author = {Maximilian Jaroschek and Manuel Kauers and Shaoshi Chen and Michael F. Singer},
title = {{Desingularization Explains Order-Degree Curves for Ore Operators}},
language = {english},
abstract = { Desingularization is the problem of finding a left multiple of a given Ore operator in which some factor of the leading coefficient of the original operator is removed. An order-degree curve for a given Ore operator is a curve in the $(r,d)$-plane such that for all points $(r,d)$ above this curve, there exists a left multiple of order~$r$ and degree~$d$ of the given operator. We give a new proof of a desingularization result by Abramov and van Hoeij for the shift case, and show how desingularization implies order-degree curves which are extremely accurate in examples. },
number = {1301.0917},
year = {2013},
institution = {ArXiv},
length = {8}