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Abstract

The article presents an algorithm to compute a C[t]-module basis G for
a given subalgebra A over a polynomial ring R = C[x] with a Euclidean
domain C as the domain of coefficients and t a given element of A. The
reduction modulo G allows a subalgebra membership test. The algorithm
also works for more general rings R, in particular for a ring R ⊂ C((q))
with the property that f ∈ R is zero if and only if the order of f is positive.
As an application, we algorithmically derive an explicit identity (in terms
of quotients of Dedekind η-functions and Klein’s j-invariant) that shows
that p(11n + 6) is divisible by 11 for every natural number n where p(n)
denotes the number of partitions of n.

Keywords: partition identities, number theoretic algorithm, subalgebra basis

1 Introduction

Ramanujan [Ram21] discovered that

p(5n+ 4) ≡ 0 (mod 5) (1)

p(7n+ 5) ≡ 0 (mod 7) (2)

p(11n+ 6) ≡ 0 (mod 11) (3)

for all natural numbers n ∈ N where p(n) denotes the number of partitions of
n. In [Ram19] he lists the following identities from which (1) and (2) can be
concluded.

∞∑
n=0

p(5n+ 4)qn = 5

∞∏
k=1

(1− q5k)5

(1− qk)6
(4)

∞∑
n=0

p(7n+ 5)qn = 7

∞∏
k=1

(1− q7k)3

(1− qk)4
+ 49q

∞∏
k=1

(1− q7k)7

(1− qk)8
(5)
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A similar “simple” identity for (3) is not known, although Lehner [Leh43] gave
an identity in terms of ad hoc constructed series A and C.

q

∞∏
k =1

(1− q11k)

∞∑
n =0

p(11n+ 6)qn = 11(11AC2 − 112C + 2AC − 32C − 2)

Radu [Rad15] developed an algorithmic machinery based on modular func-
tions. He first computed generators M1, . . . ,M7 of the monoid of all quotients of
Dedekind η-functions of level 22 that only have poles at infinity. For more details
see [Rad15]. In terms of q-series, these generators are as follows.

M1 = q−5
∞∏
k=1

(1− qk)7(1− q11k)3

(1− q2k)3(1− q22k)7

M2 = q−5
∞∏
k=1

(1− q2k)8(1− q11k)4

(1− qk)4(1− q22k)8

M3 = q−6
∞∏
k=1

(1− q2k)6(1− q11k)6

(1− qk)2(1− q22k)10

M4 = q−5
∞∏
k=1

(1− q2k)(1− q11k)11

(1− qk)(1− q22k)11

M5 = q−7
∞∏
k=1

(1− q2k)4(1− q11k)8

(1− q22k)12

M6 = q−8
∞∏
k=1

(1− qk)2(1− q2k)2(1− q11k)10

(1− q22k)14

M7 = q−9
∞∏
k=1

(1− qk)4(1− q11k)12

(1− q22k)16

Note that each of these series lives in Z((q)). By his algorithms AB and MW,
Radu then computes a relation

(6)F = 11(98t4 + 1263t3 + 2877t2 + 1019t− 1997)

+ 11z1(17t3 + 490t2 + 54t− 871) + 11z2(t3 + 251t2 + 488t− 614)

where F is defined as on top of page 30 of [Rad15], i. e.,

F = q−14
∞∏
k=1

(1− qk)10(1− q2k)2(1− q11k)11

(1− q22k)22

∞∑
n=0

p(11n+ 6)qn (7)
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and t, z1, z2 are given by

t =
3

88
M1 +

1

11
M2 −

1

8
M4,

z1 = − 5

88
M1 +

2

11
M2 −

1

8
M4 − 3,

z2 =
1

44
M1 −

3

11
M2 +

5

4
M4.

Although equation (6) looks promising, its ingredients t, z1 and z2 are series that
seem to have 11 in the denominators of their coefficients. Radu then shows by
the “freshmen’s dream” trick that the series for t, z1, and z2 have indeed integer
coefficients.

In [PR16], Paule and Radu applied Radu’s algorithms with

t = q−5
∞∏
k=1

(1− qk)12

(1− q11k)12

f = t q

∞∏
k=1

(1− q11k)

∞∑
n=0

p(11n+ 6)qn

and computed a polynomial relation for the generating series of p(11n+ 6) that
witnesses divisibility by 11 directly.

(8)

f5 = 5 · 114 · f4 + 114 (251 · t− 2 · 5 · 114) f3

+ 113 (4093 · t2 + 2 · 3 · 5 · 115 · 31 · t+ 2 · 5 · 119) f2

+ 114 (3 · 41 · t3 − 22 · 3 · 113 · 1289 · t2 + 2 · 5 · 118 · 17 · t− 5 · 1112) f

+ 115 (t+ 114) · (t3 + 112 · 1321 · t2 − 3 · 7 · 117 · t+ 1111).

By the algorithm that we present in this article, we can compute relations (4),
(5), and additionally a relation

F = 112 · 3068M7 + 112(3M1 + 4236)M6 + 11(285M1 + 11 · 5972)M5

+
11

8
(M2

1 + 11 · 4497M1 + 112 · 3156)M4 + 11(1867M1 + 11 · 2476)M3

− 11

8
(M3

1 + 1011M2
1 + 11 · 6588M1 + 112 · 10880)

(9)

that does not require any additional postprocessing, since all q-series involved
in (9) already have integer coefficients and there does not appear a denominator
that is divisible by 11. In contrast to (8), identity (9) is linear in the generating
series for p(11n+ 6). Note that (9) does not contain M2.

Our achievement is based on the article [Rad15] by Radu. Since we actually
present a generic algorithm for the computation of a subalgebra basis and the
identity for p(11n + 6) can be seen as a consequence of the application of our
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algorithm to the concrete series given by Radu, we refer for all details concerning
the theory of modular functions involved to [Rad15].

After some notations and definitions in Section 2, we start in Section 3 with
the presentation of the subalgebra basis algorithm. This algorithm is similar to
what has already been given by Radu in [Rad15] or by Paule and Radu in [PR15].
However, there are two essential differences.

First, our algorithm works with coefficients in a Euclidean domain C instead
of the field Q of rational numbers. Although we initially demonstrate everything
for bases in the ring R = C[x], we show that the essential conditions posed on R
allow us to apply our algorithm also to rings different from C[x], in particular to
the subset of Laurent series that is used in [Rad15].

Second, we employ a special kind of reduction that can be seen as living some-
what in the middle between ordinary “rational” reduction (i. e., polynomials are
kept monic) and pseudo reduction (i. e., before reduction, the polynomial is mul-
tiplied by a certain factor to avoid the introduction of denominators). The main
idea of our restricted reduction is that we must avoid division and multiplication
by a prefactor. In fact, whenever there were an unwanted division or need for a
prefactor (for example, division by 11 for the Ramanujan-like identity), we rather
declare the element in question to be irreducible.

We turn Radu’s AB algorithm into a critical-pair/completion algorithm that
is quite similar to Buchberger’s algorithm, cf. [BW93]. However, instead of S-
polynomials, the critical pairs in our algorithm are products of polynomials and
certain special forms of S-polynomials.

In case C = Q, our restricted reduction is the usual “rational” reduction, so
that our algorithm produces essentially the same result as Radu’s AB algorithm.

In Section 4, we show that for the application to the p(11n+ 6) problem, we
can choose the Euclidean domain Z(11) (the ring of integers localized at the prime
11). With our restricted kind of reduction, it leads to a basis for the subalgebra
that is “bigger” than what would be obtained by Radu’s algorithm over Q. The
kind of basis and this restricted reduction then allows to compute relation (9).

In Section 5, we show another identity for the partition function of p(11n+ 6)
in terms of Klein’s j-invariant.

2 Definitions and Notations

Let N denote the natural numbers (including 0). Let C be a computable Euclidean
domain and let ϕ : C \ {0} → N \ {0} be a Euclidean size function (also known
as Euclidean degree or simply Euclidean function) on C. At the moment we
assume R = C[x]. We shall see later, that everything also works in a more
general context. Let R∗ = R \ {0}. For f =

∑r
k=0 ckx

k ∈ C[x], we denote by
in(f) = crx

r, lc(f) = cr, deg(f) = r the initial, the leading coefficient and the
degree of f . In particular, we define in(0) = 0, lc(0) = 0, deg(0) = −∞.
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Definition 2.1. Let <lex and v be two relation on N2 defined by

(n1, n2) <lex (n′1, n
′
2) ⇐⇒ n1 < n′1 ∨ (n1 = n′1 ∧ n2 < n′2)

(n1, n2) v (n′1, n
′
2) ⇐⇒ n1 ≤ n′1 ∧ n2 ≤ n′2,

for n1, n2, n
′
1, n
′
2 ∈ N. We denote by ≤lex the reflexive closure of <lex. Let

ψ : R∗ → N2 be defined by ψ(f) = (deg(f), ϕ(lc f)). Let d ∈ N \ {0}, n, n′ ∈ Z.
By n ≡d n′ we denote that n and n′ are congruent modulo d, i. e., that there
exists a ∈ Z such that n = n′ + ad. Let u, b ∈ R∗. We say that u is reducible by
b modulo d (denoted by b Ed u) if and only if

ψ(b) v ψ(u) ∧ deg u ≡d deg b.

In general, from b Ed u and u Ed b follows only ψ(b) = ψ(u), but neither
b = u nor in(b) = in(u).

Definition 2.2. For u, t, b ∈ R∗, u′ ∈ R, the relation u →t,b u
′ holds (in words:

u reduces in one step modulo t and b to u′) if and only if there exist c ∈ C and
a ∈ N such that u = ctab+ u′ and either u′ = 0 or ψ(u′) <lex ψ(u).

If B = {b1, . . . , br} ⊂ R∗, then u →t,B u′ holds (in words: u can be reduced
in one step modulo t and B to u′) if and only if there exists b ∈ B such that
u→t,b u

′.

Remark 2.3. Clearly, if u →t,b u
′, then b Ed u. Conversely, let us assume

b Ed u where d = deg t > 0. Then a = deg u−deg b
d ∈ N and ϕ(lc(b)) ≤ ϕ(lc(u)).

Furthermore, since C is a Euclidean domain, there exists c ∈ C such that lc(u) =
c lc(b) + r with either r = 0 or ϕ(r) < ϕ(lc(b)). Thus, if the operations in C are
computable, we can compute (a, c) ∈ N × C and u′ = u − ctab such that either
u′ = 0 or u′ 6= 0 and lc(u′) = r, i. e., ψ(u′) <lex ψ(u), in other words, we can
compute u′ with u→t,b u

′.
In general, Euclidean division does not necessarily yield unique c and r with

the above properties. Consider, for example, the Gaussian integers C = Z[i] with
ϕ(a + bi) = a2 + b2. Then 3 = (1 − i) · (1 + i) + 1 = (2 − i) · (1 + i) − i are two
different Euclidean division steps of 3 by 1 + i.

In order to make the reduction functional, we assume a computable function
red such that ψ(u− ctab) <lex ψ(u) for (a, c) = red(u, t, b) if u− ctab 6= 0.

Definition 2.4. For d ∈ N \ {0}, a set B ⊆ R∗ is called interreduced modulo d,
if for any b, b′ ∈ B, b 6= b′ neither b Ed b′ nor b′ Ed b holds.

Remark 2.5. Suppose that the set B ⊆ R∗ is interreduced modulo d. If C is a
field, then ϕ(c) = 1 for any c ∈ C \ {0}. It follows that for any u ∈ R∗ there is at
most one b ∈ B such that b Ed u.

In general, however, for u ∈ R∗ it is still possible that there exist b, b′ ∈ B,
with b 6= b′, b Ed u, and b′ Ed u. For example, consider C = Z, ϕ(z) = |z|. If
b, b′ ∈ B, b 6= b′ with deg b = d+ deg b′, ϕ(lc b) < ϕ(lc b′), and u ∈ R∗ is such that
deg u = deg b and ϕ(lcu) = ϕ(lc b′). To be more concrete, consider t = x2, i. e.,
d = 2 and u = 3x5, b = 3x3, b′ = 2x5. Then u = tb+ 0 = b′ + x5.
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To remove such ambiguity as described in Remark 2.5, we introduce a reduc-
tion relation where among possible multiple choices, the element is preferred that
has maximal degree in x.

Definition 2.6. Let t, u ∈ R∗, d = deg t > 0, B ⊂ R∗ be interreduced modulo
d, and let there exist b ∈ B with b Ed u. We denote by selectt,B(u) the element
b ∈ B such that deg b = max {deg b′ | b′ ∈ B ∧ b′ Ed u}.

We say that the relation u 7→t,B u′ holds if and only if u→t,b u
′ and u′ = u−

ctab for b = selectt,B(u) and (a, c) = red(u, t, b). By 7→∗t,B we denote the reflexive
and transitive closure of 7→t,B . By reducet,B(u), we denote the u′ ∈ R such that
u 7→∗t,B u′ and there does not exist b ∈ B with b Ed u′. If u′ = reducet,B(u), we
say u reduces modulo t and B to u′.

Remark 2.7. Under the assumption that B is finite, b Ed u is decidable algo-
rithmically and the function red from Remark 2.3 is computable, also selectt,B
and reducet,B are computable.

Remark 2.8. By keeping track of the individual reduction steps, it is clear that
if u′ = reducet,B(u), then for every b ∈ B there exists pb ∈ C[x] such that

u = u′ +
∑
b∈B

pb(t)b (10)

and ψ(u) = max<lex
({ψ(u′)}∪{ψ(pb(t)b) | b ∈ B, pb 6= 0}). In particular, we want

to emphasize that there is no summand s on the right-hand side of (10) with
ψ(u) <lex ψ(s).

3 The SubAlgebra Module Basis Algorithm: samba

In this section we present an algorithm that computes a C[t]-module basis for
a subalgebra of C[x] and prove its termination and correctness. The algorithm
samba is presented in a form that allows for relatively simple proofs.

Input: t, f1, . . . , fr ∈ R∗, deg t > 0, lc t = 1.
Output: B = {g0, g1, . . . , gs} ⊂ A = C[t, f1, . . . , fr] such that for f ∈ R holds
reducet,B(f) = 0 iff f ∈ A.

1 B := {1}
2 Bcrit := {f1, . . . , fr}
3 d := deg t
4 P := ∅
5 S := ∅
6 while Bcrit ∪ P ∪ S 6= ∅ do

7 u := “take one element from Bcrit ∪ P ∪ S and remove it from Bcrit, P , and S”
8 u′ := reducet,B(u)

9 if u′ 6= 0 then

10 Bcrit := Bcrit ∪ {b ∈ B |u′ Ed b}
11 B := (B \Bcrit) ∪ {u′}
12 P := {b1b2 | b1, b2 ∈ B \ {1}}
13 S := {tab | ∀a ∈ N, b ∈ B∃b′ ∈ B : deg(tab) = deg(b′)}
14 return B
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Theorem 3.1. Algorithm samba terminates.

Proof. Let U = (ui)i∈I ⊂ R∗ with I ⊆ N \ {0} be the sequence of elements
that are added to the set B in line 11 such that ui is added earlier than uj if
i < j. Note that then ¬(ui Ed uj), i. e., “later” elements are not reducible by
“earlier” elements. For each k, 0 ≤ k < d = deg t a subsequence of U is defined
by U [k] = (ui)i∈I[k] , I [k] ⊆ I consisting only of those elements u of U for which
deg u ≡d k and ¬(ui Ed uj) if i < j. U [k] corresponds to a sequence (ψ(ui))i∈I[k]

in N2 with ¬(ψ(ui) v ψ(uj)), which must be finite by Dickson’s Lemma, [BW93,
p. 163]. Taking the union of all those finite sets I [k], we conclude that there is an
index m such that I ⊆ {1, . . . ,m}. In other words, all the finitely many elements
from Bcrit ∪ P ∪ S reduce to zero in line 8 after the m-th iteration of the while
loop. Thus the algorithm terminates.

Note that when elements are removed from B in line 11, these elements are
“reducible”. More precisely, if ui is removed from B then there is some uj ∈ B
with i < j and uj Ed ui. Since the relation Ed is transitive, we can still conclude
by Dickson’s Lemma the finiteness of the sequence U (with all the “reducible”
elements removed).

Note that we do not simply require that f ∈ A can be expressed as a C[t]-
linear combination of elements of B, but rather our algorithm yields a basis by
which every element of A can be reduced to zero in the sense of our “restriced”
reduction. This is a slightly stronger condition. In fact, without the treatment
of the set S in the algorithm, reducet,B(f) = 0 can not be concluded for every
f ∈ A.

As a counterexample choose the Euclidean domain C = Z(3), i. e., rational
numbers with no denominator divisible by 3. Each c ∈ C \ {0} can be written as
3n ab with gcd(3, a) = gcd(3, b) = 1, n ∈ N, a, b ∈ Z. The Euclidean size function
ϕ is defined by ϕ(3n ab ) = n. Then take t = x2, f1 = 32x3, f2 = 3x7 − x3 and
apply the above algorithm without considering the set S. Neither f1 E2 f2 nor
f2 E2 f1 holds. Thus there are only the products f21 , f1f2, and f22 to consider.
All of those products have only even powers of x and thus reduce to 0 modulo
t. So we get {1, f1, f2} as the final basis although, x3 = t4f1 − (3t2 + 1)f2 and
x3 cannot be reduced modulo t and {1, f1, f2}. Therefore, the treatment of S is
essential.

We have split the proof of the correctness of algorithm samba into two Theo-
rems. While Theorem 3.2 even holds if the set S is not considered in the algorithm,
the treatment of S is essential for Theorem 3.4.

Theorem 3.2. Let t, f1, . . . , fr ∈ R∗, d = deg t > 0, and A = C[t, f1, . . . , fr] ⊆ R
with lc t = 1. Let G = {g0, . . . , gs} be the output of Algorithm samba applied to
t, f1, . . . , fr. Then for every f ∈ A there exist p0, . . . , ps ∈ C[x] such that

f =

s∑
i=0

pi(t)gi, (11)

i. e., A = 〈g0, . . . , gs〉C[t] as C[t]-modules.
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Proof. Let G = {g0, . . . , gs} be the set B at the end of the algorithm. Note that
1 ∈ G. It is clear that A = C[t][G], because at the beginning of the while loop, it
holds A = C[t][B ∪Bcrit] and this equation is an invariant of the while loop. For
any u that is removed from Bcrit, there is a u′ = reducet,B(u) (line 8) and thus a
representation in terms of the respective B at that time in the algorithm, i. e.,

u = u′ +
∑
b∈B

p
(u)
b (t)b

for some polynomials p
(u)
b ∈ C[x]. Then either u′ = 0, or u′ ∈ A and u′ is added

to B in line 11.
By keeping track of the reductions that happen during the algorithm, it follows

that for every fj there exists a representation

fj =

s∑
i=0

p
(j)
i (t)gi. (12)

Since reducet,G(gjgk) = 0 for every pair 0 ≤ j, k ≤ s, there is a representation

gjgk =

s∑
i=0

p
(j,k)
i (t)gi. (13)

By combining (12) and (13), we conclude that for every pair 1 ≤ j, k ≤ r there is
a representation

fjfk =

s∑
i=0

p̄
(j,k)
i (t)gi.

By induction, and by C[t]-linearity of A, we can conclude that for every f ∈ A
there exists a representation (11).

Remark 3.3. In general such a representation (11) is not unique, because there
might be i1, i2 ∈ {0, . . . , s} with i1 < i2, lc(gi2) = 1, ϕ(lc(gi1)) > ϕ(lc(gi2)),
tgi1 = lc(gi1)gi2 , pi1 = x, pi2 = lc(gi1), and deg f < deg(tgi1) = deg(lc(gi1)gi2).
In other words, (11) does not correspond to a reduction sequence with respect to
7→t,G. More concretely, consider C = Z with the absolute value as the Euclidean

size function. Let t = x2, g0 = 1, g1 = 5x3, g2 = x5. Then f = x4 = t2g0 =
t2g0 + tg1 + (−5)g2 are two representations for f of the form (11).

For f ∈ R it is obvious that from reducet,B(f) = 0 follows f ∈ A. Thus we
only need to prove the following theorem in order to show correctness of algorithm
samba.

Theorem 3.4. Let t, f1, . . . , fr ∈ R∗, d = deg t > 0, and A = C[t, f1, . . . , fr] ⊆ R
with lc t = 1. Let G = {g0, . . . , gs} be the output of Algorithm samba applied to
t, f1, . . . , fr. Then reducet,G(f) = 0 for every f ∈ A, i. e., representation (11)
can be found algorithmically.
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Proof. In order to show that reducet,G(f) = 0 holds for every f ∈ A, it is sufficient
to show that every f ∈ A\{0} is reducible, i. e., that there exists g ∈ G such that
g Ed f .

From the algorithm it is clear that all elements of G have different degree.
Namely, if an element u′ is added to B in line 11 of the algorithm, then all the
elements of degree equal to deg(u′) will be removed from B. Without loss of
generality, we can assume that deg(gi) < deg(gj) for i < j.

Let f ∈ A\{0}. From Theorem 3.2 follows that there is a representation (11).
Among all such representations (11) for f , we choose one such that

m = max {deg(pi(t)gi) | i ∈ {0, . . . s} , pi(x) 6= 0}

is minimal and for the set

I = {i ∈ {0, . . . s} | pi(x) 6= 0,deg(pi(t)gi) = m} (14)

the value of ι = min I is maximal and the value of ψ(pι) is <lex-minimal. Note
that deg f ≤ m.

The set I contains exactly one element, because otherwise we can construct
another representation that contradicts the minimality/maximality properties in
the choice of the original representation.

Assume for a contradiction that I contains a second element k. Then ι < k
and deg(gι) ≡d deg(gk). Let

j = min {i ∈ N | ι < i ≤ k, deg(gι) ≡d deg(gi)} .

Let e = deg(pι), c = lc(pι). Note that e > 0, because deg gι < deg gj .
Furthermore, according to line 13 of algorithm samba, there exists a ∈ N such that
deg(tagι) = deg(gj) and tagι has been added to S and eventually reduced to zero.
This reduction starts by using gj , i. e., selectt,G(tagι) = gj , (1, c′) = red(u, t, gj),
and u = tagι − c′gj . Either u = 0 or u 6= 0 and ψ(u) <lex ψ(tagι). Thus, this
reduction gives rise to a representation

tagι = c′gj + u = c′gj +

s∑
i=0

p̂i(t)gi (15)

where ψ(p̂i(t)gi) ≤lex ψ(u) for every i with p̂i 6= 0, because the p̂i come from an
application of reducet,G to u.

Note that if u 6= 0, it does not necessarily hold deg(u) < deg(tagι). All we
need here is that ψ(u) <lex ψ(tagι). Furthermore, since selectt,G always selects
elements with highest possible degree, there is no i < ι such that p̂i 6= 0 and
deg(p̂i(t)gi) = deg(tagι).

We have a ≤ e by the minimal choice of j. Thus, in the representation (11)
for f , we can use (15) to replace ctegι, leading to a new representation

f =

s∑
i=0

p′i(t)gi (16)
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where either max {deg(p′i(t)gi) | i ∈ {0, . . . s} , p′i(x) 6= 0} < m or p′ι = 0 or ψ(p′ι) <lex
ψ(pι). Therefore, either m could not have been minimal or ι could not have been
maximal or ψ(pι) could not have been <lex-minimal in contrast to our choice of
the representation.

We conclude that I = {ι} and, thus, in(pι(t)gι) = in(f), i. e., m = deg f and
gι Ed f .

Remark 3.5. From the above proof it follows that the set S that is computed
in line 13 of algorithm samba need only contain tab where a is minimal with the
respective property.

In case C is a field, the set S need not be computed at all, because then
there exists no pair b, b′ ∈ B with b 6= b′ and deg(b) ≡d deg(b′) and thus the
corresponding set I (see (14)) can only contain one element.

4 Generalized Application of samba

Up to now samba applies to the ring R = C[x]. Of course, all operations that are
performed by samba must be computable, in particular all ring operations of R
and also taking the degree of an element of R or computing the Euclidean size of
a coefficient from C.

The ring R can be generalized to a situation that fits into the context of Radu’s
article [Rad15]. In fact, Radu considers Laurent series in q with the property that
an element is zero if and only if its order in q is greater than 0.

The ring R does not really matter. Looking at the operations performed
by the algorithm samba, it is sufficient if the operations in the C-algebra A =
C[t, f1, . . . , fr] (i. e., in the algebra generated by the input elements) are com-
putable, since the algorithm never deals with an element from R \A. In particu-
lar, it is not necessary that we require a computable zero test for every element
of R, it is sufficient that the zero test in A is computable.

For the application to Ramanujan’s partition congruence modulo 11, it is
sufficient to consider input series from C((q)). For f =

∑∞
k=r ckq

k ∈ C((q)), we
denote by in(f) = crq

r, lc(f) = cr, deg(f) = −r the initial, the leading coefficient
and the degree of f . In particular, we define in(0) = 0, lc(0) = 0, deg(0) = −∞.
Note that in order to keep things similar to what we have done above for C[x], we
define the degree of a Laurent series as the negative value of what is commonly
known as its order.

If we assume that the input to algorithm samba is such that for every element
f ∈ A it holds

f = 0 ⇐⇒ deg(f) < 0, (17)

then the zero test in A is computable. When computing with elements of A ⊂
C((q)), we can postpone any “infinite” ring operation until a test for zero occurs in
the algorithm. For this test only a finite number of coefficients must be computed.

In fact, Laurent series can be represented in a finitary way on a computer
by storing the first few coefficients and a function that computes the “next”

10



coefficient if it is needed, i. e., the ring operations can be computed in a lazy
fashion in finitely many steps.

The algorithm samba can effectively be applied to a subalgebra of Laurent
series C((q)) with the property (17) where C is a computable Euclidean domain.
The (input) series used by Radu generate such a subalgebra of C((q)).

In order to compute the relation (9), we choose C = Z(11), i. e., the rational
numbers with no denominator divisible by 11 with the Euclidean size function
defined by ϕ(c) = n for c = 11n ab ∈ Z(11) and gcd(a, 11) = gcd(b, 11) = 1.

Starting samba with t = M1 and fi = Mi for i ∈ {1, 2, . . . , 7} gives the basis
G = {g0, g1, . . . , g5} where

g0 = 1

g1 =
8M7 − 40M6 + 168M5 + (2343−M1)M4 − 680M3 +M2

1 + 505M1

1024

= 11 q−3 + 11 q−1 − 112

32
+ O (q) ,

g2 =
M4 −M1

8
= q−4 − 2 q−3 + 2 q−2 + 3 + O(q),

g3 = M3 = q−6 + 2 q−5 − q−4 − 2 q−3 − q−2 − 6 q−1 + O (q) ,

g4 = M5 = q−7 − 4 q−5 + 2 q−3 + 8 q−1 + O (q)

g5 = M6 = q−8 − 2 q−7 − 3 q−6 + 6 q−5 + 2 q−4 − q−2 − 10 q−1 + O
(
q3
)

Computing reducet,G(F ) with the F given by (7) returns 0 where (by collect-
ing the cofactors of that reduction) relation (9) is obtained. See Section 1 for the
definition of the Mi.

5 Ramanujan’s Partition Congruence in Terms
of Klein’s j-invariant

Historically, we first implemented Radu’s original algorithms in FriCAS [fri] with
Q as the coefficient domain. Peter Paule then asked whether Ramanujan’s par-
tition congruence modulo 11 can be witnessed by an identity involving Klein’s
j-invariant.

Klein’s j-invariant (also called modular invariant or absolute invariant) is a
modular function of weight zero for SL2(Z). In the theory of modular functions,
the j-invariant is interesting because every modular function can be expressed as
a rational function in j. For a definition see, for example, Chapter VII of [Ser73].
It follows from there that in terms of q-series (q = exp(2πiτ)), the j-invariant is
given by

j(τ) = 1728
g32
∆
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where

∆ = g32 − 27g23 = (2π)12q

∞∏
k=1

(1− qk)24

g2 =
(2π)4

12

(
1 + 240

∞∑
n=1

σ3(n)qn

)

g3 =
(2π)6

216

(
1− 504

∞∑
n=1

σ5(n)qn

)

and σk(n) =
∑
d|n d

k is the sum of k-th powers of positive divisors of n. From
the definition it is obvious that the q-series for j has integer coefficients.

j(τ) = q−1 + 744 + 196884 q + 21493760 q2 + 864299970 q3 + 20245856256 q4

+ 333202640600 q5 + 4252023300096 q6 + 44656994071935 q7

+ 401490886656000 q8 + 3176440229784420 q9 +O(q10).

Application of algorithm AB (or algorithm samba with C = Q) to

t = q−5
∞∏
k=1

(1− qk)12

(1− q11k)12

= q−5 − 12 q−4 + 54 q−3 − 88 q−2 − 99 q−1 + 540 +O(q),

t3·j(τ), and t·jp where jp = j(11τ) results in a Q[t]-module basis with 5 elements.1

By keeping track of the cofactors during that computation, each basis element
can be expressed as a polynomial in t, j, and jp with rational coefficients. For

F = q

∞∏
k=1

(1− q11k)

∞∑
n=0

p(11n+ 6)qn

the element t3F reduces modulo the above basis to 0, i. e., t3F ∈ Q[t, t3j, tjp].
However, that reduction only gives rise to a representation of t3F as a polynomial
in t, j, and jp with coefficients having a denominator divisible by 1140. In other
words, Radu’s algorithm cannot be used in its original form to derive a witness for
Ramanujan’s partition congruence modulo 11. Also modifying Radu’s algorithm
to work over Z instead of Q by using pseudo-reduction did not help. It resulted
in an annoying prefactor for t3F of 1140. The problem of such a high power of
11 then led to develop the algorithm samba. The crucial idea to overcome the
problem was to trade division by 11 against growing the size of the resulting basis.

The algorithm samba can be called with input t, t3j, and tjp and coefficients
living in Z(11). Instead of 5 elements, it yields a basis of G = {g0 = 1, g1, . . . , g12}
where the ψ-values (cf. Def. 2.1) of the 12 non-constant elements are

(7, 18), (8, 8), (9, 4), (11, 3), (12, 3), (13, 3), (14, 0), (16, 0), (17, 2), (18, 1), (22, 0), (23, 0).

1Note that t, t3 · j(τ), and t · jp can be proven to have poles only at infinity. Let A be the
algebra generated by the respective q-series. Then for every f ∈ A property (17) holds. Thus,
these series can be used as input in algorithm samba.
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Note that the basis elements of degree 14, 16, 22, and 23 have no factor of 11 in
their leading coefficient.

We have 0 = reducet,G(t7F ) which gives a representation

(18)t7F = t7q

∞∏
k =1

(1− q11k)

∞∑
n =0

p(11n+ 6)qn = 11 t2h(t, j, jp).

The expression h(t, j, jp) is a Z(11)-linear combination of powerproducts tujvjwp
i. e., with coefficients of the form a

b such that gcd(b, 11) = 1, where each a and b
has about 2400 decimal digits and the 161 exponent triples (u, v, w) are given by
the following list. Note that u ≤ 16, v ≤ 4, w ≤ 4.

(0, 0, 0), (0, 0, 1), (0, 0, 2), (1, 0, 0), (1, 0, 1), (1, 0, 2), (1, 0, 3), (2, 0, 0), (2, 0, 1), (2, 0, 2),

(2, 0, 3), (2, 0, 4), (2, 1, 0), (2, 1, 1), (3, 0, 0), (3, 0, 1), (3, 0, 2), (3, 0, 3), (3, 0, 4), (3, 1, 0),

(3, 1, 1), (3, 1, 2), (4, 0, 0), (4, 0, 1), (4, 0, 2), (4, 0, 3), (4, 0, 4), (4, 1, 0), (4, 1, 1), (4, 1, 2),

(4, 1, 3), (4, 2, 0), (5, 0, 0), (5, 0, 1), (5, 0, 2), (5, 0, 3), (5, 0, 4), (5, 1, 0), (5, 1, 1), (5, 1, 2),

(5, 1, 3), (5, 2, 0), (5, 2, 1), (6, 0, 0), (6, 0, 1), (6, 0, 2), (6, 0, 3), (6, 0, 4), (6, 1, 0), (6, 1, 1),

(6, 1, 2), (6, 1, 3), (6, 2, 0), (6, 2, 1), (6, 2, 2), (7, 0, 0), (7, 0, 1), (7, 0, 2), (7, 0, 3), (7, 0, 4),

(7, 1, 0), (7, 1, 1), (7, 1, 2), (7, 1, 3), (7, 2, 0), (7, 2, 1), (7, 2, 2), (7, 3, 0), (8, 0, 0), (8, 0, 1),

(8, 0, 2), (8, 0, 3), (8, 0, 4), (8, 1, 0), (8, 1, 1), (8, 1, 2), (8, 1, 3), (8, 2, 0), (8, 2, 1), (8, 2, 2),

(8, 3, 0), (8, 3, 1), (9, 0, 0), (9, 0, 1), (9, 0, 2), (9, 0, 3), (9, 1, 0), (9, 1, 1), (9, 1, 2), (9, 1, 3),

(9, 2, 0), (9, 2, 1), (9, 2, 2), (9, 3, 0), (9, 3, 1), (10, 0, 0), (10, 0, 1), (10, 0, 2), (10, 0, 3),

(10, 1, 0), (10, 1, 1), (10, 1, 2), (10, 1, 3), (10, 2, 0), (10, 2, 1), (10, 2, 2), (10, 3, 0), (10, 3, 1),

(10, 4, 0), (11, 0, 0), (11, 0, 1), (11, 0, 2), (11, 1, 0), (11, 1, 1), (11, 1, 2), (11, 2, 0), (11, 2, 1),

(11, 2, 2), (11, 3, 0), (11, 3, 1), (11, 4, 0), (12, 0, 0), (12, 0, 1), (12, 0, 2), (12, 1, 0), (12, 1, 1),

(12, 1, 2), (12, 2, 0), (12, 2, 1), (12, 2, 2), (12, 3, 0), (12, 3, 1), (12, 4, 0), (13, 0, 0), (13, 0, 1),

(13, 1, 0), (13, 1, 1), (13, 2, 0), (13, 2, 1), (13, 3, 0), (13, 3, 1), (13, 4, 0), (14, 0, 0), (14, 0, 1),

(14, 1, 0), (14, 1, 1), (14, 2, 0), (14, 2, 1), (14, 3, 0), (14, 3, 1), (14, 4, 0), (15, 0, 0), (15, 1, 0),

(15, 2, 0), (15, 3, 0), (15, 4, 0), (16, 0, 0), (16, 1, 0), (16, 2, 0), (16, 3, 0), (16, 4, 0)

6 Conclusion

In this article we have presented the algorithm samba that, for some set of
polynomials {t, f1, . . . , fr} ⊂ C[x] computes a C[t]-module basis G for A =
C[t, f1, . . . , fr] by which then it can be algorithmically tested whether a given
polynomial f ∈ C[x] belongs to A.

In a generalized context, this algorithm has then successfully been applied
to find an identity witnessing Ramanujan’s partition congruence p(11n+ 6) ≡ 0
(mod 11) for every n ∈ N.
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