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A New IMPLEMENTATION OF BUCHBERGER'S ALGORITHM

Riddiger Gebauer H. Michael Mdller

ABSTRACT: Buchberger's algorithm for calculating Groebner

bases of polynomial ideals is already implemented in some
Computer Algebra Systems. Our new implementation differs from
existing ones mainly by the criteria for omitting superfluous
reductions. Buchberger (19%85) recommended two criteria. The

more impoertant one can be interpreted as criterion for detecting
redundant elements in a basis of a module of syzygies, We present
a procedure for constructing a minimal basis of such module and
a simple but effective method for Obtaining a reduced, nearly
minimal basis., The criteria based on the latter method are
incorporated in a new variant of Buchbherger's algorithm. The
resulting implementation is compared with an existing one. The
paper concludes with statistics stressing the good computaticnal

gualities of this new implementation.
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1. Introduction

The concept 0f Groebner bases for polynomial ideals, introduced

first for performing algorithmic computations in residue classes

of polynomial rings by Buchberger (1965), now permits the algorithmic
solution of a series of problems in polynomial rings and modules

and especially the problem of finding all solutions ©f systems of
aigebraic eguations; for a survey see Buchberger (1885). Buchberger's
algorithm for computing Groebner bases is fitted for automatic

computation and is installed in nearly all Computer Algebra Systems.

This algorithm is roughly described as follows. Given a finite set

¥ of polynomials, calculate for each pair of polyncmials in F a

sc called S-polynomial and reduce it relatively to F to a pclynomial,
If this reduced polynomial is not O, insert it into F. At termination,

of the algorithm all S-polynomials reduce t¢ 0 and F 1is a Groebner

basis.,



The reduction of the S-polynomials is the most time consuming
part of the algorithm. Therefore Buchberger developed criteria
for predicting reductions to O, such that a lesser number of
S-polynomial reductions has to be performed in fact. There

are two types of criteria. The second one depends only on the

two pelynomials in question (their head terms have tc be without
common divisors), but it does not hold as often as the first one
and in most cases when it holds, also a criterion of the first
type holds., The first type depends on the pairs considered before.
This type is studied in detail by Buchberger (1979}, and the most
effective criterion of this type together with criterion 2 and a
strategy, which cancels superflucous elements in F, is presented

in Buchberger (1985).

The starting point for this paper was the observation, that Groebner
bases can be characterized using a basis of its module of syzygies,
as already remarked by some authors like e.g. Bayer (1%82), and that
reduction strategies to obtain reduced bases from a special basis,
the so called Taylor basis, give simpler Groebner basis tests, as
already stated by Moeller (1985). In this paper, we present two
reduction strategies. The first one gives only a reduced basis of
the module of syzygies (proposition 3.5), but the detection of
redundant elements is very effective. The second one (see 3.9}

gives a minimal basis of the module. Using the one to One correspon-
dence of Taylor basis elements and pairs for the S~polynomial compu-
tation, pairs satisfying a criterion of the first type correspcnd

to redundant Taylor basis elements. Hence the second reducticn



strategy {presented in 3.8} gives theoretically the best

possible criterion of type 1.

The first strategy is applied to develop a variant of Buch-
berger's algorithm. Redundant Taylor basis elements are detected
here by three simple criteria. It may happen, that not all
redundant syzygies are detected. But as the comparison to the
second strategy shows, this happens only in exceptional cases.
These three criteria are very similar to criterion 1 of Buch-
berger (1985). But they are in contrast to Buchberger's indepen-
dent ©f the succession of pairs considered before, and each pair
detected once as superfluous or already used as pair for the
S-polynomial is no more needed for forthcoming tests of a criterion.
This allows more flexibility and leads to a speeding up of the
tests of the criteria. The flexibility is also used to implement
Buchberger's criterion 2 in an optimal way. Very important for a
fast variant of Buchberger's algorithm is also to keep the set

' of polynomials as small as possible, Therefore, as in Buch-
berger's algorithm (1985), whenever a new element is inserted into
F , redundant elements of F are canceled., This is taken into

account by a slight modification of the criteria.

The resulting algorithm is already installed in the Computer Algebra
Systems Scratchpad II, see Jenks (1986), and REDUCE (release 3.2),
see Hearn {1986). We illustrate it in detail by an example and
compare its complexity in 14 examples with an existing installation

of Buchberger's algorithm.



2. Groebner Bases

2.7 Let K be a field and P = K{xq,...,xn} the ring of
polynomials in Xyre-or Xy iover iK. T denotes the set of
terms (power products) x11...x , i1""’in nonnegative
integers. We assume T to be totally ordered by <p o

such that

{(1:=) =x-...%x <., v for all o € TN {1}

and c¢(f ,@i) € K\ {0}, we define as in Moeller

& Mora (1986)

Hecoeff (£) := <(f , ¢ ), Hterm (f) := ¢

MT{f) = off ,u ) ®

2.2 In the following, F will alwavs be a finite set of poly-
nomials, F = {f1""'fr} , O¢€F , and w.1l.0.9. Hcoeff(fi) =1,

i=1,...,r, Mainly for avoiding tedious notations, we define

T(i) := Hterm(f,) ,
T(i,3) :=1cm {T(i),T(3)},

T(i,J,%) := lecm {T(1),T(J),T(k)}



2.3 For polynomials £ € P \ {0}

being represented as in 2.1

Buchberger (1965) introduced the reduction

f ———s g {(f reduces to g modulo F)

F
which means
©

g:f“C(f,{Dk) T3 fl
for an appropriate fi € T , such that T(i) divides
®y and an appropriate k € {1,...,m}
f is called irreducible modulo ¥ , if £ = O or if f —=> g

holds for no
F

closure of ——>» , Buchberger showed,

F

i.e. any reduction

h

F 3 F

is finite: £ —-€>g1 —_— . > g

F ¥ F

s

F

+ .
g € P, Denoting by - the transitive reflexive

that

> 1is Noetherian,
F

¢ 9g irreducible module F.

2.4 Definition. F = {f,,...,£ 1 CP \ {0} 1is called a Groebner
r
basis of Ideal (F):= {Ei1 9; £, / 95 € P} , if the so called
S-~pclynomialg
S(f, £.) := T(i,3) Fo- T(i,3) ¢
S (i) T TG
satisfy S(f.,£f.) %—~>+O , 1 =i <3 g€ r
if73 P
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(Buchberger gives in his publications a different definition
for Groebner bases, buf he showed already in his thesis (1865},
that the definition given here is equivalent to his one.)

There are many equivalent definitions for Groebner bases of
ideals (and even for submodules). For instance eleven defini-
tions for ideals and submodules are given in Moeller & Mora
(1986) . In the following, we need only three equivalent

characterizations:

Theorem. Let F = {f1""’£r} C PN {0} and I = Ideal(F).

Then the following conditicons are equivalent,
c1) F is a Groebner basis of I.

c2) MT(F) = {T(1),...,T(r)} generates MT{I), the least

ideal containing MT(f} for all O % f € 1.

C3) Let L be & basis of the module of syzygies

r
r m - —
S1 = {(hi""'hr) € p / E;i hi T{i) = O}

Then for each (g1,...,gr) € L

2 95 %4

=1 2

The proof of €1 <%= (C2 can be found in Moeller & Mora (1986).

C1 <= (3 is shown for instance by Moeller (1985},

An element fi cf a Groebner basis F 1is called redundant,

if F' := F\\{fi} is also a Groebner basis, and if Ideal(F) =



3.

Ideal{F'), 1f Ideal(F) = Ideal(F') and F is a Groebner basis,
then by C2, F' is a Groebner basis too, if and only if T(3j)

divides T(i}, 1.e.

T(i,j) = T(i) for a 3§ # i

For testing Ideal (F) = Ideal(F') in the case TI(i,3) = T (i)

for a 141, it is sufficient to test

(S(£,,£) =) £, - T,3) ¢ e 1deal(F')

+ T(5)

Using the reduction procedure, this helds in the case

S(f, ,£.) ——>t 0o,
1°7] P!
or eguivalently, since here Hterm{S(fi,fj)) <T Hterm(fi),
_ +
S{f,,f.) —> O
i'73 r

Therefcre, if F 1is a Groebner basis and T{i,3) =7(i) holds
for a Jj#1i, then by the definition of Groebner bases

F' o= F\\{fi} is a Groebner basis of the same ideal.

This explains, why in Groebner bases redundant elements

are cancelled without additional modifications as for

instance in Buchberger (1985).

A Reduced Basis for the Module of Syzygies

The main tools in this section are the resolution of Diana

Tavlor (1966) and methods for }educing the bases contained



in this resclution. In Moeller & Mora (1986), the Taylor
resolution and reduction strategies are presented. Since
we are dealing here only with the first modules of this
resolution, we will not explain the complete technical

details and refer the interested reader to the mentioconed

paper.

r

Given terms T{1),...,T(x), we call (g1,...,gr) € P

homogeneous of degree ¢ € T , if for every i € {1,...,r}
a ¢, € K exists, such that 95 T{i) = ¢c. o

Then

r

s (M o {(gyre-avg) €P5 /5 9 T(i) = 0}
l:
/

has the Taylor basis L(T := {85,
with

_ T(i,3) T(i,3)

i. H ei--——————e.
J T(i)

homogeneous of degree T{i,]j}, where e is the k-th

cancnical unit vector of P~ . Using this specific basis,

C3 => C1 of theorem 2.5 is obvious.

For finding a reduced basis o©f S(i) ; we introduce the module

(1). We order the r{r-1)/2 syzygies 8, - by <4

of syzyvgies for L 3

Sij <1 Skl : <<= T(i,7) <T T(k,1) or

(T(i,3) = T{(k,1),3<1,i=1=1i<k)



Using this order, we do not denote the canonical k-th unit

vector in pr(r—1)/2

by ey but by eij’ if Sij is the k-th
syzygy in this order. For instance let 812 <1 835 <.I 823
he the three first of the Sij’ then €40 = {(1,0,...,0},

€3g = {0,1,0,...,0), €y 7 (0,0,1,0,...,0).

The module of syzvgies

r
(2) _ <& r(r-1)/2 -
§7 = > 9545y €F /2 945 Siy = O
i,3=1 i,3=1
i<j 1<
has the Taylor basis L(Z) = {Sijk’/1 <1< 3j <k <0}
with
19k = M e .. - M elk + T_(.:E_LM_ e.k
J T(i,3) Y7 T(i,k) T(j,k)
Sijk is homogeneocus of degree T(i,j,k) 1f we call now I gij eij
homogeneous ©of degree o € T, 1if for all 1 £ 1 < j = ¢
= { 3 s i ] = Y
a Ci} K exists, such that gij T(i,3) c}uj 0

Let us denote the maximal syzyvgy being involved in Sijk by

MS(i,7,k), i.e.

MS(i,3,k) := max isij r Sy ’Sjk}

Then Sijk contains a nonzero constant coefficient if the

syzygies Sijk and M&(i,j,k}) are homogenecus of the same

degree,



(2)

3.4 Using the Taylor basis L  we can detect redundant elements

(1)

in the basis L{1) of 5 as we will show in the proof of

the next proposition. These tests for reduction do not need
an explicit knowledge 0f elements of L(z), because we are able
to formulate these tests in the following simple way using only

divisibility properties of terms.

We say criterion M holds for (i,k), briefly M(i,k), if a
j < k exists, such that T(j,k) divides properly T(i,k).

(M stands for Multiple.)

We say criterion F holds for (i,k), briefly F(i,k), if a
j < 1 exists, such that T(j,k) = T(i,k). (F stands for the
fact, that in the set {Szk / degree Slk = T{i,k), 1 <1 < k}

the First w.r.t,. <1 is different from Sik.)

We say criterion Bk holds for ({i,3), briefly Bk(i,j), if 3 <k
and T(k) divides T(i,3j) and T(i,k) % T(i,3) % T(3,k).

{B stands for the fact, that when we are considering already
elements of type Sik for reduction, we have to go Backwards
w.r.t. <, for reducing Sij.)

(1)

3.5 Proposition. The module of syzygies S is generated by

L':= {S.,. /1 <1<3j<xr ,=Md,j), ~F(i,3),
ﬂBk(i,j) for all k > 31} .,

P . M4 & .- s i 7i
roof. M{i,k) means, that a syzygy Sljk or Sjlk exists with

1 or -1 as coefficient of eik and a nonconstant coefficient



for ejk' This gives for i < j

(#) o = Lli.d.k) Syy = Sy TU.3.k g
T(i,3) T(3,k) -
Since Sik is homogeneous o©of degree T(i,j,k) = T{i,k; but
Sjk is of degree T(3,k)} <ip T(i,k), we have Sjk < Sik . Since
T{i,Jj) divides T(i,j,k), we have T(i,J) Sep T(i,k) but
max ti,j} < k, hence MS(i,j,k) = Sik . Theretore eqguation (%)

shows, that Sik can be expressed in terms of syzygies of

lJower order, i.e. Sik is redundant. Por j < i replace in
(%) Sij by us.i . The same arguments as before give also
that S, is redundant.

ik

Similarly, F(i,k) means

T(3,1,k)
T(j,1)

S. ""S. +S. r

(xx) 0O = 34 5k * Six

with 7 < i € k and MS(3,1i,k} = Sik . As hefore {=*x) shows, that

Sik can be expressed in terms of lower order svzygies.

Finally, Bk(i,j) means

_T(i,3.,k) T(i,3,k)
ij —— T Sy t

™(i,k) T(j,k)

Siy v

(¢%%) O = 8 ik

where the coefficients of Sik and Sjk are no constants
displaying the fact, that their degrees are less than the

degree of Sij’ i.e. M8{i,j,k) =8 Hence Sij can be expressed

i3
here in terms of lower order syzygies.



3.6 The reduced module basis 1  is not always a minimal basis.

It may happen, that there are some syzygies S, of the same
degree, such that there are some Sijk containing more than
one ncnvanishing constant coefficient (as in criterion F).
The criteria cancel MS5(i,7,k) and igncore that eguivalently
an other Suv could have been canceled. Sometimes it is more
favourable not to cancel ME(i,3,k) but an other Suv as the

following example shows.

Example., Let r = 4 and T(1) = x2 yz,T(Z) = yzz, T(3) = xzz,
T(4) = xyz. The order <T ig fixed arbitrarily as in 2.1,
Then
by 8453 ¢+ 0 = 54,7 543% 5,4

=2 823 is canceled by F(23)

By Sqg4 3 0 = 5457 5,,4+% Sy

= 8 is canceled by M({14)

14
By Sy34 + O = 51378447y 83y
$>Sq4 is canceled by M(14)
by 8,34 1 C = 8y3-% 55,4y 85,

= 8,54 is canceled by 34(23)

No other Sij is canceled, because the proof of prop. 3.5
shows, that any M{i,j) or F(i,3}) or Bk(i,j) leads to a

SYZYQY Suvw having that Sij for MS{u,v,w) . This means,

*
that the reduced basis L consists of the four elements 812,

S S

S ‘However, let us use S,,, for cancelling §,,.

137 Y247 T34°



(This means, we do not cancel in {SV3 /1 £ v <3,

T(v,3) = x? y22} all except the first, but all except the

last, such that we use a criterion L{ast) instead of criterion

(1}

F{irst).) Then we obtain alsoc a reduced basis for S but
it consists only ©of the elements 512, 823, 834.
Obvicusly the latter reduced basis is a minimal one for 8(1).

For cbtaining the reduced basis L*, all elements of the set

il
S

S :z J'Slk /16{1,...,}(‘1} F4 T(if]{)

are canceled by criterion F except the first one. But as
(#%) and the example show, this decision is guite voluntary,
and it sometimes results, that a redundant element is not
detected. In order to detect all redundant elements, it is
more reasonable to collect for fixed k all 'Sik’ 1T < 1 <k,
of same degree. If one of them is redundant by a criterion B,
also the remaining Sik are redundanit because each of them can
be expressed by the assigned one and a lower order syzygy as

the corresponding eguation (*#) shows.

A consequent use of this idea gives the following procedure

(1)

for reducing S :

Assume, we have already constructed disjoint subsets Ué

of {g!

i3 /v si<j<r},s=1,...,5 where the prime

denotes, that we are dealing with (sets of) (r-1)-tuples,

such that for any choice of u!

g & Ué r 8 = 1:---rsr

{u%,...,ué} is an minimal basis of {g.l,...,gr_1

/T g, T(i) = O}.



Sij differs from Sij only by a last additional (zero)

component, 1 £ 1 < j < r , and analogously US differs

]
from US
Consider each Sir ;, 1 £ 1 <r . If M{i,r) holds, take the
least 3 , such that T(j,r) divides properly T(i,r). If
L4y = . c .
T(i,]) T(i,r} and Sij US , then assign Sir to US '
otherwise skip Sir . If M(i,r) does not hold, collect all
Sjr of degree T(i,r), 1 £ j < r, into a new set US. Finally
test all sets U_. If B_{i,]J) holds for a §,. € U_ , then
s r 13 s

cancel Us‘

.

Proposition. The construction in 3.8 gives a finite number

of disjoint subsets Ug of {Sij / 1 £ 1 < j £ r}, such that
for any choice of Ug & US the set of all Ug constitutes a
minimal basis of S(1).

Proof. Since all gyzygies are homogeneous, minimality means
irreducibility, i.e. we have to show, that the procedure in
3.8 detects all redundant elements Sij' Some simple
considerations, like for instance in Moeller & Mora {1986},
show, that we find all redundant elements by considering
all syzygies Suvw where at least one 0of the three nonzero
coefficients is a constant (1 or -1). Obviously, we have
only to consider syzygles Suvw which constitute a reduced

(2)

basis of S . Therefore, we order the Su by <2

vw

if T{u,v,w) <, T{i,3,k)

uvw <2 Sijk T
or if T(u,v,w) = T(i,3,k), MS(u,v,w) <, MS(i,3,k)

S



and syzygles of same degree with same MS are ordered inverse
lexicographically:

S vw <2 Sijk 1f T(u,v,w) = T(i,3,k),

MS{u,v,w) = MS(i,j,k), w £ k, w=k => v £ 3 ,

(w=%k, v=73j) = uc<i.

For detecting redundant syzyagies Sijk , Wwe use the dependence

relations

T(t,u,v,wW) _ T{t,u,v,w)

© = Ztav tuw
T(t,u,v) T{t,u,w) "

T(t,u,v,w)
T({t,v,w)

_ Tlt,u,v,w) g

]
uvw

+ tvw

T(u,v,w)

(These relations arise from the Taylor basis of the next
module of syzygies.) A syvzygy Sijk is redundant, if it is
contained in such relation having as power product factor
1T or -1 and if it is maximal w.r.t. <2 among &ll four

invelved syzyvgies,

The syzygies Sijk with kX < r are already used for constructing

an irreducible basis of {(g1,...,g ) /I g, T(i) = 0}.

r-1
Therefore we have only to consider the syzygies of type Siﬁr

and among them only those where Si' and MS{i,j,r}) have the

Jr
same degree, because otherwise Sijr has no nonzero constant
component.

Let us consider first syzygies of type Sijr with T(i,r) = T(j,xr).



Then

_T{,3,r)
T(i,3)

S

L e,. = e + e,
ijr

i3] ir aqr

In this case we will call Sir eqgquivalent to Sjr‘ If T(i,r)
= T(j,r) = T(k,r) =: 1 , i < j < k, then also T(i,j, k,r) = 1

and we get the dependence relation

0 # b 8 - S.._ + 8. - 5.

T(i,3,k) ijk ijr ikr

Sjkr is maximal w.r.t. <2 . Hence it is redundant. This means,

that each syzygy of type
T(i,3,r)

= il e, - e,  + e.

ijr T(i,9) ij ir jr

is redundant if Sir is the not first element of all Sjr

of the same degree.

Let us consider now two syzygiles of degree v , § or

ijr

) with T{i,r) = 1 % T(j,r} and Sikr or Skir with

jir
T(k,r) # 1 ., There is one dependence relation, which
contains both syzygies. But we have to distincguish six

different cases depending on the ordering of i,j,k. Let

i <3 <k . Then



If Ms(j,k,r) has degree 1 , then MS(j,k,r) = Sjk <1 Sir
= MSB{(i,j,r) = MS(i,k,r}. Therefore Sjkr <2 Sijr <2 Sikr
(This is obvious, if the degree of MS(j,k,r) is less than 1 .)

Analogously Sijk <2 Sijr <2 Sikr‘ Therefore, Sikr is redundant.

The same arguments show in the remaining five cases that always

the greatest (w.r.t. <2) of the two syzygies Sijr (or Sjir)

and Si (or 8 ) is redundant. Therefore a syzygy Sijr

xr kir
of degree 1 with T(i,r) =« % T(j,r) or T(j,r) = 1 % T(i,r)

is redundant, if T(j,r}) or T(i,r) resp. is not the uniquely

cetermined proper divisor T{v,r) of 1 with minimal v.

For detecting more redundant syzygies Suvw ; we have finally

to consider the mixed case, two syzygies of degree t , Sijr

or with T(i,r) = T{j,r} (= 1) and Skir or Sikr with

Syir
T{(k,r) # 1 and we may exclude cases, where one of these
syzygies is already detected to be redundant. Hence k is

the minimal v, such that T(v,r} divides properly 1 , and i or

J is the minimal v, such that T(v,r) = 1t , Let {u,v,w! =
{i,J,¥} , u < v < w. Then we have the dependence relation
0 = ! S - S + S - S
uvw vr 'Y vwr °
T{u,v,w) v uw

13 =
3

Because of MS(u,v,w) < min{Si fS. 1 <.| max{Sir ;S

r’'yr jr -

MS{v,w,r), var is redundant. This means, if k < min{l /T(l,r) = <},
then all syzvgies Sijr of degree v with T(i,r) = T(j,r) = 1
are redundant. And in case v := min{l /T{(l,r) = 1} < k it means,

that for all j > v with T(j,r) = 1 the syzygy Sjkr {or Skjr

if k < j) is redundant.



We consider now the remaining syzygies Sijr in order to
show that the procedure in 3.8 gives a reduced basis for

{1)

the module & .
If T(i,xr) = T(j,r) = 1 , then T(i,3,r) = 1 and
0 = i s -~ 8 + g
T(i,3) ) - 4T

showing, that Sir and Sjr are eguivalent, i.e. if one is

taken to be a basis element, the other one is redundant.
Since Sijr is a remained syzygy, i is the minimal v with
T(v,r) = = and there is at most a k > i, such that T(k,r)
divides properly t . In that case M(j,r) holds for all Sjr

of degree 1t and Sikr is also a remaining syzygy. Then

showing, that Sir {and hence each Sjr of the same degree)
is redundant in the case © % T(i,k) or Sik redundant,

i.e. St in no yU!
ik s

In case Si' is a remaining syzygy of degree 1 with T(i,r) # 1 =

Jxr

T(j,r), then i is the minimal v , such that T(v,r) divides
properly 1 and the same conclusion as before shows, that

Sjr is redundant if T(i,J} # 1 and eguivalent to Sij other-

wigse, i.e., it may be inserted into the same 35 as Sij'
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The case Sixy Of degree 1 with T(i,r) = 1 ¢ T(k,r) is
already considered. If T(i,r) and T(k,r) are both different
from 1 , then T(k,r) = 1 is eguivalent to Br(i,k). In that
case Sik {and every syzygy in the same US) is redundant. In

any other case Si is redundant or has no component 1 or -1,

kr
This shows at the one hand, that the construction of 3.8

. . . . 1 .
gives in fact bases iu1,...,us; of S( ) with uSGEUS, and at the

other hand, that there is no 5, with a compcnent 1 or -1

ijx

left, i.e. no further redundant syzygy in the basis.

In most examples known to the authors, the sets US are
singletons or consist sometimes of two or three elements.
Therefore the time consuming construction of the minimal
basis by means of the sets US has to be balanced against
the simple construction of the reduced basis by prop. 3.5.
The construction in 3.8 is of theoretical interest. Since
we never needed the characteristic of the field XK, the

(1)

length of a minimal basis of S is independent of char (K).

v

his is surprizing, because an example of Reilsner (1976)
showed, that the length of a minimal basis of the next
module of syzygies (displaying the dependence relations among

(1) depends in fact on

the elements c¢f a minimal basis of §
char (K). For practical reasons however, we expect that the
construction of Grosbner bases using prop. 3.5 is o be

prefered. We will describe and discuss this construction

in the next section.




Buchberger's Algorithm

Buchberger's algorithm deals with the problem of finding a
Groebner basis of a polynomial ideal, when a finite basis
of the ideal is given. This algorithm was originally
introduced by Buchberger (1965). In forthcoming papers,
Buchberger refined and adapted it for finding reduced
Groebner bases, i.e. Groebner bases G , in which every

g € G is idrreducible w.r.t. G \ {g}. For a survey see

Buchberger (1985),

We will present briefly a version of the algorithm
recommended by Buchberger (1%85). In order to avoid
the technical details for reducing Groebner bases, we

concentrate on the construction without reduction.

INPUT: i .,fr} T PNI{OT.

1ftc

INITIALIZATION: B := {{i,5} /1 < i < j € r};
G = {f1, .,fr}; R := r.
ITERATION; while {1I,J} € B repeat

Af - criterion 1 and T(I)T(J) # T{I,J) then

h = S(J-I ' fJ);

NF{h,G);

Il

if h # ©C then

o= s G = U 3.
h fR+1 ; G 1= G ‘fR+1)’
B := B U {{i,R+1} / 1 £ i £ R};
R := R+7%;
B s= BN\ {{I,J}}.



QUTPUT: G, a Groebner basis of (f1,...,fr).

Here, NF{h,G) means a polynomial irreducible modulo G,

such that h =" NF(h,G). Criterion 1 applied to {I,J]
means, that théie isa K€ {1,...,RIN{X,J} with T(I,J) =
T(1,3,K} and {I,K} ¢ B, {J,K} & B. The criterion T(I)T(J) =

T(I,J) is criterion 2 of Buchberger (1985).

The correctness of Buchberger's algorithm is usually shown
by means of definition 2.4 and some special arguments for

the use of the criteria, see for instance Buchberger (1979).

Let us prove the correctness using C3 of theorem 2.5. The
syzygies Sij correspond bijectively to all {i,j}, which are
assigned once in the algorithm to B and removed later from B.

We order the 8 by <B’ such that Sij <B Skl’ if {i,j} is

i3
removed from B earlier than {k,1}. If criterion 1 holds for
{1,71 € B, i.e, {I,K} ¢ B , {J,K} & B, T(Z,7) =7(1,J,K), then let

for simplicity of notation I < J < K . The syzygy SIJK shows

0 =5, - WLLK) ¢, LK 51
T (I,K) T(J,K)

By the ordering <B , SIK <B SIJ and SJK <B SIJ' Hence SIJ

is expressible in terms of lower order syzygies. Thus, if

criterion 1 holds for {I,J}, then Sty is redundant. For the

remaining syzygiles SIJ we have in casgse T{I)T{J) = T(Z,J)



as already shown in Buchberger (1965), and otherwise

+

S(fI’fJ) ——-;—? NF(S(fI,fJ),G) o= fR+1 —;’MO
B+
Therefore at termination B = ¢ , we have S(fI,fJ) — 0
G
for all SIJ  which are not redundant, and hence G is a Groebner

basis by C3 of theorem 2.5,

A conseguent use of the reduction stratecy in section 3 gives

the following modification of Buchberger's algorithm.
INPUT: 000 C PN (O]

INITIALIZATION: G := {f

for t := 2 to r

D := syzBas(D,t);
= U .
G G {ft},
R = r
ITERATION;: while (I,J) € D repeat

h = S(fI,fJ);

h = NF(h,G);

if h # O then

freq 1= Bi
D := syzBas(D,R+1);
= J 3o -.: .
G G {fo.438 R 1= Re1;
D :=DN{(1I,3)}.



QUTPUT; G, a Groebner basis of {f "'fr}'

107
Here the subalgorithm syzBas(D,t) calculates a set of pairs
(i,3Y, 1 £ i < 3 £ t , such that the corresponding syzygies
S.. constitute by proposition 3.5 together with some syzygies

1]

S.q¢1 €k <1<t , satifying T(k)T(1) = T(k,1) a reduced

basis of
¢t
tlgqre.nig) 8P /E:;:} g; T(i) = O}.

This subalgorithm works in the following way. Consider the sets

D

i
’_:
t
=
1A
B

A
o+

1

'_,l

F
i

- 7}, Call such set superfluous,
if it is empty or if for one of its elements (i,t)(and hence
for all of its elements) M(i,t) holds, or if it contains an
(i,8) with T(i)T(t) = T{(i,t). Take from each non-superfluous
DT the element(i,t)with minimal i and assign (i,t) to D.

(The other{J,t) € D_ are redundant by F(j,t).}) Cancel in D
L

all elements {i,3) in the case Bt(i:j) holds.

This is exactly the iterative construction of proposition 3.5

with (i,t) € D_ <= Si € ST but with the exception, that the

t
first element of ST is not used if - M(i,t) holds for Sit € ST
and T{j)T{(t) = T{(j,t) for an Sjt = ST . As remarked in 3.7,
we could use in place of the first in ST thig Sjt as well and
in that case S(fj,f,) —~G——>"“o holds .



4.5 The correctness of the alg. 4.4 is shown in analogy to
4.3, Tts termination results from the same arguments
as the termination of alg. 4.2. By construction, each

new f is irreducible with respect to fT""'fR'

R+1
Therefore especially

(T{1), ..., T(R)) © (T(1),...,T(R+T)).

This gives for (strictly) increasing R a strictly increasing
chain of ideals., By Noetherianity, this chain is finite. Thus

the iteration is repeated only a finite number of times.

4.6 Buchberger (1985) presented algorithm 4.2 in a version, which
already cancels redundant basis elements in G. In a similar
way, algorithm 4.4 can be modified. This modification for
reducing redundant basis elements is already installed by
the authors in SCRATCHPAD II and with miner changements also in
REDUCE. The modification of alg.‘é.é is based on the following

idea.

I the input elements f1""’fr are ordered, such that

T(1) T(xr) , then an fi is redundant in the final

2T . ZT
Groebner basis, if and only if for a 7>1i T(i,j) = T{i) holds,
see 2.6. (j<i is excluded by the order of the input elements
for i<r and for 1i>r it is impossible because then fi is a
fR+1 and T{R+1) has no divisor T{j) , j<R+1.) Then T(i,t)
divides T(i,t) for all t>j. Bence M(i,t) holds or T(i,t) =

T(j,t). Therefore Sit is redundant or eguivalent to Sjt‘ Thus,



when T(i,3) = T{i), then fi is removed from the actual G
and in the forthcoming calls of syzBas(D,t), t>3 , the

pair (i,t) is ignored.

The cancelling of redundant basis elements in the actual

set G leads in both algorithms to space savings and to

faster tests of criterion 1 in alg. 4.2 or faster applications
of syzBas in alg. 4.4 resp. However, for several reasons it

is to be expected that alg. 4.4 is faster than alg. 4.2, as

the statistics in section 5 will confirm,

- B contains usually more elements than D, because pairs
1{I,J} are assigned to B before being tested by criterion
1 or criterion 2, whereas in syzBas all possible tests

are already done, before pairs (i,]j) are assigned to D.

- If in the iteration of alg. 4.2 the pair {I1,J! is in one
loop {I,J1} and in a later loop {E,Jz} with the same I ,
then the test of criterion 1 includes in both cases the
testing of the same {I,K} for some K. Such surplus tests

de not occur in svzBas,

- Following a recommendation of Buchberger, in alg. 4.2 the

pair {I,J} € B is always selected, such that

T(I,J) = min {T(X,L) / {K,L} € B},

but it is left to chance, what pair {I,J} € B with minimal
T{1,J) is selected. syzBas selects among all (i,t) with

1T £ i1 < t and same T(1,t) cone element which satisfies



criterion 2 and omits the other (i,t}. This chance
of omitting some pairs i1f one satisfies criterion 2
is sometimes lost in alg. 4.2 as the careful analysis
of some involved examples showed and it causes, that

£y —at 0o

in some examples more reductions S(fI, 1
G
are detected by the criteria in alg. 4.4 than in alg,

4.2.

4.8 The more general reduction strategy described in 3.8 gives
minimal bases for the module of syzygies. By a different
handling ©f the sets D in alg. 4.4 this reduction strategy
could be employed. In contrast to the existing installation
of alg., 4.4, it would reguire, that the elements of D are
no more pairs but sets of eguivalent pairs, as described
in 3.8. If one element (i,3j) of such set satisfies Bt(i,j)
oy T(i)T(3) = T{(i,3), then the complete set can be removed
from D. This medification producing a minimal basis of
syzygies overlooks no application of a criterion 1 and Z.
But in all examples we analvzed carefully, we obtained
already by syzBas sets D, such that {Sij / (i,3) € D} is a
minimal basis, Therefore we have thé impression, that Ior
standard problems the additional amount of computations for
guaranteeing all possible applications of the criteria is not

justified. For a final discussion however, more experiences

are needed,.
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Examples

In 4,6 we described, how algorithm 4.4 has to be modified
in order to obtain a Groebner basis without redundant elements,

The following example illustrates this version of alg. 4.4.

Let P := Qix,y,2], Q the field of rationals, and <p he the
lexicographical term ordering with x <T ¥ <T z, We want to

calculate a Groebner basis of (fT’fz'fB) with

- 2 1
f1 = oz v o4 2w 4 5
z - 2 2 1
o = Z X - Y —7){,
- 2 2 1
f3 = -z + y'x + 4x° + T
see example 6.15 of Buchberger (1985). In the iteration of the

algorithm, we always select (I,J}) € D, such that

T{1,3) = min {T(X,L) / {K,L) € Di}.

f1 and f2 are redundant because of T(1,3) = T(1} and T(2,3) =

T(2). Therefore the initialization gives first (t=2) G = {f1,f2}
and B = {(1,2)} and then (t=3)

G={f,1 , b= {(1,3),(2,3)1.

Because of E3(?,2) the pair (1,2) was removed from D,



- 28 -

The first pair (I,J) is {(2,3). Then

gives D = {(1,3}}, because f1 and fz are redundant and
T(3}T(4) = T(3,4), such that neither (1,4) nor (2,4) nor (3,4)

is inserted into D. f3 is not redundant. Therefore G = {f3,f4}.

The only choice for the next (I,J) is (1,3). Then

- - - 4 2.2 12 1
fg := NF(S(fj,;3),G) =y ' x + 4x°y" + 7Y 2%+ 5
gives D = {(4,5)}, because again f,| and f2 are redundant and

T{(3)T(5} = T(3,5), such that neither (1,5) nor (2,5) nor (3,5)

but (4,5) is inserted into D. We also get G = {f3,f4,f5}.

The only choice for the next (I,J} is (4,5). Then
- 4 1 .2 3 1 .2
f6 1= NF(S(¢4,f5),G) =Yy t* 5 ¥ +2x7 + 5 %
gives D = {(5,6)} by the same arguments as before and in

5

addition by M(4,6})., We also get G = {f3,f4,f6; because of

The only choice for the next (I,J) is (5,6). Then

P .22, 1 2 4 1 4 1

- 29 —



- 29 -

gives D = {(4,7),(6,7)) by similar arguments as before and
G = {f3,f6,f7} because of T{4,7) = T(4).

The next {(1,J) is (4,7). Then

fg 1= NF(S(f,,£,),6) = y’x+ 14y° - 8x> = 58x" + 2 x° + 9x

gives D = {(6,8),(7,8)} because of T(3)T{(8) = T(3,8) and

B8(6,7) and G = {f3,f6,f8} because of T(7,8) = T(7). Then

fo 1= NP(S(f,,fg),G) = g2y 112 (688 5 1264 .4
2745 305 305
_ 13 .3,84 21772 . 2
549 305 2745 2745

gives D = {(6,%),(8,9)} because of 59{6,8) and G = {f

3%g”
because of T(6,9) = T(6) and T(8,9) = T{8). Then
]
£ 1= NF(S(fg,£4),6) = 429 (6 17 4 11 3,1
4 16 8 32

+ 2%y %
16
gives D = {(6,9)} because of T{8)T(10} = T(%2,10) and T(3}T{
T{3,10) and G = {f3’59’f10}' Then

3 =
NF(S(f6,f9,,G) 0

- 30 -

2

10)



Now I = ¢ and the algorithm terminates giving the Groebner

basis

3779710
5.2 The following statistics compare the algorithms 4.2 and

4.4, All examples can be found in Gebauer (1985).

Algorithm 4.2 Algorithm 4.4
Exple 8 b ¢ d e | g h k 1 m h k i m
Ex! 7 6 1 RN 3 2 6 8/3 59 15 1.68 8/3 2 7 96
ExS 6 6 1 RN 3 10 6 16/17 151 22 16.32 15/2 3 6 B.S51

Ex27 7 6 g RN 3 2 6 12/15 139 19 5.58 12/12 11 12 2.66

Ex1z2 6 6 g RN 3 3 13 10/19 62 16 28.18 10/17 il i3 11.03

Ex2 3 3 P RN 3 7 3 7/3 38 10 60 7/1 2 3 56
Ex§ 3 3 g RN 3 4 & 3/58 12 6 51 3/5 3 6 .56
Ex3 4 4 1 RN 2 7 5 13/16 66 17 6.98 13/9 6 6 3.19
Exi0 4 4 g RN 2 4 7 6/8 3t 10 5.34 6/5 5 7 2.10

Ex4 5 5 1 RN 2 16 5 106/126 2392 11t 5749.13 | 106/100 29 17 54238
Exit 5 5 g RN 2 5 13 10/21 75 15 52.69 10/20 16 13 22.27
Exl4 6 6 g RF1 3 5 13 13/12 120 19 203.13 13/9 7 13 60.04
Ex28 & 5 g RF1 7 0 1 38/66 746 44 167.99 38/65 33 25 51.88

ExS 3 3 g RN & 10 19 18/21 78 21 43.11 18/21 13 19 27.73

Ex2¢ 6 6 g RN 2 6 22 18/53 191 24 90441 18/50 4 22 2372




o]
.

number of input poelynomials
number ©f wvariables
lexicographical (1) or graduated (g) term ordering

coefficient field of rational numbers (RN) or of

rational functions over the integers (RF I}
maximal degree of input polynomials
maximal degree of output polynomials
length of CGroebner basis

number c¢f NF computations:

number of non-vanishing / vanishing NF's
maximal cardinality of set B or D resp.
maximal cardinality of G

computing time in seconds on a IBM 3090 mainframe
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