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Abstract 

We define a notion of degree of unsolvability for subsets of R” (where R is a real closed 
Archimedean field) and prove that, in contrast to Type 2 computability, the presence of exact 
equality in the BSS model forces exactly one jump of the unsolvability degree of decidable sets. 
@ 1999 Elsevier Science B.V. All rights reserved. 

1. Introduction 

The problem of extending classical recursion theory to the non-discrete world of real 

numbers has given rise to two complementary approaches: following the tradition of 

Turing, one can extend the notion of Turing machine by allowing input and output 

tapes to contain (infinite) representations of real numbers; this approach is known as 

Type 2 recursion theory [ 141. On the other hand, it is possible to consider the reals as 

basic atomic entities, on which exact computations and tests are permitted, as in the 

BSS model [2]. 
In this paper we want to push further the analysis of the relations between decid- 

ability in the Turing machine and in the BSS model started in [3]. We give a notion 

of degree of a subset of R”, and use some of the results we obtained there in order 

to build a BSS decidable set whose degree is at least one jump more than that of the 

constants of the deciding machine. This is a precise degree-theoretic formalization of 

the slogan “equality* is at least one jump” [3], which prompted the conjecture that 

equality is exactly one jump. In [3] we stated a purely BSS-theoretic version of the 

conjecture for semi-decidable sets, which turned out to be false (see Theorem 12); 

in this paper, we state and prove the degree-theoretic version of the conjecture for 

BSS decidable sets, and to this purpose we give a series of intermediate results of 

* Corresponding author. E-mail: vigna@dsi.unimi.it. 

’ The authors have been partially supported by the Esprit Working Group No. 8556 (NeuroCOLT). 
’ With “equality” we refer to the possibility for a BSS machine to perform exact equality tests, as opposed 

to Type 2 Turing machines, which can just perform approximate comparisons. 

0304-3975/99/$-see front matter @ 1999 Elsevier Science B.V. All rights reserved. 

PII: SO304-3975(98)00283-7 



50 P. Boldi, S. Vignal Theoretical Computer Science 219 (1999) 49-64 

independent interest: in particular, we show that the nonempty halting set problem for 

BSS machines is Turing semi-decidable (relativized to the constants appearing in the 

BSS machines), and that the interior and exterior of a BSS decidable set are Type 2 

semi-decidable, given the knowledge of a jump. 

The results of this paper draw from four sources: model theory (in particular, Tarski’s 

quantifier elimination for real closed fields and related results [9]), field extension theory 

(in order to perform exact computations on finitely generated extensions of Q [S]), 

topology (because of topological properties typical of Type 2 computability) and degree 

theory (the notion of jump will prove to be fundamental [ 111). We shall also use some 

GrSbner bases techniques [l]. 

In order to make the paper (at least partially) self-contained, the first three sections 

are devoted to the introduction of the computing models and of the part of field 

extension and degree theory we are going to use. We have tried to “factor out” of the 

proofs the parts that are strictly algebraic, in such a way that the reader accustomed 

with the results we use can skip directly to the heart of the matter. 

2. Field extension theory 

In this section we gather some definitions and properties about fields of character- 

istic 0 that shall be used frequently in the sequel (in fact, all we shall say is true of 

any perfect field). The algebraic results quoted here can be found in [S, 131. 

Field extensions. Let F be a subfield of E (i.e., E is an extension of F), and 

let a E E. We say that a is algebraic over F if there exists a nonzero polynomial 

p(x) E F[x] such that p(a)= 0, transcendental otherwise; if every element of E is 

algebraic over F, we say that E is an algebraic extension of F. 
Real closed jields. A field R is Vormally) real if -1 is not a sum of squares. 

It is real closed if it is real but has no (proper) real algebraic extensions. A real 

closed field has unique ordering, the positive elements in this ordering being precisely 

the squares. Every ordered real field has a real closure (i.e., a maximal real ordered 

algebraic extension, which is of course real closed), unique up to isomorphism. 

Finitely generated extensions. Let F 5 E be an extension, and ~1,. . . , cx, E E. The 

(finitely generated) extension F & F( (x1, . . . , a,) is the smallest subfield of E containing 

F and al,...,@,.. 

The primitive element theorem. If F C F(P,, . . . , fit) is an algebraic extension, then 

there is a /I E F(/$,. . . ,Pt) such that F(pi , . . . ,Pt) = F(j). In other words, every finitely 

generated algebraic extension can be thought of as being generated by just a single 

element, called primitive, 
Algebraic extensions. Every algebraic extension F C F(u) induces a surjective ho- 

momorphism F[x] --+ F[a] (if F C E is an extension and c( E F, then F[cc] denotes the 

ring obtained by evaluating in c( the polynomials of F[x]), given by the evaluation 

of x to c(. The kernel of this homomorphism is an ideal, generated by an irreducible 

polynomial p(x) E FIX], which is separable (i.e., without multiple roots) and can be 
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assumed to be manic without loss of generality, called the minimum polynomial of ~1. 
The important consequence is that3 F[x]/(p(x)) SF[a]; moreover, F[cr] is a field, and 

it is thus equal to F(a). 

Transcendental extensions. Given a finitely generated extension F & F(ccl, . . , as), 

if there is no nonzero polynomial in s variables and coefficients in F that van- 

ishes when evaluated over CII,. . . , a, (i.e., the cli’s are algebraically independent), we 

have F(a1,...,cl,)rF(xl , . . . ,xs), where the latter expression denotes the field of ra- 

tional functions with s arguments and coefficients in F. Moreover, for every finitely 

generated extension F C F( cq , . . . , a,.) we can assume without loss of generality that 

there is an s < r such that ~11,. . . , a, are algebraically independent and the extension 

F(ul,..., ~s)CF(al,..., cr,) is algebraic. 

Representing finitely generated extensions of Q. By combining the above observa- 

tions, for every extension Q S Q(cr,, . ..,a,), with C(I)..., a,cR, we have 

Q(~l,-..,~r)=Q(~l,...,~s)[Bl~QQ(xl,...,xs)[~l/(~(x)), 

where al,..., ~1, are again algebraically independent and fl is a primitive element gen- 

erating the algebraic part of the extension. Thus, every element of Q(ccl,. . .,olr), and 

in particular, every ai, has a coding as an element of Q(xl,. . . ,xS)[x]/(p(x)), given 

by this isomorphism (for instance, ai, with i < s, is coded by xi); moreover, all field 

operations of Q(al, . . . , a,) can be performed symbolically in Q(xl,. . . ,x,)[x]/(p(x)), 
as well as equality tests, given that we know the codings of the elements involved 

(one just uses the standard polynomial operations modulo p(x)); of course, this is not 

true of order comparisons. 

3. Computational models 

All our computations are based on a field R, which is always intended to be 

Archimedean and real closed; for this reason, it will always be identified with an 

ordered subfield of the reals [ 131. We choose the natural topology induced by the 

rational open balls 

B,(r) = { x E R” 1 d(r, x) < E}, 

with r E Q” and 0 <E E Q; d(., .) here represents the standard Euclidean metric. Note 

that if R c R, this topology is totally disconnected. 

3.1. The jinite-dimensional BSS model 

A finite-dimensional BSS machine M over R consists of three spaces: the input 

space f = R’, the output space 6 = Rm and the state space 3 = R”, together with a finite 

3F[x]/(p(x)) denotes the ring of polynomials modulo p(x), which turns out to be a field iff p(x) is 
irreducible. 
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directed connected graph with node set N = { 1,2,. . . ,N} (N > 1) divided into four 

subsets: input, computation, branch and output nodes. 

Node 1 is the only input node, having fan-in 0 and fan-out4 1; node N is the only 

output node, having fan-out 0. They are endowed with linear functions with integer 

coefficients (named I(.) and O(.)), mapping, respectively, the input space to the state 

space and the state space to the output space. Any other node q E {2,3,. . . , N - 1) can 

be of the following types: 

(1) a computation node: in this case, q has fan-out 1 and there is a componentwise 

rational function gq : 3 + L? associated with it; 

(2) a branching node: in this case, q has fan-out 2 and its two (distinguished) suc- 

cessors are j-(q) and p+(q); branching on - or + will depend upon whether or 

not the first coordinate of the state space is negative.5 

The computation of M on a E R” starts from node 1, with state space set to Z(a), 

and proceeds as follows: at a computation node q we apply gq to the state space and 

move to the unique next node; at a branching node we move to the “minus” or “plus” 

successor, depending on whether xi ~0 or not; we halt when we reach node N. The 

set of all inputs on which A4 halts is called the halting set of M, and it is denoted by 

0~. A set which is the halting set of some BSS machine is called semi-decidable; if 

moreover its complement is also semi-decidable, we shall say that the set is decidable. 

If CI i, . . . , cc,. E R are the coefficients of the polynomials appearing in the description of 

A4 (i.e., the constants of M) we let EM = Q(ccl,. . . , a,) CR be the extension of M. If 

X G R” is (semi-)decided by a machine with constants ~(1,. . . , LX,., we shall simply say 

that X is (semi-)decidable using ~1,. . . , cc,.. 

3.2. Type 2 Turing machines 

Since any Archimedean field is isomorphic to a subfield of the reals, its elements 

are approximable by converging sequences of rationals (by density of Q), and its 

operations are approximable using rational approximations of the arguments. 

In particular, without loss of generality, we can restrict our attention to sequences 

of dyadic numbers converging exponentially fast, or, again without loss of generality, 

to the signed binary digit representation. Such a representation is given by an infinite 

string s E { i, 0, 1, .}” of the form 

s = b,b,_, . ’ . b0.b--lb_2. . . , 

where we assume that b, # 0 and that the part on the left of the dot does not start 

with 1 1 or i 1. The number S represented by s is defined by 

S = -f bi2’, 
i=n 

41f q is a node with fan-out 1, then p(q) denotes the “next” node in the graph after q. 
5Note that usually a test with a polynomial is assumed, but the present restriction can be made without 

loss of generality [2]. 
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where the symbol i has value -1 (of course, not all representations will correspond 

to elements of R unless R = R). For several reasons [7,6], this representation is partic- 

ularly suitable for Turing machines, and will be used in order to represent elements of 

an Archimedean field R as infinite sequences of symbols (to be given as a generalized 

input to a Turing machine). 

The tape of an ordinary Turing machine is nonblank only on a finite number of 

cells, at any computation stage. Thus, in order to allow elements of R to be taken 

into consideration, one slightly generalizes the notion of a machine. A (deterministic) 

Type 2 Turing machine [14] consists of 

(1) a finite number of read-only one-way input tapes (possibly none), each containing 

at the start an inJinite string belonging to { i, 0, 1, .}” and representing an element 

of R; 
(2) a finite number of conventional read-only one-way input tapes (possibly none), 

each containing at the start a &rite string belonging to (0, l}*; 

(3) a finite number of write-only one-way output tapes (possibly none), on which the 

machine is supposed to write representations of elements of R; 
(4) some other work tapes, initially blank. 

The finite control is defined as usual via a finite set of states and a transition func- 

tion. The only differences with a standard Turing machine are the possibility of filling 

completely the input tapes, and of considering nonstopping machines as machines out- 

putting elements of R. A set X CR” is (Type 2) Turing semi-decidable iff there is a 

Type 2 Turing machine M with n input tapes that stops iff the input tapes are filled with 

signed binary digit representations of the coordinates of an a EX. Note that the defini- 

tion implies that the halting does not depend on the particular representations chosen. 

Moreover, since a halting machine reads only a finite portion of the input, there is al- 

ways an accepted ball around each accepted point; thus, all Type 2 semi-decidable sets 

are open. A function f : R” -+ R is (Type 2) Turing computable iff there is a Type 2 

Turing machine M with n input tapes that never stops and writes a representation of 

f(a) on its output tape whenever its input tapes are filled with a representation of a. 

All notions introduced in this section will be also used relativizing Turing machines 

to arbitrary oracles. 

4. Degrees of real numbers and jumps 

A set A C N is recursive in B&N iff there is an oracle Turing machine that decides 

membership to A using B as an oracle; this relation is a preorder on the subsets of N, 

and the equivalence classes induced by this preorder are called (Turing) degrees of 
unsolvability [ 111; they are of course a partially ordered set 9 (the order relation being 

denoted by “ G”), which possesses finite suprema denoted by “V”; the bottom element 

(corresponding to decidable sets) is denoted by 0. We write dgA for the degree of a 

subset A of N. 
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Now consider a set A C N; let p~ be the least positive integer included in A (1 if A 
does not contain any positive integer), and let 0~ be either 1 or - 1, depending on 

whether 0 E A or not. Define 

p(A)=oA. 
( 

,u~ - 1 + c 2j’(R-i . 
pi <iEA ) 

It should be clear that, for any nondyadic real number or, there exists exactly one set 

in p-‘(a) (which is neither finite nor cofinite), and we define the degree of CI, denoted 

by dga, as the degree of unsolvability of P-‘(U) [12,5,4]; moreover, we let dga=O 

for every dyadic rational CC When the distinction is irrelevant, we shall confuse real 

numbers, subsets of N and degrees, omitting the map p; this will happen particularly 

when using real numbers as oracles, or when specifying an arbitrary real number of 

given degree; note that, in particular, it is equivalent to think of a Turing machine as 

using oracles c(i). . . , cc, or the single oracle ~1 v . . . v a,. 

The last concept we need from degree theory is the notion of a jump. Given a 

degree d E 9, we can consider the set B that encodes the halting of the universal 

Turing machine relativized to (any set belonging to) d; one defines d’ = dg B, where 

d’ is called the jump of d. Note that one has d’ >d for all d E 9. 

5. Emulating BSS machines 

Armed with the mathematical tools described in the previous sections, we now ap- 

proach our main problem; in particular, this section is devoted to a series of results 

that show how a Turing machine can, in a (precise) sense, partially emulate a BSS 

machine. 

Recall that a semi-algebraic set X c R” is the set of points satisfying a finite boolean 

combination of disequations of the form p(xl, . . . ,x,) < 0, with p(xl, . . . ,x,) E R[x, , . . . , 

x,]. The first ingredient of our proofs is the following lemma, which essentially states 

that the numbers that are transcendental over the coefficients of the polynomials defining 

a semi-algebraic set are irrelevant in order to establish if the set is empty (or, more 

generally, if it intersects a ball). This will prove to be very useful in the following, as 

the halting sets of BSS machines are countable unions of semi-algebraic sets. 

Lemma 1. Let X 5 R” be a semi-algebraic set, and F be the real closure of the 

extension of Q finitely generated by the coefficients of the polynomials used in the 
de$nition of X. Then X n F” is dense in X. 

Proof. It suffices to prove that every rational open ball B,(r) intersecting X also in- 

tersects X n F”. Let ~(1,. . . , cc, be the irrational coefficients of the polynomials defining 

X; there clearly exists a formula &I,. . _ , y,.,xl , . . . ,x,) in the first-order language of 

ordered fields [9] such that 
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Consider now the formula 

By Tarski’s theorem, the theory of real closed fields has quantifier elimination, so there 

is a quantifier-free formula &yl, . . . , yr) such that 

But since B,(r) nx # 0 iff R k I&IX,, . . . , cl,) iff R /= ((~1,. . . , aI), and the truth value 

of a quantifier-free formula is preserved by restriction, we obtain F + [(cI,, . . . , c+), 

whence F /== I&XI, . ..,clr), i.e., B,(r)nXnF” f0. 0 

The second ingredient is an algebraic observation: since the extension of a BSS 

machine A4 is finitely generated, if we know the minimum polynomial of the extension 

EM and the codings of the constants of A4 we can emulate its behaviour with a Turing 

machine on any coded input (i.e., on any n-tuple of elements of EM), given that we 

provide the binary expansion of the constants as oracles. The process can be pushed 

further, in fact up to the real closure of EM. 

Lemma 2. Given a BSS machine M using al,. . . , c(,. E R there is a (classical) Turing 

machine M’ with oracle c11 V. . ’ V CI, that can emulate A4 on any element a E R” whose 

coordinates are algebraic over EM. The input to M’ is given by an n-tuple of pairs 

(q(x),(a,b)L where q( x ) is an irreducible manic polynomial of Q(xl, . . , ,xs)[x] and 

the rational interval (a, b) contains a unique real root of q(x) E Q(crl,. . . , cls)[x], 4(x) 

being obtained by the evaluation xi H tii. 

Proof. First of all, denoting by a E R” the (unique) vector specified by the input pairs, 

the primitive element theorem tells us that there is (using the notation of Section 2) a 

y E R such that 

in order to be able to perform computations in F, by means of Grijbner base algorithms 

[l] M’ obtains from p(x) (i.e., the minimum polynomial appearing in the coding of 

EM, which is hardwired in M’) and from the polynomials q](x), . . . , qn(x) coefficients 

c~,...,c,EQ(xI ,...,x,) such that 

^/=/3+clal +...+&a,. 

(again, overlining denotes the evaluation Xi H Cli for 1 < i <s), a polynomial m(x) E 

Q(xl,. . . ,xs)[x] such that m(x) is the minimum polynomial of ‘J and also polynomials 

P/I(X), pa,@), . . . , pa.@) E Qh,. . . , x,)[x] such that fib(y) = /3 and PJy) = ai. In other 

words, M’ recodes all constants of A4 (by substituting x with pg(x)) and all inputs in 

the form given by the isomorphism 

F=Q(a,,..., ~s)[rl ” Q(xl,..-,xs)[xll(m(x)). 
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As remarked in Section 2, M’ can now use this coding to perform exact symbolic 

computations and equality tests in F; moreover, whenever M’ wants to establish non- 

negativity of an element, after deciding equality with 0 by a symbolic check it can 

approximate its evaluation in F, using the oracle and (Type 2) root extraction (see, 

e.g., [6]) in order to obtain the digits of ~1,. . . , GL,, j3 and, finally, y (polynomials are 

continuous and Type 2 computable). Since the “less-than” relation is Type 2 decidable 

provided that the inputs are not equal, the sign check always terminates. But this is 

exactly all M’ needs to emulate the behaviour of M. 0 

The previous lemma allows us to emulate a BSS machine A4 on an arbitrary tuple 

of elements of R algebraic over EM; to use Lemma 1, however, we need to be able to 

cover the entire real closure of EM, and this can be done by emulating A4 on all such 

tuples, an idea which is the core of the next lemma. 

Lemma 3. Let ~(1,. . . , us E R be algebraically independent, so Q(x1,. . . ,x,) g Q 

(al, *. ., a,). Then there is a (classicaE) Turing machine M with oracle CI~ V . . V ct, 

enumerating a list of all elements of R algebraic over Q(ccl,. . .,cls) represented as 

pairs (q(n), (a,b)), where q( x ) 1s an irreducible manic polynomial of Q(xl, . . . ,xs)[x] 

and the rational interval (a, b) contains a unique real root of q(x) E Q(q,. . . , cc,)[x]. 

Proof. We can easily enumerate all manic polynomials in Q(xi , . . . , xs )[x] and eliminate 

all instances of reducible polynomials (this is easy - by the Gaussian Lemma [l], in 

order to do so we just need to be able to factor in Z[x,, . . . ,.I-,]). Then we can use 

standard approximation techniques to produce a finite list of intervals, each containing 

exactly one root: for instance, we can firstly count the real roots (e.g., using Tarski’s 

theorem), and then use the known rational lower bound 6 on the distance between 

roots (obtained from the discriminant of the polynomial) to exhaustively search a list 

of intervals of the form [k6, (k + 1)6] containing all roots. For more sophisticated 

methods, see [l]. 0 

We can finally apply the previous lemmata; our first result is apparently not related 

to our main problem, but it will prove to be useful, and it is of independent interest: 

Theorem 4. Let ~11,. . . , tl, E R. There is a Turing machine with oracle al V . V cx, 

that receives in input a BSS machine6 M using ~11,. . . , u, and stops ifs SZW # 0. 

Proof. If s;Z, # 8, then there is an a E R” that follows an acceptance path. Thus, 

a lies in the semi-algebraic set defined by conjunction of the disequations tested along 

the path. By Lemma 1, we obtain that a tuple of elements i of the real closure of 

EM follows the same path. Thus, a Turing machine dovetailing the enumeration of 

all n-tuples of elements of R algebraic over EM (represented as in Lemma 3) with 

6Note that, of course, the machine M must be described in symbolic form (i.e., by suitably naming the 

constants). 
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the emulation of M given by Lemma 2 will certainly stop as soon as it emulates M 

on&. q 

By combining two BSS machines in such a way to halt on the intersection of their 

halting sets, we obtain 

Corollary 5. Let ~11,. . . , LX, E R. There is a Turing machine M with oracle ~(1 V. . V CI, 

that receives in input pairs (Ml, MT) of BSS machines using 011,. , . , cc, and stops tff 

%I n aM2 # 8. 

But, more interestingly, since rational (open or closed) balls are BSS decidable, we 

also obtain the following 

Corollary 6. Let ~11,. . . , a, E R. There is a Turing machine with oracle a1 V . . . V a, 

that receives in input a BSS machine M using al,. . . , a,. and a rational ball, and stops 

ifs the rational ball meets QM. 

Note that we cannot hope to semi-decide (relatively to a1 V . . . V a,) any of the re- 

maining related questions, i.e., whether (i) QM = 0, (ii) &J = R, (iii) QM #R, whether 

a rational ball is entirely (iv) contained in QM or (v) Q,&, or whether a rational ball 

(vi) intersects Qh. This can be easily seen by suitably coding subsets of N in R: a 

positive answer for any of the first three questions would imply semi-decidability of 

the corresponding problems on N for classical Turing machines (by building a BSS 

machine that suitably filters out, in case (i), or includes all, in cases (ii) and (iii), 

noninteger elements of R and then emulates a given Turing machine), while the set 

of balls of radius $ centered around the naturals belonging to (a, V . . V a,)’ shows 

that (v) and (vi) are not semi-decidable, either. A proof of (iv), however, needs some 

more tools, and it is postponed to Section 6. 

We remark also that a consequence of the previous corollary is that there is a Turing 

machine with oracle (al V . . . V a,.)’ that decides whether a rational ball is contained 

in a&. This observation suggests our main theorem. 

Theorem 7. Given a set X 5 R” BSS decidable using al,. . . , a, E R, there is a Turing 

machine M with oracle (al V. . . V a,)’ that decides whether a rational ball is contained 

in X. In particular, the interior and the exterior7 of X are Type 2 semi-decidable 

with oracle (a1 V . . V a,.)‘. 

Proof. The machine M just uses the oracle to decide whether the machine of Corollary 

6 (applied to the BSS machine semi-deciding Xc) will stop. Then, we can use M to 

decide whether an element of a sequence of increasingly smaller rational open balls 

around the input is entirely accepted, thus Type 2 semi-deciding the interior of X. For 

the exterior, one just applies the first part to Xc. 0 

‘We recall that the set (R”\X)” = R”\?? is called the exterior of X 
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The previous theorem shows the interplay of topological, algebraic and logical 

aspects of the relation between BSS and Type 2 decidability; in the next section we 

shall see that the jump is actually necessary, and that moreover the theorem cannot be 

extended to BSS semi-decidable sets. We also obtain the following corollary. 

Corollary 8. Given an open set X C R” BSS decidable using ~1,. . . , CI,. E R, there is a 
Type 2 Turing machine M with oracle (al V.. . V a,)’ that semi-decides X. 

Note that in case X and R”\X are both open (this of course cannot happen on the 

real numbers, except for trivial cases) Theorem 7 states that BSS decidable sets become 

Type 2 decidable sets, modulo the knowledge of an additional jump. Moreover, the first 

property claimed in Theorem 7 is in fact strictly stronger than Type 2 semi-decidability. 

6. Equality is a jump 

The first step in order to make the title of this section precise is noting that we can 

further extend the notion of degree to subsets of R”; more precisely, we shall associate 

to each subset of R” a set of degrees that, in a sense, represents the “hardness” of 

enumerating a sequence of open balls covering the set itself. Let 33 denote the set of 

rational open balls of R”; clearly, 9?? may be identified with a subset of N, using a 

suitable coding, and in the sequel we shall often use this coding without mention. For 

each XC R”, we let 39(X) be the set of rational open balls included in X, i.e., 

The union of all such balls covers the interior of X, but this might 

also of other (proper) subsets of 93(X). For this reason, we define 

as well be true 

each element of V(X) is a set of rational open balls that cover the interior of X: note 

that %(.) is injective on open sets. Now, we define the (extended) degree of X as 

dgX = {d E 9 1 there is an S E V(X) which is r.e. in d} C 9, 

i.e., as the set of degrees in which some covering of X” is recursively enumerable. It 

is worth noticing that 

Proposition 9. The following holds for each X CR”: 
(1) dgX is upward closed; 
(2) dgX = dgX”. 

The upward closed subsets of 9, ordered by reverse inclusion, form a poset of their 

own, and 9 may be embedded in it by mapping each degree to the cone above it: 
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For this reason, in the following we shall use < to denote the (reverse inclusion) 

order on upward closed subsets of 9, and identify each degree with the corresponding 

cone. 

Now, by slightly modifying the construction of a (BSS semi-decidable, Type 2 non- 

semi-decidable) set proposed by Vasco Brattka (and used in [3] in order to prove the 

existence of BSS non-locally-time-bounded computations) we build a set that proves 

the first half of our main statement: 

Theorem 10. For every ~1,. . . ,a, E R, there is a (regular) open set X CR, decidable 
by a BSS machine using ~1,. . . , ar, such that 

(a1 v . . . v a,)‘<dgX. 

Proof. Consider a function f : NAN (recursive in c11 V . .. V LX,) enumerating the 

halting set relativized to ~11 v . . . V ccr (i.e., the set of Cantor-coded pairs (j,n) such 

that the jth Turing machine using A E dg-‘(ccl V . . . V ~1,) as oracle halts on input n). 

We first want to code A in the set X, and we do this by using suitable open balls in 

the negative part: 

Xl = U B1,4(-2i - 1) U U B1/4(-2i - 2). 
iEA i@A 

On the positive side, we build the set as follows: for each natural i, we add larger 

and larger open balls approximating i from below as long as we do not find i in the 

enumeration produced by f. If i E f(N), we complete the process by adding a small 

ball to the immediate left of i, and leave an entire closed subinterval of (i - 1, i) out of 

X; conversely, if i #f(N) the interval will be entirely covered by X. More precisely, 

define X2 &R as follows:8 

i- l,i- )I uNy 

and let X =X1 UX2. The set X is decided by the following BSS machine: 

BSS machine M(x : R); 

/* Decides the set X. */ 

var i,n : integer; 

begin 
if x d - 1 return@ EXl); 
if x E N return( 1); 

i +- [xl; 
n + 0; 

*Here and in the sequel we use the standard notation [n] for the set (0, 1, . , n - I}. 
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forever 

if x E 
( 

i- l,i- & 
> 

return( 1); 

if f(n) i i exit; 

ntn+l 

loop 

if xE (i - &,i) return(l); 

return( 0) 

end 

Note that we used membership to Xl as a subroutine, as it is trivial to build a BSS 

machine that decides Xl using ~(1,. . . , cc,; a detailed correctness proof for M has been 

given in [3]. 

To prove the statement, we have to show that, for every S E G%‘(X) and every degree 

d E 9, if S is r.e. in d then (~(1 V . . . V u,)’ d d. Suppose that we have an S and a d 

with the previous property; first notice that we can decide membership to A using the 

machine with oracle d enumerating S (for each i E N, either -2i - 1 or -2i - 2 belong 

to X, and the former happens iff i E A). If we want to decide whether i E (al V. . . V CI,.)’ 

(i.e., whether i E f(N)) or not, we operate as follows: we first enumerate S until we 

find an open ball B including i. Then, we compute f(n) for increasing values of n 

(this can be done using the fact that membership to A is decidable); eventually, either 

we shall find an n such that f(n) = i, or the ball (i - 1, i - l/(2 + n)) will intersect B 

(and thus (i - 1, i) CX, which implies i $ f(N)). 0 

Thus, there exist BSS decidable open sets whose degree is strictly greater than the 

degree of the constants used by the machine deciding them. As a matter of fact, now 

we prove that the above inequality really boils down to an equality, thus showing that 

the degree of a BSS decidable set is at most a jump above the constants, and that 

equality can actually be reached; in other words, the possibility for a BSS machine 

to perform exact equality tests imposes a jump in the degree of unsolvability (of the 

constants of the machine), or, in a slogan, “equality is a jump”. 

Theorem 11. Let XC_ R” be a set BSS decidable 

dgX <(El v . . . v a,.)’ 

and there are sets for which equality holds. 

uszng ~l,...,a,. Then 

Proof. For the first part, we just have to show that there is an SE W(X) which is r.e. 

in (tll V ... V CI,)‘: but the whole set W(X) satisfies the last statement, by applying 

Theorem 7 (which actually tells us that L&X) is even recursive in (al V . . . V ~1,)‘); 

the second part is Theorem 10. Cl 
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As suggested by one of the anonymous referees, if we drop the openness and de- 

cidability hypotheses and just require X to be BSS semi-decidable we can prove even 

more.9 

Theorem 12. For every al,. . . , a, E R, there is a (regular) closed set Y CR, semi- 

decidable by a BSS machine using al,. . . ,c1,, such that 

(a, v . . . v a,)” d dg Y. 

Proof. Since (CL, V . .. V cr,)” belongs to C~*‘V’~~Va’ (i.e., to the second level of the 

arithmetical hierarchy relativized to a1 V . . . V a,. - see [lo]), there is a set A C N2 

which is recursively enumerable with oracle al V . ’ . V a, such that n @(aI V . . . V a,)” 

iffforallkwehave(n,k)EA.Letf:N + N* be a function recursive in al V . . V a, 

enumerating A; then, the set 

Z=Nu u U 
[ 

1 
n-l,n-- 

eN {nIx[4 Cf([ml) 2+k 1 
is clearly a regular closed BSS semi-decidable subset of R, but i belongs to Z” iff 

i$(al V ... v a,)“: in other words, (ai V . . . V a,.)” is co-recursively enumerable in 

every degree d 2dgZ (the proof is identical to that of Theorem 10). 

Consider now the set X of Theorem 10, and note that dgX = dg(X)” = dgX 2 (aI V 

. . V a,)’ by regularity of X and by Proposition 9. The set X (which is still BSS 

decidable - just close all intervals involved in its definition) can be easily mapped 

into the interval (-4, -2) by the homeomorphism x H x/( 1 + 1x1) - 3, which is BSS 

computable and preserves and reflects degrees of sets (being a composition of moduli 

and rational operations, its restriction to the rationals can be computed by a Turing 

machine). The set Y obtained by joining Z, the image of X and the points -2 and 

-4 is thus regular closed and BSS semi-decidable. 

We remark that dg Y = dg X V dg Z. Indeed, every enumeration of balls covering Y” 

can be recursively turned into an enumeration for X (or Z) simply by discarding 

those balls lying at the right (left, respectively) of -2, and possibly using the inverse 

homeomorphism y H 1 y + 3 I/( 1 - 1 y + 31). The other inequality is proved analogously. 

Now, for every degree d >dg Y we have d >dgXZ(al V.. . V a,)’ by Theorem 10, 

so (a, V .. . V a,)” is recursively enumerable in d (since it is recursively enumerable 

in (a1 V.. . V a,)‘). Moreover, d 2dgZ and thus (a, V . . . V a,.)” is also co-recursively 

enumerable in d, hence the thesis. q 

The “packing technique” used in the previous proof (two subsets of R were joined 

without overlapping by homeomorphically mapping one of them into a rational interval) 

can be used in a very general way so as to join a finite number of subsets, obtaining 

a new set whose degree is the join of the original degrees. The interesting point is 

91n fact, Theorem 12 also shows that Conjechlre 1 of [3] is false, by using Theorem 13 and Corollary 4 
of [3]. 
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that the homeomorphism is both BSS and Type 2 computable, and its trace on the 

rationals is recursive. Thus, not only topological, but also computational properties are 

preserved. 

The previous results should be considered as against the following one: 

Theorem 13. If the interior of X C R” is Type 2 semi-decidable using an oracle (with 

degree) d, then 

Proof. Just relativize the standard proof of the fact that a Type 2 semi-decidable set 

can be expressed as the union of a recursively enumerable set of rational open balls. In 

other words, dovetail the emulation of the machine semi-deciding X on every rational 

and, on halting, output the corresponding open ball. 0 

Finally, the set X of Theorem 10 can be used to give the impossibility proof anti- 

cipated in the previous section: 

Theorem 14. Given ~1,. . . , LX, E R, there is no Turing machine with oracle ~(1 V. . . V a, 

that receives in input a BSS machine M using al,. . .,a, and a rational ball, and 

semi-decides whether the ball is included in 0~. 

Proof. Simply note that by giving as input to the Turing machine a BSS machine 

semi-deciding the set X of Theorem 10 and the interval (i - i, i) or its closure we 

could decide whether i belongs to (~1 V . . . V a,)‘. 0 

7. Conclusions and open problems 

Several remarks are in order. First of all, we want to stress that our existence theo- 

rems are by their very nature nonconstructive. The polynomial p(x) used in Lemma 2 

depends uniquely on the constants of the BSS machine, but of course there is no 

reasonable notion of “constructivity” that allows one to derive p(x) from arbitrary 

constants. More formally, there is no way of turning the Turing machine of Theorem 4 

into a Type 2 Turing machine accepting LX~, . . . , cc, as additional inputs - this would 

allow one to build a Type 2 Turing machine semi-deciding the closed set [0, co) by 

providing as input the (input-independent) BSS machine halting exactly when its only 

parameter is nonnegative. However, there are also sensible ways of expressing con- 

stants that make p(x) computable (for instance, this happens when the constants are 

algebraic and given through their minimum polynomials and through rational intervals, 

as done for the inputs in the statement of Lemma 2). 

The reader can certainly notice that Corollary 8 does not intuitively appear to be 

“the best possible”. In particular, one would like to weaken the hypothesis on the set X 

to BSS semi-decidability. However, the interplay between the topological and recursive 



P. Boldi, S. VignalTheoretical Computer Science 219 (1999) 49-64 63 

properties of X and Xc make this goal very hard; indeed, we have not been able to 

prove or disprove the following statement: 

every open set BSS semi-decidable using ~1,. . . , a, is Type 2 semi-decidable with 

oracle (~1 V . . . V a,)‘. 

In fact, a (more informative, yet less appealing) title for this paper could have been 

Equality is a Jump on BSS Decidable Sets; should the above conjecture be true, it 

could be turned into Equality is a Jump on Open BSS Semi-Decidable Sets. It is 

however clear that the topological gap forced by equality is incomparable with no 

matter what notion of degree, the latter being a computational, rather than topological, 

invariant. 

Another interesting open question concerns the nature of extended degrees: when 

does dgX happen to be a cone? In other words, when can we associate to X a Turing 

degree, instead of an upward closed subset of 9? 

As it stands, the question mixes inextricably topological and degree-theoretical prop- 

erties; however, in the particular case of the reals, one can factor out the topological 

part. This is due to the fact that the degree of a set XC R” is actually the set of 

degrees in which the set of all closed balls contained in X0 is recursively enumerable. 

This equivalence can be easily shown on one side by compactness, and on the other by 

the fact that R is T3. Hence, at least in this case, the question reduces to the following 

purely degree-theoretical problem: 

given a set A C N, does the set of degrees in which A is r.e. always contain a 

minimum? 

This problem, as far as we know, is currently open. 

We conclude with a counterexample showing that, in general, this “factorization” 

cannot be performed for an arbitrary subfield R c R. Assume R is not Turing closed [4], 

i.e., there is a Type 2 Turing machine that accepts inputs C(I). . . , a, E R and outputs a 

real number M 6 R (this happens iff the set {dgx 1 x E R} is not an ideal of 9). Hence, 

assuming without loss of generality that CI E (0, l), there is a Turing machine with 

oracle GII V. ..Vct,. that enumerates rationals O<Zs<lt < ... <c( (a< ... <UI <uc<l) 

approximating c1 from below (above, respectively). Let f and Xl be as in the proof of 

Theorem 10; then, the open set 

Y= lJ lJ (i,i+Z,)U U (i- 1 +u,,i+Zo)UX~ 
nEN WXnl) i,PlEN 

satisfies dg Y < CI~ v . ’ . V clr, but it has “closed balls degree” greater than or equal to 

(~1 V . . . V cl,.)‘, since the question i $ (czl V . . . V CI,.)’ reduces to [i,i + l] & Y, and the 

question i E (al V . . . V LX,)’ can be answered by emulation using Xl. 
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