RISC-Linz RISC-Linz Research Institute for Symbolic Computation  
  • @techreport{RISC3967,
    author = {E.Kartashova and V. Lvov and S. Nazarenko and I. Procaccia},
    title = {{Towards a Theory of Discrete and Mesoscopic Wave Turbulence}},
    language = {english},
    abstract = {This is WORK IN PROGRESS carried out in years 2008-2009 and partly supported by Austrian FWF-project P20164-N18 and 6 EU Programme under the project SCIEnce, Contract No. 026133). Abstract: \emph{Discrete wave turbulence} in bounded media refers to the regular and chaotic dynamics of independent (that is, discrete in $k$-space) resonance clusters consisting of finite (often fairly big) number of connected wave triads or quarters, with exact three- or four-wave resonances correspondingly. "Discreteness" means that for small enough amplitudes there is no energy flow among the clusters. Increasing of wave amplitudes and/or of system size opens new channels of wave interactions via quasi-resonant clusters. This changes statistics of energy exchange between waves and results in new, \emph{mesoscopic} regime of \emph{wave turbulence}, where \emph{discrete wave turbulence} and \emph{kinetic wave turbulence} in unbounded media co-exist, the latter well studied in the framework of wave kinetic equations. We overview in systematic manner and from unified viewpoint some preliminary results of studies of regular and stochastic wave behavior in bounded media, aiming to shed light on their relationships and to clarify their role and place in the structure of a future theory of discrete and mesoscopic wave turbulence, elucidated in this paper. We also formulate a set of yet open questions and problems in this new field of nonlinear wave physics, that awaits for comprehensive studies in the framework of the theory. We hope that the resulting theory will offer very interesting issues both from the physical and the methodological viewpoints, with possible important applications in environmental sciences, fluid dynamics, astronomy and plasma physics.},
    year = {2010},
    month = {February},
    howpublished = {Technical report no. 10-04 in RISC Report Series},
    length = {42},
    type = {RISC Report Series},
    institution = {Research Institute for Symbolic Computation (RISC), Johannes Kepler University Linz},
    address = {Schloss Hagenberg, 4232 Hagenberg, Austria}