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Abstract

This report documents the RISC Algorithm Language (RISCAL). RISCAL is a language
and associated software system for describing (potentially nondeterministic) mathematical
algorithms over discrete structures, formally specifying their behavior by logical formulas
(program annotations in the form of preconditions, postconditions, and loop invariants),
and formulating the mathematical theories (by defining functions and predicates and stating
theorems) on which these specifications depend. The language is based on a type system
that ensures that all variable domains are finite; nevertheless the domain sizes may depend
on unspecified numerical constants. By instantiating these constants with values, all algo-
rithms, functions, and predicates become executable, and all formulas become decidable.
Indeed the RISCAL software implements a (parallel) model checker that allows to verify
the correctness of algorithms and the associated theories with respect to their specifications
for all possible input values of the parameter domains.
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1 Introduction

The formal verification of computer programs is a very challenging task. If the program operates
on an unbounded domain of values, the only general verification technique is to generate, from
the text of the program and its specification, verification conditions, i.e., logical formulas whose
validity ensures the correctness of the program with respect to its specification. The genera-
tion of such conditions generally requires from the human additional program annotations that
express meta-knowledge about the program such as loop invariants and termination measures.
Since for more complex programs proofs of these formulas by fully automatic reasoners rarely
succeed, typically interactive proving assistants are applied where the human helps the software
to construct successful proofs.

This may become a frustrating task, because usually the first verification attempts are doomed
to fail: the verification conditions are often not valid due to (also subtle) deficiencies in the
program, its specification, or annotations. The main problem is then to find out whether a proof
fails because of an inadequate proof strategy or because the condition is not valid and, if the
later is the case, which errors make the formula invalid. Typically, therefore most time and effort
in verification is actually spent in attempts to prove invalid verification conditions, often due to
inadequate annotations, in particular due to loop invariants that are too strong or too weak.

For this reason, programs are often restricted to make fully automatic verification feasible that
copes without extra program annotations and without manual proving efforts. One possibility
is to restrict the domain of a program such that it only operates on a finite number of values,
which allows to apply model checkers that investigate all possible executions of a program.
Another possibility is to limit the length of executions being considered; then bounded model
checkers (typically based on SMT solvers, i.e., automatic decision procedures for combinations
of decidable logical theories) are able to check the correctness of a program for a subset of
the executions. However, while being fully automatic, (bounded) model checking is time- and
memory-consuming, and ultimately does not help to verify the general correctness of a program
operating on unbounded domains with executions of unbounded length.

Based on prior expertise with computer-supported program verification, also in educational
scenarios [27, 22], we have started the development of RISCAL (RISC Algorithm Language) as
an attempt to make program verification less painful. The term “algorithm language” indicates
that RISCAL is intended to model, rather than low-level code, high-level algorithms as can be
found in textbooks on discrete mathematics [25]. RISCAL thus provides a rich collection of data
types (e.g., sets and maps) and operations (e.g., quantified formulas as Boolean conditions and
implicit definitions of values by formulas) but only cares about the correctness of execution, not
its efficiency. The core idea behind RISCAL is to use automatic techniques to find problems in
a program, its specification, or its annotations, that may prevent a successful verification before
actually attempting to prove verification conditions; we thus aim to start a proof of verification
conditions only when we are reasonably confident that they are indeed valid.

As a first step towards this goal, RISCAL restricts in a program P all program variables and
mathematical variables to finite types where the number of values of a type T , however, may
depend on an unspecified constant n ∈ N. If we set n to some concrete value c, we get an
instance Pc of P where all specifications and annotations can be effectively evaluated during the
execution of the program (runtime assertion checking). Furthermore, we can execute a program
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and check the annotations for all possible inputs (model checking); only if we do not find errors,
the verification of the general program P may be attempted. The current version of the RISCAL
software documented in this report thus supports model checking of finite domain instances of
programs via the runtime assertion checking of all possible executions, which is based on the
executability of all specifications and annotations (further mechanisms will be added in time).

The RISCAL software is freely available as open source under the GNU General Public Li-
cense, Version 3 at

https://www.risc.jku.at/research/formal/software/RISCAL

with this document included in electronic form as the manual for the software.
The remainder of this document is organized as follows: Section 2 represents a tutorial into

the practical use of the RISCAL language and system based on a concrete example of a RISCAL
specification. Section 3 elaborates more examples to deepen the understanding. Section 4 relates
our work to prior research; Section 5 elaborates our plans for the future evolution of RISCAL.
Appendix A provides a detailed documentation for the use of the system. Appendix B represents
the reference manual for the specification language. Appendix C gives the full source of the
specifications used in the tutorial; this source is also included in the distribution.

2 A Quick Start

We start with a quick overview on the RISCAL specification language and associated software
system whose graphical user interface is depicted in Figure 1 (an enlarged version is shown in
Figure 2 on page 31).

System Overview The system is started from the command line by executing

RISCAL &

The user interface is divided into two parts. The left part mainly embeds an editor panel with
the current specification. The right part is mainly filled by an output panel that shows the output
of the system when analyzing the specification that is currently loaded in the editor. The top of
both parts contains some interactive elements for controlling the editor respectively the analyzer.
Appendix A.3 explains the user interface in more detail.

The system remembers across invocations the last specification file loaded into the editor, i.e.,
when the software is started, the specification used in the last invocation is automatically loaded.
Likewise the options selected in the right panel are remembered across invocations. However,
a button (Reset System) in the right panel allows to reset the system to a clean state (no
specification loaded and all options set to their default values).

Specifications are written as plain text files in Unicode format (UTF-8 encoding) with arbi-
trary file name extension (e.g., .txt). The RISCAL language uses several Unicode characters
that cannot be found on keyboards, but for each such character there exists an equivalent string
in ASCII format that can be typed on a keyboard. While the RISCAL grammar supports both
alternatives, the use of the Unicode characters yields much prettier specifications and is thus
recommended. The RISCAL editor can be used to translate the ASCII string to the Unicode
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Figure 1: The RISCAL User Interface

character by first typing the string and then (when the editor caret is immediately to the right of
this string) pressing <Ctrl>-#, i.e, the Control key and simultaneously the key depicting #. Also
later such textual replacements can be performed by positioning the editor caret to the right of
the string and pressing <Ctrl>-#. The current table of replacements is given in Appendix B.1.

Whenever a specification is loaded from disk respectively saved to disk after editing, it is
immediately processed by a syntax checker and a type checker. Error messages are displayed
in the output panel; the positions of errors are displayed by red markers in the editor window;
moving the mouse pointer over such a marker also displays the corresponding error message.

Specification Language As a first example of the specification language (which is defined
in Appendix B), we write a specification consisting of a mathematical theory of the greatest
common divisor and its computation by the Euclidean algorithm. This specification (whose full
content is given in Appendix C.1) starts with the declarations

val N: N;
type nat = N[N];

that introduce a natural number constant N a type nat that consists of the values 0, . . . ,N (the
symbol N may be entered as Nat followed by pressing the keys <Ctrl>-#) which corresponds
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to the mathematical definition

nat := {x ∈ N | x ≤ N }.

The value of N is not defined in the specification but in the RISCAL software. We may enter
this value either in the field “Default Value” in the right part of the window or we may open with
the button “Other Values” a window that allows to set different values for different constants; if
there is no entry for a specific constant, the “Default Value” is used.

The specification defines then a predicate

pred divides(m:nat,n:nat) ⇔ ∃p:nat. m·p = n;

which corresponds to the mathematical definition

divides ⊆ nat × nat

divides(m,n) :⇔ ∃p ∈ nat. m · p = n

In other words, divides(m,n) means “m divides n” which is typically written as m |n.
We then introduce the “greatest common divisor” function as

fun gcd(m:nat,n:nat): nat
requires m , 0 ∨ n , 0;

= choose result:nat with
divides(result,m) ∧ divides(result,n) ∧
¬∃r:nat. divides(r,m) ∧ divides(r,n) ∧ r > result;

This function is defined by an implicit definition; for any m ∈ nat and n ∈ nat with m , 0 or
n , 0, its result is the largest value result ∈ nat that divides both m and n.

The function can be used to define some other values, e.g.

val g:nat = gcd(N,N-1);

which corresponds to the mathematical definition

g ∈ nat, g := gcd(N,N − 1)

This function satisfies certain general properties stated as follows:

theorem gcd0(m:nat) ⇔ m,0 ⇒ gcd(m,0) = m;
theorem gcd1(m:nat,n:nat) ⇔ m , 0 ∨ n , 0 ⇒ gcd(m,n) = gcd(n,m);
theorem gcd2(m:nat,n:nat) ⇔ 1 ≤ n ∧ n ≤ m ⇒ gcd(m,n) = gcd(m%n,n);

Each such “theorem” is represented by a named predicate which is implicitly claimed to be true
for all possible applications, corresponding to the mathematical propositions

∀m ∈ nat. m , 0⇒ gcd(m,0) = m

∀m ∈ nat,n ∈ nat. m , 0 ∨ n , 0⇒ gcd(m,n) = gcd(n,m)

∀m ∈ nat,n ∈ nat. 1 ≤ n ∧ n ≤ m ⇒ gcd(m,n) = gcd(m mod n,n)

The symbol % thus stands for the mathematical “modulus” operator (arithmetic remainder).
Now we write a procedure gcdp that implements the Euclidean algorithm:
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proc gcdp(m:nat,n:nat): nat
requires m , 0 ∨ n , 0;
ensures result = gcd(m,n);

{
var a:nat := m;
var b:nat := n;
while a > 0 ∧ b > 0 do
invariant gcd(a,b) = gcd(old_a,old_b);
decreases a+b;

{
if a > b then
a := a%b;

else
b := b%a;

}
return if a = 0 then b else a;

}

The clauses requires and ensures state that for any arguments m,n with m , 0 or n , 0
(i.e., for any argument that satisfies the given precondition), the result of this procedure (denoted
by the keyword result) is indeed the greatest common divisor of m and n, as specified above
(i.e., the result satisfies the given postcondition). The invariant states the crucial property for
proving the correctness of the algorithm: before and after every iteration of the loop, the greatest
common divisor of the current values of program variables a and b equals the greatest common
divisor of their initial values (denoted by the keyword prefix old_), i.e., the greatest divisor of
m and n. The clause decreases states the crucial property for the termination of the algorithm:
the value a + b decreases by every loop iteration but does not become negative. While all these
loop annotations are not necessary for executing the algorithm, they formally express additional
knowledge that aid our understanding of the algorithm.

Above procedure demonstrates that RISCAL incorporates an algorithmic language with the
usual programming language constructs. However, unlike a classical programming language,
this algorithm language allows also nondeterministic executions as in the following procedure:

proc main(): ()
{
choose m:nat, n:nat with m , 0 ∨ n , 0;
print m,n,gcdp(m,n);

}

This procedure does not return a value (indicated by the return type ()) but just prints the ar-
guments and result of some application of procedure gcdp. The argument values m,n for its
application are not uniquely determined: the choose command selects for m and n some values
in nat such that at least one of them is not zero.

Language Features As shown above, a RISCAL specification may contain definitions of
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• types,

• constants, functions, predicates,

• theorems, and

• procedures

which may depend on (declared but) undefined natural number constants. Functions may be ex-
plicitly defined or implicitly specified by predicates, theorems are special predicates that always
yield “true”, procedures may contain apart from the usual algorithmic constructs also nondeter-
ministic choices, and functions and procedures may be annotated with pre- and postconditions
respectively loop invariants and termination measures. The language does not distinguish be-
tween logical terms and formulas, a formula is just a term of a type Bool and a predicate is a
function with that result type.

Furthermore, there is no difference between logical formulas and conditions in program con-
structs; every logical formula may be in a procedure for example used as a loop condition.
Likewise, there is no difference between logical terms and program expressions; every logical
term may be for example used on the right hand side of an assignment statement. Procedures
have (apart from potential output) no other effect than returning values (also the procedure main
above implicitly returns a value ()); they may be thus also used as functions in logical formulas.

The RISCAL language has been designed in such a way that

• every type has only finitely many values, and thus

• every language construct is executable, and thus

• every constant, function, predicate, theorem, procedure can be evaluated.

For instance, the truth value of a formula like

∃p:nat. m·p = n

can be determined by evaluating, for every possible nat-value p, the formula m · p = n. If
there is at least one value for which this equality holds, the formula is true, otherwise it is false.
Likewise, the function

fun gcd(m:nat,n:nat): nat
requires m , 0 ∨ n , 0;

= choose result:nat with ...

can be evaluated by enumerating all possible candidate values for the result of the function.
The function result is then one such candidate for which the condition “. . . ” holds (if this is
not the case for any candidate, the execution may abort with an error message). Therefore also
all function/predicate/procedure annotations requires, ensures, invariant, and decreases
are executable.

In summary, every RISCAL specification is completely executable; in particular, all stated
claims (theorems and function/predicate/procedure annotations) are checkable.
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Execution and Model Checking Whenever a specification file is loaded or saved (or when
the button is saved), the corresponding specification is processed,i.e., checked for syntactic and
type errors (with graphical markers displaying the locations of the errors) and translated into
an executable representation. For this purpose, the value of every constant introduced by a val
clause on the top level of a specification is determined: if a natural number constant c is just
declared, the value of c is taken from the user interface, either from the panel “Other Values”or
(if this panel does not list a value for c) from the box “Default Value”. If the value of a constant is
defined by a term, this value is determined by evaluating the term (which may contain arbitrary
computations including the application of user-defined functions). The values of constants may
be used as bounds in types; a specification is thus always processed for a specific set of values
for the global constants (if the user changes the values, the specification is automatically re-
processed before execution). In our example specification, we may thus get the output

RISC Algorithm Language 1.0 (March 1, 2017)
http://www.risc.jku.at/research/formal/software/RISCAL
(C) 2016-, Research Institute for Symbolic Computation (RISC)
This is free software distributed under the terms of the GNU GPL.
Execute "RISCAL -h" to see the available command line options.
-----------------------------------------------------------------
Reading file /home/schreine/papers/RISCALManual2017/gcd.txt
Using N=3.
Computing the value of g...
Type checking and translation completed.

which indicates that the user provided the value 3 for constant N and that the value of g was
computed by evaluating the definition.

After the processing of a specification, the menu “Operation” lists all operations together with
their argument types (operations with different argument types may have the same name). We
may e.g. select the operation main() which selects the method

proc main(): ()
{
choose m:nat, n:nat with m , 0 ∨ n , 0;
print m,n,gcdp(m,n);

}

By pressing the button (Start Execution) the system executes main() which produces (as-
suming that option Nondeterminism has not been selected) the output

Executing main().
Run of deterministic function main():
0,1,1
Result (34 ms): ()
Execution completed (96 ms).
Not all nondeterministic branches may have been considered.
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The system has thus chosen the values 0 for m and 1 for n and computed their greatest common
divisor 1.

However, if we select the option Nondeterminism and then press the button , the specifi-
cation is first re-processed and then executed with the following output:

Executing main().
Branch 0 of nondeterministic function main():
0,1,1
Result (11 ms): ()
Branch 1 of nondeterministic function main():
0,2,2
Result (24 ms): ()
Branch 2 of nondeterministic function main():
0,3,3
Result (11 ms): ()
...
Branch 13 of nondeterministic function main():
3,2,1
Result (8 ms): ()
Branch 14 of nondeterministic function main():
3,3,3
Result (8 ms): ()
Branch 15 of nondeterministic function main():
No more results (434 ms).
Execution completed (441 ms).

Thus the program was executed for all possible choices for m and n subject to the condition
m , 0 ∨ n , 0 and computed the greatest common divisor. In this execution, all annotations
specified in requires, ensures, invariant, and decreases have been checked by evaluat-
ing the corresponding formulas respectively terms, thus also evaluating the implicitly defined
function gcd and the predicate divides. For instance, changing the postcondition of gcdp to

ensures result = 1;

yields output

Executing main().
Branch 0 of nondeterministic function main():
0,1,1
Result (6 ms): ()
Branch 1 of nondeterministic function main():
ERROR in execution of main(): evaluation of
ensures result = 1;

at line 24 in file gcd.txt:
postcondition is violated

ERROR encountered in execution.
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which demonstrates that the second execution of main violated the specification. Likewise,
setting the termination measure to

decreases a;

produces the output

Executing main().
Branch 0 of nondeterministic function main():
0,1,1
Result (10 ms): ()
...
Branch 4 of nondeterministic function main():
ERROR in execution of main(): evaluation of
decreases a;

at line 30 in file gcd.txt:
variant value 1 is not less than old value 1

ERROR encountered in execution.

However, rather than main in nondeterministic mode, we may also executed gcdp for all possible
inputs. We thus deselect “Nondeterminism” and select from the menu Operation the operation
gcdp(Z,Z), which yields the following execution:

Executing gcdp(Z,Z) with all 16 inputs.
Ignoring inadmissible inputs...
Run 1 of deterministic function gcdp(1,0):
Result (1 ms): 1
Run 2 of deterministic function gcdp(2,0):
Result (0 ms): 2
...
Run 15 of deterministic function gcdp(3,3):
Result (1 ms): 3
Execution completed for ALL inputs (206 ms, 15 checked, 1 inadmissible).
Not all nondeterministic branches may have been considered.

The system thus runs gcdpwith all “admissible” inputs, i.e., with all argument tuples that satisfy
the specified precondition

requires m,0 ∨ n,0;

The system thus executes the operation (and checks all annotations) for 15 inputs excluding
the inadmissible input m = 0 and n = 0. The last line of the output reminds us that we have
executed the system in deterministic mode which is generally faster but does not consider all
possible execution branches resulting from nondeterministic choices such the one performed in
the definition of gcd.

By switching on the option “Silent”, the output is compacted to
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Executing gcdp(Z,Z) with all 16 inputs.
Execution completed for ALL inputs (6 ms, 15 checked, 1 inadmissible).
Not all nondeterministic branches may have been considered.

which just gives the essential information.

Parallelism If we increase the value of N to say 60, checking all possible inputs may take
some time. We thus switch on the option “Multi-Threaded” and set “Threads” to 4. The system
thus applies 4 concurrent threads for the application of the operation which is (on a computer
with 4 processor cores) much faster and yields output:

Executing gcdp(Z,Z) with all 3721 inputs.
PARALLEL execution with 4 threads (output disabled).
1336 inputs (955 checked, 1 inadmissible, 0 ignored, 380 open)...
2193 inputs (1812 checked, 1 inadmissible, 0 ignored, 380 open)...
3005 inputs (2629 checked, 1 inadmissible, 0 ignored, 375 open)...
3721 inputs (3445 checked, 1 inadmissible, 0 ignored, 275 open)...
Execution completed for ALL inputs (8826 ms, 3720 checked, 1 inadmissible).
Not all nondeterministic branches may have been considered.

The statistics output and the growing blue bar displayed on top of the output area displays the
progress of a longer running computation. To interrupt such an execution, we may press the
button (Stop Execution).

For even larger inputs, we may also set the option “Distributed” and and thus partially delegate
computations to other instances of the RISCAL software, possibly running on other computers
(e.g., high performance servers) running in the local network or being sited in other remote
networks to which we are connected by the Internet. For this, we also have configure the con-
nection information in menu “Servers” appropriately, see Appendix A.4 for details. The output
for N = 100 may then look as follows:

Executing gcdp(Z,Z) with all 10201 inputs.
Executing "/software/RISCAL/etc/runssh
qftquad2.risc.jku.at 4"...

Connecting to qftquad2.risc.uni-linz.ac.at:52387...
Executing "/software/RISCAL/etc/runmach 4"...
Connecting to localhost:9999...
Connected to remote servers.
PARALLEL execution with 4 local threads and 2 remote servers (output disabled).
939 inputs (544 checked, 1 inadmissible, 0 ignored, 394 open)...
2819 inputs (1117 checked, 1 inadmissible, 0 ignored, 1701 open)...
2819 inputs (1424 checked, 1 inadmissible, 0 ignored, 1394 open)...
4605 inputs (2851 checked, 1 inadmissible, 0 ignored, 1753 open)...
5327 inputs (3799 checked, 1 inadmissible, 0 ignored, 1527 open)...
6339 inputs (4779 checked, 1 inadmissible, 0 ignored, 1559 open)...
8035 inputs (6363 checked, 1 inadmissible, 0 ignored, 1671 open)...
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8716 inputs (7408 checked, 1 inadmissible, 0 ignored, 1307 open)...
Execution completed for ALL inputs (18500 ms, 10200 checked, 1 inadmissible).
Not all nondeterministic branches may have been considered.

Here, in addition to four local threads, two remote servers are applied, one with Internet name
qftquad2.risc.uni-linz.ac.at; the other is called localhost because it is connected to
our process via a local proxy process that bypasses a firewall.

We may not only check procedures but also functions, relations, and especially theorems; in
the later case we check whether all applications of the theorem yield value “true”. For instance,
we may check the theorem gcd2(Z,Z) defined as

theorem gcd2(m:nat,n:nat) ⇔ 1 ≤ n ∧ n ≤ m ⇒ gcd(m,n) = gcd(m%n,n);

for which the output

Executing gcd2(Z,Z) with all 10201 inputs.
PARALLEL execution with 4 threads (output disabled).
1904 inputs (1704 checked, 0 inadmissible, 0 ignored, 200 open)...
3757 inputs (3673 checked, 0 inadmissible, 0 ignored, 84 open)...
7372 inputs (6436 checked, 0 inadmissible, 0 ignored, 936 open)...
Execution completed for ALL inputs (7127 ms, 10201 checked, 0 inadmissible).
Not all nondeterministic branches may have been considered.

validates its correctness.
As demonstrated by above examples, the RISCAL software encompasses the execution of

specifications with runtime assertion checking (checking correctness of a computation for some
input) and model checking (checking correctness for all/many possible inputs).

3 More Examples

We continue by presenting some more examples of RISCAL specifications.

Insertion Sort We are going to specify the Insertion Sort algorithm for sorting arrays of
length N that hold natural numbers up to size M , based on the following declarations (see
Appendix C.2 for the full specification):

val N:Nat;
val M:Nat;

We make use of the following type definitions

type nat = Nat[M];
type array = Array[N,nat];
type index = Nat[N-1];

where type array is the type of all arrays of length N of values of type nat to be accessed by
indices 0, . . . ,N − 1; type index denotes the domain of legal indices.

The insertion sort algorithm is then defined as follows:
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proc sort(a:array): array
ensures ∀i:nat. i < N-1 => result[i] ≤ result[i+1];
ensures ∃p:Array[N,index].

(∀i:index,j:index. i , j ⇒ p[i] , p[j]) ∧
(∀i:index. a[i] = result[p[i]]);

{
var b:array = a;
for var i:Nat[N]:=1; i<N; i:=i+1 do
decreases N-i;

{
var x:nat := b[i];
var j:Int[-1,N] := i-1;
while j ≥ 0 ∧ b[j] > x do
decreases j+1;

{
b[j+1] := b[j];
j := j-1;

}
b[j+1] := x;

}
return b;

}

The postcondition of this algorithm states that the resulting array is sorted in ascending order
and that that it is a permutation of the input array, i.e., that there exists a permutation p of indices
such that the result array holds at position p[i] the value of the input array at position i. The loop
is annotated with appropriate termination measures (invariants have been omitted).

The specification demonstrates that arrays can be used in a style similar to most imperative
programming languages. Semantically, however, arrays in RISCAL differ from programming
language arrays in that an array assignment a[i] := e does not update the existing array but
overwrites the program variable a with a new array that is identical to the original one except
that it holds at position i value e. RISCAL arrays thus have value semantics rather than pointer
semantics. Correspondingly, above procedure does not update the argument array a; it rather
creates a new array b that is returned as the result of the procedure (actually, because of the
semantics of the array assignment, the use of a separate variable b is not necessary; the program
could have just used a and terminated with the statement return b).

We can demonstrate a single run of the system by defining the procedure

proc main(): Unit
{
choose a: array;
print a, sort(a);

}

and selecting in menu “Operation” the entry main(). Executing this specification for N = 3 and
in “Deterministic” mode gives output
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Run of deterministic function main():
[0,0,0,0],[0,0,0,0]
Result (6 ms): ()
Execution completed (46 ms).
Not all nondeterministic branches may have been considered.

which however only demonstrates that the array holding 0 everywhere is appropriately “sorted”.
By setting the option Nondeterministic, the output

Executing main().
Branch 0 of nondeterministic function main():
[0,0,0],[0,0,0]
Result (8 ms): ()
Branch 1 of nondeterministic function main():
[1,0,0],[0,0,1]
Result (8 ms): ()
Branch 2 of nondeterministic function main():
[2,0,0],[0,0,2]
...
Branch 255 of nondeterministic function main():
[3,3,3,3],[3,3,3,3]
Result (10 ms): ()
Branch 256 of nondeterministic function main():
No more results (5056 ms).
Execution completed (5062 ms).

demonstrates that this is the case for all other inputs as well. Setting the option Silent and
selecting the operation sort(Map[Array[Z]]), gives with the output

Executing sort(Array[Z]) with all 256 inputs.
Execution completed for ALL inputs (327 ms, 256 checked, 0 inadmissible).
Not all nondeterministic branches may have been considered.

the core information in much shorter time.

DPLL Algorithm As a somewhat bigger example, we present the core of the DPLL (Davis,
Putnam, Logemann, Loveland) algorithm for deciding the satisfiability of propositional logic
formulas with at most n variables in conjunctive normal form. We start with the following
declaration (the full specification is given in Appendix C.3):

val n: N;

A literal (a propositional variable in positive or negated form) is represented by a positive re-
spectively negative integer; a clause (a conjunction of literals) is represented by a set of literals;
a formula (a disjunction of clauses) is represented by a set of clauses. A valuation of a formula
(a mapping of propositional variables to truth values) is represented by the set of literals that are
mapped to “true”. All of this gives rise to the following type definitions:
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type Literal = Z[-n,n];
type Clause = Set[Literal];
type Formula = Set[Clause];
type Valuation = Set[Literal];

Actually, these definitions only introduce “raw types”: not every value of this type is meaningful.
Based on the predicate

pred consistent(l:Literal,c:Clause) ⇔ ¬(l∈c ∧ -l∈c);

we introduce side conditions that all meaningful values of the corresponding types must satisfy:

pred literal(l:Literal) ⇔ l,0;
pred clause(c:Clause) ⇔ ∀l∈c. literal(l) ∧ consistent(l,c);
pred formula(f:Formula) ⇔ ∀c∈f. clause(c);
pred valuation(v:Valuation) ⇔ clause(v);

We can define the predicates that state when a valuation satisfies a literal, a clause, and a formula,
respectively:

pred satisfies(v:Valuation, l:Literal) ⇔ l∈v;
pred satisfies(v:Valuation, c:Clause) ⇔ ∃l∈c. satisfies(v, l);
pred satisfies(v:Valuation, f:Formula) ⇔ ∀c∈f. satisfies(v,c);

We thus define the core notion of the satisfiability of a formula respectively, it’s counterpart,
validity:

pred satisfiable(f:Formula) ⇔
∃v:Valuation. valuation(v) ∧ satisfies(v,f);

pred valid(f:Formula) ⇔
∀v:Valuation. valuation(v) ⇒ satisfies(v,f);

We define the negation of a formula

fun not(f: Formula):Formula =
{ c | c:Clause with clause(c) ∧ ∀d∈f. ∃l∈d. -l∈c };

theorem notFormula(f:Formula)
requires formula(f);

⇔ formula(not(f));

and define core relationship between both notions: a formula is valid, if its negation is not
satisfiable:

theorem notValid(f:Formula)
requires formula(f);

⇔ valid(f) ⇔ ¬satisfiable(not(f));

Having established the basic theory of propositional formulas and their satisfiability, we intro-
duce some auxiliary notions used by the DPLL algorithm, namely the set of all literals of a
formula
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fun literals(f:Formula):Set[Literal] =
{l | l:Literal with ∃c∈f. l∈c};

and the result of setting a literal l in formula f to “true”:

fun substitute(f:Formula,l:Literal):Formula =
{c\{-l} | c∈f with ¬(l∈c)};

We are now in the position to give the recursive version of the algorithm (omitting for brevity
the optimizations that actually make the algorithm efficient):

multiple pred DPLL(f:Formula)
requires formula(f);
ensures result ⇔ satisfiable(f);
decreases |literals(f)|;

⇔

if f = ∅[Clause] then
>

else if ∅[Literal] ∈ f then
⊥

else
choose l∈literals(f) in
DPLL(substitute(f,l)) ∨ DPLL(substitute(f,-l));

The specification of the algorithm states that for every well-formed formula f the algorithm
yields “true” if and only if f is satisfiable. If it cannot easily decide the satisfiability of f , the
algorithm chooses a literal in that is substituted once by “true” and once by “false” and calls
itself recursively on the resulting formulas; if one of them is satisfiable, also f is satisfiable.
The algorithm terminates because in every recursive invocation the number of literals in the
formula is decreased. The keyword multiple in front of the definition is necessary for recursive
functions/predicates with nondeterministic semantics, as in the case of this function that applies
the choose operator.

For asserting the termination the iterative version of the algorithm, we introduce a couple of
auxiliary notions

fun vars(f:Formula): Set[N[n]] =
{ if l>0 then l else -l | l ∈ literals(f) };

val m = 2^(n+1)-1;
fun size(f:Formula): N[m] = 2^(|vars(f)|+1)-1;
fun size(stack:Array[n+1,Formula], i:N[n+1]): N[m] =∑
k:N[n] with k<i. size(stack[k]);

which ultimately give a measure for the complexity of the work that is still to be performed for
i formulas stored at the beginning of an array stack (see the explanations below).

The iterative version of the algorithm can then be formulated and provided with correctness
annotations as follows:
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proc DPLL2(f:Formula): Bool
requires formula(f);
ensures result ⇔ satisfiable(f);

{
var satisfiable: Bool := ⊥;
var stack: Array[n+1,Formula] := Array[n+1,Formula](∅[Clause]);
var number: N[n+1] := 0;
stack[number] := f;
number := number+1;
while ¬satisfiable ∧ number>0 do
invariant 0 ≤ number ∧ number ≤ n+1;
invariant satisfiable(f) ⇔ satisfiable ∨
∃i:N[n+1] with i<number. satisfiable(stack[i]);

decreases if satisfiable then 0 else size(stack, number);
{
number := number-1;
var g:Formula := stack[number];
if g = ∅[Clause] then
satisfiable := >;

else if ¬∅[Literal]∈g then
{
choose l∈literals(g);
stack[number] := substitute(g,-l);
number := number+1;
stack[number] := substitute(g,l);
number := number+1;

}
}
return satisfiable;

}

The algorithm operates on a stack to which it initially pushes the original formula f . It then
iteratively pops the top formula g from the stack; if the formula is not trivially satisfiable, it
chooses a literal in g that is substituted once by “true” and once by “false”; the resulting formulas
are pushed to the stack again. The algorithm terminates when the stack becomes empty ( f is
then not satisfiable) or if the top formula g is satisfiable (then also f is satisfiable).

In addition to the specification of pre- and postcondition, the algorithm is also annotated with
the core invariants from which the correctness of the algorithms can be deduced: the original
formula is satisfiable if the variable satisfiable is set to “true” or if any of the formulas on the
stack is satisfiable. It terminates, because the complexity of the work which remains on the stack
(essentially the sum of the number of corresponding applications of the recursive algorithm to
these formulas) decreases.

By setting n = 3 and defining

proc main0(): ()
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{
val f = {{1,2,3},{-1,2},{-2,3},{-3}};
val r = DPLL2(f);
print f,r;

}

we can validate the correctness of the (iterative version of the) algorithm for one particular input:

Executing main0().
Run of deterministic function main0():
{{1,2,3},{-1,2},{-2,3},{-3}},false
Result (36 ms): ()
Execution completed (100 ms).
Not all nondeterministic branches may have been considered.

However, when attempting to check the algorithm for all inputs

Executing DPLL2(Set[Set[Z]]) with all (at least 2^63) inputs.
PARALLEL execution with 4 threads (output disabled).
434480 inputs (768 checked, 140278 inadmissible, 0 ignored, 293434 open)...
434480 inputs (1792 checked, 429562 inadmissible, 0 ignored, 3126 open)...
711986 inputs (2545 checked, 587520 inadmissible, 0 ignored, 121921 open)...
1217971 inputs (3583 checked, 853627 inadmissible, 0 ignored, 360761 open)...
1500591 inputs (4096 checked, 1055731 inadmissible, 0 ignored, 440764 open)...
1724104 inputs (4096 checked, 1594493 inadmissible, 0 ignored, 125515 open)...
...

we first realize that there are extremely many (more than 263) of these and second that only a
small minority of them are well-formed (most sets of sets of integers violate some of the type
constraints). Unless we have an overwhelming amount of time (a couple of thousands of years)
at our hand, we better restrict our input space. We therefore stop the execution and introduce
constants for the maximum number of literals per clause and the maximum number of clauses
per formula:

val cn: N; // e.g. 2;
val fn: N; // e.g. 20;

We then define a function that gives us all formulas with these constraints:

fun formulas(): Set[Formula] =
let
literals = { l | l:Literal with literal(l) },
clauses = { c | c ∈ Set(literals) with |c| ≤ cn ∧ clause(c) },
formulas = { f | f ∈ Set(clauses) with |f| ≤ fn ∧ formula(f) }

in formulas;

Now we define a test program
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proc main1(): ()
{
// apply check to a specific set of formulas
check DPLL with formulas();

}

in which the command check applies the algorithm to the specific set of formulas. By multi-
threaded and distributed execution we then may check for cn = 2 and fn = 20 the selected subset
of inputs in a quite limited amount of time:

Executing main1().
Executing DPLL(Set[Set[Z]]) with selected 524288 inputs.
Executing "/software/RISCAL/etc/runssh qftquad2.risc.jku.at 4"...
Connecting to qftquad2.risc.uni-linz.ac.at:56371...
Executing "/software/RISCAL/etc/runmach 4"...
Connecting to localhost:9999...
Connected to remote servers.
PARALLEL execution with 4 local threads and 2 remote servers (output disabled).
8668 inputs (4674 checked, 0 inadmissible, 0 ignored, 3994 open)...
22126 inputs (10737 checked, 0 inadmissible, 0 ignored, 11389 open)...
...
503297 inputs (477221 checked, 0 inadmissible, 0 ignored, 26076 open)...
Execution completed for SELECTED inputs (61037 ms, 524288 checked, 0 inadmissible).
Execution completed (89457 ms).
Not all nondeterministic branches may have been considered.

As this example demonstrates, model checking experiments may have to be planned with care
to yield meaningful results with restricted (time and space) resources.

4 Related Work

RISCAL is related to a large body of prior research; we only give a short account of the work
that seems most relevant.

Various languages arisen in the context of automated reasoning systems, while being de-
signed for specifying logical theories, have some executable flavor: Theorema [6, 30] has been
designed at RISC as a system for computer supported mathematical theorem proving and theory
exploration; its PCS (Prove-Compute-Solve) paradigm considers computing as a special kind
of proving. Also a compiler for an executable subset of the Theorema language to Java was
developed. The language of the formal proof management system Coq [4, 8] allows to write
executable algorithms from which functional programs in the programming languages OCaml,
Haskell, and Scheme can be extracted; since the correctness of the algorithms can be formu-
lated and verified in Coq, the programs are guaranteed to be correct. Similarly, the higher order
logic HOL of the generic proof assistant Isabelle [20, 13] embeds a functional programming
language in which algorithms can be defined and verified and converted to programs in OCaml,
Haskell, SML, and Scala. In [19], Isabelle is used to define the formal semantics of a simple
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imperative semantics from which executable code can be generated. However, all this work is
targeted towards generating executable code from verified algorithms; it does not really address
the problem stated in Section 1 of validating the correctness of algorithms before verification.

Also the abstract data type specification languages of the OBJ family [12, 11] include a large
executable subset, essentially generalizations of functional programming languages. Using the
supporting rewriting engines, programs in these languages can be also model-checked. However,
the logics of these languages are based on equational logic which is much more restricted than
predicate logic by enforcing the formulation of predicates in a low-level executable style.

As for algorithm languages, SETL [29, 28] is an old very high-level programming language
based on set theory; it supports set comprehensions and quantified formulas as programming
language constructs but not formal specifications. Alloy [14, 2] is a language for describing
structures and their relationships, e.g., the configurations of a data structure arising from a se-
quence of modifying operations. The language is based on a relational logic; the Alloy Analyzer
is a satisfiability solver that finds structures certifying constraints. While Alloy can be used to
formulate algorithms/programs, this can become quite challenging [24], because the language
differs very much from conventional languages. Event-B [1, 10] is a formal method for the
modeling and analysis of systems, based on set theory as a modeling notation and the concept of
refinement to represent systems at different abstraction levels; the supporting Rodin tool embeds
an interactive proving assistant for verifying the correctness of system designs and refinements.
The Event-B language is more oriented towards modeling reactive systems than conventional
algorithms/programs [24].

RISCAL has been more directly influenced by the temporal logic of actions (TLA) [16, 31]
which has evolved into a specification language TLA+ for describing concurrent systems. It
also supports a the more conventional algorithm language PlusCal by translation to TLA+ spec-
ifications; PlusCal can be used to describe iterative algorithms but does not support recursion.
TLA+/PlusCal is based on classical first order logic and set theory and supported by the TLC
model checker and the TLA+ proof system. The RISCAL use of externally defined constants
to restrict domains has been inspired by the corresponding use of constants by TLA+/PlusCal
to restrict the sizes of sets. However, while RISCAL is statically typed, TLA+/PlusCal has no
static type system; indeed all values are ultimately sets. PlusCal demonstrates its heritage from
TLA+ in that it has no direct means of specifying an algorithm’s pre- or post-conditions, in-
variants, and termination measures; such properties have to be expressed via assertions or via
temporal formulas that refer to the value of the program counter.

The algorithm language with probably the longest tradition is VDM [17, 21] that supports in
a typed framework with a rich set of types an expressive language for modeling both recursive
and iterative algorithms with algorithms specified in terms of pre- and post-conditions. The sup-
porting software Overture also provides an execution-based model checker similar to RISCAL
(while a supporting proof tool is still in its infancy). However, there are some language glitches
which make the use of the system somewhat cumbersome [24]: for instance, it is not possible to
introduce named predicates in invariants; furthermore, invariants can be only used to constrain
global state changes but not individual loops.

The language WhyML of the program verification environment Why3 environment [5, 32],
while being a real programming language, can due its high-level also be considered as an algo-
rithm language supporting pre- and postconditions, assertions, loop invariants, and termination
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measures. However, due to its actual nature as a programming language, WhyML does not
support nondeterministic constructions like TLA+/PlusCal, VDM, or RISCAL. WhyML pro-
grams can be executed via translation to the language OCaml and verified by various external
theorem provers; runtime assertion checking and model checking are not supported. Similarly
Dafny [18, 9] is a high-level programming language developed at Microsoft with built-in spec-
ification constructs. A program can be compiled to executable .NET code and verified via the
SMT solver Z3. Also Dafny does not support nondeterministic constructions, runtime assertion
checking or model checking.

Also for various more wide-spread programming languages such as C, Ada, Java, C#, exten-
sions for specifications do exist. Considering only the Java world, around the Java Modeling
Language (JML) [7, 15] an ecosystem of supporting tools have been developed, including run-
time assertion checkers, extended static checkers, and full-fledged verifiers. However, all of
these tools have to struggle with the complex semantics of an “industrial” programming lan-
guage which is only partially covered by JML respectively the corresponding tools, partially
also with the complexity of JML itself. For instance, the runtime assertion checking supported
by the old “Common JML Tools” or the newer “OpenJML” toolset has to deal with the fact that
not all quantified formulas expressible in JML are easily executable such that not all parts of a
specification are necessarily considered in checks.

The thesis [24] has compared some of the languages/tools mentioned above (notably JML,
TLA+/PlusCal, Alloy, VDM/Overture, Event-B/Rodin) and their suitability for modeling and
verifying mathematical algorithms; in a nutshell, while none was considered as ideal, the system
TLA+/PlusCal was judged as the best on for model checking (with VDM as an alternative for
recursive algorithms, which are not supported by PlusCal).

5 Future Work

The current version of the RISCAL software allows to validate the correctness of mathematical
algorithms and their formal annotations by executing respectively evaluating them on finite sub-
sets of the generally infinite domains. Thus it can be e.g. detected that a loop invariant is too
strong, i.e., does not hold for all inputs and loop iterations. However, this is only a first step
towards an environment for the general verification of mathematical algorithms.

As a next step, we will develop a verification condition generator for the specification lan-
guage. The conditions are parameterized over the unspecified domain bounds; for concrete
values of these bounds, the conditions are decidable: they can be verified by evaluation (which
is presumably slow) and by application of SMT solvers (which can be expected to be reasonably
efficient). If such concrete instances are invalid, also the general condition is invalid and a proof
need not be attempted. Thus we will also be able to detect that a loop invariant is too weak, i.e.,
that it does not describe the value space of the loop variables accurately enough to prove that the
invariant holds in the post-state of the loop, even if it holds in the pre-state.

The expectation is that thus the formal annotations can be further validated to carry a subse-
quent proof-based verification of the algorithms for domains of arbitrary size. Ultimately, we
will therefore connect the RISCAL software to a computer-aided interactive proof assistant such
as the RISC ProofNavigator [26, 23] in order to perform general verifications.

23



References

[1] Jean-Raymond Abrial. Modeling in Event-B — System and Soft-
ware Engineering. Cambridge University Press, Cambridge, UK,
May 2010. http://www.cambridge.org/at/academic/subjects/
computer-science/programming-languages-and-applied-logic/
modeling-event-b-system-and-software-engineering?format=HB.

[2] Alloy: a Language & Tool for Relational Models, March 2016. http://alloy.mit.
edu/alloy.

[3] ANTLR, December 2016. http://www.antlr.org.

[4] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Development
— Coq’Art: The Calculus of Inductive Constructions. Springer, Berlin, Germany, 2016.
https://doi.org/10.1007/978-3-662-07964-5.

[5] François Bobot, Jean-Christophe Filliâtre, Claude Marché, and Andrei Paskevich. Why3:
Shepherd Your Herd of Provers. In Boogie 2011: First International Workshop on In-
termediate Verification Languages, pages 53–64, Wrocław, Poland, August 2011. http:
//proval.lri.fr/publications/boogie11final.pdf.

[6] Bruno Buchberger, Tudor Jebelean, Temur Kutsia, Alexander Maletzky, and Wolfgang
Windsteiger. Theorema 2.0: Computer-Assisted Natural-Style Mathematics. Journal
of Formalized Reasoning, 9(1):149–185, 2016. https://doi.org/10.6092/issn.
1972-5787/4568.

[7] Patrice Chalin, Joseph R. Kiniry, Gary T. Leavens, and Erik Poll. Beyond Assertions:
Advanced Specification and Verification with JML and ESC/Java2. In Frank S. de Boer,
Marcello M. Bonsangue, Susanne Graf, and Willem-Paul de Roever, editors, Formal Meth-
ods for Components and Objects: FMCO 2005, Amsterdam, The Netherlands, November
1-4, 2005, Revised Lectures, volume 4111 of Lecture Notes in Computer Science, pages
342–363, Berlin, Germany, 2006. Springer. https://doi.org/10.1007/11804192_16.

[8] The Coq Proof Assistant, January 2017. https://coq.inria.fr.

[9] Dafny: A Language and Program Verifier for Functional Correctness, Jan-
uary 2017. https://www.microsoft.com/en-us/research/project/
dafny-a-language-and-program-verifier-for-functional-correctness.

[10] Event-B and the Rodin Platform, November 2015. http://www.event-b.org.

[11] Kokichi Futatsugi et al. CafeOBJ. Japan Advanced Institute of Science and Technology
(JAIST), Nomi, Japan, January 2017. https://cafeobj.org.

[12] Joseph A. Goguen and Grant Malcom, editors. Software Engineering with OBJ — Alge-
braic Specification in Action, volume 2 of Advances in Formal Methods. Springer US, New
York, NY, USA, 2000. https://doi.org/10.1007/978-1-4757-6541-0.

24

http://www.cambridge.org/at/academic/subjects/computer-science/programming-languages-and-applied-logic/modeling-event-b-system-and-software-engineering?format=HB
http://www.cambridge.org/at/academic/subjects/computer-science/programming-languages-and-applied-logic/modeling-event-b-system-and-software-engineering?format=HB
http://www.cambridge.org/at/academic/subjects/computer-science/programming-languages-and-applied-logic/modeling-event-b-system-and-software-engineering?format=HB
http://alloy.mit.edu/alloy
http://alloy.mit.edu/alloy
http://www.antlr.org
https://doi.org/10.1007/978-3-662-07964-5
http://proval.lri.fr/publications/boogie11final.pdf
http://proval.lri.fr/publications/boogie11final.pdf
https://doi.org/10.6092/issn.1972-5787/4568
https://doi.org/10.6092/issn.1972-5787/4568
https://doi.org/10.1007/11804192_16
https://coq.inria.fr
https://www.microsoft.com/en-us/research/project/dafny-a-language-and-program-verifier-for-functional-correctness
https://www.microsoft.com/en-us/research/project/dafny-a-language-and-program-verifier-for-functional-correctness
http://www.event-b.org
https://cafeobj.org
https://doi.org/10.1007/978-1-4757-6541-0


[13] Isabelle, November 2016. https://isabelle.in.tum.de.

[14] Daniel Jackson. Software Abstractions — Logic, Language, and Analysis. MIT Press,
Cambridge, MA, USA, revised edition, November 2011. https://mitpress.mit.edu/
books/software-abstractions.

[15] The Java Modeling Language (JML) Home Page, February 2013. http://www.
jmlspecs.org.

[16] Leslie Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley, 2002. http://research.microsoft.com/
users/lamport/tla/book.html.

[17] Peter Gorm Larsen et al. VDM-10 Language Manual. Overture Technical Report
TR-001, Overture Tool, September 2016. http://raw.github.com/overturetool/
documentation/master/documentation/VDM10LangMan/VDM10_lang_man.pdf.

[18] K. Rustan M. Leino. Dafny: An Automatic Program Verifier for Functional Correct-
ness. In Logic Programming and Automated Reasoning (LPAR-16), Dakar, Senegal, April
25–May 1, 2010, volume 6355 of Lecture Notes in Computer Science, pages 348–370.
Springer, Berlin, Germany, 2010. https://www.microsoft.com/en-us/research/
wp-content/uploads/2008/12/dafny_krml203.pdf.

[19] Tobias Nipkow and Gerwin Klein. Concrete Semantics — With Isabelle/HOL. Springer,
Heidelberg, Germany, 2014. https://doi.org/10.1007/978-3-319-10542-0.

[20] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL — A Proof As-
sistant for Higher-Order Logic. Springer, Berlin, Germany, December 2016. https:
//isabelle.in.tum.de/dist/Isabelle2016-1/doc/tutorial.pdf.

[21] Overture Tool — Formal Modelling in VDM, January 2017. http://overturetool.
org.

[22] The RISC ProgramExplorer, June 2016. https://www.risc.jku.at/research/
formal/software/ProgramExplorer.

[23] The RISC ProofNavigator, September 2011. https://www.risc.jku.at/research/
formal/software/ProofNavigator.

[24] Daniela Ritirc. Formally Modeling and Analyzing Mathematical Algorithms with Soft-
ware Specification Languages & Tools. Master’s thesis, Research Institute for Symbolic
Computation (RISC), Johannes Kepler University, Linz, Austria, January 2016. https:
//www.risc.jku.at/publications/download/risc_5224/Master_Thesis.pdf.

[25] Kenneth Rosen. Discrete Mathematics and Its Applications. McGraw-Hill Education,
Columbus, OH, USA, 7th edition, 2012. http://highered.mheducation.com/sites/
0073383090/information_center_view0/index.html.

25

https://isabelle.in.tum.de
https://mitpress.mit.edu/books/software-abstractions
https://mitpress.mit.edu/books/software-abstractions
http://www.jmlspecs.org
http://www.jmlspecs.org
http://research.microsoft.com/users/lamport/tla/book.html
http://research.microsoft.com/users/lamport/tla/book.html
http://raw.github.com/overturetool/documentation/master/documentation/VDM10LangMan/VDM10_lang_man.pdf
http://raw.github.com/overturetool/documentation/master/documentation/VDM10LangMan/VDM10_lang_man.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2008/12/dafny_krml203.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2008/12/dafny_krml203.pdf
https://doi.org/10.1007/978-3-319-10542-0
https://isabelle.in.tum.de/dist/Isabelle2016-1/doc/tutorial.pdf
https://isabelle.in.tum.de/dist/Isabelle2016-1/doc/tutorial.pdf
http://overturetool.org
http://overturetool.org
https://www.risc.jku.at/research/formal/software/ProgramExplorer
https://www.risc.jku.at/research/formal/software/ProgramExplorer
https://www.risc.jku.at/research/formal/software/ProofNavigator
https://www.risc.jku.at/research/formal/software/ProofNavigator
https://www.risc.jku.at/publications/download/risc_5224/Master_Thesis.pdf
https://www.risc.jku.at/publications/download/risc_5224/Master_Thesis.pdf
http://highered.mheducation.com/sites/0073383090/information_center_view0/index.html
http://highered.mheducation.com/sites/0073383090/information_center_view0/index.html


[26] Wolfgang Schreiner. The RISC ProofNavigator: A Proving Assistant for Program
Verification in the Classroom. Formal Aspects of Computing, 21(3):277–291, March
2009. https://doi.org/10.1007/s00165-008-0069-4 and https://www.risc.
jku.at/people/schreine/papers/fac2008.pdf.

[27] Wolfgang Schreiner. Computer-Assisted Program Reasoning Based on a Rela-
tional Semantics of Programs. Electronic Proceedings in Theoretical Computer
Science (EPTCS), 79:124–142, February 2012. Pedro Quaresma and Ralph-Johan
Back (eds), Proceedings of the First Workshop on CTP Components for Educa-
tional Software (THedu’11), Wrocław, Poland, July 31, 2011, https://doi.org/10.
4204/EPTCS.79.8 and https://www.risc.jku.at/research/formal/software/
ProgramExplorer/papers/THeduPaper-2011.pdf.

[28] About SETL, January 2015. http://setl.org/setl.

[29] W. Kirk Snyder. The SETL2 Programming Language. Technical Report 490, Courant Insti-
tute of Mathematical Sciences, Computer Science Department, New York University, New
York, NY, USA, 1990. https://archive.org/details/setl2programming00snyd.

[30] The Theorema System, January 2017. https://www.risc.jku.at/research/
theorema/software.

[31] The TLA Home Page, November 2016. https://research.microsoft.com/en-us/
um/people/lamport/tla/tla.html.

[32] Why3 — Where Programs Meet Provers, January 2017. http://why3.lri.fr/.

26

https://doi.org/10.1007/s00165-008-0069-4
https://www.risc.jku.at/people/schreine/papers/fac2008.pdf
https://www.risc.jku.at/people/schreine/papers/fac2008.pdf
https://doi.org/10.4204/EPTCS.79.8
https://doi.org/10.4204/EPTCS.79.8
https://www.risc.jku.at/research/formal/software/ProgramExplorer/papers/THeduPaper-2011.pdf
https://www.risc.jku.at/research/formal/software/ProgramExplorer/papers/THeduPaper-2011.pdf
http://setl.org/setl
https://archive.org/details/setl2programming00snyd
https://www.risc.jku.at/research/theorema/software
https://www.risc.jku.at/research/theorema/software
https://research.microsoft.com/en-us/um/people/lamport/tla/tla.html
https://research.microsoft.com/en-us/um/people/lamport/tla/tla.html
http://why3.lri.fr/


A The Software System

In the following sections, we describe the software that implements the RISCAL language.

A.1 Installing the Software

The README file of the installation is included below.

------------------------------------------------------------------------------
README
Information on RISCAL.

Author: Wolfgang Schreiner <Wolfgang.Schreiner@risc.jku.at>
Copyright (C) 2016-, Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria, http://www.risc.jku.at

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
------------------------------------------------------------------------------

RISC Algorithm Language (RISCAL)
--------------------------------
http://www.risc.jku.at/research/formal/software/RISCAL

This is the RISC Algorithm Language (RISCAL), a specification language and
associated software system for describing mathematical algorithms, formally
specifying their behavior based on mathematical theories, and validating the
correctness of algorithms, specifications, and theories by execution/evaluation.

This software has been developed at the Research Institute for Symbolic
Computation (RISC) of the Johannes Kepler University (JKU) in Linz, Austria. It
is freely available under the terms of the GNU General Public License, see file
COPYING. RISCAL runs on computers with x86-compatible processors supporting Java
8 and the Standard Widget Toolkit (SWT); it has been developed and tested on a
computer with the GNU/Linux operating system and a x86-64 processor. For
learning how to use the software, see the file "main.pdf" in the directory
"manual"; examples can be found in the directory "spec".

Please send bug reports to the author of this software:

Wolfgang Schreiner <Wolfgang.Schreiner@risc.jku.at>
http://www.risc.jku.at/home/schreine
Research Institute for Symbolic Computation (RISC)

27



Johannes Kepler University
A-4040 Linz, Austria

A Virtual Machine with RISCAL
-----------------------------
On the RISCAL web site, you can find a virtual GNU/Linux machine that has RISCAL
preinstalled. This virtual machine can be executed with the free virtualization
software VirtualBox (http://www.virtualbox.org) on any computer with an
x86-compatible processor running under Linux, MS Windows, or MacOS. You just
need to install VirtualBox, download the virtual machine, and import the virtual
machine into VirtualBox.

This may be for you the easiest option to run the software; if you choose this
option, see the web site for further instructions.

The Distribution
----------------
The distribution has the following contents:

README ... this file
COPYING ... the GNU General Public Licence Version 3
CHANGES ... the version history of the software
etc/
RISCAL ... the execution script
run* ... examples of server execution scripts

lib/
*.jar ... the Java compiled libraries
swt32/swt.jar ... the SWT library for GNU/Linux and x86-32 processors
swt64/swt.jar ... the SWT library for GNU/Linux and x86-64 processors

doc/
main.pdf ... the manual

spec/
*.txt ... sample specifications

src/
*/*.java ... the Java source code

Installation
------------
Copy the file etc/RISCAL to a directory in your PATH and adapt the variable JAVA
to point to the Java executable "java". Adapt LIB to point to the directory
"lib" of the distribution and adapt $LIB/swt64 to point to the directory with
the SWT library for your operating system and processor.

You should then be able to execute

RISCAL &

Third Party Software
--------------------
RISCAL uses the following open source programs and libraries. Most of this is
already included in the distribution, but if you want or need, you can download
the source code from the denoted locations (local copies are available on the
RISCAL web site) and compile it on your own. Many thanks to the respective
developers for making this great software freely available!
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Java Development Kit 8 (or higher)
http://www.oracle.com/technetwork/java/javase/downloads/index.html
------------------------------------
Go to the "Downloads" section to download the JDK.

ANTLR 4.5
http://www.antlr.org
--------------------
This is a framework for constructing parsers and lexical analyzers used for
processing the programming/specification language of the RISC ProgramExplorer.
Go to the "Download" section to download the latest 4.* version of the library.

On a Debian 9 "stretch" GNU/Linux distribution, just install the package "antlr4"
by executing (as superuser) the command

apt-get install antlr4

The Eclipse Standard Widget Toolkit 4.6
http://www.eclipse.org/swt
---------------------------------------
This is a widget set for developing GUIs in Java.

Go to section "Stable" and download the version "Linux (x86/GTK2)" (if you use
a 32bit x86 processor) or "Linux (x86_64/GTK 2)" (if you use a 64bit x86
processor).

For the builtin "Help" to work properly, WebKitGTK 1.2.0 or newer must
be installed; e.g. on a Debian 9 "stretch" GNU/Linux distribution, just install
the package "libwebkitgtk-3.0-0" by executing (as superuser) the command

apt-get install libwebkitgtk-3.0-0

Tango Icon Library 0.8.90
http://tango.freedesktop.org
----------------------------
Go to the section "Base Icon Library", subsection "Download", to download
the icons used in RISCAL.

------------------------------------------------------------------------------
End of README.
------------------------------------------------------------------------------

A.2 Running the Software

The RISCAL software is intended to be used in interactive mode by executing the shell script

RISCAL &

which prints out the copyright message

RISC Algorithm Language 1.0 (March 1, 2017)
http://www.risc.jku.at/research/formal/software/RISCAL

29



(C) 2016-, Research Institute for Symbolic Computation (RISC)
This is free software distributed under the terms of the GNU GPL.
Execute "RISCAL -h" to see the available command line options.
-----------------------------------------------------------------

However, if we execute (as indicated in this message)

RISCAL -h

we get the following output which displays the following options:

RISCAL [ <options> ] [ <path> ]
<path>: path to a specification file
<options>: the following command line options
-h: print this message and exit
-s <T>: run in server mode with T threads
-nogui: do not use graphical user interface
-p: print the parsed specification
-t: print the typed specification with symbols
-v <I>: use integer <I> for all external values
-nd: nondeterministic execution is allowed
-e <F>: execute parameter-less function/procedure F

Most of these options were used in the initial development of the software and are preserved
mainly for historical reasons. The main exception is the option -s by which it is possible to
execute the software in “server mode”, e.g. as

RISCAL -s 4

which indicates that the software shall run as a server with 4 threads. It the prints a line such as

amir.risc.jku.at 41459 27pn3agrgjc5c1mcu14r4rcr8n

where the first string represents the Internet name of the machine running the software, the sec-
ond word represents the number of the port where the server is listening for a connection request
and the last word represents a one-time password for authenticating the connection request. This
information can be used by another RISCAL process that runs in “Distributed” mode to connect
to the server process and forward computations to the server. See Appendix A.4 for more details.

A.3 The User Interface

Main Window The user interface depicted in Figure 2 is divided into two parts. The left part
mainly embeds an editor panel with the current specification. The right part is mainly filled
by an output panel that shows the output of the system when analyzing the specification that
is currently loaded in the editor. The top of both parts contains some interactive elements for
controlling the editor respectively the analyzer.
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Figure 2: The RISCAL User Interface (Enlarged)

31



Menu Bar The bar at the top of the window holds three menus:

File Option “New” starts the editing of a new specification; while “Open. . . ” opens an existing
one. “Save” saves the current specification to disk; “Save As. . . ” saves it under a new
name to be chosen. “Quit” terminates the software.

Edit Option “Undo” reverts the last editing operation while “Redo” performs it again. Options
“Bigger Font” and “Smaller Font” allow to resize the fonts used for the display of text in
the editor and in the output panel.

Help Option “Online Manual” opens a web browser with an online version of this manual;
“About” opens a window with a copyright message.

Most menu entries have keyboard shortcuts which are displayed in the corresponding menus.
The file actions “New”, “Open. . . ” and “Save” are also bound to three buttons , , and
displayed at the top of the editor panel.

The translation respectively execution of a specification is controlled by various buttons, check
boxes, and input fields on the top of the right panel; moving the mouse cursor over a button
displays a corresponding description.

Executing a Specification We have the following buttons:

[Process Specification] This triggers the re-processing of a specification. However, since
a specification is automatically processed when it is loaded or saved after editing or be-
fore executing the specification after some of the “Translation” options below have been
changed, there is usually no reason to explicitly trigger the processing.

[Start Execution] This starts execution respectively model checking of that operation that
has been selected in the “Operation” menu described below.

[Stop Execution] This stops any ongoing execution triggered by the “Start Execution” but-
ton.

[Clear Output] This clears the output panel. The output displayed in that panel is automat-
ically truncated when it gets too long; to avoid truncation, the panel may me explicitly
cleared by this button.

[Start Logging] This opens a file selection dialog by which the name and directory of a file
may be specified to which the content of the output panel is logged for later investigation.

[Stop Logging] This stops logging the content of the output panel triggered by the “Start
Logging” button.

[Reset System] This resets the software to the initial state; it clears the editor window and
resets all options to their defaults.
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Figure 3: The “Other Values” Window

Configuring the Translation The label “Translation” displays all options/values that affect
the processing of the specification to an executable representation (whenever one of these is
changed, the specification is automatically re-processed before execution):

Nondeterminism If this option is not selected, the specification is executed in a determinis-
tic mode where value choices performed by a nondeterministic language construct such
as choose are resolved by choosing a single eligible value, respectively by aborting, if
no such value exists. However, if this option is selected, the specification is executed in a
nondeterministic mode where each choice splits the execution into multiple branches each
of which is executed in turn. If an execution contains multiple subsequent choices, this
yields exponentially many execution branches whose execution takes exponentially more
time than executing the single branch chosen in deterministic mode. Since the determinis-
tic mode also produces a more efficient executable version of the specification, this option
should be only used with care.

Default Value In this field, the user can define the value (a non-negative integer in decimal rep-
resentation) that is given to every unspecified natural number constant in the specification.
Actually, this value is used for a constant c only if the “Other Values” table explained
below does not give a specific value for c.

Other Values If this button is pressed, the window displayed in Figure 3 pops up where val-
ues for specific natural number constants can be given. If for a constant c used in the
specification no value is provided, the “Default Value” explained above is chosen.

Configuring the Execution The label “Execution” displays all options/values that affect the
execution of a specification (it is not necessary to re-process a specification whenever one of
these is changed):

Silent If this option is not selected, every application of the operation selected in the “Op-
eration” menu explained below yields some output (the value of the function and some
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execution statistics). If this option is selected, only infrequently (every 2s or so) statistics
about the applications executed so far is printed.

Inputs If this field is empty, the operation selected in the “Operation” menu is applied to all
argument tuples from the domain of the operation. If this field is not empty, it must
contain a natural number N (a non-negative integer in decimal representation). Then the
operation is applied to at most N argument tuples (if “Parallelism” is applied as explained
below, N is not a sharp bound but only a guideline; actually some more applications are
possible).

Per Mille If this field is not empty, it must contain a natural number N (a non-negative integer
in decimal representation) with 0 ≤ N ≤ 1000. Then every possible argument tuple for
the operation selected in the “Operation” menu is chosen with a probability of N/1000;
as a consequence the operation is applied to only a fraction of approximately N/1000 of
all possible inputs.

Branches If this field is not empty, it must contain a natural number N (a non-negative integer
in decimal representation). Then, if the option “Nondeterminism” explained above is
selected, at most N values are chosen in a nondeterministic language construct such as
choose, i.e., the execution splits into at most N branches at each choice point.

Configuring Parallelism The label “Parallelism” groups all options/values that speed up the
model checker by multi-threaded and/or distributed parallel execution:

Multi-Threaded If this option is selected, the applications of the operation selected in the “Op-
eration” menu are performed by multiple (at least 2) threads in parallel, which may sig-
nificantly speed up the execution.

Threads If this field is empty, multi-threaded execution proceeds with 2 threads. If this field is
not empty, it must contain a natural number N (a non-negative integer in decimal repre-
sentation). Then multithreaded execution proceeds with max{N,2} threads.

Distributed If this option is selected, the model checker applies (possibly in addition to multiple
threads as described above) additional RISCAL processes which may be also executed on
remote computers. The creation of these processes is configured in the “Servers” menu:

Servers By pressing this button, the window depicted in Figure 4 pops up. The text fields in
this window contains a list of commands, one command (possibly with arguments) per
line. Each of the listed commands is executed by the software when the “Distributed”
option explained above is selected to startup another RISCAL process; the output of this
command gives the current process the information it needs to connect to the other process
which may be executed on another computer, e.g., a high performance compute server.
More information on this topic is given in Appendix A.4.
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Figure 4: The “Servers” Window

A.4 Distributed Execution

The RISCAL software may be executed in a “Distributed” mode where the “client process”
running with the graphical user interface on the user’s local computer connects to one more
“server processes” that potentially run on remote computers (e.g., high-performance servers);
the client process then forwards part of the model checking work to the server processes.

For this purpose, every command listed in the “Server” window depicted in Figure 4 on
page 35 must start an instance of the RISCAL software with the option -s T which indicates
that the software is executed in “server” mode with T threads. A possible such command is

java -cp LIB/* riscal.Main -s 4

where LIB is to be replaced by the absolute path of the directory that contains the .jar files of
the RISCAL software on the computer that runs the server process; actually from this library
only the files antlr4.jar and riscal.jar are required to run the server. The process then
prints to the standard output a line of form host port password e.g.

host.mydomain.org 9876 qnb2l0083e6a5g3b0h18q2ad4

where the first string is the internet name/address of the host where the process is executed,
the second string denotes the number of the port on which the process listens for connection
requests and the last string is a randomly generated one-time password. The current process
uses this information to connect to the remote process on that host via the denoted port and
provides the password to prove that it is entitled to the connection.

If the server process is to run on the same computer under the GNU/Linux operating system,
the command may be wrapped into a shell script runsh that may be e.g. invoked as

/PATH/runsh 4
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and whose content is as follows:

#!/bin/bash
# uses bash-specific process substitution below
if [ $# -ne 1 ] ; then
echo "usage: runsh <threads>"
exit

fi
THREADS=$1
JAVA=/software/java8/bin/java
LIB=/home/schreine/repositories/RISCAL/trunk/lib
head -1 <( $JAVA -cp "$LIB/*" -Xmx2G -Xms1G riscal.Main -s $THREADS )

where the variable JAVA has to be replaced by the absolute path of the java runtime engine and
the variable LIB has to be replaced by the path of the RISCAL installation.

If the server process is to run on another computer under the GNU/Linux operating system to
which we may connect by the “Secure Shell” (SSH) software, the command may be wrapped
into a shell script runssh that may be e.g. invoked as

/PATH/runssh host.mydomain.org 4

and whose content is as follows:

#!/bin/bash
# uses bash-specific process substitution below
if [ $# -ne 2 ] ; then
echo "usage: runssh <host> <threads>"
exit

fi
HOST=$1
THREADS=$2
JAVA=/zvol/formal/java8_64/bin/java
LIB=/home/schreine/repositories/RISCAL/trunk/lib
DIR=/home/schreine/tmp/riscal
head -1 <( ssh $HOST $JAVA -cp \"$DIR/*\" -Xmx2G -Xms1G riscal.Main -s $THREADS )

where again the variable JAVA has to be replaced by the absolute path of the java runtime
engine and the variable LIB has to be replaced by the path of the RISCAL installation. The SSH
software must be then configured (by the use of a certificate) such that remote login is possible
without a password, e.g.

ssh host.mydomain.org echo hi

must print “hi” without asking for a password.

B The Specification Language

In the following sections, we describe the specification language.
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B.1 Lexical and Syntactic Structure

On the lowest level, a RISCAL specification is a file encoded in UTF-8 format. RISCAL uses
several Unicode characters that cannot be found on keyboards, but for each such character there
exists an equivalent string in ASCII format that can be typed on a keyboard. While the RISCAL
grammar supports both alternatives, the use of the Unicode characters yields much prettier spec-
ifications and is thus recommended.

Fortunately the RISCAL editor can be used to translate the ASCII string to the Unicode char-
acter by first typing the string and then (when the editor caret is immediately to the right of this
string) pressing <Ctrl>-#, i.e, the Control key and simultaneously the key depicting #. Also
later such textual replacements can be performed by positioning the editor caret to the right of
the string and pressing <Ctrl>-#. The current table of replacements is as depicted in Figure 5.

A specification file may include two kinds of comments which are ignored when processing
the file:

• Comments starting with // and ranging till the end of the file.

• Comments starting with /* and ending with */ (such comments must not be nested).

Likewise white space characters (blanks, tabulators, new lines, returns, form feeds) are ignored.
The syntactical grammar of RISCAL uses the following kinds of terminal symbols:

• An identifier 〈ident〉 is a non-empty sequence of (lower and upper case) ASCII letters,
decimal digits, and the underscore character _ starting with a letter, e.g. pos0.

• A decimal number literal 〈decimal〉 is a non-empty sequence of decimal digits, e.g. 123.

• A string literal 〈string〉 is a sequence of characters of form "..." where the characters
between the double quotes may include the escape sequences \\ (backslash), \" (double
quote), and \n (new line), e.g. "output: \"{1}\"\n\"{2}\"".

The RISCAL grammar (for both lexical analysis and syntax analysis) is formally defined in
Appendix B.7 as an ANTLR4 grammar file. The following sections explain the various kinds of
phrases in a form that is modeled after that syntax but edited for readability.

In the subsequent presentation, a rule

〈domain〉 ::= 〈alternative1〉 | ... | 〈alternativeN〉

introduces a syntactic domain with N construction alternatives. Within each alternative, we have
the following meta-syntax:

• A phrase in teletype letters like Int or [ denotes a literal token.

• Also special Unicode characters like Z are literals that stand for themselves.

• ( 〈phrase1〉 | ... | 〈phraseN〉 ) denotes one of the phrases 〈phrase1〉, . . . , 〈phraseN〉.

• ( 〈phrase〉 )? denotes 0 or 1 occurrence of 〈phrase〉.
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ASCII String Unicode Character
Int Z
Nat N
:= :=
true >

false ⊥

~ ¬

/\ ∧

\/ ∨

=> ⇒

<=> ⇔

forall ∀

exists ∃

sum
∑

product
∏

~= ,

<= ≤

>= ≥

* ·

times ×

{} ∅

intersect ∩

union ∪

Intersect
⋂

Union
⋃

isin ∈

subseteq ⊆

<< 〈

>> 〉

Figure 5: ASCII Strings and their Equivalent Unicode Characters
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• ( 〈phrase〉 )* denotes 0 or more occurrences of 〈phrase〉.

• ( 〈phrase〉 )+ denotes 1 or more occurrences of 〈phrase〉.

Furthermore, parentheses (. . .) may be used to group phrases.

B.2 Specifications and Declarations

A specification is a sequence of declarations:

〈specification〉 ::= ( 〈declaration〉 )*

A declaration introduces at least one name into the environment; the name may be subse-
quently referenced. The name space is divided into three categories of names:

• Types

• Values (constants, parameter-less predicates and theorems)

• Functions (functions, parameterized predicates and theorems, procedures)

It is an error to declare in the same category two entities with the same name (but it is okay, if
entities in different categories have the same name). As an exception, different functions may
have the same name, if they differ in the number or types of their parameters (i.e., function
names may be “overloaded”).

In the following we describe the domain

〈declaration〉 ::= . . .

of declarations.

B.2.1 Types

Grammar

type 〈ident〉 = 〈type〉 ;
rectype ( 〈exp〉 ) 〈ritem〉 ( and 〈ritem〉 )* ;
enumtype 〈ritem〉 ;

〈ritem〉 ::= 〈ident〉 = 〈rident〉 ( | 〈rident〉 )*
〈rident〉 ::= 〈ident〉 ( ( 〈type〉 ( , 〈type〉 )* ) )?

Description We have the following definitions of types:

• A type definition type id = T; introduces a name id as a synonym for type T .
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• A recursive type defintion rectype(n) id = c | f(T1,. . .,Tn) | . . .; introduces a new
type id with constant id!c and constructor id! f , a function with parameters of types
T1, . . . ,Tn and a result of type id. Different constants denote different values, applications
of different constructors yield different results, and applications of the same constructor to
different arguments yield different results.

The type name id may appear as a (subtype of) parameter type of a constructor; thus
arbitrarily deep nestings of constructor applications are possible. However, the number of
nested constructor applications must not exceed the bound set by the constant expression
n ≥ 0. In particular, if n = 0, then only constant values may be used; if n = 1, only
applications of constructors to constants are allowed. This constraint is checked at runtime
such that execution is aborted, if it is violated.

A recursive type definition rectype(n) id1 = . . .and . . .and idn = . . .; introduces n types
id1, . . . , idn that may mutually recursively depend on each other, i.e., one type may appear
as a (subtype of) a parameter type of a constructor of another type. The bound n applies
to all types in common: not more than n nested constructor applications are allowed, even
if these are applications of constructors of different types in the recursive type definition.

• An enumerated type definition enumtype id = c1 | . . .| cn ; is an abbreviation for the
recursive type definition rectype(0) id = c1 | . . .| cn ;.

Pragmatics The bound n in a recursive type definition rectype(n) id = . . . ensures that (like
all other types) also a recursive type has only finitely many values.

B.2.2 Values

Grammar

val 〈ident〉 : ( N | Nat ) ;
val 〈ident〉 ( : 〈type〉 )? = 〈exp〉 ;
pred 〈ident〉 (⇔ | <=> ) 〈exp〉 ;
theorem 〈ident〉 (⇔ | <=> ) 〈exp〉 ;

Description We have the following definitions of “values” (which also encompass “predi-
cates” and “theorems”):

• val n: N (alternatively, val n: Nat) introduces a new natural number constant n. The
value of this constant is not defined in the specification itself but chosen externally (before
the specification is processed). The remainder of the specification is thus processed for
one particular choice of the constant value.

• val c: T = e; introduces a new constant c and binds it to the value of e; the type of id is
the type of e. If the optional type T is given, e must be of type T .

• pred p⇔ b; (where the symbol⇔ can be alternatively written as <=>) defines a “predi-
cate” p, i.e., a constant of type Bool and binds it to the value of formula b (an expression
of type Bool).

40



• theorem t ⇔ b; (where the symbol⇔ can be alternatively written as <=>) introduces a
“theorem” t, i.e., a predicate whose value is “true”. Here b must be a formula with value
“true”; if its value is “false”, execution aborts.

Pragmatics External constants may serve as bounds in type definitions respectively may be
used to compute such bounds in constant expressions.

Value (also predicate or theorem) definitions are evaluated by the type checker, which may
considerably delay the checking. An alternative to the definition of a value is the definition of
a corresponding function (respectively parameterized predicate or theorem) with argument type
() (i.e, type Unit); such a function is only evaluated when it is applied.

B.2.3 Functions

( multiple )? fun 〈ident〉 ( ( 〈ident〉:〈type〉 ( , 〈ident〉:〈type〉 )* )? ) : 〈type〉
( ( 〈funspec〉 )* ’=’ 〈exp〉 )? ;

( multiple )? pred 〈ident〉 ( ( 〈ident〉:〈type〉 ( , 〈ident〉:〈type〉 )* )? )
( ( 〈funspec〉 )* ( ’⇔’ | ’〈=〉’ ) 〈exp〉 )? ;

( multiple )? theorem 〈ident〉 ( ( 〈ident〉:〈type〉 ( , 〈ident〉:〈type〉 )* )? )
( ( 〈funspec〉 )* ( ’⇔’ | ’〈=〉’ ) 〈exp〉 )? ;

( multiple )? proc 〈ident〉 ( ( 〈ident〉:〈type〉 ( , 〈ident〉:〈type〉 )* )? ) : 〈type〉
( ( 〈funspec〉 )* { ( 〈command〉 )* ( return 〈exp〉 ; )? } )?

〈funspec〉 ::= requires 〈exp〉 ; | ensures 〈exp〉 ; | decreases 〈exp〉 (, 〈exp〉)* ;

Description We have the following definitions of “functions” (which encompass “parameter-
ized predicates”, “parameterized theorems”, and “procedures”):

• fun f (p1:T1,. . .,pn:Tn):T = e ; introduces a function f with n parameters p1, . . . ,pn
of types T1, . . . ,Tn , respectively; the value of the function is defined by the expression e
of type T .

• pred p(p1:T1,. . .,pn:Tn) ⇔ b ; (where the symbol ⇔ can be alternatively written as
<=>) introduces a predicate p with n parameters p1, . . . ,pn of types T1, . . . ,Tn , respec-
tively; the value of the predicate is defined by the formula b (an expression of type Bool).

• theorem t(p1:T1,. . .,pn:Tn) ⇔ b ; (where the symbol⇔ can be alternatively written
as <=>) introduces a theorem t, i.e., a predicate for which we claim that all applications
yield truth value “true”. If an application yields “false”, this application aborts.

• proc p(p1:T1,. . .,pn:Tn):T { c1; . . .; cn; return e; } introduces a procedure p with
n parameters p1, . . . ,pn of types T1, . . . ,Tn , respectively; the value of the procedure is
computed by executing the commands c1, . . . ,cn in sequence and evaluating the expres-
sion e of type T in the resulting store; the value of e is the value of the procedure. Param-
eters are local constants, their values thus cannot be changed by the command execution.
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proc p(p1:T1,. . .,pn:Tn):() { c1; . . .; cn; } introduces a procedure p with result
type () (i.e., type Unit); this procedure executes commands c1, . . . ,cn in sequence and
then returns the value ().

A function definition yields an error, if a function with the same name, the same number
of arguments, and the same argument types has been already defined (but it is okay to define
multiple functions with the same name, if they differ in the number or types of arguments, i.e.
function names may be “overloaded”).

A function is visible from the point of the definition on, including its defining expression
respectively command sequence; thus a function may apply itself recursively.

A function may be first declared (by omitting the defining expression respectively command
sequence) and later defined. From the point of the declaration on, the function is known and
may be applied by other functions. Thus functions may apply themselves mutually recursively.

If the value of a (mutually) recursive function is not uniquely determined from its arguments
(because the function makes choices to compute its result), the function must be tagged with the
keyword multiple; if this is omitted, the processing of the specification reports an error.

A function definition may be annotated by multiple “preconditions”, i.e., clauses of form
requires b;where b is a formula that may refer to the parameters of the function. The function
may be only applied to arguments for which the evaluation of all preconditions (where the formal
parameters are substituted by the actual arguments) yields “true”; if some precondition yields
“false”, execution is aborted.

A function definition may be annotated by multiple “postconditions”, i.e., clauses of form
ensures b; where b is a formula that may refer to the parameters of the function and to the
special constant result whose type is the result type of the function. The function may only
return values for which the evaluation of all postconditions (where the formal parameters are
substituted by the actual arguments and result is bound to the result value of the function)
yields “true”; if some precondition yields “false”, execution is aborted.

A function definition may be annotated by multiple “termination measures”, i.e., clauses of
form decreases e with integer expression e. This expression is evaluated after before/after
every (directly or indirectly) recursive application of the function; if the value of e becomes
negative or is not less than the value in the last application, execution aborts, otherwise the clause
has no effect. The existence of at least one such clause thus ensures that a recursive function
eventually terminates. In general, every clause may have the form decreases e1,. . .,en with
n ≥ 1 in which case no ei with 1 ≤ i ≤ n may become negative and the sequence of values must
be decreased by every recursive function application with respect to the “lexicographical order”
of integer sequences (there must exist some position i with 1 ≤ i ≤ n in the sequence such that
ei is decreased and all e j with 1 ≤ j < i remain the same).

Pragmatics The externally visible behavior of a procedure is that of a function in that it returns
a value but otherwise has no side effect (apart from potentially printing output which however
cannot affect the computation). This is because the store of a procedure is local to the procedure;
there is no “global store” that might be affected by the execution of the procedure; also the values
of variables passed as arguments to a procedure cannot be changed by the procedure.
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The keyword multiple simplifies the translation process; it could be made superfluous by a
more powerful static analysis than currently implemented.

The clause return e is not a general command may may only appear at the end of a procedure
definition; this simplifies the later development of a verification calculus.

B.3 Commands

In this section, we are going to describe the domain

〈command〉 ::= . . . | 〈exp〉 | { ( 〈command〉 )* } | ;

of commands, i.e., syntactic phrases that cause effects but have no values. However, also every
expression of type () (i.e., type Unit) can serve as a command, in particular applications of
functions with return type (). Furthermore, a sequence of commands may be grouped by curly
braces {. . .} into a single command. Finally, a command can be empty (indicated by the sole
occurrence of the command terminator ;), which allows redundant occurrences of ;.

B.3.1 Declarations and Assignments

Grammar

val 〈ident〉 ( : 〈type〉 )? ( := | := | = ) 〈exp〉 ;
var 〈ident〉 : 〈type〉 ( ( := | := | = ) 〈exp〉 )? ;
〈ident〉 ( 〈sel〉 )* ( := | := | = ) 〈exp〉 ;

〈sel〉 ::= [ 〈exp〉 ] | . 〈decimal〉 | . 〈ident〉

Description

• A declaration val id:T := e (where the definition symbol := may be alternatively written
as the two characters := or the single character =) introduces a local constant of name id
and gives it the value of expression e. If the optional type T is given, the type of e must
be T . It is an error, if another local constant (or variable) with name id has been already
declared (but it is okay, if the declaration overshadows a global value declaration).

• A declaration var id:T := e (where := may be alternatively written as := or =) introduces
a variable of name id and type T . If the optional expression e is given, the type of e must
be T and the variable is initialized with that value; otherwise, the value of the variable
is undefined. It is an error, if another variable (or local constant) with name id has been
already declared (but it is okay, if a global value declaration is overshadowed).

• A variable assignment id := e (where := may be alternatively written as := or =) assigns
to a previously declared variable id the value of expression e. It is an error, if no variable
of name id has been declared or if the type of e is not the type given in the declaration.

An array/map assignment a[i] := e is just an abbreviation for the plain variable assign-
ment a := a with [i] = e which assigns to variable a the new array denoted by the array
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update expression a with [i] = e, i.e., an array that is a duplicate of a except that it holds
at i the value e. Likewise, a tuple assignment t.d := e is an abbreviation for the plain as-
signment t := t with .d = e and a record assignment r.id := e is an abbreviation for the
plain assignment r := r with .id = e. The component selectors for the various kinds of
data structures may be also combined, e.g. a[i].id := e is an abbreviation for:

a := a with [i] := (a[i] with .id = e)

Pragmatics Arrays/maps, tuples, and records have “value semantics”, i.e. an element assign-
ment like a[i] := e creates a new array and assigns it to variable a; the original array is not
modified in any way. Thus the code

var a:Array[10,N[3]] := Array[10,N[3]](0);
var b:Array[10,N[3]] := a;
a[0] := 1;
print b[0];

prints 0, not 1.

B.3.2 Choices

Grammar

choose 〈qvar〉 ;
choose 〈qvar〉 then 〈command〉 else 〈command〉

Description These commands introduce new constants whose values are chosen from a finite
set of possibilities. If RISCAL is executed in “deterministic” mode, for each constant an arbi-
trary value is chosen; if RISCAL is executed in “nondeterministic” mode, all values are chosen
in turn (resulting in multiple computation branches that are executed in turn).
choose q ; introduces new local constants whose names are those of the quantified variables

in q and binds them to chosen values. In deterministic execution, if no choice is possible, the
computation is aborted.
choose q then c1 else c2 either executes command c1 or it executes command c2. The

execution of c1 must take place in a context that contains new local constants whose names are
those of the quantified variables in q and which are bound to chosen values. Thus, if no choice
is possible, command c2 must be executed.

Pragmatics The constants introduced by choose q ; are visible in the subsequent commands.
The constants introduced by choose q then c1 else c2 are only visible in command c1; they
are not visible afterwards.

B.3.3 Conditionals

Grammar
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if 〈exp〉 then 〈command〉
if 〈exp〉 then 〈command〉 else 〈command〉

match 〈exp〉 with { ( 〈pattern〉 -> 〈command〉 )+ }
〈pattern〉 ::= 〈ident〉 | 〈ident〉 ( 〈param〉 ( , 〈param〉 )* ) | _

Description We have the following kinds of conditional statements:

• The one-sided conditional statement if b then c evaluates formula b (an expression of
type Bool). If this evaluation yields “true”, the statement executes command c, otherwise
it has no effect.

• The two-sided conditional statement if b then c1 else c2 evaluates formula b. If this
yields “true”, the statement executes command c1, otherwise it executes command c2.

• The matching command match e with { p1->c1; . . .; pn->cn;} attempts to “match”
the value of e (which must be of some recursive type T) to the patterns p1, . . . ,pn . Each
pattern can be either the name id of a constant of type T or an application id(p1,. . .,pn)
of a constructor id of type T or the “wildcard” pattern _. A match succeeds if the value of
e is the denoted constant or the result of an application of the denoted constructor or if the
pattern is the wildcard _.

The matches are attempted in the stated order of patterns; the first successful match of
the value of e to some pattern pi determines the effect of the whole command in that
the command ci is executed. If the match succeeds for a pattern pi = id(p1,. . .,pn),
the parameters p1, . . . ,pn receive the arguments to which constructor id was applied to
yield the value of e; these parameters can be consequently referenced in ci . If there is no
successful match, the effect of the command is undefined (i.e. the computation aborts).

B.3.4 Loops

Grammar

while 〈exp〉 do ( 〈loopspec〉 )* 〈command〉
do ( 〈loopspec〉 )* 〈command〉 while 〈exp〉 ;
for 〈command〉 ; 〈exp〉 ; 〈command〉 do ( 〈loopspec〉 )* 〈command〉

for 〈qvar〉 do ( 〈loopspec〉 )* 〈command〉
choose 〈qvar〉 do ( 〈loopspec〉 )* 〈command〉

〈loopspec〉 ::= invariant 〈exp〉 ; | decreases 〈exp〉 ( , 〈exp〉 )* ;

Description We have the following kinds of loops:

• while b do c evaluates formula b (an expression of type Bool); if its value is “false”, the
loop terminates. Otherwise it executes command c and repeats its behavior with the next
evaluation of b).

Variables and constants introduced in c are only visible in c.
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• do c while b executes command c and then evaluates formula b; if its value is “false”,
the loop terminates. Otherwise it repeats its behavior with the next execution of c.

Variables and constants introduced in c are only visible in c.

• for c1; b; c2 do c3 first executes command c1. It then evaluates formula b; if its value
is “false”, the loop terminates. Otherwise it executes command c3 and then command c2
and then repeats its behavior with the next evaluation of b.

Variables and constants introduced in c1 are visible in the whole command (but not outside
the command). Variables and constants introduced in c2 are only visible in c2. Variables
and constants introduced in c3 are only visible in c3.

• for q do c executes command c in the contexts arising from all possible choices of values
for the quantified variables in q, i.e., in contexts that contain constants for the quantified
variables to which chosen values are assigned. If n choices are possible, c is therefore
executed n times.

However, the order of choices is arbitrary; therefore n! such executions are possible, one
for each permutation of the n choices. If executed in “deterministic” mode, one of these
executions is performed; if executed in “nondeterministic” mode, the execution yields n!
branches each of which proceeds according to one permutation.

• choose q do c attempts to choose a value for the quantified variables in q. If no such
choice is possible, the loop terminates. Otherwise it executes c in a context arising from
this choice (i.e., in a context that contains constants for the quantified variables to which
the chosen values are assigned). It then repeats its behavior with the next attempt to
perform a choice.

When executed in “deterministic” mode, the loop repeatedly make a choice until no more
choice is possible. When executed in “nondeterministic” choice, each choice with n pos-
sibilities yields n execution branches. By the repeated choice in each branch, ultimately
the execution may ultimately yield super-exponentially many branches.

Every kind of loop may be annotated by multiple “loop invariants”, i.e., clauses of form
invariant b where b is a formula that is evaluated before/after every loop iteration. If the
value of b is “false” for any evaluation, execution aborts, otherwise the clause has no effect.
Formula b may refer to identifiers of form old_id, the values of such an identifiers is the value
of the program variable id immediately before the loop started execution. In a loop for q do c,
the invariant may refer to the identifier forSet which denotes the set of all values chosen in the
previous iterations of the loop (initially this set is empty, ultimately it holds all choices).

Furthermore, every loop may be annotated by multiple “termination measures”, i.e., clauses
of form decreases e with integer expression e. This expression is evaluated after before/after
every loop iteration; if the value of e becomes negative or is not less than the value before the
iteration, execution aborts, otherwise the clause has no effect. The existence of at least one such
clause thus ensures that the loop eventually terminates. In general, every clause may have the
form decreases e1,. . .,en with n ≥ 1 in which case no ei with 1 ≤ i ≤ n may become negative
and the sequence of values must be decreased by every iteration of the loop with respect to the
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“lexicographical order” of integer sequences (there must exist some position i with 1 ≤ i ≤ n in
the sequence such that ei is decreased and all e j with 1 ≤ j < i remain the same).

Pragmatics In a loop for c1; b; c2 do c3, command c2 is for syntactic reasons restricted to
some special commands (see Appendix B.7); typically c2 is an assignment.

The difference between the two loops for q do c and choose q do c is that in the for loop
the values of the program variables occurring in q are considered when the loop starts execution:
this determines once and for all possible choices and permutations of these choices. In the
choose loop, after every iteration of the loop a new choice is performed for the new values of
the program variables. Thus to print the elements of a set S of type Set[T], we may apply either
the first form

for x∈S do
print x;

or the second form

var X:Set[T] := S;
choose x∈X do
{
print x;
X := X\{x};

}

The later form is more verbose but also more flexible: it enables the loop to modify in every
iteration the set of possibilities for performing the next choice.

B.3.5 Miscellaneous

Grammar

assert 〈exp〉 ;
print ( 〈string〉 , )? 〈exp〉 ( , 〈exp〉 )* ;
print 〈string〉 ;
check 〈ident〉 ( with 〈exp〉 )? ;

Description We are now going to describe those commands that do not fit the previously listed
categories:

• The assertion command assert b; first evaluates formula b; if the result is “false”, the
computation aborts, otherwise the command has no effect.

• The print command print e1,. . .,en; prints the values of e1, . . . ,en . A command like
print ". . .{i} . . . ", e1,. . .,en; prints this values in a context defined by the given string.
This string is printed literally, except that every occurrence of a token {i} with 1 ≤ i ≤ n
is replaced by the value of ei .
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• The print command print ". . . "; prints the given literal string.

• The formula check f applies the function (predicate, theorem, procedure) f to all values
of its parameter domain; execution aborts, if some of the executions resulted in an error,
and continues normally, otherwise. The command check f with S applies f to all values
of S. If f has one parameter one parameter of type T , S must have type Set[S]. If f has
multiple parameters of types T1, . . . ,Tn , S must have type Set[T1×. . .×Tn].

Pragmatics The assert and print commands are convenient for debugging a specification.
The check command allows to write model checking scripts whose control flow guides the
checks; the with clause allows to restrict the domain of the check to some computed values.

B.4 Types

Grammar

〈type〉 ::=
Bool

| ( Z | Int ) [ 〈exp〉 , 〈exp〉 ]
| ( N | Nat ) [ 〈exp〉 ]
| Set [ 〈type〉 ]
| Tuple [ 〈type〉 ( , 〈type〉 )* ]
| Record [ 〈ident〉 : 〈type〉 ( , 〈ident〉 : 〈type〉 )* ]
| Array [ 〈exp〉 , 〈type〉 ]
| Map [ 〈type〉 , 〈type〉 ]
| ( ) | Unit
| 〈ident〉

Description Every constant or variable has a type that constrains the values to which the con-
stant can be bound respectively that the variable can hold. Types may depend on the values of
certain integer-valued expressions which we subsequently call “constant expressions”. Constant
expressions may be of arbitrary form (i.e., they may contain arithmetic operations and function
calls) but their values must depend only on constants that are declared on the top-level of a
specification (i.e., they must not depend on function parameters or variables/constants that are
locally defined in a function).

We have the following types:

• Bool denotes the type of the two values > (alternatively, true) and ⊥ (alternatively,
false).

We denote by the term “truth value” a value of this type. Expressions of this type are also
called “formulas”, functions with this result type are also called “predicates” or “theo-
rems” (if the predicate always returns >).

• Z[min,max] (alternatively, Int[min,max]) denotes the type of every integer number i
with min ≤ i ≤ max where min and max are constant expressions.
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In the following, we denote by the term “integer (number)” a value of such a type.

• N[max] (alternatively, Nat[max]) is a synonym for Z[0,max] where max ≥ 0 is a
constant expression.

In the following, we denote by the term “natural number” a value of such a type.

• Set[T] denotes the type of all sets whose elements have type T .

In the following, we denote by the term “set” a value of such a type.

• Tuple[T1,. . .,Tn] denotes the type of all tuples with n ≥ 1 components that have types
T1, . . . ,Tn; the components are numbered 1, . . . ,n.

In the following, we denote by the term “tuple” a value of such a type.

• Record[id1:T1,. . .,idn:Tn] denotes the type of all records with n ≥ 1 components that
have types T1, . . . ,Tn; the components are identified by names idn , . . . , idn .

In the following, we denote by the term “record” a value of such a type.

• Array[n,T] denotes the type of all arrays with n elements that have type T where n ≥ 0
is a constant expression; the elements are identified by indices 0, . . . ,n − 1.

In the following, we denote by the term “array” a value of such a type.

• Map[K,E] denotes the type of all values that map values of type K (the “key type”) to
values of type E (the “element type”); the elements are identified by the keys.

In the following, we denote by the term “map” a value of such a type.

• () (alternatively, Unit) denotes the type that has a single value () which we call “unit”.

• Identifier id denotes a type that has been defined on the top level of the specification by a
type or rectype definition; the later kind of definition introduces “recursive types” that
are described in the section on type declarations.

Pragmatics The type system is deliberately designed in such a way that every type (with eval-
uated constant expressions) has only finitely many values, which makes all formulas involving
variables of such types decidable.

The type system also ensures that every type has at least one value such that quantified for-
mulas over variables of an empty type are not trivial.
Array[n,T] is essentially a synonym for Map[N[n-1],T]. However, arrays and maps have

different runtime representations, which makes the use of arrays more efficient.
Type () may serve as the return type of procedures that produce output but do not return

meaningful result values.
Types are partially checked via static analysis by a type checker, partially by runtime asser-

tions during execution:
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• The static analysis checks that the value assigned to a variable has the same base type as
the variable and rejects a specification, if this is not the case. Thus e.g. a specification that
tries to assign a Bool value to a variable of type N[1] is rejected. However, a specification
is not rejected, if it assigns a value of type N[2] to a variable of type N[1], i.e., the static
analysis does not consider the values of the constant expressions in a type.

• Runtime assertions check that the value assigned to a variable is within the range deter-
mined by the constant expressions of a type. Thus e.g. the execution of a specification
that tries to assign the value 2 to a variable of type N[1] aborts with an error message.

B.5 Expressions

In this section, we are going to describe the domain

〈exp〉 ::= . . . | ( 〈exp〉 )

of expressions, i.e., syntactic phrases that denote values, including truth values (i.e., expressions
encompass both terms and formulas of classical logic). All possible values of an expression have
the same type, see Section B.4.

In the following grammar snippets, the various kinds of expressions are listed in the order of
decreasing binding power; as usual, an expression ( 〈exp〉 ) with parentheses may be used to
indicate the intended parsing structure.

B.5.1 Constants and Applications

Grammar

〈ident〉
〈ident〉 ( ( 〈exp〉 ( , 〈exp〉 )* )? )

Description An identifier id denotes the value to which the name id has been bound in the
current environment. This binding may arise from the definition of a global constant or theorem
(a constant whose value is a truth value), from the value assigned to a parameter of a function,
predicate, theorem, or procedure, from the definition of a local constant or variable in a pro-
cedure, from the definition of a local constant by a binder in an expression, or from the value
assigned to a variable by a quantifier.

An application id(e1,. . .,en) denotes the value of the application of the “parameterized en-
tity” denoted by id to the values of expressions e1, . . . ,en whose types must be those given to the
parameters of the entity. This parameterized entity may be a function, a predicate, a theorem, or
a procedure that has been previously declared on the top level of the specification.

B.5.2 Formulas

Grammar
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> | true
⊥ | false
( ¬ | ~ ) 〈exp〉
〈exp〉 ( ∧ | /\ ) 〈exp〉
〈exp〉 ( ∨ | \/ ) 〈exp〉
〈exp〉 (⇒ | => ) 〈exp〉
〈exp〉 (⇔ | <=> ) 〈exp〉
( ∀ | forall ) 〈qvar〉 . 〈exp〉
( ∃ | exists ) 〈qvar〉 . 〈exp〉

Description By a “formula” we mean every expression of type Bool, i.e., every expression
that denotes a truth value. Formulas can be constructed by the usual operators of predicate logic:

• The literal > (respectively true) denotes the truth value “true”; likewise the literal ⊥
(respectively false) denotes “false”.

• The logical connectives that combine formulas to bigger formulas are represented as fol-
lows: the unary operator ¬ (respectively ~) denotes logical negation, while the binary
operators ∧ (respectively /\), ∨ (respectively \/), ⇒ (respectively =>), ⇔ (respectively
<=>) denote logical conjunction, disjunction, implication, and equivalence, respectively.
The operators are listed in the order of decreasing binding power, i.e. a ∨ ¬b ∧ c is
parsed as a ∨ ((¬b) ∧ c).

• The logical quantifiers that bind a variable in a formula are represented as follows: the
quantifier ∀ respectively forall denotes universal quantification, the quantifier ∃ respec-
tively exists denotes existential quantification.

In addition, we have various atomic predicates which are listed in the subsequent sections;
by an “atomic predicate” we mean every operator that takes non-truth values as arguments and
returns a truth value as a result.

B.5.3 Equalities and Inequalities

Grammar

〈exp〉 = 〈exp〉
〈exp〉 ( , | ~= ) 〈exp〉
〈exp〉 < 〈exp〉
〈exp〉 ( ≤ | <= ) 〈exp〉
〈exp〉 > 〈exp〉
〈exp〉 ( ≥ | >= ) 〈exp〉

Description Two values of the same arbitrary (also compound) type may be compared by
application of the atomic predicates = denoting “equals” and (respectively ~=) denoting “not
equals”; the result of the comparison is of type Bool.

51



Furthermore, two integers, i.e., values of an integer type (not necessarily with the same type
bounds) may be compared by application of the atomic predicates < denoting “less than”, ≤
(respectively <=) denoting “less than or equal”, > denoting “greater than”, or ≥ (respectively >=)
denoting “greater than or equal”.

B.5.4 Integers

Grammar

〈decimal〉
〈exp〉 !
- 〈exp〉
〈exp〉 ( · | * ) 〈exp〉
〈exp〉 ( · | * ) .. ( · | * ) 〈exp〉
〈exp〉 ^ 〈exp〉
〈exp〉 / 〈exp〉
〈exp〉 % 〈exp〉
〈exp〉 - 〈exp〉
〈exp〉 + 〈exp〉
〈exp〉 + .. + 〈exp〉
(
∑

| Σ | sum ) 〈qvar〉 . 〈exp〉
(
∏

| Π | product ) 〈qvar〉 . 〈exp〉
min 〈qvar〉 . 〈exp〉
max 〈qvar〉 . 〈exp〉
# 〈qvar〉

Description The following kinds of expressions denote integers:

• A sequence d1 . . . dn of n ≥ 1 decimal digits denotes an integer in decimal representation.

• Application of the unary prefix operator - denotes arithmetic negation. Application of
the unary postfix operator ! denotes the computation of the factorial, i.e., n! denotes the
product

∏n
i=1 i (whose value is 1, if n < 1).

• Applications of the binary operators +, -, · (center dot, alternatively *), /, %, and ^ de-
note addition, subtraction, multiplication, truncated division, the remainder of truncated
division, and the exponentiation of two integers, respectively.

The sign of the remainder denoted by % is the sign of the dividend, i.e., of the first ar-
gument. The result of / respectively % is undefined (i.e., the computation of the value
aborts), if the divisor, i.e., the second argument, is 0. The result of ^ is undefined (i.e., the
computation of the value aborts), if the second argument is negative. The operators are
listed in above grammar in the order of decreasing binding power, i.e., -a+b·c is parsed
as (-a)+(b·c).

• The expression a + .. + b denotes the sum
∑b

i=a i; its value is 0, if a > b. Likewise,
a · .. · b (alternatively, a * .. * b) denotes the product

∏b
i=a i; its value is 1, if a > b.
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• The numerical quantifier
∑

(alternatively Σ, i.e., capital Sigma, or sum) computes the
sum of the values of the quantified expression while the quantifier

∏
(alternatively Π, i.e.,

capital Pi, or product) computes the product of these values; the result is 0 respectively 1,
if the quantification does not yield any value. The quantifiers min and max compute the
smallest respectively the largest value; the result is undefined (i.e., the computation of the
value aborts), if the quantification does not yield any value. The quantifier # computes the
number of values that the quantification yields.

B.5.5 Sets

Grammar

( ∅ | { } ) [ 〈type〉 ]
(
⋂

| Intersect ) 〈exp〉
(
⋃

| Union ) 〈exp〉
{ 〈exp〉 ( , 〈exp〉 )* }
〈exp〉 .. 〈exp〉
| 〈exp〉 |
〈exp〉 ( ∩ | intersect ) 〈exp〉
〈exp〉 ( ∪ | union ) 〈exp〉
〈exp〉 \ 〈exp〉
{ 〈exp〉 | 〈qvar〉 }
〈exp〉 ( ( × | times ) 〈exp〉 )+
Set ( 〈exp〉 )
Set ( 〈exp〉 , 〈exp〉 )
Set ( 〈exp〉 , 〈exp〉 , 〈exp〉 )
〈exp〉 ( ∈ | isin ) 〈exp〉
〈exp〉 ( ⊆ | subseteq ) 〈exp〉

Description We have the following operations on sets:

• The literal ∅[T] (alternatively {}[T]) denotes the empty set of type Set[T].

• {e1,. . .,en} denotes the set that consists of the values e1, . . . ,en (which must have all the
same type).

• a..b denotes the set of all integers i with a ≤ i ≤ b. If a > b, this set is empty.

• |S| denotes the cardinality (the number of elements) contained in set S.

• The operator ∩ (alternatively intersect) denotes the intersection of two sets of the same
type, the operator ∪ (alternatively union) denotes their union, the operator \ denotes
their difference (which consists of all elements of the first set that are not contained in
the second one). The operators are listed in the order of decreasing binding power, thus
S1 ∪ S2 ∩ S3 is parsed as S1 ∪ (S2 ∩ S3).
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•
⋂

S (alternatively Intersect S) denotes the intersection of all sets contained in set S
while

⋃
S (alternatively Union S) denotes their union.

• The set builder { e | q } denotes the set of all values of e that result from the values of the
quantified variables in q.

• The Cartesian product S1×. . .×Sn (alternatively, S1 times . . .times Sn) denotes the set
of all tuples whose component i is an element of set Si . If this type serves as the component
type of another Cartesian product, it has to be written with parentheses as (S1×. . .×Sn).

• The power set Set(S) denotes the set of all subsets of set S. Set(S,n) denotes the set
of all subsets of S whose cardinality (number of elements) is n. Set(S,a,b) denotes the
set of all subsets of S whose cardinality n satisfies a ≤ n ≤ b.

• The atomic formula e∈S (alternatively e isin S) is true if e is an element of set S (where
the type of e must be the element type of the type of S). S1⊆S2 (alternatively S1 subseteq
S2) is true if every element of set S1 is an element of set S2 (where S1 and S2 must have
the same types).

Pragmatics The computations of Set(S,n) respectively Set(S,a,b) are more memory-
efficient than the computation of the same sets by the expressions

{s | s∈Set(S) with |s|=n}
{s | s∈Set(S) with a≤|s| ∧ |s|≤b}

because in the later all elements of Set(S) are simultaneously stored in memory, which is not
in the case for the computation of the former expressions.

B.5.6 Tuples

Grammar

( 〈 | << ) 〈exp〉 ( ’,’ 〈exp〉 )* ( 〉 | >> )
〈exp〉 . 〈decimal〉
〈exp〉 with . 〈decimal〉 = 〈exp〉

Description We have the following operations on tuples:

• 〈e1,. . .,en〉 (alternatively, <<e1,. . .,en>>) denotes a tuple of type Tuple[T1,. . .,Tn]
whose components are the values e1, . . . ,en of types T1, . . . ,Tn , respectively.

• t.d denotes the value that tuple t holds in the component with number d. Components are
numbered from 1, i.e., if t holds n components, these are denoted by t.1,. . . ,t.n.

• t with .d = e denotes the tuple that is identical to t except that it holds in the component
with number d value e (whose type must be the corresponding component type of t).
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B.5.7 Records

Grammar

( 〈 | << ) 〈ident〉 : 〈exp〉 ( ’,’ 〈ident〉 : 〈exp〉 )* ( 〉 | >> )
〈exp〉 . 〈ident〉
〈exp〉 with . 〈ident〉 = 〈exp〉

Description We have the following operations on records:

• 〈id1:e1,. . .,idn:en〉 (alternatively, <<id1:e1,. . .,idn:en>>) denotes a record of type
Record[id1:T1,. . .,idn:Tn]whose components are values e1, . . . ,en of types T1, . . . ,Tn ,
respectively.

• r.id denotes the value that record r holds in the component denoted by identifier id.

• r with .id = e denotes the record that is identical to r except that it holds in the compo-
nent with identifier id value e (whose type is the corresponding component type of r).

B.5.8 Arrays

Grammar

Array [ 〈exp〉 , 〈type〉 ] ( exp )
〈exp〉 [ 〈exp〉 ]
〈exp〉 with [ 〈exp〉 ] = 〈exp〉

Description We have the following operations on arrays:

• Array[n,T](e) denotes an array of type Array[n,T] (i.e., an array with n elements of
type T) that holds at all indices the value e (whose type must be T).

• a[i] denotes the element that array a holds at index i. Indices are counted from 0, i.e., if a
has length n, its elements are a[0], . . . ,a[n−1]. The value at any other index is undefined,
i.e., the computation of such a value aborts.

• a with [i] = e denotes the array that is identical to array a except that it holds at index i
value e (whose type must be the element type of a). The resulting array is undefined, if i
is not a valid index in a, i.e., the computation of such an array aborts.

B.5.9 Maps

Grammar

Map [ 〈type〉 , 〈type〉 ] ( exp )
〈exp〉 [ 〈exp〉 ]
〈exp〉 with [ 〈exp〉 ] = 〈exp〉
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Description We have the following operations on maps:

• Map[K,E](e) denotes a map of type Map[K ,E] (i.e., whose keys are of type K and
whose elements are of type E) that maps all keys to the value e (whose type must be E).

• m[k] denotes the element to which map m maps key k (whose type is the key type of m).

• m with [k] = e denotes the map that is identical to m except that it maps key k (whose
type must be the key type of m) to value e (whose type must be the element type of m).

Pragmatics RISCAL implements maps by hash tables that map hash values of the keys to the
corresponding elements which in average gives constant time access similar to arrays (but with
a higher overhead factor).

B.5.10 Recursive Values

Grammar

〈ident〉 ! 〈ident〉
〈ident〉 ! 〈ident〉 ( 〈exp〉 ( , 〈exp〉 )* )

Description A recursive value is a value whose type T has been introduced by a definition
rectype(n) T = . . . where constant expression n ≥ 0 denotes an upper bound on the number
of nested constructor applications. We have the following operations on recursive values:

• T!id denotes a constant id of the recursive type T whose definition must introduce such a
constant.

• T!id(e1,. . .,en) denotes the application of a constructor id of recursive type T . The
definition of this type must introduce such a constructor whose parameter types are the
types of e1, . . . ,en . The result of the application is undefined (i.e, the computation aborts)
if some argument vi has been already constructed by n nested applications of some con-
structor of T (where n is the bound introduced in the definition of T).

B.5.11 Units

Grammar

( )

Description The literal () denotes the only value of type () (i.e., type Unit).

Pragmatics The value () is returned by every procedure with result type () (also implicitly,
i.e., if the procedure omits the return statement).
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B.5.12 Conditionals

Grammar

if 〈exp〉 then 〈exp〉 else 〈exp〉

match 〈exp〉 with { ( 〈pattern〉 -> 〈exp〉 ; )+ }
〈pattern〉 ::= 〈ident〉 | 〈ident〉 ( 〈param〉 ( , 〈param〉 )* ) | _

Description

• The conditional expression if b then t else f first evaluates the formula b; if this
yields the value “true”, the result is the value of t, otherwise it is the value of f (both
t and f must have the same type).

• The matching expression match e with { p1->e1; . . .; pn->en;} attempts to “match”
the value of e (which must be of some recursive type T) to the patterns p1, . . . ,pn . Each
pattern can be either the name id of a constant of type T or an application id(p1,. . .,pn)
of a constructor id of type T or the “wildcard” pattern _. A match succeeds if the value of
e is the denoted constant or the result of an application of the denoted constructor or if the
pattern is the wildcard _.

The matches are attempted in the stated order of patterns; the first successful match of the
value of e to some pattern pi determines the result of the whole expression as the value of
the expression ei . If the match succeeds for a pattern pi = id(p1,. . .,pn), the parameters
p1, . . . ,pn receive the arguments to which constructor id was applied to yield the value
of e; these parameters can be consequently referenced in ei . If there is no successful
match, the result is undefined (i.e. the computation aborts).

B.5.13 Binders

Grammar

let 〈ident〉 = 〈exp〉 ( , 〈ident〉 = 〈exp〉 )* in 〈exp〉

Description The binder expression let id1=e1,. . .,idn=en in e binds in turn each constant
idi to the value of ei (each subsequent binding may already refer to the previously introduced
ones) and then returns the value of e when evaluated in this environment.

B.5.14 Choices

Grammar

choose 〈qvar〉
choose 〈qvar〉 in 〈exp〉
choose 〈qvar〉 in 〈exp〉 else 〈exp〉
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Description The values of these expressions can be chosen from a finite set of possibilities.
If RISCAL is executed in “deterministic” mode, an arbitrary value is chosen; if RISCAL is
executed in “nondeterministic” mode, all values are chosen in turn (resulting in multiple com-
putation branches that are executed in turn).

• choose q chooses a value that has been assigned to the quantified variable in q (which
must introduce only one variable). The result is undefined, if no choice is possible. In
deterministic execution, if no choice is possible, the computation is aborted.

• choose q in e chooses a value of expression e when evaluated for some values that have
been assigned to the quantified variables in q (which may introduce multiple variables).
The result is undefined, if no choice is possible. In deterministic execution, if no choice is
possible, the computation is aborted.

• choose q in e1 else e2 either chooses a value of e1 when evaluated for some values
that have been assigned to the quantified variables in q (which may introduce multiple
variables) or it chooses the value of e2 (which must not refer to the quantified variables).
Thus there is always a choice possible such that deterministic execution is never aborted.

Pragmatics The expression choose x:T is equivalent to choose x:T in x. While the other
variants of choice are more general, it has been introduced due to its prominence in classical
logic (Hilbert’s ε-operator). The variant choose q in e1 else e2 has been introduced since it
allows to simplify the typical pattern where first the existence of a choice is checked, then, if
such a choice exists, it is performed, and, if not, another value is taken.

If a choice is performed in deterministic mode, RISCAL always chooses the same value (i.e.,
it does not perform a random choice).

B.5.15 Miscellaneous

Grammar

assert 〈exp〉 in 〈exp〉
print ( 〈string〉 , )? 〈exp〉
check 〈ident〉 ( with 〈exp〉 )?

Description We are now going to describe those expressions that do not fit the previously
listed categories:

• The assertion expression assert b in e first evaluates formula b; if the result is “false”,
the value of the expression is undefined (i.e., the computation aborts). Otherwise, its value
is the value of e.

• The print expression print e prints the value of e and returns it as a result. An expression
like print ". . .{1}. . . ", e prints this value in a context defined by the given string. This
string is printed literally, except that every occurrence of the token {1} is replaced by the
value of e.
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• The formula check f applies the function (predicate, theorem, procedure) f to all values
of its parameter domain; its result is “true” if none of the executions resulted in an error,
and “false”, otherwise. The formula check f with S applies f to all values of S. If f
has one parameter one parameter of type T , S must have type Set[S]. If f has multiple
parameters of types T1, . . . ,Tn , S must have type Set[T1×. . .×Tn].

Pragmatics The assert and print expressions are convenient for debugging a specification.
The check expression allows to write model checking scripts whose control flow is guarded by
the results of the checks.

B.6 Quantified Variables

Grammar

〈qvar〉 ::= 〈qvcore〉 ( , 〈qvcore〉 )* ( with 〈exp〉 )?

〈qvcore〉 ::= 〈ident〉 : 〈type〉 | 〈ident〉 ( ∈ | in ) 〈exp〉

Description

• A phrase x:T with b introduces a quantified variable x of type T . If the optional formula b
is given (which may refer to x), b yields for the value of this variable “true”.

• A phrase x∈S with b (alternatively, x in S with b) introduces a quantified variable x
whose value is an element of set S; consequently, if S has type Set[T], then x has type T .
If the optional formula b is given (which may refer to x), b yields for the value of this
variable “true”.

• A phrase x1:T1,. . .,xn:Tn with b introduces n quantified variables x1, . . . , xn of types
T1, . . . ,Tn . If the optional formula b is given (which may refer to x1, . . . , xn), b yields for
the value of these variables “true”. Analogously, each clause xi:Ti can be replaced by a
clause xi∈Si where the value of variable xi must be an element of set Si .

Pragmatics The particular syntax of quantified variables makes them usable for multiple kinds
of quantified constructs, for instance in the set expression

{ x/y | x∈S, y:T with y , 0 ∧ x > y }

in the formula

∀x∈S, y:T with y , 0 ∧ x > y. x/y ≥ 1

or in the following choice statement:

choose x∈S, y:T with y , 0 ∧ x > y;
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B.7 ANTLR 4 Grammar

In the following, we list the grammar used by the parser generator ANTLR 4 [3] to generate the
lexical and syntactic analyzer for the language.

// ---------------------------------------------------------------------------
// RISCAL.g4
// RISC Algorithm Language ANTLR 4 Grammar
//
// Author: Wolfgang Schreiner <Wolfgang.Schreiner@risc.jku.at>
// Copyright (C) 2016-, Research Institute for Symbolic Computation (RISC)
// Johannes Kepler University, Linz, Austria, http://www.risc.jku.at
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
// ----------------------------------------------------------------------------

grammar RISCAL;

options
{
language=Java;

}

@header
{
package riscal.parser;

}
@members {boolean cartesian = true;}

// ---------------------------------------------------------------------------
// modules, declarations, commands
// ---------------------------------------------------------------------------

specification: ( declaration )* EOF ;

declaration:
// declarations (value externally defined, others forward defined)
’val’ ident ’:’ ( ’Nat’ | ’N’ ) EOS #ValueDeclaration

| multiple ’fun’ ident ’(’ ( param ( ’,’ param)* )? ’)’ ’:’ type EOS #FunctionDeclaration
| multiple ’pred’ ident ’(’ ( param ( ’,’ param)* )? ’)’ EOS #PredicateDeclaration
| multiple ’proc’ ident ’(’ ( param ( ’,’ param)* )? ’)’ ’:’ type #ProcedureDeclaration

// definitions
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| ’type’ ident ’=’ type EOS #TypeDefinition
| ’rectype’ ’(’ exp ’)’ ritem ( ’and’ ritem)* EOS #RecTypeDefinition
| ’enumtype’ ritem EOS #EnumTypeDefinition
| ’val’ ident ( ’:’ type )? ’=’ exp EOS #ValueDefinition
| ’pred’ ident ( ’⇔’ | ’<=>’ ) exp EOS #PredicateValueDefinition
| ’theorem’ ident ( ’⇔’ | ’<=>’ ) exp EOS #TheoremDefinition
| multiple ’fun’ ident ’(’ ( param ( ’,’ param)* )? ’)’ ’:’ type
( funspec )* ’=’ exp EOS #FunctionDefinition

| multiple ’pred’ ident ’(’ ( param ( ’,’ param)* )? ’)’
( funspec )* ( ’⇔’ | ’<=>’ ) exp EOS #PredicateDefinition

| multiple ’proc’ ident ’(’ ( param ( ’,’ param)* )? ’)’ ’:’ type
( funspec )* ’{’ ( command )* ( ’return’ exp EOS )? ’}’ #ProcedureDefinition

| multiple ’theorem’ ident ’(’ ( param ( ’,’ param)* )? ’)’
( funspec )* ( ’⇔’ | ’<=>’ ) exp EOS #TheoremParamDefinition

;

funspec :
’requires’ exp EOS #RequiresSpec

| ’ensures’ exp EOS #EnsuresSpec
| ’decreases’ exp ( ’,’ exp)* EOS #DecreasesSpec
;

// commands terminated by a semicolon
scommand:

#EmptyCommand
| ident ( sel )* ( ’:=’ | ’:=’ | ’=’ ) exp #AssignmentCommand
| ’choose’ qvar #ChooseCommand
| ’do’ ( loopspec )* command ’while’ exp #DoWhileCommand
| ’var’ ident ’:’ type ( ( ’:=’ | ’:=’ | ’=’ ) exp )? #VarCommand
| ’val’ ident ( ’:’ type )? ( ’:=’ | ’:=’ | ’=’ ) exp #ValCommand
| ’assert’ exp #AssertCommand
| ’print’ ( STRING ’,’ )? exp ( ’,’ exp)* #PrintCommand
| ’print’ STRING #Print2Command
| ’check’ ident ( ’with’ exp )? #CheckCommand
| exp #ExpCommand
;

command:
scommand EOS #SemicolonCommand

| ’choose’ qvar ’then’ command ’else’ command #ChooseElseCommand
| ’if’ exp ’then’ command #IfThenCommand
| ’if’ exp ’then’ command ’else’ command #IfThenElseCommand
| ’match’ exp ’with’ ’{’ ( pcommand )+ ’}’ #MatchCommand
| ’while’ exp ’do’ ( loopspec )* command #WhileCommand
| ’for’ scommand EOS exp EOS scommand ’do’ ( loopspec )* command #ForCommand
| ’for’ qvar ’do’ ( loopspec )* command #ForInCommand
| ’choose’ qvar ’do’ ( loopspec )* command #ChooseDoCommand
| ’{’ ( command )* ’}’ #CommandSequence
;

loopspec :
’invariant’ exp EOS #InvariantLoopSpec

| ’decreases’ exp ( ’,’ exp)* EOS #DecreasesLoopSpec
;
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// ---------------------------------------------------------------------------
// expressions, types
// ---------------------------------------------------------------------------

exp :
// literals
’(’ ’)’ #UnitExp

| ( ’>’ | ’true’ ) #TrueExp
| ( ’⊥’ | ’false’ ) #FalseExp
| decimal #IntLiteralExp
| ( ’∅’ | ’{’ ’}’ ) ’[’ type ’]’ #EmptySetExp

// identifier-like
| ident ’!’ ident #RecIdentifierExp
| ident ’!’ ident ’(’ exp ( ’,’ exp)* ’)’ #RecApplicationExp
| ident #IdentifierExp
| ident ’(’ ( exp ( ’,’ exp)* )? ’)’ #ApplicationExp
| ’Array’ ’[’ exp ’,’ type ’]’ ’(’ exp ’)’ #ArrayBuilderExp
| ’Map’ ’[’ type ’,’ type ’]’ ’(’ exp ’)’ #MapBuilderExp
| ’Set’ ’(’ exp ’)’ #PowerSetExp
| ’Set’ ’(’ exp ’,’ exp ’)’ #PowerSet1Exp
| ’Set’ ’(’ exp ’,’ exp ’,’ exp ’)’ #PowerSet2Exp

// selections
| exp ’[’ exp ’]’ #ArraySelectionExp
| exp ’.’ decimal #TupleSelectionExp
| exp ’.’ ident #RecordSelectionExp

// postfix-term-like
| exp ’!’ #FactorialExp

// prefix-term-like
| ’-’ exp #NegationExp
| (’

⋂
’ | ’Intersect’) exp #BigIntersectExp

| (’
⋃
’ | ’Union’) exp #BigUnionExp

// infix-term-like
| exp ’^’ exp #PowerExp
| exp ( ’*’ | ’·’ ) exp #TimesExp
| exp ( ’*’ | ’·’ ) ’..’ ( ’*’ | ’·’ ) exp #TimesExpMult
| exp ’/’ exp #DividesExp
| exp ’%’ exp #RemainderExp
| exp ’-’ exp #MinusExp
| exp ’+’ exp #PlusExp
| exp ’+’ ’..’ ’+’ exp #PlusExpMult
| ’{’ exp ( ’,’ exp)* ’}’ #EnumeratedSetExp
| exp ’..’ exp #IntervalExp
| ( ’〈’ | ’〈’ | ’〈’ | ’<<’ ) exp ( ’,’ exp )* ( ’〉’ | ’〉’ | ’〉’ | ’>>’ ) #TupleExp
| ( ’〈’ | ’〈’ | ’〈’ | ’<<’ ) eident ( ’,’ eident )* ( ’〉’ | ’〉’ | ’〉’ | ’>>’ ) #RecordExp
| ’|’ exp ’|’ #SetSizeExp
| exp ( ’∩’ | ’intersect’) exp #IntersectExp
| exp ( ’∪’ | ’union’ ) exp #UnionExp
| exp ’\\’ exp #WithoutExp
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// n-ary infix-term-like (hack allows non-associative parsing without parentheses)
| ’(’ exp ( ( ’×’ | ’times’ ) exp )+ ’)’ #CartesianExp
| exp ( {cartesian}? ( ’×’ | ’times’ ) {cartesian=false;} exp {cartesian=true;} )+ #CartesianExp

// term-quantifier like
| ’#’ qvar #NumberExp
| ’{’ exp ’|’ qvar ’}’ #SetBuilderExp
| ’choose’ qvar #ChooseExp
| ( ’

∑
’ | ’Σ’ | ’sum’ ) qvar ’.’ exp #SumExp

| ( ’
∏
’ | ’Π’ | ’product’ ) qvar ’.’ exp #ProductExp

| ’min’ qvar ’.’ exp #MinExp
| ’max’ qvar ’.’ exp #MaxExp

// updates
| exp ’with’ ’[’ exp ’]’ ’=’ exp #ArrayUpdateExp
| exp ’with’ ’.’ decimal ’=’ exp #TupleUpdateExp
| exp ’with’ ’.’ ident ’=’ exp #RecordUpdateExp

// relations
| exp ’=’ exp #EqualsExp
| exp ( ’,’ | ’~=’ ) exp #NotEqualsExp
| exp ’<’ exp #LessExp
| exp ( ’≤’ | ’<=’ ) exp #LessEqualExp
| exp ’>’ exp #GreaterExp
| exp ( ’≥’ | ’>=’ ) exp #GreaterEqualExp
| exp ( ’∈’ | ’isin’ ) exp #InSetExp
| exp ( ’⊆’ | ’subseteq’ ) exp #SubsetExp

// propositions
| ( ’¬’ | ’~’ ) exp #NotExp
| exp ( ’∧’ | ’/\\’ ) exp #AndExp
| exp ( ’∨’ | ’\\/’ ) exp #OrExp
| exp ( ’⇒’ | ’=>’ ) exp #ImpliesExp
| exp ( ’⇔’ | ’<=>’ ) exp #EquivExp

// conditionals
| ’if’ exp ’then’ exp ’else’ exp #IfThenElseExp
| ’match’ exp ’with’ ’{’ ( pexp ’;’ )+ ’}’ #MatchExp

// quantified formulas
| ( ’∀’ | ’forall’ ) qvar ’.’ exp #ForallExp
| ( ’∃’ | ’exists’ ) qvar ’.’ exp #ExistsExp

// binders
| ’let’ binder ( ’,’ binder )* ’in’ exp #LetExp
| ’choose’ qvar ’in’ exp #ChooseInExp
| ’choose’ qvar ’in’ exp ’else’ exp #ChooseInElseExp

// assertions
| ’assert’ exp ’in’ exp #AssertExp

// print expression
| ’print’ ( STRING ’,’ )? exp #PrintExp
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// check operation
| ’check’ ident ( ’with’ exp )? #CheckExp

// parenthesized expressions
| ’(’ exp ’)’ #ParenthesizedExp
;

// types
type :
( ’Unit’ | ’(’ ’)’ ) #UnitType

| ’Bool’ #BoolType
| ( ’Int’ | ’Z’ ) ’[’ exp ’,’ exp ’]’ #IntType
| ’Map’ ’[’ type ’,’ type ’]’ #MapType
| ’Tuple’ ’[’ type ( ’,’ type)* ’]’ #TupleType
| ’Record’ ’[’ param ( ’,’ param)* ’]’ #RecordType
| ( ’Nat’ | ’N’ ) ’[’ exp ’]’ #NatType
| ’Set’ ’[’ type ’]’ #SetType
| ’Array’ ’[’ exp ’,’ type ’]’ #ArrayType
| ident #IdentifierType
;

// ---------------------------------------------------------------------------
// auxiliaries
// ---------------------------------------------------------------------------

qvar :
qvcore ( ’,’ qvcore )* ( ’with’ exp )? #QuantifiedVariable

;

qvcore :
ident ’:’ type #IdentifierTypeQuantifiedVar

| ident ( ’∈’ | ’in’ ) exp #IdentifierSetQuantifiedVar
;

binder : ident ’=’ exp ;

pcommand :
ident’->’ command #IdentifierPatternCommand

| ident’(’ param ( ’,’ param)* ’)’ ’->’ command #ApplicationPatternCommand
| ’_’ ’->’ command #DefaultPatternCommand
;

pexp :
ident’->’ exp #IdentifierPatternExp

| ident’(’ param ( ’,’ param)* ’)’ ’->’ exp #ApplicationPatternExp
| ’_’ ’->’ exp #DefaultPatternExp
;

param : ident ’:’ type ;

ritem: ident ’=’ rident ( ’|’ rident)* ;

eident : ident ’:’ exp ;
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rident :
ident #RecIdentifier

| ident ’(’ type ( ’,’ type)* ’)’ #RecApplication
;

sel :
’[’ exp ’]’ #MapSelector

| ’.’ decimal #TupleSelector
| ’.’ ident #RecordSelector
;

multiple :
#IsNotMultiple

| ’multiple’ #IsMultiple
;

ident : IDENT ;
decimal : DECIMAL ;

// ---------------------------------------------------------------------------
// lexical rules
// ---------------------------------------------------------------------------

// reserve leading underscore for internal identifiers
IDENT : [a-zA-Z][a-zA-Z_0-9]* ;
DECIMAL : [0-9]+ ;
EOS : ’;’ ;

// format string literals
STRING : ’"’ (ESC|.)*? ’"’ ;
fragment ESC : ’\\"’ | ’\\n’ | ’\\%’ | ’\\\\’;

WHITESPACE : [ \t\r\n\f]+ -> skip ;
LINECOMMENT : ’//’ .*? ’\r’? (’\n’ | EOF) -> skip ;
COMMENT : ’/*’ .*? ’*/’ -> skip ;

// matches any other character
ERROR : . ;

// ---------------------------------------------------------------------------
// end of file
// ---------------------------------------------------------------------------

C Example Specifications

In the following, we list the example specifications used in the tutorial.

C.1 Euclidean Algorithm
// ----------------------------------------------------------------------------
// Computing the greatest common divisor by the Euclidean Algorithm
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// ----------------------------------------------------------------------------

val N: N;
type nat = N[N];

pred divides(m:nat,n:nat) ⇔ ∃p:nat. m·p = n;

fun gcd(m:nat,n:nat): nat
requires m , 0 ∨ n , 0;

= choose result:nat with
divides(result,m) ∧ divides(result,n) ∧
¬∃r:nat. divides(r,m) ∧ divides(r,n) ∧ r > result;

val g:nat = gcd(N,N-1);

theorem gcd0(m:nat) ⇔ m,0 ⇒ gcd(m,0) = m;
theorem gcd1(m:nat,n:nat) ⇔ m , 0 ∨ n , 0 ⇒ gcd(m,n) = gcd(n,m);
theorem gcd2(m:nat,n:nat) ⇔ 1 ≤ n ∧ n ≤ m ⇒ gcd(m,n) = gcd(m%n,n);

proc gcdp(m:nat,n:nat): nat
requires m,0 ∨ n,0;
ensures result = gcd(m,n);

{
var a:nat := m;
var b:nat := n;
while a > 0 ∧ b > 0 do
invariant gcd(a,b) = gcd(old_a,old_b);
decreases a+b;

{
if a > b then
a := a%b;

else
b := b%a;

}
return if a = 0 then b else a;

}

proc main(): ()
{
choose m:nat, n:nat with m , 0 ∨ n , 0;
print m,n,gcdp(m,n);

}

C.2 Insertion Sort
// ----------------------------------------------------------------------------
// Sorting arrays by the Insertion Sort Algorithm
// ----------------------------------------------------------------------------

val N:Nat;
val M:Nat;
type nat = Nat[M];
type array = Array[N,nat];
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type index = Nat[N-1];

proc sort(a:array): array
ensures ∀i:nat. i < N-1 => result[i] ≤ result[i+1];
ensures ∃p:Array[N,index].

(∀i:index,j:index. i , j ⇒ p[i] , p[j]) ∧
(∀i:index. a[i] = result[p[i]]);

{
var b:array = a;
for var i:Nat[N]:=1; i<N; i:=i+1 do
decreases N-i;

{
var x:nat := b[i];
var j:Int[-1,N] := i-1;
while j ≥ 0 ∧ b[j] > x do
decreases j+1;

{
b[j+1] := b[j];
j := j-1;

}
b[j+1] := x;

}
return b;

}

proc main(): Unit
{
choose a: array;
print a, sort(a);

}

C.3 DPLL Algorithm
// ----------------------------------------------------------------------------
// SAT solving by the DPLL Algorithm
// ----------------------------------------------------------------------------

// the number of literals
val n: N; // e.g. 3;

// the raw types
type Literal = Z[-n,n];
type Clause = Set[Literal];
type Formula = Set[Clause];
type Valuation = Set[Literal];

// a consistency condition
pred consistent(l:Literal,c:Clause) ⇔ ¬(l∈c ∧ -l∈c);

// the type restrictions
pred literal(l:Literal) ⇔ l,0;
pred clause(c:Clause) ⇔ ∀l∈c. literal(l) ∧ consistent(l,c);
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pred formula(f:Formula) ⇔ ∀c∈f. clause(c);
pred valuation(v:Valuation) ⇔ clause(v);

// the satisfaction relation
pred satisfies(v:Valuation, l:Literal) ⇔ l∈v;
pred satisfies(v:Valuation, c:Clause) ⇔ ∃l∈c. satisfies(v, l);
pred satisfies(v:Valuation, f:Formula) ⇔ ∀c∈f. satisfies(v,c);

// the satisfiability and the validity of a relation
pred satisfiable(f:Formula) ⇔
∃v:Valuation. valuation(v) ∧ satisfies(v,f);

pred valid(f:Formula) ⇔
∀v:Valuation. valuation(v) ⇒ satisfies(v,f);

// the negation of a formula
fun not(f: Formula):Formula =
{ c | c:Clause with clause(c) ∧ ∀d∈f. ∃l∈d. -l∈c };

theorem notFormula(f:Formula)
requires formula(f);

⇔ formula(not(f));
theorem notValid(f:Formula)
requires formula(f);

⇔ valid(f) ⇔ ¬satisfiable(not(f));

// the literals of a formula
fun literals(f:Formula):Set[Literal] =
{l | l:Literal with ∃c∈f. l∈c};

// the result of setting a literal l in formula f to true
fun substitute(f:Formula,l:Literal):Formula =
{c\{-l} | c∈f with ¬(l∈c)};

// the recursive DPLL algorithm (without optimizations)
multiple pred DPLL(f:Formula)
requires formula(f);
ensures result ⇔ satisfiable(f);
decreases |literals(f)|;

⇔

if f = ∅[Clause] then
>

else if ∅[Literal] ∈ f then
⊥

else
choose l∈literals(f) in
DPLL(substitute(f,l)) ∨ DPLL(substitute(f,-l));

// the variables in a formula
fun vars(f:Formula): Set[N[n]] =
{ if l>0 then l else -l | l ∈ literals(f) };

// the maximum number of nodes in the search tree
val m = 2^(n+1)-1;

// the number of nodes in the search tree for f
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fun size(f:Formula): N[m] = 2^(|vars(f)|+1)-1;

// the number of nodes in the search tree for the formulas in stack[0..i-1]
fun size(stack:Array[n+1,Formula], i:N[n+1]): N[m] =∑
k:N[n] with k<i. size(stack[k]);

// the iterative DPLL algorithm (without optimizations)
proc DPLL2(f:Formula): Bool
requires formula(f);
ensures result ⇔ satisfiable(f);

{
var satisfiable: Bool := ⊥;
var stack: Array[n+1,Formula] := Array[n+1,Formula](∅[Clause]);
var number: N[n+1] := 0;
stack[number] := f;
number := number+1;
while ¬satisfiable ∧ number>0 do
invariant 0 ≤ number ∧ number ≤ n+1;
invariant satisfiable(f) ⇔ satisfiable ∨
∃i:N[n+1] with i<number. satisfiable(stack[i]);

decreases if satisfiable then 0 else size(stack, number);
{
number := number-1;
var g:Formula := stack[number];
if g = ∅[Clause] then
satisfiable := >;

else if ¬∅[Literal]∈g then
{
choose l∈literals(g);
stack[number] := substitute(g,-l);
number := number+1;
stack[number] := substitute(g,l);
number := number+1;

}
}
return satisfiable;

}

proc main0(): ()
{
val f = {{1,2,3},{-1,2},{-2,3},{-3}};
val r = DPLL2(f);
print f,r;

}

// maximal sizes of clauses and formulas
val cn: N; // e.g. 2;
val fn: N; // e.g. 20;

// get set of formulas satisfying above restrictions
fun formulas(): Set[Formula] =
let
literals = { l | l:Literal with literal(l) },
clauses = { c | c ∈ Set(literals) with |c| ≤ cn ∧ clause(c) },
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formulas = { f | f ∈ Set(clauses) with |f| ≤ fn ∧ formula(f) }
in formulas;

proc main1(): ()
{
// apply check to a specific set of formulas
check DPLL with formulas();

}

proc main2(): ()
{
// apply non-determinism to checking
val formulas: Set[Formula] = formulas();
print "number: {1}", |formulas|;
choose f ∈ formulas;
val r = DPLL(f);
print f, r;

}

proc main3(): ()
{
// check formulas deterministically
val formulas: Set[Formula] = formulas();
print "number: {1}", |formulas|;
var i:N[2^20] := 0;
for f ∈ formulas do
{
val r = DPLL(f);
// print i, f, r;
if (i%100 = 0) then print i;
i := i+1;

}
}
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