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every solution of the word problem far a class of
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TN TREBLETION

This is an informal prefiminary report on a research on the
interrelationship between the undecidability of the werd problem and the
technique of solution for such probiens provided by Buchberger method
of Grobrer bases [BUCLEUC2,BUC3], that 1 aa pursuing since Summer 1985
and on whose leading ideas 1 first related in my communication ai the
Grenoble RRECCS meeling
8s it is known, Buchberger gave an clgorithn to solve the ideal
nembership problem for polynemicl rings, end so the word problem for
commutotive semigroups.

R proposal o extend Buchberger's techniques to non-commulative
ring theory was first put forwerd by Bergman [BER), which aleo
introduced the generclisotion of the concept of Grabner bases to
non-cosnutative pofynoniel rings and propesed o completion techaigue to
conpute them. While looking for o suiteble setting fo understand the
behaviour of Grébrer and standerd buses in 6 non-noetherion sttuation,
I olso was led to consider the thecry of Grébrer boses for
ron-commutotive pelynonial rings [UOR],

fergman showed that the knowledge of o firile Grébrer besis for a
{(two-sided) ideol T in o non-commutative polynomial ring cllows to solve
the ideal membership probiem for I; therefore the undecidability of ideal
menbership problems cen either mean, fer a fixed ordering, that there
are finitely generated ideols whose Grébner basiz is infinite, or that
there are finitely generated ideals whose Gribrer basis is finite, but
rot computable.

The main result of [MOR] was to rule sut the second possibility
{which is apparently allowed by the original completion technique by
Bergaarn), giving @ variant of the Buchberger-Bergman procedure which is
guaranteed to halt returning o finite Grébner basis of o finitely
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generated ideal (w.r.t. a fixed ordering), if and only if such a basis
exists,

Therefore, giver a iwo-sided ideal I, one can choose a semigroup
ordering, apply the procedure described above to (hopefully) get a
{inite Grébner busis of I; in case of success, one is able to solve the
ideal membership problem for I

However, since the semigroup orderings on o free semigroup are
infinitely many, and since such an approach restricts the choice to, at
most, finitely mony orderings, it con be scarcely inlerpreted os a
"powerful” technique to attack ideol membership ond word probleas; in ay
opinion, it is not superior to ony "trigl-and-error” approach.

The scenario would be different, however, if one could apply the
procedure above, in some paraliel way, to try to compute Grébner bases
for an ideal with respect to infinitely _mgny orderings. The idea is net =0
paradoxical as it could seem, in view of the resuits which Robbiano and
myself were developing at the some time, obout the so-called Grébner fon
of an idect in o {commuiative} polynonial ring [M-R}, which actualiy allow
te produce an glgorithm to compute the Grébner bases of an idecl w.r.i.
alt the {infinitely many) orderings.

This was the starting point of my research, which is two-fold,

One of its airs is to give a "powerful® procedure, using
Srdbner-basis techniques, o atlock the ideal membership problem for
non-comrmutative paolynomial rings.

In this direction, I was cble to devize a procedure, which, given a
finite basis of an ideal I in the non-commutative polynomial ring, halis if
and only if I has a finite Grobner basis w.r.t. some ordering in o set 0,
which satisfies the following property FOR:

there is an aigorithn to decide, given a finite set § of
inequalities in a free semigroup, if there is an ordering in B,
salisfying alf inequalities in 0.
{in the follosing I will refer to this procedure oz the "Gribner
procedure”).

It is not difficult to prove the existence of infinite sets of
orderings satisfying the FDR property, so thai the power of the
proposed method i only finited by the ability of producing larger and
larger sets satisfying the FOR property.

However, notwithstanding how powerful this method can become, word
problems are still undecidable.

1 have the folloming picturesque interpretation of this: while ysu can
try hard to moke your Grébner tool for solving word problems sharper
and sharper, so to become able to dispose of more and more ward
problems, there is, lurking someshere, an "undecidability bug” which
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suentually will meke your tool a rusty, useless one.

The second, and still largely unsuccess{ul, ain of my research is to
kunt the undecidabilily bug,

My 1985 result is surely a first step of this hunt: if an idedl has a
firite Grébaer basis w.r.t. some ordering < which is computgble in the
sense that, given two words, it is possible to decide which is larger
wr.t. ¢, then ils ideal membership problem is soivable. In fact, this
suggesis a possible hide for the undecidebility bug: are there
non-computoble orderings?

However, the Grébner procedure seems to have the useful feature
of bypessing questions of computabiliiy for the orderings inveolved. By
anology with the commutative case, one reglizes that in order to get all
finite Grobner bases of o finitely generated idea!, one does not need io
deal with alt orderings, but just with o subset which is dense in some
topological senze. So we spot another place where undecidability could lie:
is there a dense set of orderings which still hes the FOR-property?

fiszume the answer is positive. Then, with no regerd to computability
questions on orderings, we could conclude that if an ideol has unsolvable
memebership problem, then necessarily alf its Grébner bases are infinite,
Thiz seems to imply (quite unbelievebly) ihe existence of a purely
algebraic interpretotion of undecidability as a conseguence of
non-noetherignity. This is not true however, since, to reach such a
result, one should be wiling {0 go a step further ond aciually assume
rot only the existence of o sei which iz dense and saiisfies the FOR
property, butl aiso that the Gribrer procedure is universal, in the
sense thot

if an ideal has solugbie ideal membership problem, then its

membzrship problem is solvgble by the Grdbner procedure
Otherwise, one is still left with the problem of recognizing those ideals
with infinite Grdbner bases but soluable ideal membership problem, from
the ones with infinite Grobner bases ond unsolvable ideal membership
problem,

Part I of the report deals with the Grébrer procedure to attack
ideal membership and word probiems in the non-comnutotive case,
The basic notions on semigroup orderings are reviewed in section 1; the
ones on Grébner bases in section 2; the procedure devised in [H0R] is
presented in Section 3. Section 4 ig devoted to show that clse infinite
Gribner bases can be used io sclue ideol membership problem {this
shoking somewhol the possibility that the Grébner procedure be
universal), Section 9 shows that computing & Grébner basis for just one
ordering iz sufficient to solve the ideal membership problem for
B-dimensioncl idecls, riving also an application to requiar languages; the
idenl membership preblen far (-dimensional ideals transiotes to the word
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problem for finite senigroups, for which a Tedd-Coxeter procedure is
clready knowm.

Finally $ection 6 presents the Grobner procedure, alloving to compute
finite Grobrer bases for o set satisfying the FOR-property

Part II decls with the hunt of the undecidebility bug and reports on
the few conjectural results glready discussed above.

Both parts of the report clearly peint out that a betier knowledge
of orderings on a free semigroup is required. The few things I know on
the subject are listed in the final part of the report.

Homely, Section 1 shows that ali archimedecn orderings are
refinenents of partial orderings obtained by imposing o degree on the
variobles; then we present an infinite sei satisfying the FOR property.
Section 2 deals with the few non-archimedean orderings I know of.
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i & GHOPHER BREIS PROCEOUAE FOR THE WORD PREBLER
1 ORDERINGS ON A FREE SERIGROUP

11 Let 5 denote a free semigroup generated by a finite alphabet A

H mn oore in 5, we will say m is o nultiple of n {r divides n} iff there
are I,r in 5 =t m = Inr,

He will soy w is contained in n (n gontaing m} iff there are Uy et

_A._
Uyl € 5 st om= Ul 132 0Ly 0,0 B

L2 A gepigroup ordering < on § is o total ordering s.t.

for alf mm,moin §, on <Cmy implies mm, <mE, and ®y 0 <R
R semigroup ordering wili be colled pggitive iff 12a for all m in 5 or
eguivaienily iff m<nmnn ond m<nm for afl mn in S

13 In contrast with the commutative case, Dickson's Lemma [DIC] doesn't
hald in S; namely, the following iz on infinite sequence {m:i>8) of

elements in the free senigroup generated by {ab}, such that for all i,j,

i#j, m is not a multiple of w2 et s:=ab, t+=ha, u=bb and let

E i)
m =gt

Howsver, o wecker version of Dickson's Lemma, which holds in o more
aenerol algebraic setting, is true; it is known as Kruskal's Theorenm

[KAL, but prabably it is to be attributed to Newman [HEU]

1.4 LENMR If Ry grocslljoe 18 G infinite sequence of elements of S, there is

M st for every [>N, there is i<H st. m, is contgined in iy

L5 COROLLARY If < is o semigroup erdering, the following cenditions are
equivalent:
il < s o weli~erdering
< is positive
Jfor ali m,n€8, if »is contained in n, then msn
Proaf: )= Bzsume there is n€S st n<l Then w.::m?;sw:w:?. s an
infinite decreonsing sequernce.
fiY2ili} Assume n,n €5 are 1. n is contained in n.

Therefore there are Upsronslyy Bpyeme gl € S st. M= Uty 0= U,

Since w2t for every |, then m<n.

n
ilij=i} Assume < is not g well-ordering; so there is an infinite sequence

My oMy 3.8 TOr euery i<, T By the Lemmo aboue, there are i,

i<j, sl m is contained in M 50 B <m0 contradiction.
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2 GROGBRER BASES FOR HON-CONNUTATIVE POLYHORIALS

2.1 K[S], K u field, will denote the ring wmhose elements are finite linear
combinations of elements of 5, K[S1={Z, ¢, m:c,eK-{0}, neS}, with

nultiplication canonically defined in terns of the semigroup nmultiplication,
He will call polynenials the elements of K{S], terms the elements of &
Ue con interpret ¥[S] ae the set of all applications from § to K which
are 0 ae if §€KiS], me 5, {f,m) will denote the walue ot m of the
application f, ie. the coefficient of m in f; Supp(f} will denote
{meS:clf,my=0}.

2.2 Let < be o semigroup well-ordering on 5.

If f= Mwu_u e;m, ¢, €K-{0}, m. €S, m >m, > >m, define N (f)=a,
ic{f) = c,; N{f} is called the maximal term, end lc(f) the leading
coefficient, of f w.r.t <

if 6 cK[8], define HAG) :={t{f):fe6-{0}}, and remark that, if { iz a

iwo-sided non-zero ideal of KIS}, N A1) is a two-sided ideal of §.

»
1

For the sake of simplicity, we wifl write (-} instead of N -], when there

iz no risk of confusion,

Ue say that f € K[S]-{0} has o G-rspresentation in terms of F iff:
N f= Mﬂ.ui a b fir, a ek-{0}, |,r €S, fi¢F.

23 n(Ey 2 ULy for all i

2.3 PROPGSITION Denoie by H(I) ihe K-vector space whose basis is
S-1(I). Then for all f e &[S] there is a unigue ge H{I} st f-gel
Proof: [MOR] Prop.3.4

2.4 Given on ordered peir of terms, (m ,m,) ¢ 52 the sel of motches of
(m,,m,3, denoted by Mim 0.}, is the finite set of afl 4-tuples
Uglyurpary) € §* st.either:

Dl=r =t n=lrr,

2y L=ry=i m,
330 =
4)h=r =1, L=t r =], there is we S st w=l, mo=ur
If 6¢cKIS1-{0}, the set of S-polyncomicls of © is the set
SP(G) = { f e K[S]-{0} :f =le(g,) b, g, ry ~lelg, )L, g, ry, for some

(o ory) € Mg, )1, )), for some g,,g, € G}

lymyr

» Py, there is B¢ S st w2, my=hw, my=wr
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2.3 THEOREN Let I be a two-sided ideel of K[S], G ¢ I-{0}. The following
conditions are equivalent:
13 M{G} generates 1i(1)
2) fe1-{0} iff f has a G-representalion in terms of G
3} G is a besis of 1 and for all f € SP(G), { has o G-representation
in terms of G.
fi =21 G satisfuying any of these conditions is called a Grébner basis of I
{wrt, <.
Proof: {MOR] Th.3.3

26 Let .0, €K[53-(0}. Let m,.,8 €5 be such that m, € Supp(f.} for
i=L. ond let = o_:.d._ﬁ.w.

If g,heKIS], wve say that g reduces to h art. [:= (e imy e, ),
denoted by g-* h, iff there exist L,r ¢S ond i ¢ {1,.,r} with

Loy r € Supp(g) st he=g- (/g elh, In P If, r

Let =*. denoie the transitive-reflexive closure of - we say b€ K[5]
is npoetherian iff

is I-irreducible i k=¥ g inplies g=h; we say -+,

for each infinite sequence {gg,..,q,..) 5.1 for each i, 8.y .0, then,

for N sufficiently large, g, =gy if 2R
We denote by RED(f,..fin,.,m g} or by RED(T; @) the set
{k € X[S): fisIzirreducible ond g—+* b},

27 LEMAR Let 1,6, € K[S]-(0); m,.,m € S be such that m; € Supp(f.).
Let T "uﬁt.é{at‘.;aﬁr I be the two-sided idenl gemerated by Hysenfyd,
8 be the set of all semigroup well-orderings < s.i. m =N (L) for every i,
nad let g € K[S) Then the following hald:

B If ¢ REDT; q), then g¢}

23 I 0= 1{ e BEMI; g), then Supp(fin (my ey d = .

3K 028, then =%
I 0«8 and {f,,., §} is o Grébner basis for I with respect to an
grdering in B, then the following hold:

4} for each g, RED(T; g} containe a unique element which we wil

denote by red(T;g)

%) geliff redT;gl=0

A) :t..: mL is a Bribrer basis for I with respect to each ordering

in {0
Procf: 1} and 2} are obuious.
3) Choose an oerdering < in G.

is noetherian.

AR
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Rssure there are gp,..g,.. € K[S] st. for each i, g, = Since

r S
fllg)2M(g,,) for alt i, the assumption implies that there is Ne N,
My €S, st Mlgd=ty for i>K Let then b, =g, - " (g0 it is easy to
show that for each i, FlJ.F.l.
By the same argument, there is Ne€W, M € §, M <My, st Mh)=1, for
i*H This allows to proof the claim by an inductive argument.

Let now < be a fixed weli-ordering in G, a.t. :t..: Dw is a Grébner
basiz for [ wnt, <
4) if hyh, € RED(T; @), then h, -h, €1 and is irreducible; therefore, if
hy *hy, one hus M (hy -h,) ¢ (m,n,m) =11£1), @ contradiction.
3) If g€l and B*h=redlq), then h ¢l So Nih) ¢ (n,. 0 )=N1I}, a
contradiction,
6) Let < be a well-ordering in 0.
Let me N (1), g I* be s.t. N.lg)=m
If, for eack i, m is not a multiple of N.(f.), then if h=red(r;g)
{RED(T; g} consists of a unique element because of 4), one has
m € Supplh), so that red(T;gl+0. This is in contradiction with 5.

2.0 OEFINITION A Grébner basis G of 1 wret. <, is colled reduced, if:
13 {1t {g}:g €6} mininally generates It (1)

21 lefgl =1 for svery g€ b
3 g-n(g)e NI
Reduced Grobrer bases of 1 wrt. < are unigue.

3 GROBHER BASES AHD THE WORD PROBLEN

Rs it is well-knoan, the word problem for commutotive semigroups has
been effectively solued by reducing it 1o the ideal membership prablem on
the polynomial ring end using Grébner bases to solve the latter.
Analogous stotements hold for the non-commuigtive cose, os follows.

31 UORD PROBLEN Given g free non-commutotive semigroup S, a finite
subset £ € 5%, m,,m, € S, decide whether {m,,m} is in the congruence

generated by £,
3.2 TDERL HENBERSHIP PROBLER Given an effective field K, g {ree
non-cemmuictive semigroup S, a firite subset F C K[S], f ¢ KIS}, decide

whether f is in the ideal generated by F.

33 RENMRBK The word problem is reducibie to the ideal membership problen



T MIRA Grobner bazes and the word problem January 1987 9

os folloys: et S, E ¢ &2, mg, My € 5 be given; let K= Z,,
F={n, -ny € KI8Tty myd € £}, f = m, -my. Then (m,m,} is in the

congruence generated by £ if{ f is in the idew! generated by F.

3.4 BEfIRRK Giver an effective field K, a free non-commutotive semigroup
5, a finite subset F ¢ K[S], the idedl membership probiem is solvable for
each f € X[S], if a finite Grébner bosis G for the ideal generated by F,
vt some well-ordering <, is compuiable, and, mereover, cne is able to
compute 11.{q) for all g€ 0,

Hamely, once G = Et..cmL hos been conputed, let
T o= mm

=

oGy, 7, Mg, 3} and apply the following algorithm:

g o= f
Hhile there is m ¢ Suppth), Lr ¢S, ie{l.t} st n=if{g)r do
h=h - cthn) ielg)y " Igr

By the results of Lemra 2.7, this clgorithn terminates {since ¥ s

noetherian) and compuies red{T,f); so f is in the ideal generated by F
iff red(I',f)=0.

3% However, os it is wel-known, the ward probiem for non-commutative
semigroups is undecidable.
This is related with the fact that Bickson's Lemnc doesn't hold in 5,
which implies:

i) the existence of ideals which are not finitely generated, e.q. the
idecl generated by {m 11> 0}, where m, is defined as in 12,

2) ond so the nor-noetherianity of K[5]

3) the impossibility 1o rule the existence of finitely generated ideals

I whose Grébner bosis for o fixed ordering is infinite, fe. =t N(2) s
not finitely gensrcted.

Rztually, one can groduce examples of finitely generated ideals I s.t. for
some orderings <, MA1) is finitely nenerated, while for other orderings
<, M) is not finitely generated ([MOR} Ex.3.02; cf. alse Section 4}

Loing back te Remark 3.4 we can conclude, by the undecidability of the

word problem, thot there are finlte sete F st for any well-ordering < it

iz impossible to compute o finite Grébner basis, wrt, <, of the ideal
enerated by F.

nee < s fixed, if < is conputable, {by which e mear thet given mp €S,
it i= pessibile to decide whether m<n), this could happen because of two
very different reasons:

1} there are firitely generated ideals which have finite, however not

4
g
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computable, Grobner bases.

2} while finite Grobner bases are computable, there are finitely
generated ideals which don't hove finite Grdbrer bases.
The foilowing Lemno allows to rule cut the first case,

36 LENNR Let T CK[S] be o tuo-sided ideai, < o semigroup well-ordering;
let G, <G, C..CG <. be a sequence of finite sets, § ¢ 1-{0}, 6, (and
so each m_“_ a basiz of I at. for eoch n, for sach f e wﬂm:u‘ f has a
G-representation in terms of G ,,.
then for each f €1, there is u =.t. { has a G-representation in terms
of G,

u

Proof: ¢f. the proof of [NOR] Lenma 3.6

3.7 COROLLARY Under the same assumplions of Lemma 3.6, if I has a finite
Grobner basis wrt <, then there is n =t m: is a finite Grobrer basis

of T wrt, <.
Proof: of, [MOR] Lenma 3.6.

3.8 Biven a finite set F C XS], and o computable semigroup well-ordering
<, the following procedure terminates iff the ideal generated by F hos o
finite Srdbner basis wrd, <, in which cose it returns such a basis G
(cf. [MOR] 3.6}

ﬂ"um.” _.__ ..H_u.” m~ w
While H_ = 8 do
B, = 1{f.al Ly () ryolrg ) € HORCE DM g3, | ¢ 5,
I_._i =4
Uhile § = 5 do
Choose (f f, | ,r .)€ B,
B, =B, - {f . drylpny )
f=ielf M, ) vy - lelf 1 f,
While thereism € Supp(f),l,r€S,g¢ G UH .,
st.m=1M(g) r do
fo=f-c{fadiclg)Ige
If f+0 then

I:i = m:ﬁ U {f}
m_._i = m_.. v zni

n =+l

_mmzsw

3.9 REMARK Another consequerce of Lemma 3.6. is that there

e

a
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zemidecizion procedure which, given a finite set G =1{g,,0,} and a

polynomial f, helts if and enly if § is in the ideal generated by 6.
Hithout entering in detail, it con be described as follows:

Choose a compulobie semigroup well-erdering <
Gy =6
n =
Hhile f has no G-representation in terms of G, de
compute mai s.t. for all fe m?”m:r f has a G-pepresentation
in terms of S

n =+l

Obuiously, there is another senmidecision procedure for the some problenm,
namely:

Fe={f}
lihile 0 ¢ F do
=F
= B
hite H= B da
Choose hefl
He=H-{h}
For all t ¢ Supp(h), g6, ne Suppiqg) do
I there are LreS: t=impr then
R =h-clht)elga)'igr
Fs=Fu{k'}

K
F
|

So it could be interesting to compare the performances of hoth
procedures on some examples.

4 SOLUING UBRD PROBLENS UITH IHFINITE GROBHER BASES

The following is a variation of [NOR] £x.3.i2, which we use beth to show

an cpplication of the results in 3.6-3.5 and to prove the claim of 3.5. it
is more complex than the criginal result, in order to be on instance not
only of an ideal memberstip problem but also of o wenrd problem,

4.1 Let A={a,b,c,d,e,f}, 5 be the free semigroup generated by f, [ be
the ideal in K[S] generated by ﬁ.t..;«m? where {, :=adc-e, f, = ch-bc,
*w = dh - hd, ma = ab - aad, *m =g - f, *m = fh - ge,
Let deg:S > M be defined by

deg(a) = deg(c) = deg{d) = deg(e) = deg(f) =1, deg(b) = 2,
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and, inductively, if w€S, w=w'x, with w' €5, x€h,
deg(w) = deg{s') + deg(x).
Let < be the total ordering defined by
®<n iff deg{n)<deg{n) or degim)=deg{n) and a is lexicogrophically
less than n
It is clear then that < is u semigroup well-ordering and that N(f )= adc,

H(f,) =cb, 1{fy)=db, f{f,}=ab, I(f)=ac, N, )="fb

4.2 tet g =a"'d™ - ebl, for i2l; then Mg,)=a™d"'c.

Let Gyo= {f . fc}, 6 =08 Ulg:1cicnl, G=6,U{g: i}

Remark that :mz:m?:_:muvu?”g_____w“:.. :ﬁzﬁmvh:ﬂﬁu:ca._,r_ux;
:SQNW_‘E@::u:m,.:afu_‘___ux_ for nl, while the other sets of matches

are empty.

flso the folloving equalities are easy to check:
Q*M|ﬁmwu?|ovnn*m+omr&unu*m-?n,,nmlngﬁ_nlmafn« mf
adf,-f b=eb-adbc=-afyc+eb~abde=-af,c-f,dc+eb-a?d?c=

)

4
=-qfze-f, do-g,

ol mn..._ AN 8, b= m_w_._.v_ . D:i&aiw_ﬂ

™1™ be =a™d" f, 0 o™ d"bde=E

GFipgtlo = R ._.A anin + n=+wa:+mn

so that
_u:+~ n__._+m f

0 :Q=+._ n_d. mw n_:sd._u + Q_._+_ U&=+_ c

n+l g |k FR 11 n+l . _
@ g f,dc-a"{,d c-g ..

Therefore we can conclude that easch element in mﬂmzu_ has a

Mlm.:wnlM

i=0..n

G-represeniation in terms of G_,; also each element in SP{(G} has a

het!
G-representation in terms of G, so that G is aa {infinite) Grabner basis
of L

4.3 Let me§, d=deg(n}, 6(d)={geG:deglg} < d); it is abvious that the
unique element my in H(I} st m-m; €I, can be obtained by reducing m
using only the basis elements in G{d).

Therefore, once an infinite set is proved io be a Grdbner basis, under
suitable assumptions it is possible 1o use o finite subset af it to solve
word problems by the technique of 3.4,

The example however is not conclusive, since it is easy to produce a
different seaigroup weli~ordering, wrt. which [ hos o finite Grobaer
basis.

44 In fact, let < be the total ordering defined by:
m<n iff length{m) <iength{n) or length{m}=length{n} and m is
antilexicographically less than n.
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It is clear then that < iz o semigroup weli-ordering and that Ervnnmn..
106,) = be, 0(f,)=bd, M(f,)=aad, H(fy)=ac, H(f,)= e,
Riso, alf the sets of matches are empty, except BT, JN(T, ) = {{a,Lc)};

gince f- _.ao has g L-representation in terms of mch then mo is a

Grébner basis of 1

5 THE ZERD DINEHSIOHAL CASE AND AN RPPLICATIGH TC REGULAR
LAHGUAGES

There is a case in which the word problem is known to be solvable, the
one of finite semigroups, in which for instance o word-problem algsrithm
dependert an the YTodd-Loxeter algoritha for finite semigroups [T-€,HEU]
can be easily devised.

In ideal theoretical terms, this corresponds fc solve the ideal
membership probiem for g O-dimensional ideal 1, ie on ideal st K{S)/1 is
a finite dimensional K-vector spoce.

5.1 PROPBSITICN If I is O-dimensional, then for svery semigroup
well-ordering <, [ has o firite Grébrer basis wr.l. <

Procf: Becouse of Prop. 2.3, 5-M(1) is o basis of a K-vector space
isomorphic to K[S1/1, so it is finite

Therefore there is d st for all m €S with length(m):d, then m ¢ H(I).
Therefore W) iz finitely generated.

5.2, 1f 1 is D-dimensional, then for every semigroup weli-ordering <,
procedure 3.8 iermingtes returning finite Grobrer basis of I, wrt, <
3.3 There is an interesting application of km.m to regufer languages.

Let £ be o finite set of pairs in S%, F be the guotient monsid of 5 with
rezpect le the congruence generated by E, f: 1=2F he the cononical
projection, flzsume F is finite, and let T be a finite subset of §,
Y:=1(T), which is a subset of F, L=t {U)

He reccll thol L is said a requlor_language.

5.4 PROPOSITION Given m€ S, it is possible to decide whether me¢ L,
Eroof: Let < be any {computable) semigroup wefl-ordering on § and K be
ar. effective field.

Let [ be the tws sided ideal in K[S] generated by ?Mszw.. ﬁ:t:memw.

Since F is finite, | is a zero dimensional, so thot it has g finite Grébner
basis Am,_...am_L with respect to <, where each g; is a difference of two
elemenis in S.

Let T ={g, e 8pltlg 1 ligy ), and let U = {ped{Tin} ¢ neT).
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Then, under the isomorphism between F and S5-I}, U' and U are
isomsrphic.
Finally let meS; let a'=red(I';n); cleorly, nel if and only if a'elf

6 # PARALLEL GROBNER BASIS PROCEDURE

Obuiousiy, choosing a fixed seli~ordering and applying Procedure 3.8 gives
very low chances (actuglly a zero probability) to solue a word problem,
and this doesn't change, if Procedure 3.8 is applied, in parallel, for
finitely mony well-orderings.

In the commutative case however, the following result holds:

6.1 THEORER Let [ be an ideal in K[H,,.,A 1 Then there are finitely mary
finite sets G,,.,6, st for each term-ordering <, _u.M is a Gribner basis

of T wrt. < for some i€ {1t}
Horeover, given a besis of 1, it is possible to compute GyseBy, and a

ety 8L

for each i, if < is on ordering in ﬂ._ then md. is the reduced Grébner

partition of the set of term-orderings into disjoint subsets T

basis of [ art. <
Proof: it is a restatement of the results contained in [11-R1

6.2 In analogy with this result we would like to give a procedure which
could be described as a parallel version of infinitely many instances of
Procedure 3.8

In erder to do so, we need the following:

6.3 BEFINITION Given o set O of semigroup well-orderings, and a finite
subset B of 5%, we will denote by FDS(0,0) the set of all orderings < in
B st for every (nn) €0, mop,

R set O of senigroup well-orderings is said to have the FOR property
{or to be an FDR-set) if, given o finile subset B of 52, there is an
algorithm which decides whether FBS(8,0) is empty.

(FOR doesn't stund for Franklin Delane Reasevelt, as usual, but for
finite disequation recegnizability)

6.4 LEMNR There exists on infinite FOB-set.
Proof: see IIIL1 and 2.6

6.5 He dare now ready to present a procedure which operates over o
finite set {f,,.,f.} CKIS] and a FDR-set O of semigroup weli-orderings,

holting f and only if the ideal (f,,...,f ) has a finite Grébaer basis uith

respect to some {unspecified) ordering < in B, in which case it returns
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such a Grébner basis G, and g} for each g €6

Such a procedure is a non-comnutative variant of the algorithm
presented in [#1-R], ond can be interpreted os running in peraflel o
finite, however unbounded, number of instances of Procedure 3.8,

6.5 NHGTATIONS Al over the procedure, the foliowing notations are used:
and H are finite subsets of K[S]- {0},
a finite subsel of §,
a finite subset of 52,
s a finite subset of KISI-{0}x$, st. if (gm) <y, then
m € Supp{q}; when we need, we will use a fumnctional notation, denoting
wig) the {unique} m st (gn) €y,

B and C are finite subsets of (K[S]-{0} P %54,

Lis an array {6,HH,0,y,6,C) with its components of the type
specified above,

L is a list of such arrays,

g.f are elemenis in K[5],

l,r.m,n are elements in S.

o

&

G
1
E
¥

£.7 PROCEDURE

[BITIRLISATION OF THE COMPUTATION LIST]
L={#.80888%5)

—ubm\{_.. = ﬁwuw
For i=l.3 do
ro_n_ = u._._mi
wl_._m..:.. = _.g
For (0,8 104y,0,8)¢ L, do
G =G ulf)
For m¢ Suppif,) do
I =1ud{n}
F=0u{{mn)ine Supp(f) - {n}}

B

¥y U ()
For g¢6 do
For (i, b,r,rp) € Niylg)e) do
B=Bu imvﬁ._.w_._mm_vﬁjmx
If FOS{B,D')= & then
L= (6,0 00,5y 5 4)
L =appendll (LD

new new
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[COMPUTATION OF THE GROBNER BRSES]
mn = —lgi
Hepeat
{G,H,1,0,%,B,C) = first(L)
i = pest(L)
If 6=z 4 then
Choese (g,,9,:,,b,r; ;) € B
B =B- Aﬁm_hmw.._t_w..a,_..w,mx
f=lelg)l gry -lelgdbg,r,
Bhile thereis m € Supp(f),,r €5, g€ 6 UHst.n=1y(glrde
fo=f-c{fa}{clgy(a)})y lgr
If {0 then
Y =Hu{f}
For n < Supp(f) do
M=t in)
B =D U {{mn):n € Suppff) -{n}}
¢ =y Um0}
For geGUH do
For (1, b,»,r,0 € flyigln) de
€= C U gl ey )
If FDS(0,0') # & then
L == (G,H',1',8 80"
L = append{L,[L]1}

i

else [6=4]

if H= & then
G'=GUR
H =
B'=C
C=4
L = (6 HM,B y, 68,0
L = append{L,[L])

until 8= 4 and H=4

6.8 To prove the correctness of the cloin done in 6.5, the following
renarks, which the readers can easily prove by themselves, are needed:
13 Al over the procedure, for each (G,Hi,0,y,B,C) €L, the following hold:

11} 6 and H are disjoint subsets of K{S]-{0}

12} v iz a bijection between GUH and I

£3) for all orderings < in FOS{B,D}, w(g) =% {g) helds for all

gebUH,
143 for each {g,,,; e 4,0 € B, one has that g,,g, ¢ 6 and
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pdpty oy ) € Mylg ) wlg, N
19} for each ﬂw__mn‘.m_‘mn_q.fq.wu €€, one hos thet g aBLf
and {1,bry.r,) € ily{g, ), wlg, )
16) let gy, € G and {1, L 0,0 € g ) ¢lg,)) be ot
{g,,8,40y b0y 2,3 4 B; let < be an ordering in FOS(O,0); then the
pelunorial

lelgyl; gy ry = ledg ) g, 0y
has a G-representation in lerme of GUH
17} therefore if B and H ore emply (irplying C iz eaply too), for
orderings ¢ in FDS{9,0), one hos that each polynonial in SP{G) hos
a G-representalion in terms of G, ie. B a Grdbner basis
2} Rt any calt of the repeat-foop, for each ordering < in 0, there iz a
unique (BHM,0%,5L) ¢, st ¢ is in FOS{O,B).
3) Since at any call of the repeet-ioop, the first elenent of L is
extracted, and rew elements are udded al the end of the fist,
termination of the procedure in cose of the existence of a finite
Grébner basie is guaranteed.

H g,¢H

6.9 RENARK Re it was remarked in 3.4, once o finite Grébner bosis G of
an ideal wr.t. a vell-ordering ¢ is known, we don't need the computability
of ¢ (ie. that, given b, n €S, we can decide shether mn), but just te
be able to compute N (g} for of g €6

Therefore, since procedure 6.7, in cose of lermination, returne such an
infarmation, corpulobility of the orderings in o FDR-set doesa't matter
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71 EBATECTERER
1 GROBHER DECIBRRILETY AND £SSEWTIRLLY IRFENETE IDEALS

it DEFIHITION Let F ¢ K[S] be a finite set, | the ideal gencrated by F.
tie say F {or 1} is Bribner decidoble if there is @ computable semigroup
well-ordering ¢ and o finite set G, X, G is a finite Grabner basis for 1
vt

1.2 DEFINITION Let F < KIS) be a finite set, I the ideal generated by F.
de soy F {or 1) is sgsentioly infivite if for olf semigroup well-onderings
¢, the reduced Grobrer besis of 1 et Cis of infinite cerdinality.

13 LENMBA If F is Grébner decidable then the idesl mesmbership problen for
1 is decidable.

Progl; there is a computeble semigroup well-ordering < such thot the
reduced Grabner bosis of 1 et ¢ is finite. So one hes just Lo compule
o finite Grébner baszie of [ wed, < by procedure 136 ond then appiy
olgeritha 12.4

14 FACT If ali semigroups weli-orderings are compulable, thea a finitely
generated idecl with undecidable idesl mesbership protien, is ezsentially
infinite.

Proof; Resume thot I is not essenticlly infinite and that oll semigroup
weil-orderings < are computable.

Since 1 ig not essentially infinite there is o semigroup well-ordering <
ond o finite =et G, s.t. G s o finite Grébner basie for I

Since ¢ is computoble, F is Grébner decidable.

2 DENSE SETS OF GRODERIKGS

2.1 Rs il wos regorked in 1.6.9, Procedure 1.6.7 cliows to skip questions
reloted to computobifity of erderings in an FJR-set. One con wonder if o
version of 14 is possible, where no unproved assumption on computability
of well-orderings are reguired.

By anclogy with the coenetotive setling, it is possible 1o produce such
on assertion, which, hosever, depends on another unproved assumplion.
The results of [H-R] in the comsutotive case can be interpreled as
{ollons:

2.2 THEDREN There is a set T of terr-orderings s.
i} given a finite set F C (0¥, it is possible to deside whether
there iz < in T s, a<n for all {s,n)¢F.
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it} for each ided! I, for each term-ordering <, there is «
tern-ordering <' in T, st. the reduced Grébner basis {g,,..q} of I

w.rt, <, is also the reduced Grgbner basis of [ art. ¢, and
_,_A_”m_wvu_._ﬁnmmw_ for alf i,

Proof: this i= a restotenent of the results contained in {H-R} For the
set T, one con choose those term-orderings which are compatible with on
assignment of strictly positive integer weights assigned to the variables
and where ties are broken by the rev-lex ordering; in other terms,
those term-orderings aesociated to arrays (d xm{..;uw_v where e, are

the cancnical basis vectors and d#{d,.,d.} with d, positive integers.

2.3 DEFINITION B szet O of semigroup well-orderings is said to be dense,
if for each ideal I, for each well-ardering <, s.t. I has a finite Grébner
basis wri. <, there is 0 wel-ordering < in O, s.t. the (finite} reduced
Gribner basis 6 of T wrt, <' is also the reduced Grébner basis of I
wet, <, and Mig)=1i.(g} for ali g¢ G

2.4 FALT if a dense FOR-set O exists, then g finitely generated ideal
with undecidable ideaf membership problen is essentially infinite.

Prosf: Assume 1 is o finitely generated iden, which has ¢ finite Grébner
bosis w.et. o well-ordering <, and let § be the reduced Grobner basis of
I wra. <, which is finite.

Since 0 iz dense there is < in B such that G is the finite reduced
Grabrer besis of I art. <, and M {g)=M.(q) for all ge&.

Since 0 is an FOR-sei, Procedure 1.6.7 applied o F and € will return
such a G, which cen be used to solve the ideal aembership problem of 1.
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I GROERTKER
1 ARCHINEDEAN ORBERIHGS

11 Let A ={a,,..a}, 5 be the free semigroup generatedby B and let <

be a well-ordering on 5; wlog, we can assume 4, <a,<..<q.

1.2 LENNA The follosing conditions are equivalent:
1) for each u,w €5, there is d e N s.t, u? o< 88

2} there is d€ M st n_f a, < g_m:

He say < is an archinedean ordering if any of the conditions above is
satisfied,

Proof: 231 for each k, 1<k<n, there is d(k} .t g_a?:m_AAg_%Ezh
d+1

since 8, <q, <a <a,
Therefore for each w there is d{uw)} € R s.t. n_m?.ua W< _u_a?.u:.

Let e be st. e{d{u)+i) ¢ dw); f be s, dlw)+ 12 {d{u); then
e < Q_mﬁ?uiu < ndq?qu <y < m_n_miul < n_ma?v <

1.3 LEMHMA If < is archinedean, then for each k, 1<k £ n, there
k)¢ R, s.t. for ol t,5 €
if 1d{k}>2 then m_mvﬁ:

if £dik)<s then gm <ay®.
Proof: for eqch { € N, there is efi) e W st Pmo.fnxf n%@:.
For afl i,j, since a,J#®<qli ¢ q Xe*1) gng g 1ed ¢ g, < @ U1 then
jelid cile(ji+ 1), e eli)/i s (e(j341)/]
If dlk) =lime(id/i, then, for all i,j, e(il/i s d(k) < Ce(p)+0)/]
Therefare, if td(k)>s then e{t}:s and mxﬁ Z:«S >a,% and i tdlk)<s

then e{t}+f¢s and o, vm_u.

@

£,
E

14 If < is archimedecn, we can then define g semigroup morphism
deg:S, = (B ,+}, by degla,}=1, deg(a, ) = dlk) for 1<k <n.

From now on, we will use the following nototions: < mill denote both an
archinedean ordering to 5 ond its restriction to $qs ond deg will
denote both the degree morphism on mz and its restriction to ms-t we
will denote b=a, a=a,, D=d(n}= degla }; for all tem, e(t) is s
g%ﬁcaoaf a,**1; bold lower case letters will denote elements in 8,10

bold upper cose leiters will denote elements in S,

15 LEMIA Let U=y 07w, 042 80y and let k=3, ,k(i). Then
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- K
Ug, U =u, Dlug,

there are Uy Yys Wy, U, =i, densting cn_ =y b*
then #; < U < U ond deg(l)=deq(ll,) = deglll ).
Progf: by induction on t. If 1=1, one just takes _._a = =c =1,

If t22, then U=u, bV Y@y, and it is sufficient to show the
thesiz for U U_A_wc_ g2,

If bu <u b then define B, =uyu, KD gng g o=y pHOKD

(otheruise interchange ¥, with W)

16 THEDREM Let < be an archinedeon ordering on S, and let deg be

defined as in 14; then deg(l) < deq{VU) implies W< U,

Prooi: lie can proceed by induction on n, since the case n=1is trivial
flssume, by contradiction, that there are W, ¥ st B< U and

deg{Hl) > deg(¥).

= k = h
Then, by the iemmo above, there are § = uy, b U, =y, By, ot

Ugzr ¥y
Uy <UCU <l and degllly) = deg(l) > deg(U) = deg(V)).
Therefore, for seme & >0

degluy, 1+ degluy, ) - degly )~ degl, ) =(h- k) T <=,
So, for some m€ B

n (degluy, )+ degluy,)) - n{deglv )+ degle )} v (h-K)D+ 2,
Applying Lemma 13 to U™ and 8™, one obtains

U=, bk uy, ¥=u, i v,
st DT PCU™<W and degil') = deg(U™) > degi¥™) = deg{¥*).
I u=y, gelrkd Uy, v v pelmh)+1 v, then u< U <U' <y, and, by inductive
nasunption:

m {degluy, )+ deglu )] - n(deglv )+ deglu,}) celmh) -e(nk) +1,
Thiz in turs implies

elnh-elnk)+1om(h-k)D+2
i,

mkO-2(nk)>nhD-elmh)+1
However, for all i, {e(iy+1}/i20 2 eli}/i, and s0 1210 -e{i) 20, giving the
desired contradiction.

17 Let T be the free commutative semigroup generated by A, end
denote by ab:S = T, the canonical semigroup prajection.
Let log: T — (M"+) be the semigroup isomorphisn which to each

comautative ierm nssociotes its wvector of exponents; the composition
legab: & = N will be densted also by iog.

Te keep notations simple, in the follosing, the term "partial ordering on

T.MORA Gribner bases and the word problem January 1987 22

mq_ﬁ_ em__m_egcmamnsounw;:n_ucmm:cmoamznmAoz ms_ mr
1) for m'm"Lr e, tn'r<ine if ard only if a'<p"
2) for each m €5, the set {n" €5: m is not comparable with m'} is
finite.

Rlse the term “total ordering on S " sill alvays mean o total semigroup

positive ordering on 5.

L8 LEMMR Let < be o partial ardering on $ and & an erdering on A,
define <_ to be the following relation ap S:
a.Aq " iff #'<n" or &' is nol comparable with m" and ' is less than

n" under the lexicegraphical ordering induced by s.
Then <’ is an ordering on S .

Proof: The only non trivial fact is that if L' m"r €S and o' €, n" then

;J,Aq_a,.? This is clearly true if o' <m", while, #f n' is not comparable

with n", then also in'r is not comparable with 1n"r, by which the claia
follows immediately.

1.9 RENARK By linear programming techniques, given a finite set of
wectors D C 2%, it is possible to decids:
1) whether there exists {ug,.,u )€ B {resp. (Ut J € 23 st

Tu g, >0, for each Aa_:..ﬁ_zu_ eD.
2) ghether there exiats {1y ot 3 € B {resp. (g ) € ) 2t
Tugd; 20, for each (dg,..d ) eD.

In the latter case, it is glso pessible te compute a naximal subset O ¢ o,
s.b if Zud 20 for each Et...asv €0, then Zu d =G, for each

{d;,.d € I

130 Let mé??..;c;u sith 4, € B and y, >0 and let 5 be oar ordering on
f,; the archimedean ordering < st., for v, ¢ 5,, denoting
{dyd, } = log(u) ~ leglu}:

v w iff Tu.d; >0 orZud =0 end v is grecter than w in the

lexicographical ordering induced by o
is denoted ord{ye)

1.1 PROPOSITION The sets of aorderings
AL :=AL(R ) = .?1&2:1..;::&3 g € fyu > 0,6 an ordering on 83,
It =1L(A } = {ord{{uy,.u }0) tu € N, u 3 0,0 an ordering on A}
are FOR-sets,
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Proof: Benote by e, i=1.n, the elements in the canonical basis of 27,
Given o finite set 8¢ 52, let D'= {logfv) - log(w): (v,u) € B},

B" = D"V {e, e b

If there is {up,.u ) in B {resp, ) s, Zu.d, >0 for oll {d,,...d)€D",
then, u, >0 for all i, end, for ail o, ord({y,,..,u ),5) € FOS(AL,D) {resp.
FESCIL, DY)

If there is no {uy,.,u ) in B (resp. 2) sd. Tud 20 for all

Mat...hm_v € 0", then FOS(AL,D) (resp, FDS(IL,D)) is empiy.

if there iz (ugw,u ) in B {resp. 2) s.t. Zud 20 for all (d,,..d ) el
fet 0") be o moximal subset of D' st Zud 20 for all {d;,..d}eD"
inplies Zu d; =0 for all (d;,..d) € 0; if D%y n{e, e} # B, then
FOS{AL,DY {resp. FOS(IL,D)) is empty.

Mheruwize let 0, = {{uw) eDiloglu} -togin) € 0. If there is 6 s.t. for
alt {uwi € By, v is greater than u in the lexicographical ordering induced
by o, then ord({u,,..uy )o) ¢ FOS(AL,D) (resp, FDS(IL,D)); otherwise
FOSCRL,DY {resp. FOS(IL,B)) is empty.

112 1t is possible to produce o larger FOR-set consisting of archimedean
arderings, by assigning to each varioble o degree orvay, instecd of a
degree, and agoin resoling ties by a lexicographical ordering.

2 SONE HON-ARCHINEDESRH ORDERINGS

21 Let fi={a,,.ul, B:=1{b,,..b } be two disjoint finite alphabets, let
5, be the free semigroup generoted by A, 3 be the free semigroup
generated by B, S be the free semigroup generated by AU G,

Let g5 - 55 be the canonical projection,

Let <, be an ordering fie. a total positive semigroup ordering) on Sa s
be an ordering on S

2.2 Defins RTIR PRy S 1 5 to be the following relations:
g U,V0e§, 4= uy A :mxm...c %oy cu"c, ¥y cwcm:.cmcmc

n w..w.:_
|n.
—hdgc.“ﬂr.}.. x*u{umm

51 With
them
i pU) =Xy Hy K, g ¥y V¥ = p(U) then UG U,UC U, 1<, 0, U<, .
if pll)=p{b} {ie. r=3s and #.=Y, for all i} then:
U< B f there is izr+l ot U= v, Hoj<h ud, v

U< U there is jorsl st U= v if j2i u <,
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B<, U iff
u,u, ..hc_‘ o A_“. VUV, O
Up Uy U B, SV Y,00, 0 and U<, U
u $ar b iff
Up Up e U Uy Q8595 0 U Vpyy, OF
AL PO T S L SR e and U <, U

If <, is denoted by oy, < is denoted by oy, then we denote ¢, <, <,

<4 resp., by He,,0p), rlo,,e), dife,,0 ), drie,,0p).

N.wmwo_uamscz G S Sgp Sy Ore osamlzmwo:m.
Proof: Let UM be in S and U LU

If p(U3 <5 p{0) then both p(B U < p(B U} and p(B U} <, p(HY) 20
UHGUH and UUGHRY,

If, instead, p(UH)=p(UH), let U= u, ¥, T N e

U=w, % 0,%, . UV v B w K e R ow L there s then | st

=y, if i<j and u; <. But then:

Ul=w X o5 .0 % 71_ ..:vf u, Y, U cu.-_ uj b LTI
HU=w. 48,8 .6 8 {0,  ul?ut u
so thet WU WY and
Bl= u ¥ u ¥, . u, ¥ Uty Y {u, @ )% w5, . % 5.
U= u ¥ u ¥, . u, {H.L Y Oy LU IS A e e B X w50
;g;nmnc_

fn cnalogous argurent holds for <, <, and <.

2 Uiy _{_.-_ Y Y cn Y

2.4 Let A, B be two disjoint olphabets generating the free semigroups
S, Sy 5 be the free semigroup generated by AU B; g,, O, =els of

orderings on $,, mmv resp.
Let us denote by
L(0,,0,) = (I{o,,0.}: o, €B,, 0, € G},
R(g,,8,) = {r(o,,0.): 0, €0,,0,€0.},
BL(D,,0,) = E:o%awv“ o, €0, 0y €0}
DR(0,,0;) = {dr{o,,0p): 0,€0,,0, €0}
)80, = L(0,,0,) U R(0,,0,) U mzr_ﬂapbwv U BR(D,,0,)
If mcue.;m?u is a sequence of disjoirt finite alphabets; 59 the iree
semigroup generated by mcuh § the free senigroup generated by the

union of the m@.m_. 82 o set of orderings on m@h denote
J(l | gy recursively by
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JO, 0% = g0, 0% 1), g90),

25 LEMMR 1f eack 0 iz a FDR-set, such is J = J(6,..,810)),

Proof: Given a finite 0 ¢ 52, if Py denotes the projection of S ente m@_

denote 0 = {(p (),p (¥3):(U,U) € B, p (W)= p (V).

fiso if U= ¥ u,¥, . :x.{x U, let Dsgn_ = U U U

1 0™« & and FOS(B™,0™} = &, then FOS(J,D}= 4.

If 0W=g oe FOS(0™ 0} = B, then for each (U,U) €D st. p (B)=p (B),

with =ty ¥ ou, ¥y u, You , U=u ¥, v, g Wy v, denote

:.chhu.“:h._cw.“: r(U0) = (u,v.}, d{BU) ={g (U),q (U}), vhere | is the

first index s.t. u g, i the last!index s.t. u v,

Let J' = J(0™,. 00D}, .
0, = {(1(0,8): {80} € 0,p (U} =p (U]},

0, = {r{8 850U,V € D,p (U) =p (U}},

B, = {d(B,U): (U,9) € D, p (0 =p, (U}, q (W) = q (U},

0y = (B85 {6,0) ¢ B, p (V)= p (), q (U) = q (U},

O = Ar(UU): {0V £ 0,0 (B =p (U), q {U}= g, ()3,

Ua=0yuly,

=D,UD,

If either FOS(J' D)+ & or _umm:._mﬁ“_uw‘ ar m_”_mz.b&“_um or

FOS{J",B, ¥ = B (which con be decided recursively), then FDS{J,D)}* 5;

otherwize FOS{J,0)= 8.

e Yty

2.5 Denote by Part(R) the set of oll partitions of the finite set A into
a sequence of disjoint non-empty subscis m:u,..._m_“_o.

For T += (R 8%} € Part{R), let JAL(T) = J(AL(AM),.. AL(AKDY), if
ko1, JRLUTT) = ALERY 5f k= §; JELO) = JOGAOY), L ILERWY), if ko1,
JILET) = IL(AY of k=1,

Let JALEA) = Up,yp JALCT), JILORY = Up 0 JIL(ID.

Ther both JAL{R) ond JIL{R) are FOR-sets,
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