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Viktor Levandovskyy. ”Non-commutative Computer Algebra for
polynomial algebras: Grobner bases, applications and implementation”.

Abstract. Non-commutative polynomial algebras appear in a wide
range of applications, from quantum groups and theoretical physics to linear
differential and difference equations.

In the thesis, we have developed a framework, unifying many impor-
tant algebras in the classes of G- and G R-algebras and studied their ring—-
theoretic properties. Let A be a G-algebra in n variables. We establish
necessary and sufficient conditions for A to have a Poincaré-Birkhoff-Witt
(PBW) basis. Further on, we show that besides the existence of a PBW ba-
sis, A shares some other properties with the commutative polynomial ring
K[z1,...,x,). In particular, A is a Noetherian integral domain of Gel’fand—
Kirillov dimension n. Both Krull and global homological dimension of A are
bounded by n; we provide examples of G—algebras where these inequalities
are strict. Finally, we prove that A is Auslander-regular and a Cohen—
Macaulay algebra.

In order to perform symbolic computations with modules over GR-
algebras, we generalize Grobner bases theory, develop and respectively en-
hance new and existing algorithms. We unite the most fundamental algo-
rithms in a suite of applications, called ”Grobner basics” in the literature.
Furthermore, we discuss algorithms appearing in the non-commutative case
only, among others two—sided Grobner bases for bimodules, annihilators of
left modules and operations with opposite algebras.

An important role in Representation Theory is played by various sub-
algebras, like the center and the Gel'fand-Zetlin subalgebra. We discuss
their properties and their relations to Grébner bases, and briefly comment
some aspects of their computation. We proceed with these subalgebras in
the chapter devoted to the algorithmic study of morphisms between G R—
algebras. We provide new results and algorithms for computing the preim-
age of a left ideal under a morphism of GR-algebras and show both merits
and limitations of several methods that we propose. We use this technique
for the computation of the kernel of a morphism, decomposition of a mod-
ule into central characters and algebraic dependence of pairwise commuting
elements. We give an algorithm for computing the set of one-dimensional
representations of a G-algebra A, and prove, moreover, that if the set of
finite dimensional representations of A over a ground field K is not empty,
then the homological dimension of A equals n.
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All the algorithms are implemented in a kernel extension PLURAL of
the computer algebra system SINGULAR. We discuss the efficiency of com-
putations and provide a comparison with other computer algebra systems.
We propose a collection of benchmarks for testing the performance of al-
gorithms; the comparison of timings shows that our implementation out-
performs all of the modern systems with the combination of both broad
functionality and fast implementation.

In the thesis, there are many new non-trivial examples, and also the
solutions to various problems, arising in different fields of mathematics. All
of them were obtained with the developed theory and the implementation
in PLURAL, most of them are treated computationally in this thesis for the

first time.

Viktor Levandovskyy. ”Nichtkommutative Computeralgebra fir

Polynomalgebren: Grébnerbasen, Anwendungen und Implementierung”.

Zusammenfassung. Nichtkommutative Polynomalgebren entstehen in
vielen verschiedenen Anwendungen, von Quantengruppen und Theoretis-
cher Physik bis zu linearen Differentiellen und Differenzengleichungen.

In der Arbeit wurde ein Rahmen entwickelt, in dem viele wichtige Alge-
bren der Klassen G— und G R-Algebren zusammengefiihrt und ihre ringth-
eoretischen Eigenschaften untersucht wurden. Sei A eine G—Algebra mit
n Variablen. Es werden notwendige und hinreichende Bedingungen dafiir
angegeben, daf A eine Poincaré-Birkhoff-Witt (PBW) Basis besitzt. Es
wird gezeigt, dass A neben der Existenz einer PBW Basis, weitere Eigen-
schaften mit dem kommutativen Polynomring K|z, ..., z,] gemeinsam hat.
A ist ein Noetherscher Integritdtsbereich der Gel’fand—Kirillov—Dimension
n. Die Krull- und die globale homologische Dimension von A sind durch
n beschrinkt ; es werden Beispiele von G—Algebren gegeben, bei denen
diese Ungleichheiten strikt sind. Schliefllich wurde bewiesen, dass A eine
Auslander-regulare und eine Cohen—Macaulay Algebra ist.

Fiir symbolische Berechnungen mit Moduln iiber G R—Algebren, wurde
die Grobnerbasentheorie verallgemeinert, neue und bestehende Algorith-
men werden entwickelt und verbessert. Wir verbinden die grundlegendsten
Algorithmen mit einer Reihe von Anwendungen, welche man in der Lit-

eratur als ”Grobner basics” bezeichnet. Weiterhin wurden Algorithmen
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diskutiert, die nur im nichtkommutativen Fall existieren, darunter zwei-
seitige Grobnerbasen fiir Bimoduln, Annihilatoren von Linksmoduln und
Operationen mit entgegengesetzten Algebren. Eine wichtige Rolle in der
Darstellungstheorie spielen die verschiedenen Unteralgebren, wie z.B. das
Zentrum und die Gel'fand-Zetlin Unteralgebra. Die Eigenschaften und
ihre Beziehungen zu Groébnerbasen wurden untersucht und einige Aspekte
ihrer Berechnung diskutiert. Im Kapitel iiber algorithmische Studien von
Morphismen zwischen G R—Algebren wurde die Untersuchung zu diesen Un-
teralgebren fortgesetzt. Es wurden neue Ergebnisse and Algorithmen zur
Berechnung des Urbilds eines Linksideals unter einem Morphismus von GR-
Algebren erzielt. Die Ergebnisse und Begrenzungen verschiedener Meth-
oden, die vorgeschlagen wurden, wurden gezeigt. Diese Technik wurde
auch fiir die Berechnung des Kerns eines Morphismus, die Zerlegung eines
Moduls in zentrale Charaktere und die algebraische Abhangigkeit von paar-
weise kommutierenden Elementen verwendet. Es wurde ein Algorithmus
fiir die Berechnung von eindimensionalen Darstellungen einer G—Algebra
A erstellt. Es wurde bewiesen, dass die homologische Dimension von A
iiber einem Korper K gleich der Anzahl der Variablen von A ist, falls es
endlich—dimensionale Darstellungen von A existieren.

Alle Algorithmen wurden in eine Kern-Erweiterung PLURAL des Com-
puteralgebrasystem SINGULAR implementiert. Die Effizienz der Berechnun-
gen wurde diskutiert und ein Vergleich mit anderen Computeralgebrasys-
temen erstellt. Es wurde eine Reihe von Benchmarks zum Test der Leis-
tung von Algorithmen vorgeschlagen. Der Zeitvergleich zeigt, dass unsere
Implementierung alle modernen Systeme hinsichtlich der Kombination von
Funktionalitat und Geschwindigkeit iibertrifft.

In der Arbeit gibt es eine Vielzahl von nichttrivialen Beispielen und
Losungen zu verschiedenen Problemen aus verschiedensten Bereichen der
Mathematik. All wurden mit Hilfe der entwickelten Theorie und der Im-
plementation in PLURAL erzielt, die meisten von ihnen wurden in dieser

Arbeit zum ersten Mal berechnet.
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Introduction

This thesis is devoted to symbolic computations in non—commutative
algebras with PBW bases (G—algebras). These algebras already have their
own history as well as symbolic methods, algorithms and implementations.
Yet it is still a long way towards the acceptance and wide usage of these
methods by the community of scientists, comparable to the years which were
gone before the Buchberger’s algorithm for computing a Grobner basis of
an ideal in a commutative ring become accepted by everybody. G-algebras
appear in many fields of science, from Non—commutative Algebra, Ring
Theory and Representation Theory of Algebras (being of a more theoreti-
cal nature) to the concrete applications to manipulating systems of linear
operator (differential, shift, difference etc) equations, System and Control
Theory et cetera. These algebras arise in Algebraic Geometry, Mathemat-
ical and Theoretical Physics, Statistics and many other fields of natural
sciences. They appear in different contexts and everywhere some different
computations are needed.

We revise G—algebras and enlist a list of their properties in Chapter 1;
a short overview of Grébner bases in free algebras helps us to formulate the
exact conditions and, on the other hand, to see similarities and differences
between different setups. We point out the role of monomial orderings and
show their impact on filtrations, coming to simplified and/or generalized
proofs of many known results.

In Chapter 2, we adopt the notion of Grobner basis to G-algebras and
note similarities and differences with the commutative case. Further on, we
concentrate on developing the fundament for applications, based on Grobner
bases; continuing a tradition, we call the set of most ubiquitous applications
Grobner basics. We provide both theoretical background and efficiency !
issues together with the implementation. A rich collection of examples,
mostly originated from concrete research problems, is a key point of this
thesis, since previous publications and even books were rather ascetic with
respect to examples.

T(}rébner basis computations are not efficient as the complexity is exponential or
even double exponential in the number of variables. When we talk about efficiency, we

mean ”practical efficiency”, that is, implementations which allow to compute interesting
and complicated examples in a reasonable time.

ix
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The morphisms between G R-algebras (the Chapter 3), appearing as of-
ten as such morphisms do in the commutative algebra, deserved however
less attention from other authors. We proceed with the partially commu-
tative and purely non-commutative situations separately, describing very
interesting applications in much details. A study of subalgebras such as
centers and various centralizers is naturally arising in this Chapter.

The implementation of all the algorithms, elaborated in previous sec-
tions, in a computer algebra subsystem SINGULAR:PLURAL comprises the
material of the Chapter 4. We provide timings, create and evaluate bench-
marks and discuss aspects of efficiency and software engineering applied to
computer algebra. All the examples, provided with this thesis, are computed
with PLURAL. It is freely distributed as an integral part of SINGULAR,
starting from the version 3-0-0. One can download binaries of SINGULAR
for various platforms, the documentation in several formats and supplemen-
tary files from the http://www.singular.uni-k1.de (note, that the source
code is available on request).

The atlas of important algebras, put in Chapter 5, contains both the
explicit presentation of algebras we use in examples and applications, and
structural properties like centers of every algebra. Everything in the atlas
has been computed with the help of PLURAL.

Every Chapter starts with an explanation on its organization, so we omit
such descriptions here.

In the Appendix we put the part of the SINGULAR manual, organized
as Chapter 6 and devoted to PLURAL with the detailed description of its
data types, functionalities and libraries.
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K*
T=(T1,...,2p)

K[S], Klzy, ..., z,)

K(S), K{zq,...,x,)

INTRODUCTION

Basic Notations

fields
the multiplicative group of units of a field K
n—tuple or a vector
a commutative polynomial ring,
generated by a finite set S or by {x1,...,z,}
a free associative K-algebra,
generated by a finite set S or by {z1,...,z,}
a left A—module, generated by S
a (A, B)-bimodule, generated by S
a two—sided ideal or (A, A)-bimodule,
generated by S
presentation of a K-algebra via S, a set of

generators and R C K(S), a set of "relations”



CHAPTER 1

From NDC Towards G—algebras

In his right hand there still had been
his broad, strange sword, so unusual for
the eyes of western warriors ...

"You’ve got an interesting sword
there”, — she said slowly, — ”What are
these rings at the blade for?”

"It’s so funny when they're ringing”, —
answered the warrior.

Nik Perumov, Henna’s Adamant

The famous Poincaré-Birkhoff-Witt (or, shortly, PBW) theorem, which
appeared at first for universal enveloping algebras of finite dimensional Lie
algebras ([23]), plays an important role in the representation theory as well
as in the theory of rings and algebras. Analogous theorem for quantum
groups was proved by G. Lusztig and constructively by C. M. Ringel ([67]).

Many authors have proved the PBW theorem for special classes of non—
commutative algebras they are dealing with ([40], [38]). Usually one uses
Bergman’s Diamond Lemma 1.9 (see also [11]), although it needs some
preparations to be done before applying it. We have defined a class of
algebras where the question ”Does this algebra have a PBW basis?” reduces
to a direct computation involving only basic polynomial arithmetic.

This chapter is organized as follows.

Our approach is constructive and consists of three tasks. Firstly, we want
to find the necessary and sufficient conditions for a wide class of algebras
to have a PBW basis, secondly, we are going to investigate this class for
ring—theoretical and other properties and thirdly, we will apply the results
to the study of certain special types of algebras.

The first part resulted in the non—degeneracy conditions (Theorem 2.3),
the second one led us to the G— and G R-algebras (3.2, 3.7) and their proper-
ties (Theorem 4.7, 4.14), and the third one — to the technique of computing
G—quantizations (7.1) and to the structural studying of algebras (7.1, 7.3)
together with the description and classification of G—algebras among the
quadratic (7.2), diffusion algebras (7.4) and some more advanced applica-
tions (7.5).



2 1. FROM NDC TOWARDS G-ALGEBRAS

We have simplified many proofs of known results and unified differ-
ent notations. We are additionally motivated by the fact, that up to our
knowledge, no source before featured a complete treatment of the problems,

arising in connection with PBW bases.

1. Grobner Bases on Free Associative Algebras

Let K be a field and T' = T,, = K(z1,...,x,) be a free associative K-
algebra, generated by {xi,...,z,} over K, also called a tensor algebra
T (V) of the vector space V=K @& Kz, & -+ @ x,. We will omit the tensor
product sign while writing multiplication and we will mean by an ideal a
two—sided ideal, whenever no confusion is possible.

We say that the monomials in 7" are the elements from the set of all

words in {z1,...,2,},
Mon(T) = {aftag? ... afm | 1 <iy,ig, ... im <1, ai > 0}.

Note, that Mon(T') is a K-basis of T'. Moreover, Mon(7") is a free monoid
with the neutral element 1.
The set of standard monomials which we will need later is defined as

Mong(T') = {af'ai? . apm | 1<y <ipg <...<ipm<n, g >0} C Mon(T).

T m

In what follows, we always assume every associative algebra A to be
finitely generated and unital with K C A. Moreover, we assume that K
always belongs to the center of A (that is, Vk € K, a € A we have ka = ak)
and that any morphism of K-algebras is the identity on K.

Any associative K-algebra is isomorphic to T,,/I for some n and some
two—sided ideal I C T,,. Since T, is not Noetherian, I need not be finitely
generated, but we are interested only in ideals, which are finitely generated.
If a fixed isomorphism A = T,,/1 is given, we say that A is finitely presented
by T,, and write A =1T,,/I or just A ="T/I.

If the set of standard monomials is a K-basis of an algebra A = T'/I,
we say that A has a PBW basis (in the variables z1,...,x,). We say that
an abstract algebra A has a PBW basis, if there exists an isomorphism
A = T/I, such that T'/I has a PBW basis. Of course, any commutative
polynomial ring K[z, ..., x,] has a PBW basis. Therefore, algebras which
are Noetherian domains with PBW basis are in this sense " close to commu-
tative”.

Now we will present the short account of the Grobner bases theory on
tensor algebras. It was first Teo Mora, who considered a unified Grobner

bases framework for commutative and non—commutative algebras ([61]),
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which has been recently exploited by Li in his book [56]. We follow this
approach partially and write in the spirit of the book [35].

DEFINITION 1.1. Let I' be a finitely generated monoid.

A total ordering < on I' is called a well-ordering, if every non—empty
subset of I has a least element with respect to <.

A well-ordering < on T is called finitely supported, if

Va € T there exist finitely many b € I' such that b < a.

DEFINITION 1.2. We call a total ordering < on Mon(7') a
monomial ordering if the following conditions hold:

(1) < is a well-ordering on Mon(T'),
(2) ¥p,q,s,t € Mon(T), ifs<t, thenp-s-g<p-t-q,
(3) Vp,q,s,t € Mon(T), if s=p-t-qand s #t, thent < s.

In this work we are dealing with well-orderings only. As an example
of a well-ordering, consider the lexicographical ordering on K(xy, ..., x,),
considering that the variables are ordered in a descending way, that is

Tp < Tpoq < --- < Ty < x1. The lexicographical ordering is defined as
follows: given two monomials (that is, words in finite alphabet {1, ..., 2,})
my, my from Mon(7T'), we find their biggest common left subword m such
that m; = mwy, may = mws or set m = 1 if no such subword exists. Then,
my < my <= w; < wy <= the first symbol x; of w; is smaller that the
first symbol z; of wy <= x; < 7; &= j < 1.

DEFINITION 1.3. Any f € T~ {0} can be written uniquely as

f=c-m+f', where c € K* and m’ < m for any non-zero term ¢ -m’ of f’.

We define

Im(f) =m, the leading monomial of f,
le(f) =¢, theleading coefficient of f.

For a subset G C T, define a leading ideal of G to be the two-sided
ideal L(G) = r({lm(g) | g € G\ {0}} )r CT.

DEFINITION 1.4. Let < be a fixed monomial ordering on 7. We say
that a subset G C I is a (two—sided) Grdobner basis for the ideal I with
respect to < if L(G) = L(I).

Although we can work formally with infinite Grobner bases ([4]), in this

work we are interested only in finite bases.
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DEFINITION 1.5. Let m,m’ € Mon(T") be two monomials.

We say that m divides m/ if there exist p, ¢ € Mon(T") such that

m' =p-m-q. The set G C T is called minimal, if Vg, 9, € G, 1m(g;)
does not divide Im(g,) and vice versa.

DEFINITION 1.6. Let G be the set of all finite and ordered subsets of T'.
Amap NF: T x G — T, (f,G) — NF(f|G) is called a
(two—sided) normal form on T if
(i) NF(0|G) =0,
(ii) NF(f|G) #0 = Im(NF(f|G)) € L(G), and
(iii) f —NF(f|G) € r(G)r, forall f € T and G € G.

Here we give an algorithm for computing a normal form.

Algorithm 1.1 NF
Input : feT =K(xy,...,2,), GEG;
Output: h € T, a normal form of f with respect to G.

h:=f;
while ( (h #0) and (G}, = {g € G : 1Im(g) divides lm(h)} # 0) ) do
choose any g € Gp;
compute [ = I(g),r = r(g) € Mon(T") such that lm(h) =1 -1m(g) - r;
o b le(h) ‘

le(g)
end while

l.g-r;

return h;

PROOF. We see that each specific choice of "any” in the algorithm may

give us a different normal form function.
Termination:

Let hy := f, and in the i—th step of the while loop we compute h;.
Since lm(h;) < lm(h;—1) by construction, we obtain a set {lm(h;)} of lead-
ing monomials of h;, where Vi h;;; has strictly smaller leading monomial
than h;. Since < is a well-ordering, this set has a minimum, hence the

algorithm terminates.
Correctness:

Suppose the minimum is reached at the step m. Let h = h,, # 0 and
l;, ; are monomials, corresponding to ¢g; € G in the algorithm. Making back
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substitutions, we obtain the following expression

m—1
h=f— Zligﬂ”i,
i=1

satisfying Im(f) = lm(l1g;71) > Im(l;g;7;) > lm(hyy,).
Moreover, by construction Im(h) ¢ L(G). This proves correctness, in-

dependently of the specific choice of “any” in the while loop. O

DEFINITION 1.7. Let f,g € T. Suppose that there are
p,q € Mon(T) such that

(1) Im(f)g = plm(g),

(2) Im(f) does not divide p and Im(g) does not divide q.

Then the overlap relation of f, g by p, q is defined as

1 1
o(f.9,p.q) = qu e

Overlaps occur if the end of Im(f) coincides with the beginning of Im(g), as
for example in f = xyz and g = yz? (both overlapping at yx) or f = g = 2?
(with the self-overlap at ). The overlap relation cancels the leading terms
of fq and pg and we see that lm(o(f,g,p,q)) < lm(f)q = plm(g). Hence,
overlap relation is a generalization of the notion of s—polynomial from the
commutative theory (cf. [35]). See also the Remark §2, 4.13.

Now we cite slightly reformulated Termination theorem from [33].

THEOREM 1.8. Let < be a well-ordering on T" and G be a finite set of
polynomials from 7. If for every overlap relation with ¢, g, € G

NF( O(glaQQap7 Q) | G) - 07
then G is a Grobner basis for 7(G)r.

In particular this theorem ensures that for a given finite set F', we are
able to check whether F' is a Groébner basis in a finite number of steps.
However, even starting with a finite set, we can obtain, in general, an infinite
Grobner basis for it.

The proof of the theorem is relying heavily on the use of the famous
Bergman’s Diamond Lemma ([11], 1978), which can be regarded as the
first building stone for the theory of non-commutative Grobner bases.

Bergman’s Diamond Lemma

Following Bergman, let 7' = K(xy,...,2,), X = Mon(7) and < is a
well-ordering on X. Let S = {0 = (w,, f,) | w, € X, fy € T, Im(f,) <
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wy}. Forall o € S and z,y € X let ryy, : T'— T denote the K-linear map,
defined on the basis Mon(7") by sending a monomial of the form pzw,yq to
a polynomial px f,yq for any p, g € Mon(7T') and fixing all other monomials,
not containing rw,y.

Let R denote the semigroup generated by the {r,,, | 0 € S,z,y € X}.
We call € X reduced if r(z) = x for all » € R. An ambiguity of S is
a 5-tuple {o,7;7,y,2} € S* x X? for which w, = zy, w, = yz. Such an
ambiguity is said to be resolvable if there exists r € R such that r(f,z) =
r(zf.). The following Theorem is a short version of Bergman’s Diamond

lemma.

THEOREM 1.9. ([11], Theorem 1.2.) The reduced elements form a K-
basis for the quotient algebra 7'/ r(w, — f, | o € S)r if and only if every
ambiguity of S is resolvable.

2. Non—degeneracy Conditions and PBW Theorem

Again, let T = K(zy,...,x,) be a free associative algebra and < be
a fixed monomial ordering on 7. For fixed n, define the set of indices
Up = A{(i1, .. yim) | 1 <y < ... <y <n}.

Suppose there are two sets C' = {¢;;} C K* and D = {d;;} C T, where
(i,7) € Us. We construct a set F' = {f;; | (i,7) € Us}, where
(%) fii = 2@ — ¢y - iy — dij,

Im(f;;) = zjz; and 1lm(d;;) < z;z;.

It means that, in particular, polynomials d;; can involve terms z;x; for
7 > i, that is nonstandard monomials. But this situation can be always
reduced to the easier case by the following simplification procedure.

Simplification
Assume that there is a fixed well-ordering < with z,, < ... < 1, then
Tpo1Tp < Tp_oTp < Tp_olp_1 < ... < x129. Hence, d,,_1, consists of

standard monomials only. Next, d,,_3, can have only x,x,_; in addition to
standard monomials, but we replace x,x,—1 with ¢,—1 n2n_12, +dy—1,, thus
obtaining d’,,_s ,,, consisting of standard monomials only. Since V (i, j) € Us
Im(fj;) = zjz; and lm(d;;) < z;x;, after finitely many steps we obtain a set
F := F', where each of the d';; is given in terms of standard monomials.
That is, we can assume without loss of generality, that every d;; consists of

standard monomials only.
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After the simplification of the set F' by means of the procedure above,
we construct the two-sided ideal I = ¢(F)p C T.

For (i, j,k) € Us define the non—degeneracy condition for (i, j, k)
NDCji, = circjk - dijry — Tpdij + Cjip - Tidig — Cij - digy + djpx; — Cijcip - Tid .

LEMMA 2.1. F is a Grobner basis for I with respect to < if and only if

Proor. We will compute Grobner basis of I symbolically, but as ex-
plicitly as we can. Following the theorem 1.8, we have to consider all the
possible overlaps of elements from F'. It’s straightforward, that the only
nonzero overlaps can occur for the set of pairs {(f;; , fx;) | (4,7, k) € Us}.
Computing the overlap relation of (fj; , fx;) for fixed (¢, 7, k) € Us, we get

01 = Ik{L‘jZL‘i — Cijl‘kl‘il'j — xk;dij — ZEkZEjZEZ' + Cj]gCL’jCL’Z‘ + dijL’i =
= —cija:kxﬂj + Cjkl‘jl‘kl‘i — CBkdij + d]kﬂjl
The o0; can be reduced with fj; to
09 — Cjkil?jﬂfkl’i — cl-jcik:cixkxj — Cijdikl’j — l‘kdij + djk.ilﬁi,
where 05 could be further reduced with fz; to

03 = cjkcikxjxixk — Cijcikxixkxj — Cijdikxj — xkdij + djkxi + cjkxjdik.
On its own, we reduce o3 with f;; to o4 =
—CijCikl’i.’L'k.’L'j+CjkCikCij.’L'i.1'j$k+Cjkcikdijl’k—Cijdikl'j—l’kdij—i‘djkl'i—i‘cj‘kl‘jdik,
and, respectively, fi; finishes the reduction of o4:

05 = Cjkcikdijxk — xkdij + Cjk:xjdik — Cijdikxj + djkxi — CijCijL‘idjk.

As we see, o5 = N'DC,ji, and o5 cannot be further reduced with the
elements of F' without the more specific information on {d;;}.
If NF(NDCy;i. | F') # 0, F is not a Grobner basis of I. Hence the claim. O

LEMMA 2.2. Given a K-algebra A = T'/I with I = ¢(F)p, F satisfying
(%), as above. Then A has a PBW basis with respect to the variables of T’
if and only if F' is a Grobner basis for I with respect to <.

ProoF. If F'is a Grobner basis for I with respect to <, the underlying
K-vector space of A is generated by {m € Mon(T) | Im(f;;) does not divide
m} by the property of Grobner bases ([34]). We see immediately that this
vector space is the set of standard monomials, since no standard monomial
is divisible by Im(f;;) Vj > 1.

Conversely, assume A = T'/I has a PBW basis. Then we can interpret
it as a K—-algebra, generated by z, ..., x, with the multiplication
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(x) V1<i,j<n Tjrx; = Lt iz
cij - vy +dig(z), it <.

Since A is an associative algebra, we expect that the multiplication %

is well-defined, in particular, (zy * ;) * x; — xp * (x; * ;) = 0 V(4, j, k).

It is easy to see that this holds trivially for all the cases except that when

(1,7, k) € Us, which we analyze. A bit lengthy technical computation similar

to the one of Lemma 2.1 in this case delivers

(g * ;) *x; — T * (T *2;) =
= CirCik - dijr, — Tpdij + Cjg - Tidi, — Cij - digy + djpi — CijCir, - Tidjy =

So, N'DC,jj are identically zero in A. Hence NF(NDC;;x|I) = 0in T
and, by the Lemma 2.1, F' is a Grobner basis of I. Il

We formalize the lemmata in the following:

THEOREM 2.3. Suppose there is a set
F={fi|l1<i<j<n}CT=K(xy,...,x,), where

VJ > Z fji = a:ja:i — Cij . iL'Z'.CEj — di]’, cij € K*, dij & T

Define the ideal I = 7(F)r C T. Assume that there exists a well-ordering
< on T, such that Im(f;;) = x;z; and lm(d;;) < x;z;, then the following

conditions are equivalent:

1) F is a Grobner basis for I with respect to <,
3) The K-algebra A = T'/I has a Poincaré-Birkhoff-Witt basis w.r.t.

T1y.eoyTp.

REMARK 2.4. Some historical remarks can be found under Remark 3.8.

(1) If we assume that V ¢ < j ¢;; = 1 and d;; are linear polynomi-
als, N'DC;i becomes a famous Jacobi identity, written in the uni-
versal enveloping algebra of a finite dimensional Lie algebra. So,
non—degeneracy conditions are generalized Jacobi identities and the
Theorem above is clearly a generalization of the PBW Theorem
(123).

(2) At first, the non—-degeneracy conditions were written explicitly by
Teo Mora ([60]) but weren’t investigated further there and re-
mained unnoticed by the community for a long time (e.g. R. Berger
did not cite Mora’s work in his articles [9], [10]). We reported on
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non—degeneracy conditions already in ([48]), having found them
independently and used them for structural analysis of algebras.

(3) As for recent textbooks, Li ([56]) followed both Mora and Berger.
Bueso et al. in [14] wrote a whole chapter, where they applied Di-
amond Lemma directly to relations like in the set F' above, which
resulted in the equivalence of the condition zy(x;z;) = (rrx;)x;
with the PBW property of an algebra. These conditions were not
developed further and were not commented. The relation of Di-
amond Lemma to the non-commutative Grobner bases was not
mentioned.

(4) The equivalence 1) < 3) with several restrictions appeared already
in [41], [61]. E. Green in [33] (Th. 2.14) has proved it under an
assumption that d;; are homogeneous quadratic polynomials.

(5) From the proof of the Lemma 2.2 we extract another characteri-
zation of PBW property, particularly simple and especially useful
for computer algebra systems. Assume that the multiplication %
(from the Lemma) is implemented on A = T'/I and lm(d;;) < z;z;.
Then we can say whether A has a PBW basis w.r.t. zq,...,x, by
directly checking, that

V1<i<j<k<n (vp*z;)*xx;—xp* (z;*x2;) =0.

Some people before used this ”formal associativity” for extract-
ing a kind of non—degeneracy conditions for special algebras (among
others, [40]).

2.1. Types of Degeneracy. What happens if we are dealing with an
algebra, where non—degeneracy conditions do not vanish?

Consider an algebra A, resembling the universal enveloping algebra of
a finite dimensional Lie algebra — that is, for all i < j ¢;; = 1 and d;;
are linear in generators x;. Suppose that non-degeneracy conditions do not
vanish. Then, there is no Lie algebra g, such that A = U(g), since otherwise
the Jacobi identity would not hold in g.

Let I € T'and A = T/I be as in Theorem 2.3. In general, if the non—
degeneracy conditions in the algebra A do not vanish, then I is given not
in its Grobner basis in 7'. Speaking in the language of generators and rela-
tions, we observe the following phenomenon — there are more