LOGIC TECHNOLOGY FOR CS EDUCATION

RISCAL – The RISC Algorithm Language

Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC)
Wolfgang.Schreiner@risc.jku.at
http://www.risc.jku.at
Systematic Problem Solving

A key competence in modern professional life.

- “Computational” thinking
 - Express precisely *how* to carry out a problem solution.
 - Development of solution descriptions: algorithms/programs.
 - Ultimate goal is to let computers execute the solutions.

- But is a proposed solution really adequate?
 - Does it really solve the problem?

- “Specificational” thinking
 - Elaborate and express precisely *what* problem to solve.
 - Development of problem descriptions: specifications.
 - Ultimate goal is to let computers (help to) validate/verify the correctness of problem solutions.

Specifications come before programs.
Systematic Problem Solving

A key competence in modern professional life.

- “Computational” thinking
 - Express precisely how to carry out a problem solution.
 - Development of solution descriptions: algorithms/programs.
 - Ultimate goal is to let computers execute the solutions.
- But is a proposed solution really adequate?
 - Does it really solve the problem?
- “Specificational” thinking
 - Elaborate and express precisely what problem to solve.
 - Development of problem descriptions: specifications.
 - Ultimate goal is to let computers (help to) validate/verify the correctness of problem solutions.

Specifications come before programs.
Systematic Problem Solving

A key competence in modern professional life.

■ “Computational” thinking
 □ Express precisely how to carry out a problem solution.
 □ Development of solution descriptions: algorithms/programs.
 □ Ultimate goal is to let computers execute the solutions.

■ But is a proposed solution really adequate?
 □ Does it really solve the problem?

■ “Specificational” thinking
 □ Elaborate and express precisely what problem to solve.
 □ Development of problem descriptions: specifications.
 □ Ultimate goal is to let computers (help to) validate/verify the correctness of problem solutions.

Specifications come before programs.
Systematic Problem Solving

A key competence in modern professional life.

- "Computational" thinking
 - Express precisely how to carry out a problem solution.
 - Development of solution descriptions: algorithms/programs.
 - Ultimate goal is to let computers execute the solutions.

- But is a proposed solution really adequate?
 - Does it really solve the problem?

- "Specificational" thinking
 - Elaborate and express precisely what problem to solve.
 - Development of problem descriptions: specifications.
 - Ultimate goal is to let computers (help to) validate/verify the correctness of problem solutions.

Specifications come before programs.
Systematic Problem Solving

A key competence in modern professional life.

- “Computational” thinking
 - Express precisely *how* to carry out a problem solution.
 - Development of solution descriptions: algorithms/programs.
 - Ultimate goal is to let computers execute the solutions.

- But is a proposed solution really adequate?
 - Does it really solve the problem?

- “Specificational” thinking
 - Elaborate and express precisely *what* problem to solve.
 - Development of problem descriptions: specifications.
 - Ultimate goal is to let computers (help to) validate/verify the correctness of problem solutions.

Specifications come before programs.
Systematic Problem Solving

A key competence in modern professional life.

- **“Computational” thinking**
 - Express precisely *how* to carry out a problem solution.
 - Development of solution descriptions: algorithms/programs.
 - Ultimate goal is to let computers execute the solutions.

- **But is a proposed solution really adequate?**
 - Does it really solve the problem?

- **“Specificational” thinking**
 - Elaborate and express precisely *what* problem to solve.
 - Development of problem descriptions: specifications.
 - Ultimate goal is to let computers (help to) validate/verify the correctness of problem solutions.

Specifications come before programs.
A Sample Problem

“Given an array a with n elements, find the maximum m of a.”

- For instance, if $n = 3$ and a is $[1, 2, -1]$, then $m = 2$.
 - Indices 0, 1, 2 with $a[0] = 1$, $a[1] = 2$, $a[2] = -1$.

Does this algorithm (procedure) solve the problem?

```plaintext
proc maxProc(a:array, n:int): elem {
    var m:elem := 0;
    for var i:int := 0; i < n; i := i+1 do {
        if a[i] > m then m := a[i];
    }
    return m;
}
```

Before judging the algorithm, we have to specify the problem.
A Sample Problem

“Given an array a with n elements, find the maximum m of a.”

- For instance, if $n = 3$ and a is $[1, 2, -1]$, then $m = 2$.
 - Indices 0, 1, 2 with $a[0] = 1, a[1] = 2, a[2] = -1$.

Does this algorithm (procedure) solve the problem?

```plaintext
proc maxProc(a:array, n:int): elem {
  var m:elem := 0;
  for var i:int := 0; i < n; i := i+1 do {
    if a[i] > m then m := a[i];
  }
  return m;
}
```

Before judging the algorithm, we have to specify the problem.
A Sample Problem

“Given an array a with n elements, find the maximum m of a.”

- For instance, if $n = 3$ and a is $[1, 2, -1]$, then $m = 2$.
 - Indices 0, 1, 2 with $a[0] = 1, a[1] = 2, a[2] = -1$.

Does this algorithm (procedure) solve the problem?

```plaintext
proc maxProc(a:array, n:int): elem {
    var m:elem := 0;
    for var i:int := 0; i < n; i := i+1 do {
        if a[i] > m then m := a[i];
    }
    return m;
}
```

Before judging the algorithm, we have to specify the problem.
The Importance of Language

Forming, formulating and expressing ideas needs *language*.

- Computations are described in *programming languages*.
 - First: low-level instruction sets of computer processors.
 - Today: high-level languages understandable by humans.

- Specifications are described in the *language of logic*.
 - First: Aristotelian logic, sentences like “Aristoteles is a man”.
 - Today: first-order logic, sentences like “for every number x there exists some number y such that y is greater than x.”
 - Precise form (syntax), meaning (semantics), and rules of reasoning (inference calculus).
 - Expressive enough to characterize computational problems.

Like any language, logic is learned by usage in practical context.
The Importance of Language

Forming, formulating and expressing ideas needs *language*.

- **Computations are described in programming languages.**
 - First: low-level instruction sets of computer processors.
 - Today: high-level languages understandable by humans.

- **Specifications are described in the language of logic.**
 - First: Aristotelian logic, sentences like “Aristoteles is a man”.
 - Today: first-order logic, sentences like “for every number x there exists some number y such that y is greater than x”.
 - Precise form (syntax), meaning (semantics), and rules of reasoning (inference calculus).
 - Expressive enough to characterize computational problems.

Like any language, logic is learned by usage in practical context.
The Importance of Language

Forming, formulating and expressing ideas needs *language*.

- **Computations are described in** programming languages.
 - First: low-level instruction sets of computer processors.
 - Today: high-level languages understandable by humans.

- **Specifications are described in** the language of logic.
 - First: Aristotelian logic, sentences like “Aristoteles is a man”.
 - Today: first-order logic, sentences like “for every number x there exists some number y such that y is greater than x”.
 - Precise form (syntax), meaning (semantics), and rules of reasoning (inference calculus).
 - Expressive enough to characterize computational problems.

Like any language, logic is learned by usage in practical context.
The Importance of Language

Forming, formulating and expressing ideas needs *language*.

- **Computations are described in** programming languages.
 - First: low-level instruction sets of computer processors.
 - Today: high-level languages understandable by humans.

- **Specifications are described in** the language of logic.
 - First: Aristotelian logic, sentences like “Aristoteles is a man”.
 - Today: first-order logic, sentences like “for every number x there exists some number y such that y is greater than x”.
 - Precise form (syntax), meaning (semantics), and rules of reasoning (inference calculus).
 - Expressive enough to characterize computational problems.

Like any language, logic is learned by usage in practical context.
Problem Specification

“Given an array a with n elements, find the maximum m of a.”

- **Given** arbitrary a, n that satisfy the *precondition*.
 - “a has n elements.”
- **Find** some m that satisfies the *postcondition*.
 - “m is the maximum of array a with n elements.”

We are now going to formalize this specification.
Problem Specification

“Given an array \(a \) with \(n \) elements, find the maximum \(m \) of \(a \).”

- Given arbitrary \(a, n \) that satisfy the precondition.
 - “\(a \) has \(n \) elements.”

- Find some \(m \) that satisfies the postcondition.
 - “\(m \) is the maximum of array \(a \) with \(n \) elements.”

We are now going to formalize this specification.
Problem Specification

“Given an array a with n elements, find the maximum m of a.”

■ Given arbitrary a, n that satisfy the precondition.
 □ “a has n elements.”

■ Find some m that satisfies the postcondition.
 □ “m is the maximum of array a with n elements.”

We are now going to formalize this specification.
Problem Specification

“Given an array a with n elements, find the maximum m of a.”

- **Given** arbitrary a, n that satisfy the *precondition*.
 - “a has n elements.”

- **Find** some m that satisfies the *postcondition*.
 - “m is the maximum of array a with n elements.”

We are now going to formalize this specification.
Defining the Value Domains

We are considering arrays up to some maximum length N with integer elements of some maximum absolute value M.

```plaintext
val N:N; val M:N;
type int = ℤ[-N,N];
type elem = ℤ[-M,M];
type array = Array[N,elem];
```

Values a, n, m have types array, int, elem, respectively.
Defining the Value Domains

We are considering arrays up to some maximum length N with integer elements of some maximum absolute value M.

```haskell
val N:ℕ; val M:ℕ;
type int = ℤ[-N,N];
type elem = ℤ[-M,M];
type array = Array[N,elem];
```

Values a, n, m have types array, int, elem, respectively.
Defining the Value Domains

We are considering arrays up to some maximum length N with integer elements of some maximum absolute value M.

```ml
val N : N; val M : N;
val type int = \mathbb{Z}[-N,N];
val type elem = \mathbb{Z}[-M,M];
val type array = Array[N,elem];
```

Values a, n, m have types array, int, elem, respectively.
Defining the Value Domains

We are considering arrays up to some maximum length \(N \) with integer elements of some maximum absolute value \(M \).

\[
\begin{align*}
\text{val } N &: \mathbb{N}; \text{ val } M &: \mathbb{N}; \\
\text{type } \text{int} &= \mathbb{Z}[-N,N]; \\
\text{type } \text{elem} &= \mathbb{Z}[-M,M]; \\
\text{type } \text{array} &= \text{Array}[N,\text{elem}];
\end{align*}
\]

Values \(a, n, m \) have types \(\text{array}, \text{int}, \text{elem} \), respectively.
Formalizing Pre- and Postconditions

“\(a\) has \(n\) elements”

- \(n\) is an integer greater equal zero, and
- \(a\) holds beyond the valid indices \(0, \ldots, n - 1\) only zeroes.
 - For every integer \(k\), if \(k\) is greater equal \(n\) and less than \(N\), then \(a\) holds at \(k\) value 0.

\[
n \geq 0 \land \forall k: \text{int. } n \leq k \land k < N \Rightarrow a[k] = 0;
\]

We abbreviate this statement to a predicate \(\text{hasLength}(a, n)\):

\[
\text{pred hasLength}(a: \text{array}, \ n: \text{int}) \iff \\
n \geq 0 \land \forall k: \text{int. } n \leq k \land k < N \Rightarrow a[k] = 0;
\]
Formalizing Pre- and Postconditions

“a has n elements”

- n is an integer greater equal zero, and
- a holds beyond the valid indices 0, . . . , n – 1 only zeroes.
 - For every integer k, if k is greater equal n and less than N, then a holds at k value 0.

\[n \geq 0 \land \forall k: \text{int. } n \leq k \land k < N \Rightarrow a[k] = 0; \]

We abbreviate this statement to a predicate hasLength(a, n):

\[
\text{pred hasLength(a:array, n:int) } \Leftrightarrow \\
n \geq 0 \land \forall k: \text{int. } n \leq k \land k < N \Rightarrow a[k] = 0;
\]
Formalizing Pre- and Postconditions

“\(a\) has \(n\) elements”

- \(n\) is an integer greater equal zero, and
- \(a\) holds beyond the valid indices \(0, \ldots, n - 1\) only zeroes.
 - For every integer \(k\), if \(k\) is greater equal \(n\) and less than \(N\), then \(a\) holds at \(k\) value 0.

\[
n \geq 0 \land \forall k:\text{int. } n \leq k \land k < N \Rightarrow a[k] = 0;
\]

We abbreviate this statement to a predicate \(\text{hasLength}(a,n)\):

\[
\text{pred hasLength}(a:\text{array}, n:\text{int}) \leftrightarrow \\
n \geq 0 \land \forall k:\text{int. } n \leq k \land k < N \Rightarrow a[k] = 0;
\]
Formalizing Pre- and Postconditions

“\(a\) has \(n\) elements”

- \(n\) is an integer greater equal zero, and
- \(a\) holds beyond the valid indices \(0, \ldots, n - 1\) only zeroes.
 - For every integer \(k\), if \(k\) is greater equal \(n\) and less than \(N\), then \(a\) holds at \(k\) value 0.

\[
n \geq 0 \land \forall k: \text{int}. \ n \leq k \land k < N \Rightarrow a[k] = 0;
\]

We abbreviate this statement to a predicate \(\text{hasLength}(a, n)\):

\[
\text{pred hasLength}(a: \text{array}, n: \text{int}) \iff \\
n \geq 0 \land \forall k: \text{int}. \ n \leq k \land k < N \Rightarrow a[k] = 0;
\]
Formalizing Pre- and Postconditions

“a has n elements”

- n is an integer greater equal zero, and
- a holds beyond the valid indices 0, . . . , n – 1 only zeroes.
 - For every integer k, if k is greater equal n and less than N, then a holds at k value 0.

\[
n \geq 0 \land \forall k: \text{int}. \ n \leq k \land k < N \Rightarrow a[k] = 0;
\]

We abbreviate this statement to a predicate \(\text{hasLength}(a, n)\):

\[
\text{pred hasLength}(a: \text{array}, n: \text{int}) \iff \\
n \geq 0 \land \forall k: \text{int}. \ n \leq k \land k < N \Rightarrow a[k] = 0;
\]
Formalizing Pre- and Postconditions

- “a has n elements”
 \[
 \text{pred pre}(a: \text{array}, n: \text{int}) \iff \text{hasLength}(a, n);
 \]

- “m is the maximum of array a with n elements.”
 - “m must be at least as big as every element of a.”
 - For every integer \(k \), if \(k \) is greater equal 0 and less than \(n \), then \(m \) is greater equal that element that \(a \) holds at \(k \).

 \[
 \text{pred post}(a: \text{array}, n: \text{int}, m: \text{elem}) \iff \\
 \forall k: \text{int}. \ 0 \leq k \land k < n \implies m \geq a[k];
 \]

How to validate this specification attempt?
Formalizing Pre- and Postconditions

- "a has n elements"

 \[
 \text{pred pre}(a: \text{array}, n: \text{int}) \iff \text{hasLength}(a, n);
 \]

- "m is the maximum of array a with n elements."
 - "m must be at least as big as every element of a."
 - For every integer \(k \), if \(k \) is greater equal 0 and less than \(n \), then \(m \) is greater equal that element that \(a \) holds at \(k \).

 \[
 \text{pred post}(a: \text{array}, n: \text{int}, m: \text{elem}) \iff
 \forall k: \text{int}. \ 0 \leq k \land k < n \Rightarrow m \geq a[k];
 \]

How to validate this specification attempt?
Formalizing Pre- and Postconditions

- “\(a\) has \(n\) elements”

 \[
 \text{pred pre}(a:\text{array}, \ n:\text{int}) \iff \text{hasLength}(a, \ n); \\
 \]

- “\(m\) is the maximum of array \(a\) with \(n\) elements.”
 - “\(m\) must be at least as big as every element of \(a\).”
 - For every integer \(k\), if \(k\) is greater equal \(0\) and less than \(n\), then \(m\) is greater equal that element that \(a\) holds at \(k\).

 \[
 \text{pred post}(a:\text{array}, \ n:\text{int}, \ m:\text{elem}) \iff \\
 \forall k:\text{int}. \ 0 \leq k \land k < n \Rightarrow m \geq a[k]; \\
 \]

How to validate this specification attempt?
Formalizing Pre- and Postconditions

- “a has n elements”
 \[
 \text{pred pre}(a:\text{array, } n:\text{int}) \iff \text{hasLength}(a, n);
 \]

- “m is the maximum of array a with n elements.”
 - “m must be at least as big as every element of a.”
 - For every integer \(k \), if \(k \) is greater equal 0 and less than \(n \), then \(m \) is greater equal that element that \(a \) holds at \(k \).

 \[
 \text{pred post}(a:\text{array, } n:\text{int, } m:\text{elem}) \iff \\
 \forall k:\text{int. } 0 \leq k \land k < n \Rightarrow m \geq a[k];
 \]

How to validate this specification attempt?
Formalizing Pre- and Postconditions

- “a has n elements”
 \[\text{pred } \text{pre}(a: \text{array}, n: \text{int}) \iff \text{hasLength}(a, n); \]

- “m is the maximum of array a with n elements.”
 - “m must be at least as big as every element of a.”
 - For every integer \(k \), if \(k \) is greater equal 0 and less than \(n \), then \(m \) is greater equal that element that \(a \) holds at \(k \).

 \[\text{pred } \text{post}(a: \text{array}, n: \text{int}, m: \text{elem}) \iff \forall k: \text{int}. \ 0 \leq k \land k < n \Rightarrow m \geq a[k]; \]

How to validate this specification attempt?
RISCAL: RISC Algorithm Language

A language/system for algorithm specification and verification.

In RISCAL all definitions are executable.
RISCAL: RISC Algorithm Language

A language/system for algorithm specification and verification.

In RISCAL all definitions are executable.
Validating the Specification

A specification implicitly defines a mathematical function.

\[
\text{fun maxFun(a:array, n:int):elem} \\
\quad \text{requires pre(a,n);} \\
\quad = \text{choose m:elem with post(a,n,m);}
\]

- For all \(a, n\) that satisfy \(\text{pre}(a, n)\), \(\text{maxFun}(a, n)\) denotes some \(m\) that satisfies \(\text{post}(a, n, m)\).
 - If no such \(m\) exists, the function result is undefined.
 - If multiple such \(m\) exist, the result is not uniquely defined.

In RISCAL also this function is executable.
Validating the Specification

A specification implicitly defines a mathematical function.

\[
\text{fun maxFun(a:array, n:int):elem} \\
\text{ requires pre(a,n);} \\
\text{ = choose m:elem with post(a,n,m);} \\
\]

- For all \(a, n\) that satisfy \(\text{pre}(a, n)\), \(\text{maxFun}(a, n)\) denotes some \(m\) that satisfies \(\text{post}(a, n, m)\).
 - If no such \(m\) exists, the function result is undefined.
 - If multiple such \(m\) exist, the result is not uniquely defined.

In RISCAL also this function is executable.
Validating the Specification

A specification implicitly defines a mathematical function.

\[
\text{fun maxFun(a:array, n:int):elem} \\
\quad \text{requires pre(a,n);} \\
\quad = \text{choose } m:\text{elem with post(a,n,m);} \\
\]

- For all \(a, n\) that satisfy \(\text{pre}(a, n)\), \(\text{maxFun}(a, n)\) denotes some \(m\) that satisfies \(\text{post}(a, n, m)\).
 - If no such \(m\) exists, the function result is undefined.
 - If multiple such \(m\) exist, the result is not uniquely defined.

In RISCAL also this function is executable.
Checking the Implicitly Defined Function

Apply maxFun to all possible inputs.

Postcondition is too weak, allows m that does not occur in a.
Checking the Implicitly Defined Function

Apply maxFun to all possible inputs.

Postcondition is too weak, allows m that does not occur in a.
Strengthening the Postcondition

“m is the maximum of array a with n elements.”

- also: “m must occur as an element of a”.
- There exists some integer k that is greater equal 0 and less than n such that m equals that element that a holds at k.

```plaintext
pred post(a:array, n:int, m:elem) ⇔
    (∀k:int. 0 ≤ k ∧ k < n ⇒ m ≥ a[k]) ∧
    (∃k:int. 0 ≤ k ∧ k < n ∧ m = a[k]);
```
Strengthening the Postcondition

“\(m\) is the maximum of array \(a\) with \(n\) elements.”

- also: “\(m\) must occur as an element of \(a\)”.
- There exists some integer \(k\) that is greater equal 0 and less than \(n\) such that \(m\) equals that element that \(a\) holds at \(k\).

\[
\text{pred post}(a:\text{array}, n:\text{int}, m:\text{elem}) \iff \\
(\forall k:\text{int}. \ 0 \leq k \land k < n \Rightarrow m \geq a[k]) \land \\
(\exists k:\text{int}. \ 0 \leq k \land k < n \land m = a[k]);
\]
Strengthening the Postcondition

Now the postcondition apparently allows only one result.
Strengthening the Postcondition

Now the postcondition apparently allows only one result.
Checking Specification Properties

For all a, n that satisfy the precondition, there is not more than one m that satisfies the postcondition:

\[
\text{theorem maxUnique}(a:\text{array}, n:\text{int})
\]
\[
\text{requires pre}(a,n);
\]
\[
\iff \forall m1:\text{elem}, m2:\text{elem}.
\]
\[
\text{post}(a,n,m1) \land \text{post}(a,n,m2) \Rightarrow m1 = m2;
\]

For all a, n that satisfy the precondition, there is some m that satisfies the postcondition:

\[
\text{theorem maxExists}(a:\text{array}, n:\text{int})
\]
\[
\text{requires pre}(a,n);
\]
\[
\iff \exists m:\text{elem}. \text{post}(a,n,m);
\]
Checking Specification Properties

For all a, n that satisfy the precondition, there is not more than one m that satisfies the postcondition:

\[
\text{theorem maxUnique}(a:\text{array, } n:\text{int})
\]
\[
\text{requires pre}(a,n);
\]
\[
\iff \forall m1: \text{elem}, m2: \text{elem}.
\]
\[
\text{post}(a,n,m1) \land \text{post}(a,n,m2) \Rightarrow m1 = m2;
\]

For all a, n that satisfy the precondition, there is some m that satisfies the postcondition:

\[
\text{theorem maxExists}(a:\text{array, } n:\text{int})
\]
\[
\text{requires pre}(a,n);
\]
\[
\iff \exists m: \text{elem}. \text{post}(a,n,m);
\]
Checking Specification Properties

For all a, n that satisfy the precondition, there is not more than one m that satisfies the postcondition:

\[
\text{theorem maxUnique}(a: \text{array}, n: \text{int}) \\
\text{requires pre}(a,n); \\
\iff \forall m1: \text{elem}, m2: \text{elem}. \\
\text{post}(a,n,m1) \land \text{post}(a,n,m2) \Rightarrow m1 = m2;
\]

For all a, n that satisfy the precondition, there is some m that satisfies the postcondition:

\[
\text{theorem maxExists}(a: \text{array}, n: \text{int}) \\
\text{requires pre}(a,n); \\
\iff \exists m: \text{elem}. \text{post}(a,n,m);
\]
Checking Specification Properties

For all \(a, n \) that satisfy the precondition, there is not more than one \(m \) that satisfies the postcondition:

\[
\text{theorem maxUnique}(a:\text{array}, n:\text{int}) \\
\text{requires pre}(a,n); \\
\iff \forall m1:\text{elem}, m2:\text{elem}. \\
\text{post}(a,n,m1) \land \text{post}(a,n,m2) \Rightarrow m1 = m2;
\]

For all \(a, n \) that satisfy the precondition, there is some \(m \) that satisfies the postcondition:

\[
\text{theorem maxExists}(a:\text{array}, n:\text{int}) \\
\text{requires pre}(a,n); \\
\iff \exists m:\text{elem}. \text{post}(a,n,m);
\]
Checking Specification Properties

Precondition is too weak, allows empty array \((n = 0)\).
Checking Specification Properties

Precondition is too weak, allows empty array \((n = 0)\).
Strengthening the Precondition

\[\text{pred pre}(a: \text{array}, n: \text{int}) \iff \text{hasLength}(a, n) \land n > 0; \]

Now the specification seems adequate.
Strengthening the Precondition

\[
pred\ pre(a:\text{array}, n:\text{int}) \iff \text{hasLength}(a, n) \land n > 0;
\]

Now the specification seems adequate.
Checking the Algorithm

The algorithm violates the specification!
Checking the Algorithm

The algorithm violates the specification!
An Improved Algorithm

proc maxProc(a:array, n:int): elem
 requires pre(a,n);
 ensures post(a,n,result);
{
 var m:elem := a[0];
 for var i:int := 1; i < n; i := i+1 do
 {
 if a[i] > m then m := a[i];
 }
 return m;
}
Checking the Algorithm

This algorithm satisfies the specification for some N, M.

![Algorithm Code]

Translation: Nondeterminism. Default Values: 0. Other Values:

Execution: Silent. Inputs: Per Mille: Branches:

Parallelism: Multi-Threaded. Threads: 4. Distributed. Servers:

Operation: maxProc(Array[2], 2)

Saved file /home/schreine/talks/RISCAL-2017/max.txt
Using N=3.
Using M=2.
Type checking and translation completed.
Executing maxProc(Array[2], 2) with all 875 inputs.
Execution completed for ALL inputs (114 ms, 155 checked, 720 inadmissible).
Checking the Algorithm

This algorithm satisfies the specification for some N, M.
Verifying the Algorithm

Core question: is the algorithm correct for all N, M?

- Have now checked this for arrays of length at most $N = 3$.
 - Verification for arbitrary N requires logic proof.
- Proof based on loop invariant that holds for arbitrary N.
 1. Proof that invariant holds before loop is started.
 2. Proof that invariant is preserved by every loop iteration.
 3. Proof that on termination invariant implies postcondition.
- Key: in iteration i, m is the maximum of the first $i - 1$ values.

  ```
  pred inv(a:array, n:int, m:elem, i:int) ⇔
  1 ≤ i ∧ i ≤ n ∧
  (∀k:int. 0 ≤ k ∧ k < i ⇒ m ≥ a[k]) ∧
  (∃k:int. 0 ≤ k ∧ k < i ∧ m = a[k]);
  ```

- Use of automated provers or interactive proof assistants.
 - Inadequate invariant lets some of the proofs fail.

RISCAL can also validate the suitability of a proposed invariant.
Verifying the Algorithm

Core question: is the algorithm correct for all N, M?

- Have now checked this for arrays of length at most $N = 3$.
 - Verification for arbitrary N requires logic proof.
- Proof based on loop invariant that holds for arbitrary N.
 1. Proof that invariant holds before loop is started.
 2. Proof that invariant is preserved by every loop iteration.
 3. Proof that on termination invariant implies postcondition.
- Key: in iteration i, m is the maximum of the first $i - 1$ values.

```plaintext
def pred inv(a:array, n:int, m:elem, i:int) <->
    1 <= i ∧ i <= n ∧
    (∀ k:int. 0 <= k ∧ k < i ⇒ m ≥ a[k]) ∧
    (∃ k:int. 0 <= k ∧ k < i ∧ m = a[k]);
```

- Use of automated provers or interactive proof assistants.
 - Inadequate invariant lets some of the proofs fail.
RISCAL can also validate the suitability of a proposed invariant.
Verifying the Algorithm

Core question: is the algorithm correct for all N, M?

- Have now checked this for arrays of length at most $N = 3$.
 - Verification for arbitrary N requires logic proof.
- Proof based on loop invariant that holds for arbitrary N.
 1. Proof that invariant holds before loop is started.
 2. Proof that invariant is preserved by every loop iteration.
 3. Proof that on termination invariant implies postcondition.

- Key: in iteration i, m is the maximum of the first $i - 1$ values.

 pred inv(a:array, n:int, m:elem, i:int) ⇔
 $1 \leq i \land i \leq n \land$
 $(\forall k: \text{int}. \ 0 \leq k \land k < i \Rightarrow m \geq a[k]) \land$
 $(\exists k: \text{int}. \ 0 \leq k \land k < i \land m = a[k])$;

- Use of automated provers or interactive proof assistants.
 - Inadequate invariant lets some of the proofs fail.

RISCAL can also validate the suitability of a proposed invariant.
Verifying the Algorithm

Core question: is the algorithm correct for all N, M?

- Have now checked this for arrays of length at most $N = 3$.
 - Verification for arbitrary N requires logic proof.
- Proof based on loop invariant that holds for arbitrary N.
 1. Proof that invariant holds before loop is started.
 2. Proof that invariant is preserved by every loop iteration.
 3. Proof that on termination invariant implies postcondition.
- Key: in iteration i, m is the maximum of the first $i - 1$ values.

 $$\text{pred inv(a:array, n:int, m:elem, i:int)} \iff \begin{align*}
 1 & \leq i \land i \leq n \land \\
 (\forall k:\text{int}. \; 0 \leq k \land k < i \Rightarrow m \geq a[k]) \land \\
 (\exists k:\text{int}. \; 0 \leq k \land k < i \land m = a[k]);
 \end{align*}$$

- Use of automated provers or interactive proof assistants.
 - Inadequate invariant lets some of the proofs fail.

 RISCAL can also validate the suitability of a proposed invariant.
Verifying the Algorithm

Core question: is the algorithm correct for all N, M?

- Have now checked this for arrays of length at most $N = 3$.
 - Verification for arbitrary N requires logic proof.
- Proof based on loop invariant that holds for arbitrary N.
 1. Proof that invariant holds before loop is started.
 2. Proof that invariant is preserved by every loop iteration.
 3. Proof that on termination invariant implies postcondition.
- Key: in iteration i, m is the maximum of the first $i - 1$ values.

$$
\text{pred inv(a:array, n:int, m:elem, i:int) } \iff \\
1 \leq i \land i \leq n \land \\
(\forall k:\text{int. } 0 \leq k \land k < i \Rightarrow m \geq a[k]) \land \\
(\exists k:\text{int. } 0 \leq k \land k < i \land m = a[k]);
$$

- Use of automated provers or interactive proof assistants.
 - Inadequate invariant lets some of the proofs fail.

RISCAL can also validate the suitability of a proposed invariant.
Verifying the Algorithm

Core question: is the algorithm correct for all N, M?

- Have now checked this for arrays of length at most $N = 3$.
 - Verification for arbitrary N requires logic proof.
- Proof based on loop invariant that holds for arbitrary N.
 1. Proof that invariant holds before loop is started.
 2. Proof that invariant is preserved by every loop iteration.
 3. Proof that on termination invariant implies postcondition.
- Key: in iteration i, m is the maximum of the first $i - 1$ values.

 \[
 \text{pred inv}(a:\text{array}, n:\text{int}, m:\text{elem}, i:\text{int}) \iff \\
 1 \leq i \land i \leq n \land \\
 (\forall k:\text{int}. \ 0 \leq k \land k < i \Rightarrow m \geq a[k]) \land \\
 (\exists k:\text{int}. \ 0 \leq k \land k < i \land m = a[k]);
 \]

- Use of automated provers or interactive proof assistants.
 - Inadequate invariant lets some of the proofs fail.

RISCAL can also validate the suitability of a proposed invariant.
Checking a Loop Invariant

The invariant is not too strong.
Checking a Loop Invariant

The invariant is not too strong.
Checking Verification Conditions

The invariant may be still too weak.

\[
\text{theorem VC1}(a: \text{array}, n: \text{int}, m: \text{elem}, i: \text{int}) \quad \text{requires} \quad \text{pre}(a,n);
\quad \iff m = a[0] \land i=1 \implies \text{inv}(a,n,m,i);
\]

\[
\text{theorem VC2a}(a: \text{array}, n: \text{int}, m: \text{elem}, i: \text{int}) \quad \text{requires} \quad \text{pre}(a,n);
\quad \iff \text{inv}(a,n,m,i) \land i < n \land a[i] > m \implies \text{inv}(a,n,a[i],i+1);
\]

\[
\text{theorem VC2b}(a: \text{array}, n: \text{int}, m: \text{elem}, i: \text{int}) \quad \text{requires} \quad \text{pre}(a,n);
\quad \iff \text{inv}(a,n,m,i) \land i < n \land \neg(a[i] > m) \implies \text{inv}(a,n,m,i+1);
\]

\[
\text{theorem VC3}(a: \text{array}, n: \text{int}, m: \text{elem}, i: \text{int}) \quad \text{requires} \quad \text{pre}(a,n);
\quad \iff \text{inv}(a,n,m,i) \land \neg(i < n) \implies \text{post}(a,n,m);
\]

Need to check the verification conditions.
Checking Verification Conditions

The invariant may be still too weak.

\[
\text{theorem VC1}(a:\text{array}, n:\text{int}, m:\text{elem}, i:\text{int}) \\quad \\
\quad \text{requires pre}(a,n); \\
\quad \iff m = a[0] \land i=1 \Rightarrow \text{inv}(a,n,m,i); \\
\text{theorem VC2a}(a:\text{array}, n:\text{int}, m:\text{elem}, i:\text{int}) \\quad \\
\quad \text{requires pre}(a,n); \\
\quad \iff \text{inv}(a,n,m,i) \land i < n \land a[i] > m \Rightarrow \text{inv}(a,n,a[i],i+1); \\
\text{theorem VC2b}(a:\text{array}, n:\text{int}, m:\text{elem}, i:\text{int}) \\quad \\
\quad \text{requires pre}(a,n); \\
\quad \iff \text{inv}(a,n,m,i) \land i < n \land \neg(a[i] > m) \Rightarrow \text{inv}(a,n,m,i+1); \\
\text{theorem VC3}(a:\text{array}, n:\text{int}, m:\text{elem}, i:\text{int}) \\quad \\
\quad \text{requires pre}(a,n); \\
\quad \iff \text{inv}(a,n,m,i) \land \neg(i < n) \Rightarrow \text{post}(a,n,m); \\
\]

Need to check the verification conditions.
The invariant may be still too weak.

 theorem VC1(a:array, n:int, m:elem, i:int)
 requires pre(a,n);
 ⇔ m = a[0] ∧ i=1 ⇒ inv(a,n,m,i);
 theorem VC2a(a:array, n:int, m:elem, i:int)
 requires pre(a,n);
 ⇔ inv(a,n,m,i) ∧ i < n ∧ a[i] > m ⇒ inv(a,n,a[i],i+1);
 theorem VC2b(a:array, n:int, m:elem, i:int)
 requires pre(a,n);
 ⇔ inv(a,n,m,i) ∧ i < n ∧ ¬(a[i] > m) ⇒ inv(a,n,m,i+1);
 theorem VC3(a:array, n:int, m:elem, i:int)
 requires pre(a,n);
 ⇔ inv(a,n,m,i) ∧ ¬(i < n) ⇒ post(a,n,m);

Need to check the verification conditions.
Checking Verification Conditions

Proof-based verification for general N, M is likely to succeed.
Checking Verification Conditions

Proof-based verification for general N, M is likely to succeed.
Goal of RISCAL

Logic education in computer science and mathematics.

- Self-directed and self-paced learning.
 - Students may quickly validate *self-defined* theories, specifications, algorithms, meta-knowledge.
 - Exercises, assignments, online courses.
- Current and future work:
 - Automatic generation of formulas that support validation.
 - Application of SMT solvers to deciding validity of formulas.
 - Visualization of formula interpretation/evaluation.
 - Export of formulas to external proof assistants.
 - Development of educational materials.
- Supported by JKU LIT project LOGTECHEDU.

http://www.risc.jku.at/research/formal/software/RISCAL
Goal of RISCAL

Logic education in computer science and mathematics.

- Self-directed and self-paced learning.
 - Students may quickly validate *self-defined* theories, specifications, algorithms, meta-knowledge.
 - Exercises, assignments, online courses.

- Current and future work:
 - Automatic generation of formulas that support validation.
 - Application of SMT solvers to deciding validity of formulas.
 - Visualization of formula interpretation/evaluation.
 - Export of formulas to external proof assistants.
 - Development of educational materials.

- Supported by JKU LIT project LOGTECHEDU.

http://www.risc.jku.at/research/formal/software/RISCAL
Goal of RISCAL

Logic education in computer science and mathematics.

- **Self-directed and self-paced learning.**
 - Students may quickly validate *self-defined* theories, specifications, algorithms, meta-knowledge.
 - Exercises, assignments, online courses.

- **Current and future work:**
 - Automatic generation of formulas that support validation.
 - Application of SMT solvers to deciding validity of formulas.
 - Visualization of formula interpretation/evaluation.
 - Export of formulas to external proof assistants.
 - Development of educational materials.

- Supported by JKU LIT project LOGTECHEDU.

http://www.risc.jku.at/research/formal/software/RISCAL
Goal of RISCAL

Logic education in computer science and mathematics.

- Self-directed and self-paced learning.
 - Students may quickly validate *self-defined* theories, specifications, algorithms, meta-knowledge.
 - Exercises, assignments, online courses.

- Current and future work:
 - Automatic generation of formulas that support validation.
 - Application of SMT solvers to deciding validity of formulas.
 - Visualization of formula interpretation/evaluation.
 - Export of formulas to external proof assistants.
 - Development of educational materials.

- Supported by JKU LIT project LOGTECHEDU.

http://www.risc.jku.at/research/formal/software/RISCAL