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Abstract. The paper discusses some results of stability analysis of helical motions of rigid
body in fluid. The research methods are based on Lyapunov’s classical results [1]. For the
purpose of computations, computer algebra systems “Mathematica 4.2”, “Maple 8”, and the
software package [2] have been used.

1 Introduction

A broad class of physical phenomena can be described by Euler–Poisson type equations. Among
these phenomena there are: motion of a rigid body having a fixed point, motion of systems of
rigid bodies of a definite type, motion of rigid body in fluid, motion of weakly non-homogeneous
ideal fluid inside an ellipsoid on a class of spatially linear fields of velocities and temperatures, etc.
The diversity of applications of Euler–Poisson type equations allows one to hope that methods
and results bound up with the analysis of these equations may be of interest for a wide group of
specialists.

Recently there appeared many publications on the problems of integrability of various types of
Euler–Poisson equations. Under different restrictions imposed on the parameters of the equations
of motion, a number of cases, which assume additional first integrals, have been revealed. First
results in this direction, which are concerned with rigid body motion in fluid, take back to Kirchhoff,
Clebsch, Steklov, Lyapunov, Chaplygin, etc. A rather abundant bibliography on this question may
be found in [3]. Recently another case [4], when the equations of a rigid body motion in fluid are
quite integrable, has been found. A new additional algebraic first integral in this case has the fourth
order.

Stability investigation of rigid body helical motions in ideal fluid without any restrictions on
the body parameters was conducted for the first time in Lyapunov’s paper [5].

In the present paper, the problem is considered with the values of parameters corresponding to
Sokolov’s case [4]. An attempt has been made to find steady-state motions of the body in this case
and investigate their stability on the basis of Lyapunov’s second method. Under the parameters
indicated the differential equations of a rigid body motion in fluid are as follows:

Ṁ1 = −8α2γ2γ3 + α(γ2M1 + γ1M2) + M2M3,

Ṁ2 = 4α2γ1γ3 − M1M3 + 2α(γ3M3 − γ1M1),
Ṁ3 = 4α2γ1γ2 − α(γ3M2 + γ2M3), (1)
γ̇1 = αγ1γ2 − γ3M2 + 2γ2M3,

γ̇2 = α(γ2
3 − γ2

1) + γ3M1 − 2γ1M3,

γ̇3 = −αγ2γ3 − γ2M1 + γ1M2,

where M̄ = {M1, M2, M3} is the vector of “impulse moment”, and γ̄ = {γ1, γ2, γ3} is the vector of
“impulse force” in the projections onto the axes rigidly bound up with the body, α is a constant.

The latter system assumes the four algebraic first integrals:

2H = 4α2γ2
2 − 4α2γ2

3 + 2αγ3M1 + M2
1 + M2

2 + 2αγ1M3 + 2M2
3 = 2h,

V1 = γ1M1 + γ2M2 + γ3M3 = m,

V2 = γ2
1 + γ2

2 + γ2
3 = c1, (2)

V3 = (3α2γ2M2 + α(αγ3 + M1)(2αγ1 + M3))2 + α2(−αγ1 + M3)2(M2
2

+ (2αγ1 + M3)2) = c2.
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To the end of finding steady-state solutions and investigation of their stability, several tech-
niques are currently available [6]. In the present problem, practically any of them leads to bulky
computations. We will apply a rather natural classical method allowing one to perform a substantial
part of computations with the aid of computer algebra systems.

2 Finding Steady-State Motions

Let us use the Routh–Lyapunov theorem [5]. Compose the following complete linear bundle of first
integrals of the problem:

K = H − λ1V1 − 1
2
λ2V2 − λ3V3 (3)

and write out the steady-state conditions for it with respect to all the variables:

∂K

∂M1
= αγ3 − λ1γ1 + M1 − 2α2λ3(2αγ1 + M3)[3αγ2M2 + (αγ3 + M1)

×(2αγ1 + M3)] = 0,

∂K

∂M2
= −λ1γ2 + M2 − 2αλ3[M2(−αγ1 + M3) + 3αγ2(3αγ2M2 + (αγ3 + M1)(2αγ1

+M3))] = 0,

∂K

∂M3
= αγ1 − λ1γ3 + 2M3 − 2αλ3(−αγ1 + M3)2(2αγ1 + M3) + (αγ3 + M1)[3αγ2M2

+(αγ3 + M1)(2αγ1 + M3)] + (M3 − αγ1)(M2 + (2αγ1 + M3)2)) = 0, (4)
∂K

∂γ1
= −λ2γ1 − λ1M1 + αM3 − 2αλ3[−2(M3 + αγ1)(2αγ1 + M3) + 2(M1 + αγ3)

×[3αγ2M2 + (αγ3 + M1)(2αγ1 + M3)] − (M3 − αγ1)(M2 + (2αγ1 + M3)2)) = 0,

∂K

∂γ2
= 4αγ2 − γ2λ2 − λ1M2 − 6αλ3M2(3αγ2M2 + (αγ3 + M1)(2αγ1 + M3)) = 0,

∂K

∂γ3
= −4αγ3 − λ2γ3 + αM1 − λ1M3 − 2αλ3(2αγ1 + M3)(3αγ2M2 + (αγ3 + M1)

×(2αγ1 + M3)) = 0.

It is known [5] that solutions of the latter system will define invariant manifolds of steady-state
motions (IMSMs) of the system (1) (in particular, steady-state motions). In the general case,
these steady-state solutions may contain the parameters λi, which are included into the family of
integrals K, and so, represent families of steady-state solutions. Therefore, within the framework
of the employed approach, to the end of reaching the formulated goal (finding out IMSMs of
the system (1) corresponding to the family of first integrals K) we have come to necessity of
investigating the solutions of six nonlinear algebraic equations involving three parameters. The
method of Gröbner basis is one of contemporary methods for solving such problems. It is known
that the form of Gröbner basis is substantially dependent on the technique of ordering of variables
in the system under scrutiny. There is the need to use different orderings not only for obtaining the
most “suitable” basis, but also, for example, for the purpose of finding free variables, estimating
the number of solutions, etc. Note, a structure of expressions in Gröbner basis can also be used for
finding transformations of the variables in which the initial problem could have a more compact
form. Constructing the Gröbner bases and analysis of these bases for the system (4) have given
evidence that it is comfortable to choose, for example, the following variables in the capacity of
new ones:

x1 = M3 − αγ1, x2 = M1 − αγ3, x3 = M2,

x4 = −3αγ2, x5 = 2αγ1 + M3, x6 = γ3 (5)

(naturally, the choice under such an approach is not unequivocal). By the way, these variables
coincide with those proposed on account of other considerations in [4].



On Stability of Body Motions in Fluid 263

In terms of these variables, the expression (3) for the bundle of first integrals has the form:

K =
1
18

(9x2
2 + 9x2

3 + 4x2
4 + 2(2x1 + x5)(x1 + 2x5) − 45α2x2

6) − λ1(
x2

4 + (x1 − x5)2

9α2
+ x2

6)

−λ2(x1x6 − x1x2 + x3x4 − x2x5

3α
) − α2λ3((x3x4 − x2x5)2 + x2

1(x
2
3 + x2

5)). (6)

The steady-state conditions for K with respect to the variables x1, x2, x3, x4, x5, x6 writes as follows:

2
9

(2 − λ1

α2
)x1 +

λ2

3α
x2 − 2α2λ3x1x

2
3 +

1
9

(5 +
2λ1

α2
)x5 − 2α2λ3x1x

2
5 − λ2x6 = 0,

λ2

3α
x1 + x2 − λ2

3α
x5 + 2α2λ3x3x4x5 − 2α2λ3x2x

2
5 = 0,

x3 − 2α2λ3x
2
1x3 +

λ2

3α
x4 − 2α2λ3x3x

2
4 + 2α2λ3x2x4x5 = 0, (7)

λ2

3α
x3 +

2
9

(2 − λ1

α2
)x4 − 2α2λ3x

2
3x4 + 2α2λ3x2x3x5 = 0,

1
9

(5 +
2λ1

α2
)x1 − λ2

3α
x2 + 2α2λ3x2x3x4 +

2
9

(2 − λ1

α2
)x5 − 2α2λ3x

2
1x5 − 2α2λ3x

2
2x5 = 0,

λ2x1 + (5α2 + 2λ1)x6 = 0.

Let us conduct a preliminary analysis of a set of solutions for the system (7). For this purpose
let us consider the problem first of all for the fixed (specially chosen) parameters λi:

λ1 = −5
2
α2, λ2 = 3α, λ3 =

1
α2

.

Under such values of λi equations (7) acquire a rather simple form:

x1 + x2 − 2x1(x2
3 + x2

5) − 3αx6 = 0,

x1 + x2 − x5 + 2x5(x3x4 − x2x5) = 0,

x3 + x4 − 2x3(x2
1 + x2

4) + 2x2x4x5 = 0, (8)
x3 + x4 − 2x3(x3x4 − x2x5) = 0,

−x2 + 2x2x3x4 + x5 − 2x5(x2
1 + x2

2) = 0,

3αx1 = 0,

what allows one to conduct complete analysis of the set of their solutions by the Gröbner basis
method.

Hence, the last one of above equations gives x1 = 0. System (8) – after substitution x1 = 0 into
it and excluding x6 from the resulting equations – writes:

x2 + x5(2x3x4 − 2x2x5 − 1) = 0,

x3 − x4(2x3x4 − 2x2x5 − 1) = 0, (9)
x4 − x3(2x3x4 − 2x2x5 − 1) = 0,

x5 + x2(2x3x4 − 2x2x5 − 1) = 0.

For the system (9), Gröbner bases have been constructed for different lexicographical ranking of
the variables x2, x3, x4, x5.

For example, in case of ordering of x2 > x3 > x4 > x5 one obtains a basis of the following form:

(x2
4 + x2

5 − 1)(x2
4 + x2

5)x5,

(x2
4 + x2

5 − 1)(x2
4 + x2

5)x4,

−x3 − x4 + 2x4(x2
4 + x2

5),
x2 − x5 + 2x2

4x5 + x3
5.

Analysis of all the bases constructed allows, first of all, to draw a conclusion that the system under
scrutiny is compatible – the bases do not contain a constant. Further on, the system has one free
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variable, because for any ranking of the variables there is no polynomial in the constructed bases,
which is dependent on only one, the smallest variable, but there exist polynomials dependent at
least on the two last smallest variables. According to [7], the system under consideration has one
free variable and, consequently, an infinite set of solutions. The function “Solve” of the computer
algebra system (CAS) “Mathematica” allows one to obtain a system solution in the general form.
Below, a solution obtained with the aid of the function “Solve” for the above basis is given.

{{x2 → −ix4, x3 → −x4, x5 → −ix4}, {x2 → ix4, x3 → −x4, x5 → ix4},
{x2 → −

√
1 − x2

4, x3 → x4, x5 →
√

1 − x2
4}, {x2 →

√
1 − x2

4, x3 → x4, x5 → −
√

1 − x2
4},

{x2 → −1, x3 → 0, x5 → 1, x4 → 0}, {x2 → 0, x3 → −1, x4 → −1, x5 → 0},
{x2 → 0, x3 → 0, x4 → 0, x5 → 0}, {x2 → 0, x3 → 1, x4 → 1, x5 → 0}, (10)
{x2 → 1, x3 → 0, x5 → −1, x4 → 0}}.

Substitution of real solutions (10) into the equations of motions shows that ẋ1 = ẋ2 = ẋ3 =
ẋ4 = ẋ5 = ẋ6 = 0 for all these solutions. In other words, for all the solutions, the variables
x1, x2, x3, x4, x5, x6 are constants, and the presence of free variables in a number of the solutions
means only that these constants are related by some dependences.

Consider the problem in the neighbourhood of above one by making one of the parameters, for
example, λ2, free, i.e. assuming

λ1 = −5
2
α2, λ2, λ3 =

1
α2

. (11)

The scheme of investigation given above can also be applied here. As well as in the previous case,
the construction of Gröbner’s bases for the system (7) (where λi has the form (11)) under different
lexicographical ordering of the variables allows one to find a set of free unknowns (the system has
one free variable), and so to draw a conclusion that the system under consideration has an infinite
set of solutions. Using the function “Solve”, it is possible to obtain a solution of the system in the
general form.

Let us now make the previous problem more complex. Some relations between the parameters
will be used:

λ1 = − 5
18

λ2
2, λ2, λ3 =

9
λ2

2

. (12)

For such values of λi, analysis of the set of system (7) solutions with the aid of above scheme
appears to be rather complicated in the aspect of computations. Direct application of the method of
Gröbner bases to the system under scrutiny did not allow us to obtain a result within a reasonable
time. Simultaneous application of resultants and Gröbner bases has given the possibility to obtain
a rather wide set of solutions for our system.

Consider the process of solving this problem in more detail.
The steady-state equations (7) for λi (12) – after eliminating x1, x6 and substituting a =

λ2/(3α) – assume the form:

(− 4
9a

+
4a

9
− 9a

5 − 5a2
)x2 +

2
a3

x2x
2
3 + (1 +

9a2

5 − 5a2
)x5 − 2

a2
x2

3x5

−2
a

(
4

9a2
+

5
9

+
9

5 − 5a2
)x3x4x5 +

4
a5

x3
3x4x5 +

2
a

(
13
9a2

+
5
9

+
9

5 − 5a2
)x2x

2
5

− 4
a5

x2x
2
3x

2
5 −

2
a2

x3
5 +

4
a5

x3x4x
3
5 −

4
a5

x2x
4
5 = 0,

x3 − 2
a4

x2
2x3 + ax4 − 2

a2
x3x

2
4 +

4
a3

x2x3x5 +
2
a2

x2x4x5 − 8
a6

x2x
2
3x4x5 − 2

a2
x3x

2
5

+
8
a6

x2
2x3x

2
5 +

8
a5

x2
3x4x

2
5 −

8
a8

x3
3x

2
4x

2
5 −

8
a5

x2x3x
3
5 +

16
a8

x2x
2
3x4x

3
5 −

8
a8

x2
2x3x

4
5 = 0,

ax3 +
1
9

(4 + 5a2)x4 − 2
a2

x2
3x4 +

2
a2

x2x3x5 = 0, (13)
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−1
9

(
5
a

+ 4a)x2 +
2
a2

x2x3x4 + x5 − 2
a2

(
1
a2

+ 1)x2
2x5 +

10
9a

(1 − 1
a2

)x3x4x5

+
2
9a

(
23
a2

− 5)x2x
2
5 −

8
a6

x2x3x4x
2
5 −

2
a2

x3
5 +

8
a6

x2
2x

3
5 +

8
a5

x3x4x
3
5 −

8
a8

x2
3x

2
4x

3
5

− 8
a5

x2x
4
5 +

16
a8

x2x3x4x
4
5 −

8
a8

x2
2x

5
5 = 0.

As a result, we have to investigate four nonlinear algebraic equations dependent on the variables
x2, x3, x4, x5. Application of the method of Gröbner bases to the system (13) did not allow us to
obtain a result within an admissible time. The computations have been conducted on Pentium 4
(2 GB RAM, 1400 MHz); CAS “Mathematica” and “Maple” have been used.

Let us eliminate the variable x4 from (13). Using the function “Resultant” of CAS “Mathe-
matica” for computing resultants, let us write down the compatibility condition with respect to x4

for each pair of equations (13). As a result, we obtain a system of 6 nonlinear algebraic equations
with respect to three variables, which after factorization assume the form:

x3 f1(x2, x3, x5) = 0,

(20a2 + 41a4 + 20a6 − 90x2
3 + 90a2x2

3 − 40x2
5 − 10a2x2

5 + 50a4x2
5)

×(4a2x2 + 5a4x2 − 18x2x
2
3 − 9a3x5 − 18x2x

2
5) = 0, (14)

x2
3x5 f2(x2, x3, x5) = 0, x3 f3(x2, x3, x5) = 0,

x2
3 f4(x2, x3, x5) = 0, f5(x2, x3, x5) = 0,

where f1, f2, f3, f4, f5 are polynomials with respect to the variables x2, x3, x5. These polynomials
have rather bulky expressions, and so are omitted here.

As obvious from (14), the above system of equations may be decomposed into several subsys-
tems, whose analysis can be conducted separately, by writing out Gröbner bases for each one.

For all the subsystems of system (14), the Gröbner bases were constructed under lexicographical
ordering of the variables as the most suitable for analysis of the system. The total degree, and then
inverse lexicographical ordering, was used in the cases when application of lexicographical ordering
was complicated in virtue of the bulky system’s equations.

Analysis of the bases constructed has given the possibility to draw a conclusion that system
(14) (and hence also (13)) has one free variable and, consequently, an infinite set of solutions.

Consider an example of investigation of one of subsystems of (14) and write down the group of
solutions obtained.

The first equation (14) gives one of the solutions for x3: x3 = 0. After its substitution into the
rest of equations we have:

(5a2 + 4a4 + 10(a2 − 1)x2
5)(a

2(4 + 5a2)x2 − 9a3x5 − 18x2x
2
5) = 0,

a7(5 + 4a2)x2 − 9a8x5 + 18a4(a2 + 1)x2
2x5 + 2a5(5a2 − 23)x2x

2
5 + 18a6x3

5 (15)
−72a2x2

2x
3
5 + 72a3x2x

4
5 + 72x2

2x
5
5 = 0.

As obvious from (15), the obtained system of equations can be decomposed into two subsystems.
For each of the subsystems a Gröbner basis has been constructed.

The Gröbner basis corresponding to the first subsystem is:

a2(5 + 4a2) + 10(a2 − 1)x2
5,

45a4(a2 − 1) − 2(25 + 31a2 + 25a4)x2
2 + 180a(a2 − 1)x2x5,

−18a3(5 + 4a2)x2 + 45a4(a2 − 1)x5 − 2(25 + 31a2 + 25a4)x2
2x5,

−45a12(5 + 4a2) + 2a2(405 + 729a2 + 729a4 + 604a6 + 349a8 + 100a10)x2
2

−180a9(5 + 4a2)x2x5 − 1620x2
2x

2
5.

The Gröbner basis for the second subsystem writes:

x5(a4(a2 − 1) − 4a2(4 + 5a2)x2
5 + 36x4

5),
(25a + 31a3 + 25a5)x2 − 9a2(4 + 5a2)x5 + 162x3

5,
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a2(4 + 5a2)x2 − 9a3x5 − 18x2x
2
5,

(25 + 31a2 + 25a4)x2
2 − 81a2x2

5,

(25a3 + 31a5 + 25a7)x2 − 9a4(4 + 5a2)x5 + (50 + 62a2 + 50a4)x2
2x5.

Analysis of above bases allows one to draw the conclusion that system (15) has a finite number of
solutions. A solution obtained for the second basis is given below. It represents families of helical
motions of a rigid body in fluid, which are parameterized by a. In the first case, the solution is
rather bulky, and so it is omitted.

{{x2 → −
3a

√
a2(4 + 5a2 −√

25 + 31a2 + 25a4)
√

50 + 62a2 + 50a4
, x5 → −

√
a2(4 + 5a2 −√

25 + 31a2 + 25a4)

3
√

2
},

{x2 →
3a

√
a2(4 + 5a2 −√

25 + 31a2 + 25a4)
√

50 + 62a2 + 50a4
, x5 →

√
a2(4 + 5a2 −√

25 + 31a2 + 25a4)

3
√

2
},

{x2 → −
3a

√
a2(4 + 5a2 +

√
25 + 31a2 + 25a4)

√
50 + 62a2 + 50a4

, x5 →
√

a2(4 + 5a2 +
√

25 + 31a2 + 25a4)

3
√

2
},

{x2 →
3a

√
a2(4 + 5a2 +

√
25 + 31a2 + 25a4)

√
50 + 62a2 + 50a4

, x5 → −
√

a2(4 + 5a2 +
√

25 + 31a2 + 25a4)

3
√

2
},

{x5 → 0, x2 → 0}}. (16)

Analysis of other subsystems of (14) has been conducted similarly, and a group of solutions, which
are not given here for brevity, has been obtained for each one.

3 Investigation of Stability of Steady-State Motions

Let us conduct investigation of stability of the obtained steady-state solutions (helical motions of
a rigid body in fluid). The method of Lyapunov functions [6] (in particular, the Routh–Lyapunov
theorem [5] noted above) is one of well-known approaches to solving this problem. The technique of
investigation of stability is practically reducible to the verification of sign definiteness of a variation
of the integral K (6) in the neighbourhood of the steady-state solution (which is of interest for
us) on the manifold which is defined by variations of the several first integrals included into the
bundle K.

Consider one of the families of solutions (16) given above, for example, a steady-state solution
of the form:

x10 = A1, x20 = A2, x30 = 0, x40 = 0, x50 = A5, x60 = A6,

where

A1 =
5(a2 − 1)

√
a2(4 + 5a2 +

√
25 + 31a2 + 25a4)

3
√

50 + 62a2 + 50a4
, A2 =

3a
√

a2(4 + 5a2 +
√

25 + 31a2 + 25a4)
√

50 + 62a2 + 50a4
,

A5 = −
√

a2(4 + 5a2 +
√

25 + 31a2 + 25a4)

3
√

2
, A6 =

a
√

a2(4 + 5a2 +
√

25 + 31a2 + 25a4)

α
√

50 + 62a2 + 50a4
.

The expressions for x10, x40, x60 have been obtained from equations (7) after substituting the
corresponding values of x20, x30, x50 into them.

The variation of K in the neighbourhood of given steady-state solution written in terms of the
deviations

y1 = x1 − x10, y2 = x2 − x20, y3 = x3, y4 = x4, y5 = x5 − x50, y6 = x6 − x60



On Stability of Body Motions in Fluid 267

will have the form:

∆K =
1

18a2
(−18(A2

1 + A2
2)A

2
5 + 5a4((A1 − A5)2 + 9A2

6α
2) + 18a3(−A2A5

+A1(A2 − 3A6α)) + a2(2(2A1 + A5)(A1 + 2A5) + 9(A2
2 − 5A2

6α
2)))

+(
2
9

+
5a2

18
− A2

5

a2
)y2

1 + ay1y2 + (
1
2
− A2

5

a2
)y2

2 + (
1
2
− A2

1

a2
)y2

3 + (a +
2A2A5

a2
)y3y4

+
4 + 5a2

18
y2
4 + (

5
9
− 5a2

9
− 4A1A5

a2
)y1y5 − (a +

4A2A5

a2
)y2y5

+
4a2 + 5a4 − 18(A2

1 + A2
2)

18a2
y2
5 − 3aαy1y6 +

5
2
(a2 − 1)α2y2

6 − 2A1

a2
y1y

2
3

− 1
a2

y2
1y

2
3 +

2A5

a2
y2y3y4 − 1

a2
y2
3y

2
4 − 2A5

a2
y2
1y5 − 2A5

a2
y2
2y5 +

2A2

a2
y3y4y5

+
2
a2

y2y3y4y5 − 2A1

a2
y1y

2
5 − 1

a2
y2
1y

2
5 − 2A2

a2
y2y

2
5 − 1

a2
y2
2y

2
5 ,

and the corresponding variations of the first integrals H, V1, V2 will write (with the precision up to
the first order terms) as follows:

δH =
1
9
(4A1 + 5A5)y1 + A2y2 +

1
9
(5A1 + 4A5)y5 − 5A6α

2y6 = 0,

δV1 =
2(A1 − A5)

9α2
y1 − 2(A1 − A5)

9α2
y5 + 2A6y6 = 0,

δV2 = (A6 − A2

3α
)y1 +

A5 − A1

3α
y2 +

A2

3α
y5 + A1y6 = 0.

Having eliminated the variables y1, y2 from ∆K with the aid of the latter equations (some of which
are linear dependent), after substituting the corresponding expressions for Ai into ∆K, we have:

∆K̃ =
125 + 354a2 + 375a4 − 125a6 − 25(a2 − 1)2

√
25 + 31a2 + 25a4

18(25 + 31a2 + 25a4)
y2
3

− a(4 + 5a2)√
25 + 31a2 + 25a4

y3y4 +
1
18

(4 + 5a2)y2
4 +

1
18

(21 + 15a2 +
√

25 + 31a2 + 25a4)y2
5

+
α(−25 − 31a2 − 25a4 + 5(a2 − 1)

√
25 + 31a2 + 25a4)

27a
y5y6

+
(25 + 31a2 + 25a4)α2

2(5a2 − 5 +
√

25 + 31a2 + 25a4)
y2
6 + Kn.

Here Kn denotes the nonquadratic part of ∆K̃.
It is known that conditions of sign definiteness for the quadratic part of ∆K̃ are the sufficient

conditions of stability for the elements of the family of steady-state motions under consideration.
Having written them in the form of Sylvester conditions, we have:

1. 1 − a2 > 0,

2. 125 + 354a2 + 375a4 − 125a6 − 25(a2 − 1)2
√

25 + 31a2 + 25a4 > 0,

3. (4 + a2 − 5a4)(5
√

2 (a2 − 1) +
√

50 + 62a2 + 50a4) > 0, (17)

4. 4(4 + a2 − 5a4) +
−80 + 141a2 + 39a4 − 100a6

√
25 + 31a2 + 25a4

> 0.

For the purpose of verification of compatibility of the above system of inequalities, the software
package “Algebra‘ InequalitySolve‘” (included in the CAS “Mathematica”) intended for solving
system of inequalities has been used. Its application to (17) gives evidence that the inequalities are
compatible under the conditions:

−1 < a < 0 ∨ 0 < a < 1.
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In view of the fact that a = λ2/(3α), we have:

−3α < λ2 < 0 ∨ 0 < λ2 < 3α.

So, our steady-state solutions are stable for the value of the parameter λ2, which satisfies the latter
conditions. The given technique of stability investigation of steady-state solutions was used for
practically all the obtained solutions of equations (7). For most of them the obtained sufficient
conditions of stability (Sylvester conditions) turned out to be noncompatible for any values of λ2.
The question of instability of the latter motions needs additional investigations, and so it is not
discussed herein.

4 Conclusion

The above investigations of steady-state solutions of motion equations for a rigid body in fluid give
evidence that application of computer algebra allows one to obtain steady-state solutions of such
systems rather efficiently and equally efficiently investigate their stability in cases, when there are
not only quadratic ones among the first integrals.

Some part of the computations presented in the paper have been performed with the aid of
the software package [2]. The latter has been designed and is currently under development by
the authors on top of CAS “Mathematica”. The software package is intended for the problems of
modelling and qualitative investigation of the phase space for mechanical systems, including those
which possess a large number of symmetries (first integrals). In particular, it includes the program
implementation of the algorithms of obtaining steady-state conditions for the first integrals; verifi-
cation of conditions of sign definiteness of algebraic forms; etc. Its application allows to adapt the
CAS “Mathematica”, which is a general-purpose system, to the problems of the investigated area,
and so to increase the efficiency of its application in research.
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