Construction of all Polynomial Relations among Dedekind Eta Functions of Level N^*

Ralf Hemmecke† Silviu Radu‡

21-Dec-2017

Abstract
We describe an algorithm that, given a positive integer N, computes a Gröbner basis of the ideal of polynomial relations among Dedekind η-functions of level N, i.e., among the elements of $\{\eta(\delta_1 \tau), \ldots, \eta(\delta_n \tau)\}$ where $1 = \delta_1 < \delta_2 \cdots < \delta_n = N$ are the positive divisors of N.

More precisely, we find a finite generating set (which is also a Gröbner basis) of the ideal $\ker \phi$ where

$\phi : \mathbb{Q}[E_1, \ldots, E_n] \to \mathbb{Q}[\eta(\delta_1 \tau), \ldots, \eta(\delta_n \tau)], \quad E_k \mapsto \eta(\delta_k \tau), \quad k = 1, \ldots, n.$

1 Introduction
In many publications one finds directly or indirectly lists of relations among Dedekind η-functions, see, for example, [Köh11]. Somos on his website http://eta.math.georgetown.edu/etal gives quite a huge number of such relations together with references to the literature. In this article, we not only provide means to compute or check new relations, but rather describe a method to compute a basis for the ideal of all possible polynomial relations among Dedekind η-functions of a certain level. Our method adapts the ideas of [KZ08] to η-functions.

Since our basis will be a Gröbner basis, it is easy to express a given relation as a combination of the Gröbner basis elements by merely reducing the relation to zero and keeping track of the reduction steps.

After listing the notations used in this article and the exact problem specification, we continue in Chapter 4 with four reduction steps of the problem, that roughly say, that any relation among η-functions can be expressed by a relation among η-quotients that are modular functions. In Chapter 5, we reduce further and then can say that any η-relation can be expressed by a relation among η-quotients that are modular functions and have at most a pole at infinity. In

*The second author was supported by grant SFB F50-06 of the Austrian Science Fund (FWF).

†hemmecke@risc.jku.at

‡sradu@risc.jku.at
Chapter 6, we show that the quotients of \(\eta \)-functions of a certain level that are modular functions and only have at most a pole at infinity, can be generated by only finitely many elements of this kind and that finding such generators is constructive. Eventually, we show in Chapter 7 how these finitely many elements can be turned in finitely many steps into a Gröbner basis for the ideal of relations among \(\eta \)-functions. We demonstrate our method by an example in Chapter 8, and show how our findings relate to the table given by Somos.

Our article does not primarily focus on efficiency of the computation, but rather on its effectiveness, i.e., that there exists an algorithm to compute a Gröbner basis for the relations among Dedekind \(\eta \)-functions.

2 Notation

For a set \(E = \{E_1, \ldots, E_n\} \) of indeterminates let us abbreviate the polynomial ring \(\mathbb{Q}[E_1, \ldots, E_n] \) by \(\mathbb{Q}[E] \). Furthermore, we use multi-index notation, i.e., if \(\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{Z}^n \), then we simply write \(E_\alpha \) instead of \(E_{\alpha_1} \cdots E_{\alpha_n} \).

Let \(\mathbb{H} = \{c \in \mathbb{C} \mid \Im(c) > 0\} \) denote the upper complex half-plane.

Let \(\eta : \mathbb{H} \to \mathbb{C}, \quad \tau \mapsto \exp \left(\frac{\pi i \tau}{12} \right) \prod_{n=1}^{\infty} (1 - q^n) \) with \(q = q(\tau) = \exp(2\pi i \tau) \)

denote the Dedekind eta function.

In the following \(N \) denotes a positive integer and \(1 = \delta_1 < \delta_2 \cdots < \delta_n = N \) the positive divisors of \(N \). Let \(\Delta := \{\delta_1, \ldots, \delta_n\} \). For convenience, we allow to index \(n \)-dimensional vectors by the divisors of \(N \), instead of the usual index set \{1, \ldots, n\}. For \(\delta \in \Delta \) we consider the functions

\[
\eta_\delta : \mathbb{H} \to \mathbb{C}, \quad \tau \mapsto \eta(\delta \tau)
\]

None of these functions is identically zero. We denote for any integer \(k \) by \(\eta_\delta^k \) the function

\[
\eta_\delta^k : \mathbb{H} \to \mathbb{C}, \quad \tau \mapsto \eta(\delta \tau)^k.
\]

We define \(R(N) \) to be the set of integer tuples \(r = (r_{\delta_1}, \ldots, r_{\delta_n}) \in \mathbb{Z}^n \). By \(R^*(N) \) we denote the subset of all tuples \(r = (r_\delta)_{\delta \in \Delta} \) of \(R(N) \) that fulfill the following conditions.

\[
\sum_{\delta \in \Delta} r_\delta = 0 \quad (1)
\]

\[
\sum_{\delta \in \Delta} \delta r_\delta \equiv 0 \pmod{24} \quad (2)
\]

\[
\sum_{\delta \in \Delta} (N/\delta)r_\delta \equiv 0 \pmod{24} \quad (3)
\]

\[
\sqrt{\prod_{\delta \in \Delta} \delta^{r_\delta}} \in \mathbb{Q} \quad (4)
\]
Note that \(R^*(N) \) is an additive monoid. It even is an additive group.

If \(L \) is a ring and \(S \) a subset of an \(L \)-module, we denote by \(\langle S \rangle_L \) the set of \(L \)-linear combinations of elements of \(S \). If \(L \) is a field, then \(\langle S \rangle_L \) is a vector space. If \(S \subset L \), then \(\langle S \rangle_L \) is an ideal of \(L \).

We, furthermore, define the following groups.

\[
SL_2(\mathbb{Z}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a, b, c, d \in \mathbb{Z} \land ad - bc = 1 \right\}
\]

\[
\Gamma_0(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}) \mid c \mid N \right\}
\]

3 The Problem

We are interested in computing a generating set of the kernel of the homomorphism

\[
\phi : \mathbb{Q}[E_{\delta_1}, \ldots, E_{\delta_n}] \to \mathbb{Q}[\eta_{\delta_1}, \ldots, \eta_{\delta_n}], \quad \forall \delta \in \Delta : E_\delta \mapsto \eta_\delta.
\]

\(\ker \phi \) is an ideal of \(\mathbb{Q}[E_{\delta_1}, \ldots, E_{\delta_n}] \).

In this article, we call an element of \(\ker \phi \) a polynomial relation or just relation, i.e., a relation is a polynomial that when the variables are replaced by the respective \(\eta \)-functions gives zero.

By Hilbert’s basis theorem, the ideal \(\ker \phi \) is finitely generated. In the following, we show how to compute these generators.

In order to do this, we extend \(\phi \) to Laurent polynomials.

\[
\Phi : \mathbb{Q}[E_{\delta_1}, \ldots, E_{\delta_n}, E_{\delta_1}^{-1}, \ldots, E_{\delta_n}^{-1}] \to \mathbb{Q}[\eta_{\delta_1}, \ldots, \eta_{\delta_n}, \eta_{\delta_1}^{-1}, \ldots, \eta_{\delta_n}^{-1}] \quad \forall \delta \in \Delta : E_\delta \mapsto \eta_\delta.
\]

In order to ease notation, we let \(E = \{E_{\delta_1}, \ldots, E_{\delta_n}\} \), and let \(L = \mathbb{Q}[E, E^{-1}] \) denote the Laurent polynomial ring in the variables \(E \).

First, we focus on the kernel of \(\Phi \).

Let \(L^* \) be the set of \(\mathbb{Q} \)-linear combinations of monomials \(E^r \in L \) with \(r \in R^*(N) \). In the following we show that \(\ker \Phi = \langle L^* \cap \ker \Phi \rangle_L \).

Note that \(\Phi|_{\mathbb{Q}[E]} = \phi \) and \(\ker \phi = \ker \Phi \cap \mathbb{Q}[E] \).

4 Reduction of the problem

Let \(L_k^{(1)} \subset L \) denote the \(\mathbb{Q} \)-vector space generated by the monomials \(E^r \) with

\[
\sum_{\delta \in \Delta} r_\delta = k.
\]

Claim 1.

\[
\ker \Phi = \left\langle L_k^{(1)} \cap \ker \Phi \right\rangle_L.
\]
Proof. An element $p \in \ker \Phi$ can be written as a finite sum of elements, i.e.,

$$p = \sum_{k=k_1}^{k_2} p_k$$

where $p_k \in L_k^{(1)}$. By [Rad18, Section 2] it follows that $\Phi(p) = 0$ if and only if $\Phi(p_k) = 0$ for every $k_1 \leq k \leq k_2$. Thus, it is sufficient to prove for all $k_1 \leq k \leq k_2$ that if $p_k \in L_k^{(1)} \cap \ker \Phi$, then $p_k \in \langle L_0^{(1)} \cap \ker \Phi \rangle_L$. Let k be such that $k_1 \leq k \leq k_2$, $r \in R(N)$, $E^r \in L_k^{(1)}$, and $p_k \in L_k^{(1)} \cap \ker \Phi$. Then $E^{-r} \in L_{-k}^{(1)}$ and $E^{-r} p_k \in L_0^{(1)} \cap \ker \Phi$. Therefore, $p_k = E^r(E^{-r} p_k) \in \langle L_0^{(1)} \cap \ker \Phi \rangle_L$. \hfill \square

Note that elements in $L_0^{(1)}$ are \mathbb{Q}-linear combinations of monomials of the form E^r such that $r \in R(N)$ fulfills $[1]$.

For $k \in \{0, \ldots, 23\}$ we define $L_k^{(2)}$ to be the \mathbb{Q}-vector subspace of $L_0^{(1)}$ spanned by those monomials E^r which satisfy

$$\sum_{\delta \in \Delta} \delta r_\delta \equiv k \pmod{24}.$$

Claim 2.

$$\ker \Phi = \langle L_0^{(2)} \cap \ker \Phi \rangle_L.$$

Proof. By Claim 1 it is sufficient to show that if $p \in L_0^{(1)} \cap \ker \Phi$, then $p \in \langle L_0^{(2)} \cap \ker \Phi \rangle_L$. Let $p = \sum_{k=0}^{23} p_k \in L_0^{(1)} \cap \ker \Phi$ where $p_k \in L_k^{(2)}$. Since $p \in \ker \Phi$, it follows by [Rad18, Section 3] that $p_k \in \ker \Phi$ for every $k \in \{0, \ldots, 23\}$.

Let $k \in \{0, \ldots, 23\}$, $r \in R(N)$, $E^r \in L_k^{(2)}$, and $p_k \in L_k^{(1)} \cap \ker \Phi$. Then $E^{-r} \in L_{23-k}^{(2)}$ and $E^{-r} p_k \in L_0^{(2)} \cap \ker \Phi$. Thus, $p_k = E^r(E^{-r} p_k) \in \langle L_0^{(2)} \cap \ker \Phi \rangle_L$. \hfill \square

Note that elements in $L_0^{(2)}$ are \mathbb{Q}-linear combinations of monomials of the form E^r such that $r \in R(N)$ fulfills $[1]$ and $[2]$.

For $k \in \{0, \ldots, 23\}$ we define $L_k^{(3)}$ to be the \mathbb{Q}-vector subspace of $L_0^{(2)}$ spanned by those monomials E^r which satisfy

$$\sum_{\delta \in \Delta} N_\delta \delta r_\delta \equiv k \pmod{24}.$$

Then the following Claim and its proof are nearly identical to what has been shown above, only that we replace $L_k^{(2)}$ by $L_k^{(3)}$ and $L_0^{(1)}$ by $L_0^{(2)}$.

Claim 3.

$$\ker \Phi = \langle L_0^{(3)} \cap \ker \Phi \rangle_L.$$
Proof. By Claim 2 it is sufficient to show that if \(p \in L_0^{(2)} \cap \ker \Phi \), then \(p \in \left< L_0^{(3)} \cap \ker \Phi \right>_L \). Let \(p = \sum_{k=0}^{23} p_k \in L_0^{(2)} \cap \ker \Phi \) where \(p_k \in L_k^{(3)} \). Since \(p \in \ker \Phi \), it follows by [Rad18, Section 3] that \(p_k \in \ker \Phi \).

Let \(k \in \{0, \ldots, 23\} \), \(r \in R(N) \), \(E^r \in L_k^{(3)} \), and \(p_k \in L_k^{(2)} \cap \ker \Phi \). Then \(E^{-r} \in L_{23-k}^{(3)} \) and \(E^{-r}p_k \in L_0^{(3)} \cap \ker \Phi \). Thus, \(p_k = E^r(E^{-r}p_k) \in \left< L_0^{(3)} \cap \ker \Phi \right>_L \). □

Note that elements in \(L_0^{(3)} \) are \(\mathbb{Q} \)-linear combinations of monomials of the form \(E^r \) such that \(r \in R(N) \) fulfills (1), (2), and (3).

Let \(\pi_1, \ldots, \pi_s \) be the primes dividing \(N \) and let \(u_{\delta j} \in \mathbb{N} \) for \(\delta \in \Delta \) and \(j \in \{1, \ldots, s\} \) be defined by the prime factorization of \(\delta \), i.e., \(\delta = \prod_{j=1}^{s} \pi_j^{u_{\delta j}} \). We define functions \(\varepsilon_j : R(N) \to F_2 \) from \(R(N) \) into the Galois field \(F_2 \) of order 2 by

\[
\varepsilon_j : \sum_{\delta \in \Delta} r_\delta' u_{\delta j}.
\]

The function \(\varepsilon : R(N) \to F_2^s \) is defined by \(r \mapsto (\varepsilon_1(r), \ldots, \varepsilon_s(r)) \).

For \(e \in F_2^s \) we denote by \(L_e^{(4)} \) the \(\mathbb{Q} \)-vector subspace of \(L_0^{(3)} \) generated by those terms \(E^r \in L_0^{(3)} \), with the property \(r \in R(N) \) and \(e = \varepsilon(r) \). Clearly, for \(r, r' \in R(N) \) it holds \(\varepsilon(r + r') = \varepsilon(r) + \varepsilon(r') \).

Note that \(L_e^{(4)} \) corresponds to the set \(S_3(e) \) as defined in [Rad18, Section 4].

Claim 4.

\[
\ker \Phi = \left< L_0^{(4)} \cap \ker \Phi \right>_L.
\]

Proof. By Claim 3 it is sufficient to show that if \(p \in L_0^{(3)} \cap \ker \Phi \), then \(p \in \left< L_0^{(4)} \cap \ker \Phi \right>_L \). Let \(p = \sum_{e \in F_2^s} p_e \in L_0^{(3)} \cap \ker \Phi \) with \(p_e \in L_e^{(4)} \). By [Rad18, Section 4] it follows that \(p_e \in \ker \Phi \) for all \(e \in F_2^s \). Now fix \(e \in F_2^s \) and let \(E^r, E^{r'} \in L_e^{(4)} \) be two monomials. By additivity of \(\varepsilon \), we conclude \(E^r + E^{r'} \in L_e^{(4)} \). Let \(r \in R(N) \), \(E^r \in L_e^{(4)} \). Then \(E^r p_e \in L_0^{(4)} \cap \ker \Phi \). Therefore, \(p_e = E^{-r}(E^r p_e) \in \left< L_0^{(4)} \cap \ker \Phi \right>_L \). □

Note that \(L_0^{(4)} \) is a \(\mathbb{Q} \)-linear combination of monomials of the form \(E^r \) such that \(r \in R(N) \) fulfills (1), (2), (3), and (4), i.e., \(r \in R^*(N) \), therefore, we define \(L^* := L_0^{(4)} = \left< E^r \mid r \in R^*(N) \right>_Q \subset L \).

5 From \(R^*(N) \) to \(R^\infty(N) \)

Because \(R^*(N) \) is an additive monoid, \(L^* \) is a ring and we can write \(L^* = \mathbb{Q}[E^r \mid r \in R^*(N)] \). In this section we are going to define a (finitely generated) submonoid \(R^\infty(N) \subset R^*(N) \) such that

\[
\ker \Phi = \left< L^\infty \cap \ker \Phi \right>_L.
\]
where \(L^\infty := \mathbb{Q}[E^r \mid r \in R^\infty(N)] \). Motivation for passing from \(R^*(N) \) to \(R^\infty(N) \) is that it eventually allows us to feed Laurent series that are related to \(R^\infty(N) \) into a computer algebra system and actually compute a basis of all the relations among the \(\eta \)-functions of level \(N \).

Informally speaking, \(R^\infty(N) \) correspond to the set of \(\eta \)-quotients that have poles (if any) only at infinity.

Definition 5.1. For any \(c, \delta \in \Delta, r \in R(N) \) let us define

\[
a_N(c, \delta) := \frac{N/c}{\gcd(N/c, c)} \frac{\gcd(c, \delta)^2}{\delta},
\]

\[
\text{ord}_c^N(r) := \frac{1}{24} \sum_{\delta \in \Delta} a_N(c, \delta) r_\delta,
\]

and

\[
g_r(\tau) := \prod_{\delta \in \Delta} \eta(\delta \tau)^{r_\delta}.
\]

With \(\text{ord}_c^N \) as defined in \cite{Rad15}, Theorem 23 of \cite{Rad15} turns into

Theorem 5.2. Let \(\gamma = \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in SL_2(\mathbb{Z}) \) with \(c \in \Delta \). If \(r \in R^*(N) \), then \(\text{ord}_c^N(g_r) = \text{ord}_c^N(r) \).

For a proof we refer to \cite[Proposition 3.2.8]{Lig75}.

Similar to the “valence matrix” in \cite{New57}, we define an (integer) matrix that is indexed by the positive divisors of \(N \). The rows (indexed by \(c \)) correspond to cusps \(\frac{a}{c} \) for some \(a \in \mathbb{Z} \) with \(\gcd(a, c) = 1 \).

\[
A_N := \left(a_N(c, \delta) \right)_{c, \delta \in \Delta}.
\]

Note that Newman only deals with \(N \) that are squarefree. The non-squarefree case is compensated by the additional quotient \(\gcd(N/c, c) \), compare with Notation 3.2.6 in \cite{Lig75}.

According to \cite[Lemma 5.3]{Rad15}, there are \(\varphi(\gcd(N/c, c)) \) different cusps \(\frac{a}{c} \) of \(\Gamma_0(N) \) that correspond to a divisor \(c \) of \(N \) (i.e., to the row with index \(c \) in \(A_N \)) where \(\varphi \) is Euler’s totient function. As a preparation for Lemma 5.5, we introduce a row vector

\[
V_N = (\varphi(\gcd(N/c, c)))_{c \in \Delta}
\]

and functions

\[
v_\delta(N, c) := \varphi(\gcd(N/c, c)) a_N(c, \delta)
\]

such that \(V_N A_N = (\sum_{c \in \Delta} v_\delta(N, c))_{\delta \in \Delta} \).

For the proof of Lemma 5.4, we need an auxiliary result.
Lemma 5.3. For any $0 \neq \alpha \in \mathbb{N}$, $0 \leq m \leq \alpha$, we have $\sum_{d|p^\alpha} v_{p^m}(p^\alpha, d) = p^\alpha + p^{\alpha-1}$.

Proof.

\[
\sum_{k=0}^\alpha v_{p^m}(p^\alpha, p^k) = v_{p^m}(p^\alpha, 1) + v_{p^m}(p^\alpha, p^k) + \sum_{k=1}^{\alpha-1} V_{p^m}(p^\alpha, p^k) = p^{\alpha-m} + p^m + \sum_{k=1}^{\alpha-1} \varphi(\gcd(p^{\alpha-k}, p^k)) \frac{p^{\alpha-k}}{\gcd(p^{\alpha-k}, p^k)} \frac{\gcd(p^k, p^m)^2}{p^m} = p^{\alpha-m} + p^m + \sum_{k=1}^{\alpha-1} \varphi(p^{\min(\alpha-k,k)})p^{\alpha-k-\min(\alpha-k,k)+2\min(k,m)-m} = p^{\alpha-m} + p^m + \sum_{k=1}^{\alpha-1} (p-1)p^{\alpha-k+2\min(k,m)-m}
\]

For $m = 0$ we get $\sum_{k=0}^\alpha v_{p^m}(p^\alpha, p^k) = p^\alpha + 1 + \sum_{k=1}^{\alpha-1} (p-1)p^{\alpha-k} = p^\alpha + p^{\alpha-1}$. If $0 < m \leq \alpha$, then

\[
\sum_{k=0}^\alpha v_{p^m}(p^\alpha, p^k) = p^{\alpha-m} + p^m + \sum_{k=1}^{m-1} (p-1)p^{\alpha-1+k-m} + \sum_{k=m}^{\alpha-1} (p-1)p^{\alpha-1-k+m} = p^{\alpha-m} + p^m + (p-1)p^{\alpha-m} \sum_{k=0}^{m-2} p^k + (p-1)p^m \sum_{k=0}^{\alpha-m-1} p^k = p^{\alpha-m} + p^m + p^{\alpha-m}(p^{m-1} - 1) + p^m(p^{\alpha-m} - 1) = p^{\alpha-m} + p^m + p^{\alpha-1} - p^{\alpha-m} - p^\alpha - p^m = p^\alpha + p^{\alpha-1}
\]

Lemma 5.4. $V_N A_N = N \prod_{p|N} (1 + \frac{1}{p}) \cdot (1, \ldots, 1)$.

Proof. We have to show that the value of $\sum_{c \in \Delta} v_\delta(N, c)$ is independent of δ. Clearly, if p is a prime that divides N, i.e., $N = N' p^\alpha$ for some $\alpha > 0$, and $\delta = \delta' p^m, c = c' p^k$ with $\gcd(p, N') = \gcd(p, \delta') = \gcd(p, c') = 1$, then $v_\delta(N, c) = v_{\delta'}(N', c') v_{p^m}(p^\alpha, p^k)$.

Since the divisors of N can be written as a disjoint union according to the respective power of p they contain, we can write

\[
\sum_{c|N} v_\delta(N, c) = \sum_{c'|N'} \sum_{d|p^\alpha} v_\delta(N, c'd) = \sum_{c'|N'} \sum_{d|p^\alpha} v_{\delta'}(N', c') v_{p^m}(p^\alpha, d) = \sum_{c'|N'} v_{\delta'}(N', c') \cdot \sum_{d|p^\alpha} v_{p^m}(p^\alpha, d).
\]

Together with $\sum_{d|p^\alpha} v_{p^m}(p^\alpha, d) = p^\alpha(1 + \frac{1}{p})$, $0 \leq m \leq \alpha$, the result follows by induction over the number of prime divisors of N.

[July 9, 2018 (16:39)] 7
Lemma 5.5. The matrix A_N is invertible.

Proof. The proof is along the lines of the proof of Lemma 3 in [New57]. Suppose $\det(A_N) = 0$. Then there is a vector $r \in R(N)$ such that $A_N r = 0$ and $r_{\delta} \neq 0$ for at least one $\delta \in \Delta$. Since $V_N A_N r = 0$, we conclude from Lemma 5.4 that (1) holds for such an r. We may assume that each component of r is a multiple of 24, thus, we can take $r \in \mathbb{R}^*(N)$. Then the conditions of Theorem 1 of [New59] are fulfilled. Thus, the function g_r is a modular function for $\Gamma_0(N)$. g_r does neither have zeroes nor poles on the upper complex half-plane, since η does not have zeroes or poles. The cusps of $\Gamma_0(N)$ can be assumed to be of the form a/c with $a, c \in \mathbb{Z}$, $\gcd(a, c) = 1$, $c \in \Delta$, cf. [Rad18, Lemma 5.3]. Note that $c = N$ corresponds to the cusp at infinity. From $A_N r = 0$, (5) and Theorem 5.2 follows that the function g_r has zero order at all the cusps. Thus, it must be constant, i.e., $g_r = 1$. By Theorem 4 of [New57] follows that r is the zero vector and, thus, the Lemma is proved.

Let $R_\infty(N) := \left\{ r \in R^*(N) \mid \forall c \in \mathbb{N} : (0 < c < N \land c|N \implies \text{ord}_N(r) \geq 0) \right\}$.

Note that the set \{g_r \mid r \in R_\infty(N)\} is the same as $E_\infty(N)$ in [Rad15].

Let $K \in \mathbb{N}$ be the (positive) least common multiple of all denominators of the entries of A_N^{-1}. Let $g = 24K A_N^{-1}(1, \ldots, 1, 0)^T$. Obviously, $g \in R^*(N)$ and by construction $\text{ord}_N^N(g) = K$ for every $c \in \Delta$ with $c \neq N$ and $\text{ord}_N^N(g) = 0$. Thus, $g \in R_\infty(N)$ and for any $r \in R^*(N)$ there exists $d \in \mathbb{N}$ such that

$$r + d g \in R_\infty(N).$$

(7)

Lemma 5.6.

$$\ker \Phi = \langle L_\infty \cap \ker \Phi \rangle_L$$

Proof. It is sufficient to show that if $p \in L^* \cap \ker \Phi$, then $p \in \langle L_\infty \cap \ker \Phi \rangle_L$. Let E^r be a monomial of p. Then by (7) there is $d_r \in \mathbb{N}$ such that $(E^\phi)^{d_r} E^r \in L_\infty$. If we choose d as the maximum of all such d_r for all monomials of p, then clearly, $(E^\phi)^d p \in L_\infty \cap \ker \Phi$. Therefore, $p = E^{-d\phi} (E^d p) \in \langle L_\infty \cap \ker \Phi \rangle_L$.

6 L^∞ is finitely generated

We have shown that $\ker \Phi$ is generated by elements of $L_\infty = \mathbb{Q}[E^r \mid r \in R_\infty(N)]$. Now we show that L_∞ can be generated (as a polynomial ring over \mathbb{Q}) by finitely many elements.

Lemma 6.1. $R_\infty(N)$ is a finitely generated (additive) monoid.

Proof. In order to apply Lemma 2.6.8 from [DLHK13], we construct a matrix A by stacking matrices B_N, $-B_N$, and $-A_N^\infty$ on top of each other.
The matrix B_N encodes the conditions for $r \in R^*(N)$ and A_N^∞ encodes the conditions about the orders for cusps not at infinity, i.e., that $r \in R^\infty(N)$.

For the conditions (2), (3), and (4) we introduce additional variables b_∞, b_0, and b_1, \ldots, b_s in order to turn the “mod 24” and the square root condition into an integer problem. These additional variables enter our problem transformation for [DLHK13, Lemma 2.6.8], but are otherwise irrelevant for us. Let $z = (r_1, \ldots, r_n, b_\infty, b_0, b_1, \ldots, b_s)^T$ be the column vector that correspond to the r-variables and the additional variables. We transform the question about a finite generating set for $R^\infty(N)$ into a problem about the (integer) solutions of the system $Az \leq 0$.

We define

$$B_N := \begin{bmatrix} 1 & \cdots & 1 & 0 & 0 & \cdots & 0 \\ \delta_1 & \cdots & \delta_n & 24 & 0 & \cdots & 0 \\ N/\delta_1 & \cdots & N/\delta_n & 0 & 24 & \cdots & 0 \\ u_{\delta_1,1} & \cdots & u_{\delta_n,1} & 0 & 0 & 2 & \cdots & 0 \\ \vdots & 0 \\ u_{\delta_1,s} & \cdots & u_{\delta_n,s} & 0 & 0 & 0 & \cdots & 2 \end{bmatrix}$$

(8)

where s and the $u_{\delta j}$ are defined as in the text before Claim 4 by the prime factorization of the divisors of N. Then $B_Nz = 0$ corresponds to the condition $r \in R^*(N)$ from Section 2. Furthermore, with

$$A_N^\infty := \begin{bmatrix} a_N(\delta_1, \delta_1) & \cdots & a_N(\delta_1, \delta_N) & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_N(\delta_{n-1}, \delta_1) & \cdots & a_N(\delta_{n-1}, \delta_N) & 0 & \cdots & 0 \end{bmatrix}$$

(9)

the inequality $A_N^\infty z \geq 0$ for $r \in R^*(N)$ encodes $\text{ord}_c^N(r) \geq 0$ for every $c \in \Delta$ with $c \neq N$.

By [DLHK13, Lemma 2.6.8] we can conclude that there are finitely many $q_1, \ldots, q_k \in R^\infty(N)$ such that $\langle q_1, \ldots, q_k \rangle_N = R^\infty(N)$.

Let q_1, \ldots, q_k be such that $\langle q_1, \ldots, q_k \rangle_N = R^\infty(N)$. For $\kappa \in \{1, \ldots, k\}$ let $m_\kappa := E^\infty$. Then $L^\infty = Q[E^\infty | r \in R^\infty(N)] = Q[m_1, \ldots, m_k]$.

7 From ring to ideal

By Lemma 5.6 we now have $\ker \Phi = \langle Q[m_1, \ldots, m_k] \cap \ker \Phi \rangle_L$, i.e., any relation among η-functions of a certain level, can be expressed as an L-linear combination of polynomials of a finite number of η-quotients corresponding to m_1, \ldots, m_k whose coefficients are in Q. In other words, we would like to find polynomials $p \in Q[m_1, \ldots, m_k]$ such that $\Phi(p) = 0$. In order to do this, we first transform the problem in such a way that we can employ the algorithm AB from [Rad15]. It leads to temporarily working with an ideal in the polynomial ring $Q[Z, M]$ only to later eliminate the Z-variables to obtain an ideal $J(M)$. Substitution of
the indeterminates M_1, \ldots, M_k by the respective m_1, \ldots, m_k eventually gives a better representation for $\ker \Phi$.

The output of AB is used to find all polynomial relations among the m_κ that are in $\ker \Phi$. In fact, instead of AB, we use the algorithm $samba$ from [Hem18]. It gives essentially the same output as AB, but can be exploited in its extended form to avoid the computation of an elimination ideal.

For $\kappa \in \{1, \ldots, k\}$ let $m_\kappa := \Phi(m_\kappa)$. Since $g_\kappa \in R^\infty(N)$, m_κ can be represented as a Laurent series $Q((q))$ in $q = \exp(2\pi i \tau)$. We denote by ord$_q(f)$ the smallest power of q that appears in $f \in Q((q))$ with a non-zero coefficient. Note that ord$_q(m_\kappa) = ord_N^N(g_\kappa)$. $Q[m_1, \ldots, m_k]$ is a subring of $Q((q))$ and, by construction via $R^\infty(N)$, has the the property that if $f \in Q[m_1, \ldots, m_k]$ and ord$_q(f) > 0$, then $f = 0$. Thus, we can apply algorithm $samba$ from [Hem18] to m_1, \ldots, m_k and obtain elements $\zeta_1, \ldots, \zeta_l \in Q[m_1, \ldots, m_k]$ with $\zeta_1 = 1$ such that

$$Q[m_1, \ldots, m_k] = \langle \zeta_1, \ldots, \zeta_l \rangle_{Q[m_1]}.$$

(10)

Since $samba$ is applied over Q, i.e., with a field as coefficients, we can assume that $0 = \text{ord}_q(\zeta_1) > \text{ord}_q(\zeta_2) > \ldots > \text{ord}_q(\zeta_l)$. Because of line 10 of $samba$, the sequence ζ_2, \ldots, ζ_l is m_1-reduced in the sense of Definition 8 of [Rad15]. In other words, there are no non-trivial $Q[m_1]$-linear relations among the ζ_1, \ldots, ζ_l, i.e., if $v_1, \ldots, v_l \in Q[M_1]$ with $v_1(m_1)_1 + \cdots + v_l(m_1)_l = 0$, then $v_1 = \cdots = v_l = 0$.

Let $Q[Z, M]$ denote the polynomial ring $Q[Z_1, \ldots, Z_l, M_1, \ldots, M_k]$. As a consequence of (10), there are polynomials $(\kappa \in \{1, \ldots, k\}, j, j', \lambda \in \{1, \ldots, l\})$

$$v_{\kappa \lambda}, v_{j j' \lambda} \in Q[M_1],$$

(11)

$$p_\kappa := M_\kappa - \sum_{\lambda=1}^l v_{\kappa \lambda}(M_1)_1 Z_\lambda \in Q[Z, M],$$

(12)

$$p_{jj'} := Z_j Z_{j'} - \sum_{\lambda=1}^l v_{jj' \lambda}(M_1)_1 Z_\lambda \in Q[Z, M]$$

(13)

such that (by plugging in the corresponding Laurent series)

$$p_\kappa(\zeta, m) = 0, \quad p_{jj'}(\zeta, m) = 0.$$

The polynomials $v_{\kappa \lambda}, v_{jj' \lambda}$ can easily be obtained by reducing m_κ and $\zeta_j \zeta_{j'}$ to zero by the module basis elements ζ_1, \ldots, ζ_l and keeping track of the cofactors in this reduction. Note that even though this reduction to zero deals with Laurent series, these are Laurent series coming from $R^\infty(N)$ and, thus, it is a finite process. The reduction can stop, if an element of positive order is obtained.

We can form the ideal $J^{(Z, M)}$ in $Q[Z, M]$ generated by

$$\{p_1, \ldots, p_k\} \cup \{p_{jj'} | j, j' \in \{1, \ldots, l\}\}.$$

(14)

This ideal contains every relation among the m_κ and ζ_j. For a proof, suppose $f \in Q[Z, M]$ with $f(\zeta, m) = 0$. Then, using (12) and (13), we can reduce f to a
polynomial \(f' \) of the form \(f' = v_1(M_1)Z_1 + \cdots v_l(M_1)Z_l \) with \(v_1, \ldots, v_l \in \mathbb{Q}[M_1] \) and \(f'(\lambda, m) = 0 \). By a remark above, \(v_1 = \cdots = v_l = 0 \) and thus \(f \in J^{(Z,M)} \).

The intersection of \(J^{(Z,M)} \) with \(\mathbb{Q}[M] \) gives an ideal \(J^{(M)} \) that represents all relations among the \(m_\kappa \). In principle, generators for the ideal \(J^{(M)} \) can be obtained by computing a Gröbner basis (see [Buc65] or [BW93]) of (14) with all relations among the \(m_\kappa \).

However, employing an extended form of the algorithm \textsc{samba} allows us to avoid such a Gröbner basis computation. The extended form of \textsc{samba} keeps track of all the transformations during its run and thus yields not only \(\lambda_1, \ldots, \lambda_l \), but also polynomials \(f_\lambda \in \mathbb{Q}[M] \) such that

\[
\lambda_\lambda = f_\lambda(m) = f_\lambda(m_1, \ldots, m_k) \tag{15}
\]

for every \(\lambda \in \{1, \ldots, l\} \). By replacing each indeterminate \(Z_\lambda \) by \(f_\lambda (\lambda \in \{1, \ldots, l\}) \), we can transform (12) and (13) into

\[
h_\kappa := M_\kappa - \sum_{\lambda = 1}^l v_{\kappa \lambda} f_\lambda \in \mathbb{Q}[M], \tag{16}
\]

\[
h_{jj'} := f_{jj'} - \sum_{\lambda = 1}^l v_{jj' \lambda} f_\lambda \in \mathbb{Q}[M]. \tag{17}
\]

Then,

\[
H^{(M)} := \{h_1, \ldots, h_k\} \cup \{h_{jj'} \mid j, j' \in \{1, \ldots, l\}\} \subseteq \mathbb{Q}[M]. \tag{18}
\]

is a set of generators for the ideal of relations among the \(m_\kappa \). In other words, \(h(m) = 0 \) for every \(h \in \langle H^{(M)} \rangle_{\mathbb{Q}[M]} \).

Clearly, \(\langle H^{(M)} \rangle_{\mathbb{Q}[M]} \subseteq J^{(M)} \). In order to show \(\langle H^{(M)} \rangle_{\mathbb{Q}[M]} \supseteq J^{(M)} \), take \(h \in J^{(M)} \). Because \(J^{(M)} \subseteq J^{(Z,M)} \), there exist polynomials \(w_k, w_{jj'} \in \mathbb{Q}[Z,M] \) (\(k \in \{1, \ldots, l\}, j, j' \in \{1, \ldots, l\} \)) such that

\[
h = \sum_{\kappa = 1}^k w_{\kappa p_\kappa} + \sum_{j=1}^l \sum_{j'=1}^l w_{jj' p_{jj'}}. \tag{19}
\]

Because of (13), each indeterminate \(Z_\lambda \) in (19) can be replaced by \(f_\lambda (\lambda \in \{1, \ldots, l\}) \). Since with this replacements \(p_\kappa \) becomes \(h_\kappa \) and \(p_{jj'} \) becomes \(h_{jj'} \), (19) turns into an equation that shows \(h \in \langle H^{(M)} \rangle_{\mathbb{Q}[M]} \). Therefore, \(J^{(M)} = \langle H^{(M)} \rangle_{\mathbb{Q}[M]} \).

If we plug in the \(m_\kappa (= E^{0_\kappa}) \) for the \(M_\kappa \) in the polynomials of \(H^{(M)} \), we obtain the set

\[
H^L := \{h_1(m), \ldots, h_k(m)\} \cup \{h_{jj'}(m) \mid j, j' \in \{1, \ldots, l\}\} \subseteq L. \tag{20}
\]

Clearly, \(H^L \subset \ker \Phi \). By construction of \(H^L \) and from Lemma 5.6, we get

\[
\ker \Phi = \langle \mathbb{Q}[m_1, \ldots, m_k] \cap \ker \Phi \rangle_L = \langle H^L \rangle_L.
\]
We are left with the problem of computing a generating set for the intersection ker Φ ∩ \mathbb{Q}[E] = ker \phi. A solution to this problem is well-known in the computer algebra community.

Let us denote by \(P = \mathbb{Q}[E,Y] \) the polynomial ring in the variables \(E = \{ E_{\delta} \mid \delta \in \Delta \} \) and \(Y = \{ Y_{\delta} \mid \delta \in \Delta \} \). Let \(U = \{ 1 - E_{\delta}Y_{\delta} \mid \delta \in \Delta \} \) and \(I = (U) \) be the ideal generated by the elements of \(U \). By [Sim94] Proposition 7.1, ker \(\chi = I \) for the surjective homomorphism \(\chi : P \rightarrow L \) with \(\chi(E_{\delta}) = E_{\delta} \) and \(\chi(Y_{\delta}) = E_{\delta}^{-1} \) for every \(\delta \in \Delta \), i.e., \(P/I \cong L \).

Let \(\chi' : L \rightarrow P \) be such that \(\chi'(E_{\delta}) = E_{\delta} \), \(\chi'(E_{\delta}^{-1}) = Y_{\delta} \), i.e., \(\chi'(f) = f \) for every \(f \in L \). Then ker \(\phi = \ker \Phi \cap \mathbb{Q}[E] = \langle \chi'(H^{3}) \cup U \rangle \cap \mathbb{Q}[E] \).

A generating set for the latter intersection can be computed by Buchberger’s algorithm applied to \(\chi'(H^{3}) \cup U \) with respect to a term ordering such that monomials with variables exclusively from the set \(E \) are smaller than any monomial involving variables from \(Y \). Then by [BW93] Cor. 5.51 the polynomials \(g_1, \ldots, g_t \) in this Gröbner basis that only involve variables from the set \(E \) form a Gröbner basis \(G \) of all the relations among the \(\eta \)-functions of level \(N \).

8 Implementation and Computation

We have implemented all the above steps in the computer algebra system FriCAS\(^1\). The computation of a basis of \(R^\infty(N) \) can be done by 4ti2\(^2\). For (bigger) Gröbner basis computations, we have used the slmb implementation of Singular\(^3\) via its interface through SageMath\(^4\).

Somos presents on the website [http://eta.math.georgetown.edu/etal] a list of identities for \(\eta \)-functions for various levels. For example, there are 120 identities for level 8. In our approach, we compute 5 polynomials in \(\mathbb{Q}[E_1, E_2, E_4, E_8] \), namely

\[
\begin{align*}
g_1 &= E_1^8 E_4^6 E_8^{10} - E_1^{12} E_4^8 E_8^4 - 4 E_1^4 E_2^8 E_4^6 E_8^4 + 32 E_2^{10} E_4^8 E_8^4 - 16 E_1^{12} E_8^{12} - 256 E_1^4 E_4^8 E_8^{12}, \\
g_2 &= E_2^8 E_4^6 - E_1^{12} E_2^8 E_4^4 - 8 E_1^4 E_2^8 E_4^4 - 4 E_1^8 E_2^8 E_8^4, \\
g_3 &= E_2^8 E_4^{10} - E_1^2 E_4^2 E_8^{10} - 4 E_1^4 E_4^2 E_8^{10} - 32 E_1^8 E_2^2 E_8^{12}, \\
g_4 &= E_2^{12} - E_1^8 E_4^8 - 8 E_1^6 E_2^2 E_8^4 E_4^4, \\
g_5 &= E_2^{12} - E_1^6 E_2^2 E_4^8 - 4 E_1^8 E_8^8.
\end{align*}
\]

such that by substituting \(\eta_{\delta} \) for the respective \(E_{\delta} \), the function \(g_k(\eta_1, \eta_2, \eta_4, \eta_8) \) is the zero function on \(\mathbb{H} \) for every \(k \in \{1, 2, 3, 4, 5\} \).

Let us demonstrate the steps to arrive at these polynomials. In order to

1 FriCAS 1.3.2 [Fri]
2 4ti2 1.6.7 [H]
3 Singular 4.1.0 [DGPS16]
4 SageMath 8.0 [Dev17]

[July 9, 2018 (16:39)] 12
compute a basis for $R^\infty(8)$ we set up the matrices B_8 and A_8^∞.

$$B_8 = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 2 & 4 & 8 & 24 & 0 \\ 8 & 4 & 2 & 1 & 0 & 24 \\ 0 & 1 & 2 & 3 & 0 & 0 \end{bmatrix} \quad A_8^\infty = \begin{bmatrix} 8 & 4 & 2 & 1 & 0 & 0 & 0 \\ 2 & 4 & 2 & 1 & 0 & 0 & 0 \\ 1 & 2 & 4 & 2 & 0 & 0 & 0 \end{bmatrix}$$

Then give the system $B_8 z = 0$, $A_8^\infty z \geq 0$ to 4ti2-zsolve and obtain the (truncated) vectors

$$\varrho_1 = (4, -2, 2, -4)^T \quad \varrho_2 = (-4, 10, -2, -4)^T \quad \varrho_3 = (0, -4, 12, -8)^T$$

which represent the η-quotients according to \[^6\] with the following Laurent series expansions at $\tau = i\infty$.

$$\begin{align*}
m_1 &= q^{-1} - 4 + 4 q + 2 q^3 - 8 q^5 - q^7 + 20 q^9 + O(q^{10}) \\
m_2 &= q^{-1} + 4 q + 2 q^3 - 8 q^5 - q^7 + 20 q^9 + O(q^{10}) \\
m_3 &= q^{-1} + 4 + 4 q + 2 q^3 - 8 q^5 - q^7 + 20 q^9 + O(q^{10})
\end{align*}$$

The application of samba yields $\chi_1 = 1$ as the only generator according to \[^{10}\]. Because of $f_1 = 1$, we then get from \[^{12}\], \[^{13}\], \[^{16}\] and \[^{17}\]: $h_1 = p_1 = 0$, $h_2 = p_2 = M_2 - M_1 - 8$, $h_3 = p_3 = M_3 - M_1 - 4$ and $h_{1,1} = p_{1,1} = 0$. Then, we replace every M_κ by $m_\kappa = E^{\varrho_e}$ and, by using χ', write Y_δ^e instead of E_δ^e if $e := \varrho_\kappa, \delta < 0$. After removing zeros, \[^{20}\] becomes $\chi'(H^E) = \{h_2(m), h_3(m)\}$ where

$$h_2(m) = \frac{Y_1^2 Y_2^2 Y_4^2 Y_8^4}{m_2} - E_1^2 E_2^4 E_4^4 Y_8^4 - 8, \quad h_3(m) = \frac{Y_2^2 E_4^2 Y_8^4}{m_3} - E_1^2 E_2^4 E_4^4 Y_8^4 - 4.$$

With $U = \{Y_1 E_1 - 1, Y_2 E_2 - 1, Y_3 E_3 - 1, Y_5 E_5 - 1\}$, we are left to compute a Gröbner basis for the ideal $\langle \chi'(H^E) \cup U \rangle$. The Gröbner basis with respect to the elimination block-ordering (degrevlex in both Y and E variables) consists of 703 elements and (when printed) would be about 650 lines. However, there are only 5 polynomials among those elements, namely $G = \{g_1, \ldots, g_5\}$ listed above that do not contain a Y indeterminate. Since G is a generating set for $\ker \phi$, every other (polynomial) relation among η-functions of level 8 can be expressed as a $\mathbb{Q}[E]$-linear combination of the elements of G. In fact, G is a Gröbner basis with respect to a degree reverse lexicographical term ordering, and thus, for any given polynomial $f \in \mathbb{Q}[E_1, E_2, E_3, E_8]$, we can algorithmically decide whether it is in $\ker \phi$ by simply reducing f with the Gröbner basis G. The polynomial f is in $\ker \phi$ if and only if the reduction modulo G gives 0. By keeping track of the cofactors in that reduction, we can express f as a $\mathbb{Q}[E]$-linear combination of g_1, \ldots, g_5.

The identities in the table of Somos can easily be translated from their representation in terms of q and u_δ, where u_δ corresponds to the Euler function $\prod_{n=1}^\infty (1 - q^n)$, to polynomials in $\mathbb{Q}[E_1, E_2, E_4, E_8]$, and then expressed in terms of G.

[July 9, 2018 (16:39)] 13
For example, Somos’ identity
\[q_{8,12,24} := -u_2^{12} + u_1^8 u_4^4 + 8qu_4^{12} - 32q^2 u_2^4 u_8^8 \]
translates to
\[q_{E,8,12,24} := -E_2^{12} + E_1^8 E_4^4 + 8E_4^{12} - 32E_2^4 E_8^8 \]
and can be expressed as
\[q_{E,8,12,24} = -g_4 + 8g_5. \quad (21) \]

There are other identities in the table of Somos, namely
\[t_{8,12,24} := -u_2^{12} + u_1^8 u_4^4 + 8q u_1^4 u_2^2 u_4^4 u_8^8, \]
\[t_{8,12,48} := -u_2^{12} + u_1^4 u_2^2 u_4^2 u_8^4 + 4q u_2^4 u_8^8. \]

They correspond to \(-g_4\) and \(-g_5\), respectively. The above relation (21) is
\[q_{8,12,24} = t_{8,12,24} - 8q t_{8,12,48} \]
in the notation of Somos.

The additional factor \(q\) in the above relation comes from the fact that the identities in Somos’ table do not exactly correspond to relations in Dedekind \(\eta\)-functions, but rather might have a common factor of a (fractional) power of \(q\) cancelled.

We can do such a reduction for all the 120 identities from the table of Somos, i.e., express them in terms of \(G\). In fact, at http://www.risc.jku.at/people/hemmecke we give a list of the respective Gröbner basis elements for various levels and how relations from Somos’ table can be expressed by them.

We can use the 120 identities from the table of Somos and compute a (deg-revlex) Gröbner basis in \(\mathbb{Q}[E]\) of them. That also leads to 5 polynomials, namely, \(E_1^4 E_8^2 g_1, g_2, g_3, g_4, g_5\). In other words, these 120 identities do not generate (in \(\mathbb{Q}[E]\)) the ideal of all relations. For this case, dividing the first polynomial by \(E_1^4 E_8^2\) would lead to a Gröbner basis of all relations. However, in general, such a postprocessing would not be a proof that the full ideal of relations is obtained.

Clearly, we can apply Buchberger’s algorithm over \(\mathbb{Q}[E]\) or (with the respective elements of \(U\) added) over \(\mathbb{Q}[Y,E]\) also to the relations of Somos’ tables of other levels. However, although it might give relations that are not in the table, they are not essentially new, since a Gröbner basis computation does not change the ideal that is already given by the input polynomials. Furthermore, in contrast to our derivation, it would not prove that the ideal of all relations has been found.

For example, for level 34, our method produces a Gröbner basis \(G_{34}\) of 59 elements, whereas in Somos’ table is only one element, namely \(x_{34,14,129}\). \(x_{34,14,129}\) corresponds to the element of smallest degree of \(G_{34}\). In other words, \(G_{34}\) contains essentially new relations.
9 Conclusion

Our method, theoretically, solves the problem of finding polynomial relations among Dedekind η-functions completely. Furthermore, all steps can be programmed on a computer, i.e., the method is constructive.

Unfortunately, the more divisors are involved in the computation, the bigger is the effort to compute the respective Gröbner basis. The relations for levels 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 25, 26, 27, 28, 32, 34, 35, 36, 40, 44, 45, 49, 50, 54, 63, 64, 121, 169 are relatively easy to compute, i.e., in less than 5 hours and often much faster. For 24, 30, 56 the Gröbner basis computation is quite lengthy. It took 12.2, 59.9, 16.6 hours, respectively. The computation, in particular the elimination of the Y variables may be quite memory consuming. For level 56 more than 100 GB where used during the computation, although the final Gröbner basis can be stored in about 1 MB.

References

[tt] 4ti2 team. 4ti2—a software package for algebraic, geometric and combinatorial problems on linear spaces. Available at http://www.4ti2.de.