appear to be unnecessary. Let I =⋂k
i=1[Ci] : H∞

Ci
be a minimal characteristic decomposition, that is, I �= ⋂k

i=1,i�=j [Ci] : H∞
Ci

for all
1 � j � k. Let U ′ be the union of leaders of Ci for 1 � i � k. If P and Pj are prime ideals for each
1 � j � t and P ⊃ ⋂t

i=1 Pi then P ⊃ Pi for some 1 � j � t (see [1, Proposition 1.11]). Thus, if P
is a minimal prime of I then P is a minimal prime of [Ci] : H∞

Ci
for some 1 � i � k.

We obtain that the set of leaders of any characteristic set of P is equal to those of Ci by
Theorem 2 and Theorem 3 . Hence, the union of leaders of characteristic sets of minimal primes of
I is equal to U ′. Include [C] : H∞

C
into a characteristic decomposition of I. For this purpose output

C instead of the first usage of Coherent-Autoreduced algorithm in χ-Decomposition algorithm and
then continue the algorithm computing a characteristic decomposition. Thus, we have I = [C] :
H∞

C
∩ [B2] : H∞

B2
∩ . . . ∩ [Br] : H∞

Br
. Denote the set of leaders of C by U .

Let P be a minimal prime of [C] : H∞
C

. Then P is a minimal prime of {C} (see [9, page 644]).
Thus, P is a minimal prime of I, because {C} ⊂ I ⊂ [C] : H∞

C
. Since P is a minimal prime of

[Ci] : H∞
Ci

for some 1 � i � k, then the set of leaders of Ci is equal to U and U ⊂ U ′. So, we know
an upper bound for the order of a characteristic set of I.

Remember that the characteristic decompostion of the ideal I has been computed w.r.t. the
orderly ranking. Then, due to Theorem 1 and Lemma 1 we have

[Ci] : H∞
Ci

∩ k[θiyi, ord θiyi � h] = (θiC
j
i , ord θiuCj

i
� h) : H∞

Ci

and orduCj
i

� h for each 1 � i � n. Hence, our problem is purely commutative algebraic now.
In order to get a characteristic set of the ideal I it is sufficient to compute an algebraic char-

acteristic set C′ of I ′ and then find in C′ the lowest differentially autoreduced subset C. This set
differentially reduces the ideal I ′ to zero. Thus, C is a characteristic set of I.

The main contribution of Theorem 4 is that our computations are moved into the ring of
commutative polynomials in a finite number of variables. This is a crucial point in Algorithm 5.

Remark 1. We see that the set of leaders U of C is not only a subset of U ′. We have that U is
equal to the set of leaders of some characteristic component in any characteristic decomposition
of I. Thus, U is “concentrated” in some characteristic component. We call it the “localization”
property.

Remark 2. The fact that the set of leaders of C is equal to that of some characteristic component
holds true for any differential ranking. This follows from the proof of Theorem 4.

Note that the condition that an ideal satifies the property of consistency cannot be omitted in
Theorem 4. To support this fact we give Example 5.
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4 Algorithm

In conclusion, we obtain the following algorithm. If f is a differential polynomial then ord f denotes
the maximal order of differential variables appeared in f . Let some orderly ranking be fixed.

Algorithm 5 Characteristic Set Computation
Input: a finite set F of differential polynomials such that {F} satisfies the property of consis-

tency.
Output: characteristic set of {F} in Kolchin’s sense.

– Let C = χ-Decomposition(F ) and C = C1, . . . ,Cn with Ci = C1
i , . . . , C

pi

i .
– Let Ci = Ci

1, . . . , C
i
pi

for each 1 � i � n.
– Let h = max

1�i�n
max

1�j�pi

ordCj
i .

– Compute I ′ =
⋂n

i=1(θiC
j
i , ord θiuCj

i
� h) : H∞

Ci
.

– C′ := an algebraic characteristic set of the ideal I ′.
– Return the differentially autoreduced subset of C′ with the lowest rank.

The last steps of Algorithm 5 can be performed by means of computations discussed in [3] and
[6], [7], and [8]. More precisely, one can compute each Ii = (θiC

j
i , ord θiuCj

i
� h) : H∞

Ci
using the

Rabinovich trick and the elimination technique. Then, the intersection of the ideals I ′ =
⋂n

i=1 Ii
has to be computed. The solutions to these two problems are presented in [3]. Finally, an algorithm
for computing a characteristic set of I ′ is given in [6], [7], and [8].

5 Examples

We show how to apply Algorithm 5 to a particular radical differential ideal.

Example 3. Let I = {(x − t)x′, x′y′, (x − t)(z′ + y′)} in Q(t){x, y, z} with t′ = 1 and an orderly
ranking x < y < z. We have the following decomposition:

I = [x− t, y′] ∩ [x′, z′ + y′] .

So, the maximal order of variables appearing in this decomposition is equal to 1. Hence, we
need to compute the reduced Gröbner basis G of the ideal I ′ = (x − t, x′ − 1, y′) ∩ (x′, z′ + y′).
This can be done by the elimination technique: G equals the intersection of the reduced Gröbner
basis w.r.t. the lexicographic ordering x < x′ < y′ < z′ < w of the ideal (w(x − t), w(x′ − 1), wy′,
(1 − w)x′, (1 − w)(z′ + y′)) and the ring Q(t)[x, x′, y′, z′].

Finally, G = (x − t)x′, x′(x′ − 1), x′y′, (x − t)(z′ + y′), x′z′ − (z′ + y′), y′(z′ + y′). Then a
characteristic set of I ′ equals C = (x− t)x′, (x− t)(z′ + y′) and by Theorem 4 a characteristic set
of the radical differential ideal I is also C.

The following example shows the difference between radical differential ideals with the consis-
tency property and an arbitrary radical differential ideal. This can be considered as a “counter-
example” for Remark 1 and Remark 2.

Example 4. Let A = x(x − 1), xy, (x − 1)z. We have 1 ∈ [A] : H∞
A

. Consider the minimal prime
decomposition:

{A} = [x, z] ∩ [x− 1, y] .

We see A is a characteristic set of {A} with the set of leaders equals U = x, y, z. Thus, U does
not necessarily correspond to the unique characteristic component. In this example U ⊂ x, z ∪ x, y
and the localization property is not valid.

Note that Theorem 4 is true for Example 4: in this case we have a restriction to the orders of
the elements of a characteristic set A. Consider a “counter-example” for Theorem 4. This example
is due to M.V. Kondratieva.
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Example 5. Consider a radical differential ideal defined by its characteristic decomposition:

I = [x− 1, y] ∩ [x, y(n), z(m) + y]

in k{x, y, z} with x < y < z, an orderly ranking, and n � m. Both of these components are prime
differential ideals, because they are generated by linear differential polynomials. In addition, since
they are prime, these radical differential ideals are also characterizable (see [9, page 646]). One can
show that a characteristic set of I is C = x(x− 1), xy, (x− 1)z(m+n). The radical differential ideal
I does not satisfy the property of consistency and Theorem 4 is not true for I. Indeed, for m,n > 0
we have m+ n > max{m,n}.

So, we see that the upper bound established in Theorem 4 is wrong for some radical differential
ideals not satisfying the property of consistency.

6 Conclusions

We presented a solution to the problem of computing a characteristic set of a radical differential
ideal satisfying the special property of consistency that is new, and previously it was completely
solved only in the non-differential case. The author hopes that the technique obtained in this paper
can be generalized to any radical differential ideals using the ideas we presented.

Another natural way of generalizing these results is to investigate non-orderly rankings such
as, for example, very important elimination ones. The main idea is to use a characteristic decom-
position w.r.t. orderly rankings computing characteristic sets w.r.t. other rankings. The following
conjecture can be suggested.

If a radical differential ideal I does not satisfy the property of consistency then the upper
bound is supposed to increase rather in the ordinary case: most probably, we will need to replace
h in Algorithm 5 by h = maxordCi, where Ci are characteristic components of the ideal I and
ordCi = ordC1

i + . . .+ ordCpi

i . The previous h is smaller than this new one in general.
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