
Gröbner Bases: a Tutorial

Mike Stillman

These notes are based on lectures given in Berkeley at M.S.R.I. in August
1998. They are meant to be an elementary introduction to the very useful notion of
a Gröbner basis, for non-specialists. The main prerequisite is an understanding of
the importance and beauty of systems of polynomial equations. There are exercises
for each of the three lectures. I strongly suggest working through them: one must
do mathematics to learn it. For further reading, I highly recommend the book by
Cox , Little, and O’Shea. The exercises and projects presented in that book are also
recommended. It is important to compute Gröbner bases both by hand, and also
by computer: I am available to help those wishing to learn Macaulay 2 (a computer
algebra system developed by Dan Grayson and myself).

Let’s get started!

1 Lecture # 1: Gröbner bases.

Motivation.

We start with a typical problem:
Given polynomials f1(x1, . . . , xn), f2(x1, . . . , xn), . . . , fr(x1, . . . , xn) in the poly-

nomial ring C[x1, . . . , xn], does the system of equations

f1 = f2 = . . . = fr = 0

have a solution? (Here, the base field is C, the complex numbers).
Sometimes one also wants to find the solutions if there are any: we will discuss

this problem later.
Let’s start with some simple cases.

Example 1.1 [Linear polynomials] Suppose the polynomials equations are
linear, say fi =

∑
j aijxj + bi = 0, where the aij and bi are scalars in the base field.

The most common method to solve these equations is to use Gaussian elimination on
the matrix (A|b) to obtain the row echelon form of this matrix. One can then read
off the solutions from this matrix. What is happening in terms of the polynomials?

For example, if f1 = x1+x2−1 and , f2 = x1−x2+2, then Gaussian elimination
uses the term x1 in f1 as a pivot, and replaces f2 with f2 := f2−f1 = −2x2 +3, and
back substitution uses the term −2x2 in the new f2 as a pivot to remove the x2 term
from f1, f1 := f1 + 1/2f2 = x1 + 1/2. Each of these substitutions is reversible: one
can obtain the original polynomials as linear combinations of x1 +1/2 and −2x2 +3.

Before we continue, we need some definitions and notation. Throughout these
lectures, we let k be the base field. We let k be any field, but when we consider
solutions, we always consider solutions over the algebraic closure k of k. We stated
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the problem above for k = C, but we could have taken any other algebraically closed
field. Given k, we denote by R the ring of polynomials in n variables over k:

R = k[x1, . . . , xn].

We let I = (f1, . . . , fr) ⊂ R be the ideal generated by f1, . . . , fr, that is,

I = {
r∑
i=1

gifi | gi ∈ R},

is the set of all possible linear combinations (with polynomials as coefficients) of
the fi. Sometimes we call a “nice” generating set of an ideal a “basis” of the ideal.
Notice that if 1 ∈ I, then for some polynomials g1, . . . , gr,

1 = g1f1 + . . .+ grfr,

so then there can be no common solution to f1 = . . . = fr = 0. In the third lecture,
we will use Hilbert’s Nullstellensatz, which states that the converse is also true:
f1 = . . . = fr = 0 has no solution (over the algebraic closure k) if and only if 1 ∈ I.

In the case where I is generated by linear polynomials, as in the example above,
the Gaussian elimination algorithm replaces our original generating set with a newer,
simpler one. This new basis of the ideal I is far superior to the original one: we can
easily see that the set of equations is consistent, and it is easy to find all solutions
to the system using this basis.

The next simple case is when there is only one variable.

Example 1.2 [One variable] Suppose that f1, f2, . . . , fr are all polynomials in
one variable x with coefficients in a field k. In this case, one can use Euclid’s
algorithm to determine whether the system

f1(x) = f2(x) = . . . = fr(x) = 0

has a solution (in the algebraic closure of k).
For example, suppose that I = (f1, f2) ⊂ k[x], where

f1 = x3 − x2 − 2x, f2 = x2 − 3x+ 2.

The Euclidean algorithm attempts to uncover new lead terms by cancelling lead
terms. Using the lead term of f2 as a “pivot”, the algorithm proceeds by computing

f1 − xf2 = 2x2 − 4x.

The lead term here is still divisible by the pivot term, so we continue:

f3 = f1 − xf2 − 2f2 = x− 2.
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Now we use the lead term x of f3 as a pivot, and we quickly find that both f1 and
f2 are divisible by f3. The conclusion: another (and better) generating set for I is
the single polynomial x − 2: I = (x − 2). Thus the system f1 = f2 = 0 has the
unique solution x = 2.

For I = (f1(x), . . . , fr(x)), the Euclidean algorithm finds the greatest common
divisor g(x) of these polynomials. So the original generating set for I is replaced by
the much simpler one I = (g(x)). The original system has a solution exactly when
g(x) is not a non-zero constant (at least over an algebraically closed field).

We are mostly interested in the case of ideals of nonlinear polynomials in sev-
eral variables. Our plan is to extract the key features of Gaussian elimination and
Euclid’s algorithm and apply them to the general case. This leads us to define the
notion of a term order, and then to define the notion of a Gröbner basis. Finally, ab-
stracting out what is happening in both algorithms a bit more leads to Buchberger’s
algorithm for computing a Gröbner basis.

Gröbner bases

The key ingredient to the above algorithms is a consistent choice of pivot terms.
In both examples there is a consistent notion of which term in a polynomial should
be used as a pivot. In the case of linear polynomials, we chose the pivot to be the
term which was greatest using the order x1 > x2 > . . . > xn > 1. (We could easily
have chosen a different order on the variables if we had been so inclined). In the
case of polynomials in one variable, we chose the pivot term to be the term which
is greatest using the order xd > xd−1 > . . . > x2 > x > 1. If we choose any other
term, then the division process would never terminate.

Monomials play an important role here. We will use the following multi-index
notation for monomials: If A = (a1, . . . , an) is a vector of non-negative integers, we
set xA = xa1

1 xa2
2 . . . xann . The degree of xA is deg xA = |A| = a1 + . . .+ an.

In several variables, with non-linear polynomials, there is no “canonical” choice
of pivot. Instead, we have more choice. If we wish to order the monomials of a
polynomial so that the greatest term in this order is the pivot, what properties
should this order have? First: it is important that a monomial xA 6= 1 should
be chosen as a pivot before the monomial 1: otherwise the reductions will not
terminate. Second: If the pivot term of a polynomial f is xA (the “lead term” of
f), then the pivot term of xBf should be xBxA: the terms should not change order
upon multiplying by a monomial. These requirements lead to the following

Definition 1.3 A total order > on the monomials of R = k[x1, . . . , xn] is called a

term order if

(a) xA > 1, for every monomial xA 6= 1, and

(b) If xA > xB , then for every monomial xC , xA+C > xB+C .

There is only one term order on k[x]:

xd > xd−1 > . . . > x > 1.
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Definition 1.4 [Specific orders]
The lexicographic order is the order > such that xA > xB , exactly when the first

non-zero entry of the vector A−B is positive.

The graded lexicographic order is the order > such that xA > xB if deg xA >

deg xB , or deg xA = deg xB , and the first non-zero entry of A−B is positive.

The graded reverse lexicographic order is the order > such that xA > xB

if deg xA > deg xB , or deg xA = deg xB , and the last non-zero entry of A − B is

negative.

We have defined each of these so that in every case, x1 > x2 > . . . > xn. For
R = k[x1, x2, x3], the graded reverse lexicographic order satisfies

x2
1 > x1x2 > x2

2 > x1x3 > x2x3 > x2
3,

while the graded lexicographic order has

x2
1 > x1x2 > x1x3 > x2

2 > x2x3 > x2
3.

The only difference between these two orders (at least for these specific monomials)
is that the middle two monomials have changed order. This seems like such a small
difference, but we will see that the properties of Gröbner bases using these two
orders are dramatically different. As a first glimpse of the difference, notice that
the last three monomials in the reverse lexicographic case are all divisible by the
last variable x3, whereas the last three monomials in the graded lexicographic order
all don’t involve x1. This will imply that the properties (and also the size) of the
corresponding Gröbner bases will very different.

The exercises include several other important term orders.
This definition allows us to choose the pivot, or initial, term in a polynomial:

Definition 1.5 [Initial term] Given a term order > on R, if f = c1x
A1 + . . . +

csx
As , where ci 6= 0 are constants, and xA1 > . . . > xAs , the initial term, or lead

term of f is in>(f) = c1x
A1 . For convenience, we also define in(0) = 0.

If the term order is understood, we abbreviate the notation to in(f).
The key idea is that what is important are the possible “pivot”, or initial terms

that one can obtain by (polynomial) combinations of the original polynomials.

Definition 1.6 [Initial ideal] Given an ideal I ⊂ R, and a term order > on R,

the ideal of initial terms, denoted by in>(I), is the monomial ideal generated by

{in(f) | f ∈ I}.

Sometimes we drop the > subscript, and write simply in(I).

Definition 1.7 [Gröbner bases] Let I ⊂ R = k[x1, . . . , xn] be an ideal, and let >

be a term order on R. A subset G = {g1, . . . , gs} of I is called a Gröbner basis of I,

with respect to >, if the monomial ideal in>(I) is generated by {in(g1), . . . , in(gs)}.
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This last condition simply means that if h ∈ I is non-zero, then in(h) is divisible
by one of the lead monomials in(gi).

A Gröbner basis G is called minimal if the lead terms of the elements in G

minimally generate in(I): that is, in(gi) never divides in(gj), as long as i 6= j. The
Gröbner basis G is called auto-reduced if in addition, no term in the polynomial gi
is divisible by in(gj), whenever i 6= j, and that each gi is monic: the lead monomial
in(gi) has coefficient one.

We can now partly solve our original problem: the solution set of f1 = . . . =
fr = 0 is empty if 1 ∈ I = (f1, . . . , fr). This is if and only if, by Hilbert’s Null-
stellensatz, as we will see in the third lecture. Now, using any term order, 1 ∈ I if
and only if 1 ∈ in(G) and this last condition may be checked by inspection of the
Gröbner basis.

Example 1.8 This example is perhaps the simplest non-trivial Gröbner basis.
Let > be the lexicographic order with x > y. Let I = (x2, xy + y2) ⊂ k[x, y]. From
these two polynomials, we see that in(I) contains x2 and xy. Can we obtain any
other lead terms which are not divisible by one of these? We can cancel the lead
terms: y(x2) − x(xy + y2) = xy2. This is not a new lead term, since it is divisible
by xy. We obtain a new lead term by cancelling that: xy2 − y(xy+ y2) = y3. Thus
y3 ∈ I and so y3 ∈ in(I). Although we haven’t yet proved it, the Gröbner basis of
I is

G = {x2, xy + y2, y3}

Soon we will move on to applications. Right now, though, we use the following
result to show that Gröbner bases exist, and at the same time, we get a clear proof
of Hilbert’s basis theorem. We leave the proof of this lemma as a nice exercise (the
proof is given in the Cox-Little-O’Shea book).

Lemma 1.9 [Gordan’s Lemma] Let S be a set of monomials in k[x1, . . . , xn].
Under the partial order xA ≤ xB if xA divides xB , there are only finitely many

minimal elements of S. In particular, every monomial ideal in k[x1, . . . , xn] is finitely

generated (a special case of Hilbert’s basis theorem).

This lemma is often called “Dickson’s lemma.” This lemma has some important
consequences for term orders and Gröbner bases.

Corollary 1.10 A term order > is a well ordering on the set of monomials. i.e.

every set S of monomials has a minimal element with respect to >.

Corollary 1.11 For every ideal I ⊂ R and every term order >, the ideal in>(I)
is finitely generated. In particular, every ideal has a (finite) Gröbner basis.

Corollary 1.12 If J ⊂ I ⊂ R are ideals, and > is a term order, and if in(I) =
in(J), then I = J .
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Proof. If not, there exists an f ∈ I, but not in J . Choose an element f satisfying
this, such that in(f) is minimal with respect to this property. Since in(I) = in(J),
there exists g ∈ J with in(g) = in(f). Then f − g is in I, not in J , and has lower
lead term than f , a contradiction.

This next result is crucial for applications. Often it is easier to show that a set
G is a Gröbner basis of I, than to show directly that G generates I.

Corollary 1.13 If G = {g1, . . . , gs} is a Gröbner basis of the ideal I, then G

generates I.

Proof. Apply the previous corollary with J being the ideal generated by G.

Corollary 1.14 [Hilbert basis theorem] Let I ⊂ R = k[x1, . . . , xn] be an ideal.

Then I is finitely generated.

Proof. Choose a term order, and let G be a Gröbner basis of I. Then G generates
I (previous corollary) and is a finite set (by definition).

This method of proving Hilbert’s basis theorem is essentially due to Gordan.

2 Lecture #2: Buchberger’s algorithm and basic applications

Division Algorithm

One of the first questions that arises when discussing ideals is whether a specific
polynomial h ∈ R is in the ideal I. This was one of the first applications of Gröbner
bases, and was one of Buchberger’s original motivations for defining Gröbner bases.

Problem 2.1 [Ideal membership] Given generators for an ideal I ⊂ R =
k[x1, . . . , xn], and given a polynomial h ∈ R, determine whether h ∈ I.

Gröbner bases provide a solution: First compute a Gröbner basis of I, say
G = {g1, . . . , gs}. Since h ∈ I, its lead term is divisible by the lead term of one of
the gi. Subtract off an appropriate multiple of gi to h to cancel the lead term. The
new polynomial h is in I exactly when the previous h is. Continue until one obtains
that h = 0 (and so the original h is in I), or until in(h) is not divisible by a in(gi).
(and so the original h is not in I). This process must terminate since there are no
infinite descending chains of monomials under a term order.

This method leads to the division algorithm to find the remainder of h:

Definition 2.2 [Remainder] Let G = {g1, . . . , gs} be a set of non-zero polyno-

mials. Define the remainder, RG(h), of h ∈ R by G by the formula:

RG(h) =

RG(h− αgi), if i is least such that αgi = in(h);
RG(h− in(h)), otherwise, if h 6= 0;
0, if h = 0.
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In the first case, we choose the least i such that in(gi) divides in(h) (if there are

several).

If G is a Gröbner basis, then the choice of i does not affect the final answer (an
exercise!).

Example 2.3 In Example1.8, we computed that RG(xy2) = y3, where G =
{x2, xy + y2}.

If G = {x1 − xd2, x2 − xd3, . . . , xn−1 − xdn}, for some d > 0, and the term order
is the lexicographic order with x1 > . . . > xn, then RG(xd1) = xd

2

n . Notice that G is
a minimal Gröbner basis, but is not auto-reduced.

The remainder also gives us a way of determining whether two polynomials are
equal modulo I:

Proposition 2.4 [Ideal membership] Let I ⊂ R be an ideal, and let G be a

subset of I. Then

(a) G is a Gröbner basis of I if and only if for every h ∈ I, RG(h) = 0.
(b) If G is a Gröbner basis of I, then two polynomials h1, h2 ∈ R are equal

modulo I if and only if RG(h1) = RG(h2).

The proof is left as an exercise.

Computing a Gröbner basis

How do we find a Gröbner basis of an ideal? Let’s consider the simple example
again.

Example 2.5 One way to uncover new lead terms is to take two polynomials in
the ideal, and multiply each by just enough to be able to cancel their lead term by
subtraction. For example in Example1.8, we found a new lead term by taking x2

and xy + y2, multiplying them by y and x respectively, and then subtracting, we
end up with xy2. After reducing this element, we obtained a new lead term y3.

This construction is important enough to deserve some notation:

Definition 2.6 Given two non-zero polynomials g = axA+ · · ·, and h = bxB+ · · ·,
where in(g) = axA and in(h) = bxB , define the s-polynomial spair(g, h) by

spair(g, h) = bxCg − axDh,

where xCxA = xDxB , and the g.c.d. (xC , xD) = 1.

The key observation is that this way of uncovering new lead terms is sufficient
to find all the possible new lead terms, and hence a Gröbner basis. This result of
Buchberger leads to his algorithm for computing a Gröbner basis.
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Proposition 2.7 [Buchberger] Let I ⊂ R be an ideal, and let G ⊂ I be a finite

subset, consisting of non-zero polynomials. Then G is a Gröbner basis if and only

if for every pair of elements g, h ∈ G, RG(spair(g, h)) = 0.

The proof is one of the exercises for this section.
The strategy to compute a Gröbner basis is this: Start with an initial approx-

imation to a Gröbner basis: let G be the set consisting of the original generators.
Try to uncover new lead terms by taking two polynomials in this set, forming this
s-polynomial and finding the remainder. If we get zero, then we continue. On the
other hand, if we get a non-zero remainder, then we have a new lead term. So we
add this element to our growing Gröbner basis G. This process must end because
the initial ideal is finitely generated (more precisely, because the polynomial ring is
Noetherian).

Here is the boiled down version of Buchberger’s algorithm for computing a
Gröbner basis of an ideal.

Algorithm 2.8 [Buchberger’s algorithm]
input: A set {f1, . . . , fr} ⊂ R.
output: A Gröbner basis G of the ideal generated by {f1, . . . , fr}.
begin

G := {f1, . . . , fr}
Pairs := {(fi, fj) | 1 ≤ i < j ≤ r}
while Pairs 6= ∅ do

(gi, gj) := remove an element from Pairs
s := spair(gi, gj)
h := RG(s)
if h 6= 0 then

Pairs := Pairs ∪ {(h, g) | g ∈ G}.
G := G ∪ {h}.

return G

end.

In practice, there are several improvements that one should make: the result
should be auto-reduced, usually as the algorithm proceeds. It is possible to know
that certain pairs will reduce to zero, so that they can be discarded immediately.
Finally, the order that one processes the pairs is very important to the performance
of the algorithm.

Example 2.9 In Example1.8, G = {x2, xy + y2, y3} is a Gröbner basis. We
can check this by reducing the three s-polynomials. The first, spair(x2, xy + y2),
is −xy2, and reduces to −y3, and then to zero. spair(x2, y3) = 0 already, and
spair(xy + y2, y3) = y4, which reduces to zero in one step. We have therefore
verified that G is a Gröbner basis of the ideal (x2, xy + y2).

Example 2.10 To give you a feel of the rough size of some Gröbner bases, let
R = k[a, b, c, d] be the polynomial ring in four variables. Let I = {f1, f2, f3} be
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the ideal generated by four random forms of degree three. The minimal Gröbner
basis of I, using the graded reverse lexicographic order has 11 elements, with (total)
degrees 3,3,3,4,4,5,5,5,6,6,7. The minimal Gröbner basis of I, using the lexicographic
order, has 55 elements ranging in degrees from 3 to 27. If we use the elimination
order eliminating the first two variables (defined in the exercises), then there are 39
Gröbner basis elements, ranging in degrees from 3 to 27. If we use the elimination
order eliminating one variable, there are 23 Gröbner basis elements, ranging in
degrees 3 to 7.

Elimination of variables

One of the mot important applications of Gröbner bases is to eliminate vari-
ables. The simplest form of the problem is:

Problem 2.11 [Elimination of variables] Given generators for an ideal I ⊂
R = k[x1, . . . , xn], and an integer 2 ≤ i ≤ n, find generators for the ideal

I ∩ k[xi, xi+1, . . . , xn]

in the ring k[xi, xi+1, . . . , xn].

This ideal is called an elimination ideal.

Example 2.12 If I = (ax + b, cx + d) ⊂ k[x, a, b, c, d], then I ∩ k[a, b, c, d] =
(ad− bc) (clearly the elimination ideal contains this element, and in this case it isn’t
too hard to check that we have equality.) This is called elimination, since we are
“eliminating” the variable x.

Many constructions in algebraic geometry are based on computing elimination
ideals. We will see examples in the next lecture, and more examples appear in the
exercises.

For now, let’s see how we can compute elimination ideals using Gröbner bases.
If we could enumerate all of the elements of I (tough, since this is an infinite,
usually uncountable set!), then we could simply choose those elements which are
in the subring k[xi, . . . , xn]. Gröbner bases allow us to mimick this process, by
restricting our attention to a finite set: the Gröbner basis itself.

Proposition 2.13 Let G be a Gröbner basis of I with respect to the lexi-

cographic order >. Then G′ := G ∩ k[xi, xi+1, . . . , xn] is a Gröbner basis of

J := I ∩ k[xi, . . . , xn] with respect to the term order induced by >. In partic-

ular, G′ generates the ideal J .

Proof. Write the Gröbner basis G as

G = {g1, . . . , gs, gs+1, . . . , gt},

where some monomial of g1, . . . , gs involve at least one of the variables x1, . . . , xi−1,
and gs+1, . . . , gt do not involve these variables. Notice that each monomial
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in(g1), . . . , in(gs) is divisible by one of x1, . . . , xi−1, since the term order is the
lexicographic order.

We wish to show that G′ = {gs+1, . . . , gt} is a Gröbner basis of J . The set
G′ is contained in J , so we must show that if h ∈ J , then in(h) is divisible by
one of in(gs+1), . . . , in(gt). Given an h ∈ J , h is also a member of I, so in(h) is
divisible by one of in(g1), . . . , in(gt). Suppose that in fact, in(h) is divisible by one
of in(g1), . . . , in(gs). Then in(h) is divisible by one of the variables x1, . . . , xi−1,
and then h 6∈ k[xi, . . . , xn], a contradiction. Therefore, in(h) must be divisible by a
lead term of G′, as desired.

Examing the proof, we see that the only property of the term order that we
have used is that for g ∈ R, and any 1 ≤ i ≤ n,

g ∈ k[xi, . . . , xn] ⇐⇒ in(g) ∈ k[xi, . . . , xn].

Many other term orders have this property, at least for a specific i. Let’s give
this property a name:

Definition 2.14 A term order is called an elimination order, eliminating

x1, . . . , xi−1, (for a specific i) if for every g ∈ R,

g ∈ k[xi, . . . , xn] ⇐⇒ in(g) ∈ k[xi, . . . , xn].

We leave the proof of the generalization of the last Proposition as an exercise.

Proposition 2.15 Let G be a Gröbner basis of I with respect to an elimination or-

der > which eliminates the variables x1, . . . , xi−1. Then G′ = G∩k[xi, xi+1, . . . , xn]
is a Gröbner basis of J := I ∩ k[xi, . . . , xn] with respect to the term order induced

by >. In particular, G′ generates the ideal J .

Since the lexicographic order can be used to eliminate variables, for each i, one
might ask: why ever use any other elimination order? This is addressed in the ex-
ercises, but basically, lexicographic Gröbner bases are often prohibitively expensive
to compute.

Example 2.16 This example gives an idea as to how one may use Gröbner bases
to solves systems of polynomial equations. As a specific example, let

I = (x, y − 1, z − 2)(x− 2, y + 1, z − 1)(x− 2, y − 1, z − 3)

be the product of the given ideals in C[x, y, z]. I is given by 27 generators (all the
possible products). We wish to solve the system of equations where all of these are
zero. Of course, the solution consists of (x, y, z) = (0, 1, 2), (2,−1, 1) and (2, 1, 3).
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How would one see this via Gröbner bases? The Gröbner basis of I, with respect to
the lexicographic order x > y > z is (I computed this using Macaulay 2):

 z3 − 6z2 + 11z − 6
y + z2 − 5z + 5
x− 2z2 + 8z − 8

 .

Using the lexicographic order allows us to compute I ∩ k[z], which is generated by
z3− 6z2 + 11z− 6 = (z− 1)(z− 2)(z− 3). Thus z = 1, 2, or 3. The second equation
involves just y and z. Plug in the various values of z and this immediately gives the
corresponding values for y. Similarly, x is solved using the third equation.

The Gröbner bases don’t always come out as nice as this. For example, let

J = (x, y − 1, z − 2)(x− 2, y + 1, z − 1)(x− 2, y − 1, z − 3)2,

where the only difference from the above ideal is that the last ideal is squared. The
solution set to the corresponding system of equations is the same as above. The
Gröbner basis using the lexicographic order is somewhat more complicated:


z4 − 9z3 + 29z2 − 39z + 18

yz − 3y + z3 − 8z2 + 20z − 15
y2 − 2y + z3 − 8z2 + 21z − 17
xz − 3x− 2z3 + 14z2 − 32z + 24

xy − x− 2y + 2
x2 − 4x− 4z3 + 28z2 − 60z + 40

 .

The first equation factors as (z − 1)(z − 2)(z − 3)2, and so z = 1, 2, or 3, as above.
The second equation allows us to solve for y, as long as z 6= 3. If z = 3, then
the third Gröbner basis element gives (y − 1)2 = 0. The next two equations will
determine x if z 6= 3 or y 6= 1. In this event, x is determined by the last equation,
by first plugging in y = 1 and z = 3. Thus, we have found all of the solutions.

For general problems, using the lexicographic order will always allow us to
solve the system of equations, using not much more than this method used here.
The main problem with this method is that on many larger problems, it is essentially
impossible to compute the lexicographic Gröbner basis. In this case, other methods
need to be considered. For more information, see Teresa Crick’s lectures in this
same series.

We will have a little more to say about solving equations in the next lecture.
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3 Lecture # 3: Geometry.

Throughout this lecture, we assume that k is algebraically closed. One can
relax this assumption at the cost of more complicated statements of results, but we
won’t bother with that in this lecture.

The Algebra – Geometry Dictionary, Hilbert’s Nullstellensatz

Definition 3.1 [Varieties and ideals] Given any set S of polynomials in R, we

denote by V (S) the zero set, or variety of S:

V (S) = {(p1, . . . , pn) ∈ kn | f(p1, . . . , pn) = 0 for all f ∈ S}.

For example, if I = (x1 + x2 − 1, x1 − x2 + 2) ⊂ C[x1, x2], then

V (I) = V ({x1 + x2 − 1, x1 − x2 + 2}) = {(−1/2, 3/2)} ∈ C2.

Notice that if I is the ideal generated by S, then V (S) = V (I). It is customary
in algebraic geometry to refer to kn as An

k , affine n-space over k. If the field k is
understood, then we abbreviate this as An. We call subsets of An of the form V (I)
algebraic sets.

An often used variant is the case of homogeneous polynomials. If f is homo-
geneous, then f(λx) = λdeg ff(x), so f(x) and f(λx) are either both zero, or both
non-zero. Define projective space, Pn−1 to be the space An \ (0, 0, . . . , 0) modulo
the equivalence relation p ≡ λp, for λ 6= 0. Then, if I is a homogeneous ideal, then
define

V (I) = {[p] | f(p) = 0, for all f ∈ I} ⊂ Pn−1.

This notation conflicts with the notation above, but we shall make it explicitly clear
when we use this instead of the definition above.

Definition 3.2 Given a subset X ⊂ An, define the ideal of X to be

I(X) = {f ∈ R | f(p) = 0 for all p ∈ X}.

These two operations will be our link between ideals and algebraic sets. Given
an algebraic set X, it is easy to see that V (I(X)) = X. If X is not an algebraic
set, then X := V (I(X)) strictly contains X. We call X the (Zariski-) closure of
X. In the other direction, it is not always true that I(V (J)) = J . For example,
V (x2) = V (x), and I(V (x2)) = (x). Hilbert’s Nullstellensatz describes precisely
when equality does hold:

Theorem 3.3 [Hilbert’s Nullstellensatz] If J ⊂ R is an ideal, then

I(V (J)) = {f ∈ R | fN ∈ I, for some sufficiently large N}.

In particular, V (J) = ∅ if and only if J = (1).

12



The algebraic construction implicit in this result is the radical:

Definition 3.4 The radical of an ideal I is

√
I = {f ∈ R | fN ∈ I, for some sufficiently large N}.

It is easy to see that the radical is an ideal containing I. Much more difficult is
to find a method to compute it! There are a number of methods for accomplishing
this, but we won’t have time to discuss them in these lectures. See the references
at the end of these notes.

The Nullstellensatz links the geometry of algebraic sets to the algebra of ideals.
There are several (seemingly) different proofs of this result. Hilbert’s original proof
used elimination theory and resultants. For more modern and/or simpler proofs,
see Atiyah-Macdonald, or Eisenbud.

Corollary 3.5 There is an order reversing one to one correspondence between

radical ideals in R, and algebraic subsets of An, given by the inverse operations

V (−) and I(−).

Using this correspondence, we can build a dictionary between ideals and geom-
etry.

There are some basic facts about these two operations, which we leave as an
exercise:

Exercise 3.6 The dictionary
(a) X = An is an algebraic set, X = V (0).
(b) X = ∅ is an algebraic set, X = V (1).
(c) If I ⊂ J are ideals, then V (J) ⊂ V (I), and if X ⊂ Y are subsets of An,

then I(Y ) ⊂ I(X).
(d) V (I) ∪ V (J) = V (I ∩ J).
(e) V (I) ∩ V (J) = V (I + J).
(f) If X is any subset of An, then X ⊂ V (I(X)). This set, denoted by X, is

called the (Zariski) closure of X. If X = V (I) is an algebraic set already, then show
that X = X.

(g) The Zariski topology on An is the topology whose closed sets are the alge-
braic sets. Show that this defines a topology.

(h) Show that if U ⊂ An is a non-empty (Zariski-)open set, then U = An.
This means that every non-empty Zariski open subset is dense: the open sets in this
topology are very big! Caution: this is not a Hausdorff topology!

Components, ideal quotients and saturations
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Example 3.7 Let A be a 3 by 3 matrix over C. Let us study the equations which
give the eigenvalues and eigenvectors of A. Let I be the ideal in four variables x, y, z,
and λ, defined by the entries of the matrix

A

x
y
z

− λ
x
y
z

 .

For example, take

A =

 0 1 1
1 0 1
1 1 0

 .

The ideal I is
I = (y + z − λx, x+ z − λy, x+ y − λz).

A has λ = 2 as an eigenvalue, with eignvector

 1
1
1

, and λ = −1 as its only

other eigenvalue, with eigenspace span(

 1
−1
0

 ,

 1
0
−1

). One doesn’t really need

Gröbner bases to describe V (I), but it is instructive to see what the lexicographic
Gröbner basis (with x > y > z > λ) looks like:

G = {x− yλ+ z, (y − z)(t+ 1), z(t− 2)(t+ 1)}.

Using this, or computing directly, it follows that V (I) is the union of the sets

E1 = {(t, t, t, 2) | t ∈ C} = V (x− y, y − z, t− 2),

E2 = {(s+ t,−s,−t,−1) | s, t ∈ C} = V (x+ y + z, λ+ 1),

and
Z = {(0, 0, 0, t) | t ∈ C} = V (x, y, z).

The solutions in E1 and E2 do correspond to the eigenvalues and eigenvectors of
A. The solutions in Z are degenerate solutions: eigenvectors nust have at least one
non-zero component.

The sets E1, E2 and Z are examples of irreducible algebraic sets: An irreducible
algebraic set is a subset X which is not the union of two proper algebraic sets. If
X is not irreducible, we call X reducible. So V (I) in this example is a reducible
algebraic set.

The corresponding algebraic notion is: An ideal I is prime if whenever fg ∈ I,
then either f ∈ I or g ∈ I.

14



Exercise 3.8 Let X ⊂ An be an algebraic set. Prove that I = I(X) is prime if
and only if X is irreducible.

It is not trivial to decide whether an ideal I is prime. There are algorithms for
doing this, but we won’t have time to discuss them in these lectures.

Each algebraic set X can be written uniquely as an irredundant finite union of
irreducible sets. This is called the irreducible decomposition of X.

Exercise 3.9 If X = X1 ∪ . . . ∪Xm is the irreducible decomposition of X, and
Pi = I(Xi), then I(X) = P1 ∩ . . . ∩ Pm.

One often wants to “remove” degenerate loci: For example, in our eigenvalue
example, we might want to find the ideal J defining the union of the “good” com-
ponents: V (J) = E1 ∪ E2. The bad locus is the locus where x = y = z = 0
(eigenvectors are not zero vectors).

Problem 3.10 [Removal of components] Given an ideal I, with V (I) = X1 ∪
. . . ∪Xm an irreducible decomposition, and given an ideal L, find an ideal J such
that V (J) is the union Y of the components Xi with Xi 6⊂ V (L).

If I = I(X) is the radical ideal defining X, then J should be the radical ideal
defining Y .

An alternate method of describing this problem is:

Problem 3.11 [Removal of components, version 2] Given the ideal I of X,
and given an algebraic set Z, find the ideal defining X \ Z

So in our example, we want V (I) \ V (x, y, z).

Removal of components is related to division: if ghN ∈ I(X), for any N , then
g ∈ I(X \ V (h)). This motivates the following definitions.

Definition 3.12 [Ideal quotient and saturation] If I, L ⊂ R are ideals, and

h ∈ R, then we define the ideal quotient

(I : h) = {g ∈ R | gh ∈ I},

and the saturation

(I : h∞) = {g ∈ R | ghN ∈ I, for N sufficiently large}.

Similarly, define the ideal quotient:

(I : L) = {g ∈ R | gL ⊂ I},

and the ideal saturation

(I : L∞) = {g ∈ R | gLN ⊂ I, for N sufficiently large}.
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For radical ideals I, ideal quotients and saturations will always be equal, but
in general this won’t happen: (x3y : x) = (x2y), whereas (x3y : x∞) = (y). In the
rest of this lecture we will consider mainly ideal saturations.

Here is the dictionary entry for ideal saturations:

Proposition 3.13 Let X = V (I), and let Y = V (L). Then

V (I : L∞) = X \ Y .

Proof.

There are several methods available to compute saturations. If the ideal L is
singly generated, then the following method works reasonably well.

Proposition 3.14 If I ⊂ R is an ideal, and h ∈ R, then

(I : h∞) = (I, hz − 1) ∩ k[x1, . . . , xn],

where z is an additional variable.

Proof.

If the ideal I is homogeneous, and h is a variable, then a usually much better
way is to use Bayer’s method (see the exercises).

Example 3.15 In the eigenvalue example above, let’s remove the “bad” locus Z:
We wish to compute I : (x, y, z)∞. Note that by definition, this is the intersection
(I : x∞) ∩ (I : y∞) ∩ (I : z∞). Each of these three terms is equal. The common
result is

(I : (x, y, z)∞) = ((t+ 1)(t− 2), (y − z)(t+ 1), x− yt+ z).

Projections and Elimination theory

Here is a question: What is J = I ∩ k[xi, . . . , xn] really? In other words, what
is V (J) in terms of V (I)?

The answer involves projections. Let

φ : An −→ An−i+1

be the projection map defined by

φ(p1, . . . , pn) = (pi, pi+1, . . . , pn) ∈ An−i+1.

Proposition 3.16 If X = V (I) ⊂ An, and if J = I ∩ k[xi, . . . , xn], then the ideal

I(φ(X)) = J . In particular, the ideal of (the closure of) φ(X) is J .
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Proof.

Example 3.17 Suppose that X ⊂ An is a finite set of points, and let I = I(X).
Consider the projection φ : An −→ A1, given by projection onto the last coordinate.
The ideal J = I ∩ k[xn] will be of the form J = (f(xn)), where the roots of f give
the last coordinates of the points in X.

Exercise 3.18 Suppose that X ⊂ An is a finite union of d points, and that the
last coordinates of the d points are all distinct. Let I = I(X). Show that using the
lexicographic order x1 > x2 > . . . > xn, the Gröbner basis of I has the form

G = {x1 − g1(xn), . . . , xn−1 − gn−1(xn), f(xn)},

where f(xn) is a polynomial of degree exactly d.

Let’s now consider more general polynomial maps. For example, consider the
polynomial map

F : A1 −→ A2

given by
F (t) = (x, y) = (t4, t3 − t2 + 1).

The question we wish to ask is: what is the ideal of the image of this map? This
is the problem of going from an explicit parametrization to the implicit equation of
the image. The ideal of the image will be generated by those polynomials g(x, y),
such that g(t4, t3 − t2 + 1) = 0. Below, we will compute this ideal.

Suppose that X = V (J) ⊂ An, and f1, . . . , fr ∈ R. Let F : X −→ Ar be the
polynomial map defined by

F (p) = (f1(p), . . . , fr(p)) ∈ Ar.

Our first question is: what is the ideal of the image of this map? That is, find the
equations defining the closure F (X).

There is a “trick” which is often used to reduce questions about general poly-
nomial maps to questions involving only projections.

Definition 3.19 [Graph of a polynomial map] Given the polynomial map F

as above, define the graph of F , graph(F ) to be the subset of An × Ar = An+r

defined by

graph(F ) = {(p, q) ∈ X ×Ar | F (p) = q}.

In the exercises, you will be asked to verify that the ideal of graph(F ) in the
polynomial ring k[x1, . . . , xn, y1, . . . , yr] is

I(graph(F )) = J + (y1 − f1, . . . , yr − fr).

Using this, it is easy to answer our original problem:
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Proposition 3.20 The ideal of F (X) is

(J + (y1 − f1, . . . , yr − fr)) ∩ k[y1, . . . , yr].

Example 3.21 In order to compute the ideal of the image for the one variable
example above, we compute a Gröbner basis for the ideal using an elimination order
eliminating t:

I = (t4 − x, t3 − t2 − y).

The Gröbner basis with respect to the lexicographic order t > x > y is:


x3 − 4x2y − x2 + 2xy2 − y4

ty3 + 2ty2 + x2 − xy2 − 4xy − x+ y3 + y2

tx+ ty2 − xy − x+ y2

t2 + ty − x+ y


The first polynomial (the one involving just x and y: no t’s) defines the image. It
is reasonably complicated for such a simple example. What this means in practice
is that one should work with parametrizations instead of the implicit equations of
an algebraic set (assuming one is lucky enough to even have a parametrization!).

By examining the Gröbner basis, we obtain quite a bit more information about
the map. The second polynomial being equal to zero can be solved for t if the
coefficient of t is non-zero (in this case: this means if y 6= 0,−2):

t = −x
2 − xy2 − 4xy − x+ y3 + y2

y3 + 2y2
,

This defines an inverse of the map, at least off the locus where y = 0 or y = −2.
Similarly, if x+ y2 6= 0, then

t =
xy + x− y2

x+ y2
.

There is no inverse if both denominators are zero. This happens for (x, y) = (0, 0)
and (x, y) = (−4,−2). The point (0, 0) has one inverse image: the curve has a cusp
at this point. The point (−4,−2) has two inverse images: t = 1 + i, t = 1− i. This
is a double point on the curve.
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4 Exercises for Lecture # 1.

Exercise 4.1 Let > be the (non-graded) reverse lexicographic order: xA > xB if
the last non-zero entry of A−B is negative. Is this order a term order?

Exercise 4.2 Let w ∈ Rn be a vector, and let >1 be any term order. Define a
new order >, called a weight order, by xA > xB if w · A > w · B, or w · A = w · B,
and xA >1 x

B . Show that this is a term order. If w = (1, 1, . . . , 1, 0, . . . , 0), where
the number of 1’s in the vector is m, then the resulting term order is called the mth
elimination order.

Exercise 4.3 [Product order] Let >1 and >2 be term orders on k[x1, . . . , xm]
and k[t1, . . . , tr] respectively. Define an order > on k[x1, . . . , xn, t1, . . . , tr], called
the product order, by xAtB > xCtD if xA >1 x

C , or xA = xC , and tB >2 t
D. Show

that this order is a term order.

Exercise 4.4 Show that the graded reverse lexicographic order has the following
property: If f ∈ R is a non-zero homogeneous polynomial, then xn divides in(f) if
and only if xn divides f .

Exercise 4.5 Show that the lexicographic order has the following property: If
f ∈ R is non-zero and 1 ≤ i ≤ n, then in(f) ∈ k[xi, xi+1, . . . , xn] if and only if
f ∈ k[xi, xi+1, . . . , xn].

Exercise 4.6 Let J = (xA1 , . . . , xAr ) be a monomial ideal: that is, an ideal
generated by monomials. Find algorithms or formulas to compute:
(a) Whether xB is in J .
(b) The ideal quotient (J : xB) := {g ∈ R | xBg ∈ J}.
(c) The intersection J ∩ I, where I is another monomial ideal.
(d) A minimal set of generators for J (that is, a set of generators, such that no

subset generates). Show that there is a unique minimal generating set consisting
of monomials for a monomial ideal J .

Exercise 4.7 Let > be a fixed term order, and fix an ideal I ⊂ R. Show that
there is a unique auto-reduced Gröbner basis of I.

Exercise 4.8 Show that the monomials {in(f) | f ∈ I, f 6= 0} form a k-basis for
the ideal in(I).

Exercise 4.9 Let > be a term order, and let S be a finite set of monomials. Show
that there exists an integral vector w ∈ Zn, such that for xA, xB ∈ S, xA > xB if
and only if w ·A > w ·B. Interesting problem: Can you bound the size of the entries
of w in terms of the size of the exponents of monomials in S?

Exercise 4.10 Prove Gordan’s Lemma (Lemma1.9).
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5 Exercises for Lecture # 2.

Playing with Gröbner bases

Exercise 5.1 Compute by hand the Gröbner basis of the ideal

I = (s3 − a, s2t− b, st2 − c, t3 − d) ⊂ k[s, t, a, b, c, d],

using the lexicographic order s > t > a > b > c > d. Find a generating set for
I ∩ k[a, b, c, d].

Exercise 5.2 Let I ⊂ k[a, b, c, d] be the ideal generated by three random ho-
mogeneous degree 4 polynomials. Using Macaulay 2, or another computer algebra
system, compute the Gröbner bases of I using the graded reverse lexicographic or-
der, and the graded lexicographic order. What is the highest degree of a Gröbner
basis element for each of these two cases? Why do you suppose that one of these is
so much more complicated than the other?

Exercise 5.3 Prove that if G is a Gröbner basis, any choice of i in the first case
of the definition of RG(h) leads to the same remainder.

Exercise 5.4 Prove Proposition2.4

Exercise 5.5 Show that the elimination weight order defined in Exercise4.2, and
any product order (defined in Exercise4.3) are elimination orders.

Exercise 5.6 Prove Proposition2.15.

Exercise 5.7 Let I and J be two ideals in R. Find an algorithm to compute the
intersection I ∩ J .

Exercise 5.8 Let f1, . . . , fr be polynomials in R. Let

A = k[f1, . . . , fr] ⊂ k[x1, . . . , xn],

be the sub k-algebra generated by the fi. The ring A has a presentation as

A = k[y1, . . . , yr]/L,

for some ideal L. Notice that L is the kernel of the ring homomorphism φ :
k[y1, . . . , yr] −→ k[x1, . . . , xn], where yi 7→ fi. Find an algorithm or formula
for L. Similarly, if I ⊂ R is an ideal, compute the kernel of the induced map
k[y1, . . . , yr] −→ R/I.
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Exercise 5.9 [Hilbert series] Hilbert series are one of the most important
applications of Gröbner bases. Suppose that I = {f1, . . . , fr} ⊂ R is a homogeneous
ideal (that is, each fi is a homogeneous polynomial). Let Id ⊂ Rd be the vector
space of all polynomials in I which are homogeneous of degree d. The Hilbert series
of R/I is the formal power series

H(R/I, t) :=
∞∑
d=0

(dimk Rd/Id) td.

It is fairly easy to show (see Atiyah-Macdonald) that H(R/I, t) is a rational
function of the form

H(R/I, t) =
P (t)

(1− t)e ,

where P (t) is a polynomial with integral coefficients, and P (1) 6= 0.
Given this form, one can read off the dimension and degree of R/I (if you are

not familiar with these notions, you can use these as the definitions!). The (Krull)
dimension of R/I is e. The degree of R/I is P (1).

(a) Show that

H(R, t) =
1

(1− t)n .

(b) Show that if > is any term order, and I is a homogeneous ideal, then
dim in(I)d = dim Id, for all d. Therefore R/I and R/in(I) have the same Hilbert
series.

(c) Show that if f ∈ R is homogeneous of degree d, and I ⊂ R is a homogeneous
ideal, then

H(R/(I, f), t)−H(R/I, t) +H(R/(I : f), t− d) = 0.

(d) Use (c) to give an algorithm for computing the Hilbert series of R/J , where
J is a monomial ideal. By (b), this gives an algorithm to find the Hilbert series of
R/I, for any homogeneous ideal.

(e) Find the Hilbert series of the ideal of the twisted cubic curve: I = (bc −
ad, b2 − ac, c2 − bd) ⊂ k[a, b, c, d].

Exercise 5.10 [Gröbner bases in skew-commutative polynomial rings] Let
A be the k-algebra generated by elements x1, . . . , xn satisfying the skew commuta-
tivity relations xixj = −xjxi, if i 6= j, and x2

i = 0. Define a notion of Gröbner
basis for this ring, give an algorithm to compute it (in particular, what are the
“s-pairs”?). Try your algorithm on some ideals in this ring. (An example of an
interesting case: Take a simplicial complex, and let I ⊂ A be the face ideal (i.e. the
ideal generated by the monomials whose support are the non-faces in the simplicial
complex). This is a monomial ideal in A. Now make a random linear change of
coordinates. The initial ideal of this new ideal (w.r.t. any term order) is the face
ring of a simplicial complex. What is it? (This is a vague question, since this is still
a research problem.)
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Exercise 5.11 [Gröbner bases in the Weyl algebra] Let A be the non-
commutative k-algebra generated by x1, . . . , xn, and ∂1, . . . , ∂n, where all pairs of
variables commute, except

∂ixi = 1 + xi∂i,

for each i = 1, . . . , n. Find a definition of a Gröbner basis of a 2-sided ideal in A.
How must one modify Buchberger’s algorithm to compute such a Gröbner basis?

6 Exercises for Lecture # 3.

Exercise 6.1 Suppose that I : h∞ = I : hm. Show that I = (I, hm) ∩ (I : h∞).
This simple but important formula is one key part of algorithms for computing the
primary decomposition of an ideal.

Exercise 6.2 Let A = R/I, and let f/g be a fraction with f and g in R. Devise
an algorithm for finding a presentation B = k[x1, . . . , xn, y]/L of the ring A[f/g].
(You may suppose that g is a non-zero-divisor on I).

Exercise 6.3 [Bayer’s method for ideal saturations] Suppose that I is a
homogeneous ideal (that is, I is generated by homogeneous polynomials. Let > be
the graded reverse lexicographic order. Show how to use the Gröbner basis of I to
compute (I : xn) and (I : x∞n ).

Exercise 6.4 [Homogenization] Let I = (f1, . . . , fr) ⊂ k[x1, . . . , xn] be an ideal.
For a polynomial g, let gh denote the homogenization of g with respect to a new
variable z. So gh = zdeg gg(x1/z, . . . , xn/z). The homogenization of I, Ih, is the
ideal in k[x1, . . . , xn, z] generated by {gh | g ∈ I}. Find an algorithm to compute
Ih.

Use this algorithm to compute the homogenization of the ideal

I = (x2 − x2
1, x3 − x3

1).

Exercise 6.5 [Secant locus] Given an algebraic set X ⊂ An, the secant locus is
defined by

Sec(X) =
⋃

p6=q∈X
pq.

i.e. Sec(X) is the union of all lines connecting distinct pairs of points on X. Deter-
mine a way of computing Sec(X), given generators for I = I(X).

Exercise 6.6 [Blow-up algebra] Given algebraic sets Y ⊂ X ⊂ An, the blow-up

algebra BlY (X) is defined to be the ring A[Jt] ⊂ A[t], where J = I(Y ), I = I(X),
and A = R/I. Find a way of computing

BlY (X) = k[x1, . . . , xn, y1, . . . , yr]/L,

where J has r generators.
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Exercise 6.7 [Normal cone, or associated graded ring] Let notation be as
in the previous exercise. The normal cone of Y in X is defined to be the ring

NY/X = R/I ⊕ I/I2 ⊕ I2/I3 ⊕ · · · .

Find an algorithm to compute a presentation of this ring.
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