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Abstract. Let p(n) be the number of partitions of the positive integer n.

A new q-series identity is presented which witnesses Ramanujan’s observation
that 11|p(11n+6) for all n ≥ 0 at one glance. This identity can be derived in a

natural way by applying an algorithm to present subalgebras of the polynomial

ring K[z] as K[z]-modules.

1. Introduction

Recall the celebrated partition congruences observed by Ramanujan [10]:

(1) p(5n+ 4) ≡ 0 (mod 5), p(7n+ 5) ≡ 0 (mod 7),

and

(2) p(11n+ 6) ≡ 0 (mod 11), n ≥ 0,

where p(n) counts the number of partitions of the positive integer n.

For the congruences in (1) Ramanujan [10] provided clever elementary proofs based
on Euler’s pentagonal number theorem and on Jacobi’s identity for the third power
of Dedekind’s eta-function. Also in [10], Ramanujan presented two q-series identities
which in explicit fashion witness the stated divisibilities by 5 and 7:

(3)

∞∑
n=0

p(5n+ 4)qn = 5

∞∏
n=1

(1− q5n)5

(1− qn)6
,

(4)

∞∑
n=0

p(7n+ 5)qn = 7

∞∏
n=1

(1− q7n)3

(1− qn)4
+ 49q

∞∏
n=1

(1− q7n)7

(1− qn)8
.

Bruce Berndt’s commentary in [5, pp. 372–375] on Ramanujan’s paper gives the
history of proofs of Ramanujan’s congruences. In particular, Berndt points to the
fact that (4) in Ramanujan’s original paper is stated without any proof and also
that Ramanujan only briefly sketches a proof of (3)—an identity greatly admired
by Hardy; see Hardy’s remark in [5, p. xxxv].

Concerning Ramanujan’s congruence (2) a witness identity like (3) or (4), i.e., pre-
senting

∑
n≥0 p(11n+6)qn as a linear combination of eta-quotients, has been found

only recently by Radu [9] with the help of his Ramanujan-Kolberg Algorithm. As
the main theorem of this note we present a new and simpler witness identity but
built in different fashion:

The research of Radu was supported by the strategic program “Innovatives OÖ 2010 plus” by

the Upper Austrian Government in the frame of project W1214-N15-DK6 of the Austrian Science

Fund (FWF). Both authors were supported by grant SFB F50-06 of the Austrian Science Fund
(FWF).
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Theorem 1.1. Let

(5) t := q−5
∞∏
k=1

(
1− qk

1− q11k

)12

,

and

(6) f := q t

∞∏
k=1

(1− q11k)

∞∑
n=0

p(11n+ 6)qn.

Then

f5 = 5 · 114f4 + 114(−2 · 5 · 114 + 251 t)f3(7)

+ 113(2 · 5 · 119 + 2 · 3 · 5 · 115 · 31 t+ 4093 t2)f2

+ 114(−5 · 1112 + 2 · 5 · 118 · 17 t− 22 · 3 · 113 · 1289 t2 + 3 · 41 t3)f

+ 115(114 + t)(1111 − 3 · 7 · 117 t+ 112 · 1321 t2 + t3).

The divisibility 11|p(11n+ 6) follows immediately from the fact that all coefficients
of powers of q on the right hand side are integers containing 11 as a factor. This
property clearly carries over to f since f5 is an element of an integral domain—
regardless whether the q-series/products involved are considered as formal Laurent
series or as analytic functions.

The rest of this article is structured as follows. In Section 2 we put the witness
identity (7) into the algebraic framework of presenting subalgebras of the polynomial
ring K[z] as finitely generated K[z]-modules. To apply the machinery for deriving
the witness identity (7) in algorithmic fashion, basic facts from modular functions
are needed; these are provided in Section 3. One of the consequences of this setting is
a computational verification of (7). Section 4 describes an algorithm to compute the
desired module presentation for the case of polynomials. The analogous algorithm
for modular functions is discussed in Section 5, including the algorithmic derivation
of the witness identity (7).

2. Presenting Subalgebras of the polynomial ring K[z]

By K[z] we denote the ring of univariate polynomials in z with coefficients from a
field K. In our context it is useful to keep in mind that K[z] is also a vector space
over K; sometimes we emphasize this fact by saying that K[z] is a K-algebra1 For
example, we can consider the K-algebra generated by given polynomials f0, . . . , fn ∈
K[z],

K[f0, f1, . . . , fn] :=
{ ∑
j0,j1,...,jn≥0

cj0,j1,...,jnf
j0
0 f j11 . . . f jnn

}
;

i.e., the elements are polynomials in the fj with coefficients cj0,j1,...,jn ∈ K.

We will consider also slight variations of this setting. For example, the right hand
side of (7) can be considered as an element of the Q-algebra Q[t, f ]. Here t and f
are not polynomials but Laurent series in q. More precisely, the right hand side of
(7) has a particular structure; namely, it is an element of

Q[t] + Q[t]f + · · ·+ Q[t]f4 := {p0(t) + p1(t)f + · · ·+ p4(t)f4 : pj(t) ∈ Q[t]}.

1For us a K-algebra R is a commutative ring R with 1 which is also a vector space over K.
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Obviously this is a subalgebra of Q[t, f ]. Vice versa, the relation (7) guarantees
that all the elements of Q[t, f ] are contained in this subalgebra. As a consequence,
the witness identity (7) has also an algebraic meaning; namely,

(8) Q[t, f ] = Q[t] + Q[t]f + · · ·+ Q[t]f4.

In other words, (8) tells us that the algebra Q[t, f ] can be presented as a module
over the polynomial ring Q[t] with module generators 1, f, . . . , f4.

We note that this module is freely generated2 owing to fact that the orders ord(f j)
are pairwise different. As usual, for a formal Laurent series, resp. meromorphic
function, F (q) =

∑∞
n=` Fnq

n with F` 6= 0, its order is defined as ord(F (q)) := `.

It is well-known that subalgebras of K[z] are finitely generated:

Theorem 2.1 ([4]). Let A 6= K be a subalgebra of K[z] and let n be the degree of
the polynomial of smallest positive degree in A. Then A can generated by a set of
not more than n+ 1 elements.

Gale’s proof is elegant and short, but non-constructive. Nevertheless, its underlying
idea bases on presenting a subalgebra as a finitely generated K[t]-module as in (8).
Almost 60 years after Gale’s paper, Radu 3 in [9] introduced a constructive version
of this approach.

Remark 2.2. Presentations like (8) also solve the problem to decide subalgebra
membership. In computer algebra usually such problems are solved by constructing
a convenient basis. To this end, for multivariate polynomial rings, SAGBI (“Sub-
algebra Analogs to Gröbner Bases for Ideals”) bases are considered. This concept
was introduced by Kapur and Madlener [7] and independently by Robbiano and
Sweedler [11]. They also present a method for computing such bases given a set
of generators for a subalgebra of a multivariate polynomial ring. In general this
method is not algorithmic, but in the univariate case K[z] it can be shown to ter-
minate after a finite number of steps. In this context, Anna Torstensson [12] gave
a careful algorithm analysis for the case when the subalgebra is generated by two
polynomials. Radu’s algorithm works completely different to the SAGBI mecha-
nism. The algorithm computes a Noether normalization (e.g., [3, Theorem 30]) of a
finitely generated K-subalgebra of K[z] to solve the subalgebra membership problem
in the case of univariate polynomial rings.

In Section 4 we explain the main algorithmic ideas used to establish (7), resp. (8).
Before doing so, we set up the required algebraic/analytic frame for these equalities.

3. Modular Functions Background

Modular functions provide a convenient mathematical environment for the objects
t and f in Theorem 1.1. In this context we view q = q(τ) as a function on the upper
half complex plane H := {τ ∈ C : Im(τ) > 0} defined by q(τ) := exp(2πiτ). The
congruence subgroup Γ0(N) of the modular group is defined as

Γ0(N) :=

{(
a b
c d

)
∈ SL2(Z) : N |c

}
.

2I.e., every element p0(t) + p1(t)f + · · · + p4(t)f4 in the module has uniquely determined

coefficients pj(t) ∈ Q[t].
3Not knowing about Gale’s paper at that time.
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A holomorphic function g defined on H is called a modular function for Γ0(N) if (i)
for all

(
a b
c d

)
∈ Γ0(N),

(9) g

(
aτ + b

cτ + d

)
= g(τ), τ ∈ H,

and (ii) if for each γ =
(
a b
c d

)
∈ SL2(Z) there exists a Laurent series expansion with

finite principal part such that for all τ ∈ H sufficiently close to a
c ∈ Q ∪ {∞}:

(10) g(τ) =

∞∑
n=−∞

cn(γ)e2πin(γ−1τ)/wγ

where

wγ := min

{
h ∈ N \ {0} :

(
1 h
0 1

)
∈ γ−1Γ0(N)γ

}
.

Note. SL2(Z) and Γ0(N) act on H by
(
a b
c d

)
τ := aτ+b

cτ+d , and also on H ∪ Q ∪ {∞}
by defining

(
a b
c d

)
∞ := a

c and a
0 :=∞.

If m = m(γ) is the smallest index such that cm(γ) 6= 0 in (10), then we call m
the γ-order of g at τ = a

c ; notation: m = ordγa/c(g). If a
c = γ1∞ = γ2∞ for

γ1, γ2 ∈ SL2(Z), then ordγ1a/c(g) = ordγ2a/c(g). This leads to define the order of a

modular function g at a point a
c ∈ Q ∪ {∞}, called a “cusp of g”, by

orda/c(g) := ordγa/c(g)

for some γ ∈ SL2(Z) such that γ∞ = a
c .

The action of Γ0(N) maps cusps onto cusps, and it turns out that for each N ∈
N \ {0} the set of cusps Q ∪ {∞} splits only into finitely many orbits. A cusp
a
c ∈ Q∪{∞} is called a critical point of a modular function g if orda/c(g) < 0. This
property is invariant under the action of Γ0(N) owing to the fact that for two cusps
a
c and a′

c′ from the same orbit, i.e., a′

c′ = γ ac for some γ ∈ Γ0(N), one has

orda′/c′(g) = orda/c(g).

The Γ0(N)-orbit of the cusp a
c ∈ Q ∪ {∞} is denoted by [ac ]. An orbit [ac ] where a

c
is a critical point of g is called critical orbit of g.

The set of modular functions for Γ0(N) forms a C-algebra denoted by M(N). An
important subalgebra is

M∞(N) := {g ∈M(N) : g is constant, or [∞] is the only critical orbit of g}.

This, in view of (10), gives a normal form presentation for any modular function
g ∈ M∞(N). Namely, we take the Laurent series expansion at the cusp ∞ using
γ := ( 1 0

0 1 ) = Id:

(11) g(τ) =

∞∑
n=ord∞(g)

cnq
n.

Note that q = q(τ) = exp(2πiτ), cn := cn(Id), and wγ = wId = 1; if g is a constant
then ord∞(g) = 0 and cn = 0 for all n ≥ 1. We call this unique Laurent series the
q-series presentation of g.

This setting provides a convenient mathematical environment for the objects t and
f in Theorem 1.1.
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Lemma 3.1. Let t and f be defined as in (5) and (6) of Theorem 1.1 where q =
q(τ) := exp(2πiτ), τ ∈ H. Then

t, f ∈M∞(11),

and the q-series/products in (5) and (6) correspond to the Laurent series expansions
of t and f at the cusp ∞ as in (11). Consequently,

ord∞(t) = −5 and ord∞(f) = −4.

Proof. The statement follows immediately from

q−5
∞∏
k=1

(
1− qk

1− q11k

)12

∈M∞(11) and q

∞∏
k=1

(1− q11k)

∞∑
n=0

p(11n+ 6)qn ∈M∞(11),

which, for instance, is proven in [9]. �

Despite the analytic setting, to decide equality of two functions in M∞(N) can be
done in purely algebraic and finitary fashion.

Lemma 3.2. Let g and h be in M∞(N) with q-series presentations

g(τ) =

∞∑
n=ord∞(g)

anq
n and h(τ) =

∞∑
n=ord∞(h)

bnq
n.

Then g = h if and only if ord∞(g) = ord∞(h) =: ` and

(a`, . . . , a−1, a0) = (b`, . . . , b−1, b0).

Proof. See [8, Sect. 6], or any introductory text on modular functions. �

In other words, if g(τ) =
∑∞
n=ord∞(g) anq

n ∈ M∞(N), the coefficients an, n ≥ 1,

are uniquely determined by those of the principal part and a0. Algebraically this
corresponds to an isomorphic embedding of C-vector spaces:

ϕ : M∞(N)→ C[z],
∞∑

n=ord∞(g)

anq
n 7→ aord∞(g)z

−ord∞(g) + · · ·+ a−1z + a0.(12)

In computationally feasible cases the zero test for g−h ?
= 0 of Lemma 3.2 trivializes

the task of proving identities between modular functions.

Example 3.3. Knowing from Lemma 3.1 that t and f are in M∞(11) the proof of the
witness identity (7) can be left to a computer algebra package: First one specifies
the input for t and f as, for instance, in In[16] and In[17] of Section 5. Then applying
a simplification command as, for instance, Simplify in Mathematica reduces the
difference of the expressions on the left and on the right hand side of (7) to O[q]^2;
this means, to 0 in view of Lemma 3.2.
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4. Algorithm “MODULE GENERATORS” for Polynomials

In view of the isomorphic vector space embedding ϕ defined in (12), we present an
algorithm to compute a suitable module presentation as in (8).

ALGORITHM 4.1 (“MODULE GENERATORS: polynomial case”).
Given non-constant polynomials t :=f0, f1, . . . , fn ∈ K[z], the algorithm computes
g1, . . . , gk ∈ K[z] such that

(13) K[t, f1, . . . , fn] = K[t] + K[t] g1 + · · ·+ K[t] gk.

To explain a basic ingredient of the algorithm, we first consider the problem of
finding convenient presentations of finitely generated additive submonoids of N =
{0, 1, . . . }.
Example 4.2. Consider the submonoid M generated by 6, 9, and 20; i.e.,

M = {6a+ 9b+ 20c : a, b, c ∈ N}.
The presentation of M which is most relevant for our purpose is a set partition of
M into residue classes modulo t:

[M ]i := {x ∈M : x ≡ i (mod t)}.
For example, choosing t := 6 we have that M is the disjoint union of [M ]0, . . . , [M ]5
where [M ]0 = 0 + 6N = {0 + 6m : m ∈ N}, and

[M ]1 = 49 + 6N, [M ]2 = 20 + 6N, [M ]3 = 9 + 6N, [M ]4 = 40 + 6N, [M ]5 = 29 + 6N.
Example 4.3. How does one compute the elements 49, 20, etc.? For example, 49 is
the smallest element of the form 1+6a that can be represented in the form 9b+20c,
a, b, c ∈ N. There are various tools to solve such linear Diophantine problems; e.g.,
the Omega package [1, 2] written in Mathematica:

In[1]:= << RISC`Omega.m`

Omega Package version 2.49 written by Axel Riese (in cooperation

with George E. Andrews and Peter Paule) c© RISC-JKU

In[2]:= OEqR[OEqSum[x
a
y
b
z
c
,−6a + 9b + 20c == 1, λ]]

Out[2]=
x8yz2

(1− x3y2)(1− x10z3)

Out[2] gives the rational form of the generating function
∑
xaybzc of all non-

negative integer triples (a, b, c) satisfying −6a + 9b + 20c = 1; (8, 1, 2) corresponds
to 9 · 1 + 20 · 2 = 1 + 6 · 8 = 49.

Next we consider what happens when to a given submonoid of N another generator
is added4.

Example 4.4. Consider the submonoid M+ generated by 4, 6, 9, and 20; i.e.,

(14) M = {4a+ 6b+ 9c+ 20d : a, b, c, d ∈ N} := 〈4, 6, 9, 20〉.
Note. Subsequently it will be convenient to use a short hand notation for the monoid
which lists its generators as on the right side of (14).

Keeping the choice t := 6, we need to update the residue classes. Doing so, we
obtain M+ = [M+]0 ∪ · · · ∪ [M+]5 where [M+]0 = 0 + 6N, and

[M+]1 = 13+6N, [M+]2 = 8+6N, [M+]3 = 9+6N, [M+]4 = 4+6N, [M+]5 = 17+6N.
A simple but relevant observation is that for each j the smallest element in [M+]j
is less or equal to smallest element in [M ]j .

4An entertaining application of this situation is shown in the Numberphile video “How to order
43 Chicken McNuggets”: www.youtube.com/watch?v=vNTSugyS038
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These elementary facts about monoids are used to compute the desired module
presentations.

Example 4.5. As specified in the input/output description of Algorithm 4.1 we
compute a module presentation of the subalgebra Q[t, f1, f2] of Q[z] where

In[3]:= t = z
6 − 1; f1 = z

9
+ 2; f2 = z

20
+ 1;

Obviously the monoid 〈6, 9, 20〉 generated by the degrees of t, f1, and f2 is a subset
of the set of all possible degrees arising from the polynomials in Q[t, f1, f2]. Conse-
quently, in view of Example 4.2, it is a natural idea to choose as monoid generators
gj ∈ Q[t, f1, f2] such that

(T1 ) (deg(g1),deg(g2),deg(g3),deg(g4),deg(g5)) ≡ (1, 2, 3, 4, 5) (mod 6).

Note that here, as in Example 4.2, we decided to go modulo 6 which is the smallest
degree of the given polynomials t, f1, and f2. For setting up presentations of monoids
in general, this choice is free and can be adapted to the context.

To establish

(15) Q[t, f1, f2] = Q[t] + Q[t] g1 + · · ·+ Q[t] g5

we need to show:

(T2a) Q[t] + Q[t] g1 + · · ·+ Q[t] g5 is a subalgebra of Q[t, f1, f2]; and

(T2b) f1, f2 ∈ Q[t] + Q[t] g1 + · · ·+ Q[t] g5.

Task (T1). By Examples 4.2 and 4.3 we know that 49 = 1 · 9 + 2 · 20 is the smallest
element in the monoid 〈6, 9, 20〉 which is congruent to 1 modulo 6. This suggests to
take

In[4]:= g1 = f1f
2
2 .

With the same reasoning we choose also the remaining elements:

In[5]:= g2 = f2; g3 = f1; g4 = f
2
2 ; g5 = f1f2;

This choice satisfies (T1):

(deg(g1),deg(g2),deg(g3),deg(g4),deg(g5)) = (49, 20, 9, 40, 29)

≡ (1, 2, 3, 4, 5) (mod 6),

and settles also Task (T2b).

In view of In[4] and In[5] Task (T2a) amounts to show

gigj ∈ Q[t] + Q[t] g1 + · · ·+ Q[t] g5 for all i, j ∈ {1, . . . , 5}.
This is checked computationally. For example,

In[6]:= {g2
3, g

2
3 − t

3}//Expand

Out[6]= {4 + 4z
9

+ z
18
, 5− 3z

6
+ 4z

9
+ 3z

12}

In[7]:= {g2
3 − t

3
, g

2
3 − t

3 − 3t
2}//Expand

Out[7]= {5− 3z
6

+ 4z
9

+ 3z
12
, 2 + 3z

6
+ 4z

9}
In[8]:= {g2

3 − t
3 − 3t

2
, g

2
3 − t

3 − 3t
2 − 4g3}//Expand

Out[8]= {2 + 3z
6

+ 4z
9
,−6 + 3z

6}

In[9]:= {g2
3 − t

3 − 3t
2 − 4g3, g

2
3 − t

3 − 3t
2 − 4g3 − 3(t− 1)}//Expand

Out[9]= {−6 + 3z
6
, 0}

In other words, we obtained

g2
3 = t3 + 3t2 + 3(t− 1) + 4g3 ∈ Q[t] + Q[t] g1 + · · ·+ Q[t] g5.
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Such reductions work for all gigj . To give another example,

g2g4 = p− 3g2 + 3g4

for

p = t10 + 10t9 + 45t8 + 120t7 + 210t6 + 252t5 + 210t4 + 120t3 + 45t2 + 10t+ 2.

In contrast to Example 4.5, in general it is not true that

{deg g(z) : g(z) ∈ K[t, f1, . . . , fn]} = 〈deg t(z),deg f1(z), . . . ,deg fn(z)〉;

see the next example.

Example 4.6. Consider the subalgebra Q[t, f1, f2, f3] of Q[z] where

In[10]:= t = z
6 − 1; f1 = z

9
+ 2; f2 = z

20
+ 1; f3 = z

18
+ z

4
;

Observe that

〈deg t(z),deg f1(z),deg f2(z),deg f3(z)〉 = 〈6, 9, 20, 18〉 = 〈6, 9, 20〉
6= {deg h(z) : g(z) ∈ Q[t, f1, f2, f3]};

for instance,

(16) h(z) := f3 − (t3 + 3t2 + 3t) = z4 + 1 ∈ Q[t, f1, f2, f3]

and therefore, deg(h) = deg(z4 + 1) = 4 6= 〈6, 9, 20〉. Consequently, to obtain a gen-
eral algorithm as specified in Algorithm 4.1, we need to modify the procedure from
Example 4.5 as follows: we update the given data by considering Q[t, f1, f2, f3, f4]
instead of Q[t, f1, f2, f3] by adding explicitly the “new” element from (16):

In[11]:= f4 = z
4
+ 1;

Recall Example 4.4 where the element 4 was added to the monoid 〈6, 9, 20〉; this had
the effect that for the resulting monoid 〈4, 6, 9, 20〉 the smallest elements in the rep-
resenting residue classes modulo 6 changed from (49, 20, 9, 40, 29) to (13, 8, 9, 4, 17).
For termination reasons of the algorithm it is important to note that by adding a
new element to the monoid the new smallest elements are less or equal than their
predecessors in the respective residue classes.

To obtain a module representation for Q[t, f1, f2, f3, f4] we utilize this observation
when updating the generators gj accordingly. This means, we now choose Gj ∈
Q[t, f1, f2, f3, f4] such that

In[12]:= G1 = f1f4; G2 = f
2
4 ; G3 = f1; G4 := f4; G5 = f1f

2
4 ;

This choice satisfies condition (T1) from above:

(deg(G1),deg(G2),deg(G3),deg(G4),deg(G5)) = (13, 8, 9, 4, 17)

≡ (1, 2, 3, 4, 5) (mod 6).

Because of

In[13]:= f2−G4
5
+ 5G2

2 − 10G4
3
+ 10G2− 5G4//Expand

Out[13]= 0

and (16) it also satisfies condition (T2b). Again a computational check verifies
condition (T2a); for example:

In[14]:= G1
2 − (t

3
+ 3t

2
+ 3t− 3)G2− 4G5//Expand

Out[14]= 0
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From Example 4.6 we can obtain a complete picture of the Algorithm 4.1, namely:
Out of the subalgebra generators f0, . . . , fn ∈ K[z] we choose a non-constant element
t := f0 which fixes the modulus deg(t) for all the steps of the algorithm. It also
determines the module structure

K[t] + K[t] g1 + · · ·+ K[t] gk

for the first step of the algorithm, where k = deg(t)−1 is the number of non-constant
module generators g1, . . . , gk ∈ K[z]. Whenever it happens, as in Example 4.6, that
during the module-reduction with respect to g1, . . . , gk multiplied by powers of t an
element h ∈ K[t, f1, . . . , fn] arises with

deg(h) 6= 〈deg(t),deg(f1), . . . ,deg(fn)〉,
then we update to new generators G1, . . . , Gk as in Example 4.6. Since in each such
update-step the degrees of the Gj are less or equal to those of the corresponding
gj (at least one degree has to be smaller in case of an update!), the algorithm
terminates after a finite number of steps.

5. Algorithm “MODULE GENERATORS” for Modular Functions

Algorithm 4.1 carries over from polynomials to modular functions by the linear
embedding ϕ defined in (12). We present the version given in [8].

ALGORITHM 5.1 (“MODULE GENERATORS: modular function case”).
Given non-constant modular functions t :=f0, f1, . . . , fn ∈ M∞(N) with m :=
− ord∞(t) and

gcd (ord∞(t), ord∞(f2), . . . , ord∞(fn)) = 1,

the algorithm computes g1, . . . , gm−1 ∈M∞(N) such that

(17) C[t, f1, . . . , fn] = C[t] + C[t] g1 + · · ·+ C[t] gm−1.

The gcd-condition and also the steps of the algorithm are explained in detail in
[8]. In fact, exchanging the polynomial degrees with negative orders, the algorithm
works completely analogous to the case of polynomials.

As an illustration we sketch the derivation of our 11-witness identity (7).

Example 5.2. Consider C[t, f ] with t, f ∈ M∞(N) as in (5) and (6) of our main
Theorem (1.1). We have m = −ord∞(t) = 5, hence we expect m − 1 = 4 module
generators in addition to the constant function 1. Observing that

(−deg(f),−deg(f2),−deg(f3),−deg(f4)) = (4, 8, 12, 16)

≡ (4, 3, 2, 1) (mod 5),

we choose
(g1, g2, g3, g4) := (f, f2, f3, f4).

This matches condition (T1) above; condition (T2b) is trivially satisfied. Owing to
the fact that gigj = f i+j , to verify condition (T2a) reduces to showing that

f5 ∈ C[t] + C[t] f + C[t] f2 + C[t] f3 + C[t] f4.

But this is a straightforward computational exercise. In fact, anyone being famil-
iar with Example 4.5 can easily accomplish this task; in other words, can easily
“discover” herself/himself the witness identity (7) just by applying the reduction
process to f5 with respect to the given t and f .

We restrict to present only the first steps of this computational “discovery” of (7).
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In[15]:= Tquot[k ] :=
1− qk

1− q11k
;

In[16]:= t =
1

q5
Product[Series[Tquot[k]

12
, q, 0, 26], k, 1, 26]

Out[16]=
1

q5
−

12

q4
+

54

q3
−

88

q2
−

99

q
+ 540− 418q− 648q

2
+ · · · − 22176q

20
+ 61656q

21
+ O[q]

22

In[17]:= f = qtSeries[(1− q
11

)(1− q
22

), q, 0, 21] ∗ Sum[PartitionsP[11n + 6]q
n
, n, 0, 21]

Out[17]=
11

q4
+

165

q3
+

748

q2
+

1639

q
+ 3553 + 4136q + 6347q

2
+ · · ·+ 12738q

16 − 51216q
17

+ O[q]
18

In[18]:= F =
f

11
;

In[19]:= F
5

Out[19]=
1

q20
+

75

q19
+

2590

q18
+ · · ·+

298958660282220

q
+ 530018316923711 + 877706745683995q + O[q]

2

In[20]:= F
5 − t

4

Out[20]=
123

q19
+

1510

q18
+

69935

q17
+ · · ·+ 530018316923711 + 877706745683995q + O[q]

2

In[21]:= F
5 − t

4 − 3 ∗ 41 ∗ t3F

Out[21]=
4093

q18
+

54929

q17
+

570947

q16
+ · · ·+ 530565611750339 + 877363195058527q + O[q]

2

In[22]:= F
5 − t

4 − 3 ∗ 41t3F− 4093t
2
F

2

Out[22]=
30371

q17
+

1008898

q16
+

12509585

q15
+ · · ·+ 536556550241327 + 873666097417069q + O[q]

2

In[23]:= F
5 − t

4 − 3 ∗ 41t3F− 4093t
2
F

2 − 11
2 ∗ 251 ∗ tF3

Out[23]=
6655

q16
+

573782

q15
−

16074850

q14
+ · · ·+ 552225581222579 + 867953372178310q + O[q]

2

In[24]:= F
5 − t

4 − 3 ∗ 41t3F− 4093t
2
F

2 − 11
2 ∗ 251 ∗ tF3 − 11

3 ∗ 5 ∗ F4

Out[24]=
174482

q15
−

26869260

q14
+

438710910

q13
+ · · · − 2294272165605596− 3831090632203670q + O[q]

2

In[25]:= F
5 − t

4 − 3 ∗ 41t3F− 4093t
2
F

2 − 11
2 ∗ 251 ∗ tF3 − 11

3 ∗ 5 ∗ F4 −
11

2 ∗ 2 ∗ 7 ∗ 103 ∗ t3

Out[25]=
20587908

q14
+

335068602

q13
+

3501794450

q12
− · · · − 3781753922516174q + O[q]

2

In[26]:= F
5 − t

4 − 3 ∗ 41t3F− 4093t
2
F

2 − 11
2 ∗ 251 ∗ tF3 − 11

3 ∗ 5 ∗ F4 −
11

2 ∗ 2 ∗ 7 ∗ 103 ∗ t3 + 11
3 ∗ 22 ∗ 3 ∗ 1289 ∗ t2F

Out[26]=
149777430

q13
+

2678278130

q12
+

7440556200

q11
− · · · − 3884781928756850q + O[q]

2

In[27]:= F
5 − t

4 − 3 ∗ 41t3F− 4093t
2
F

2 − 11
2 ∗ 251 ∗ tF3 − 11

3 ∗ 5 ∗ F4 −
11

2 ∗ 2 ∗ 7 ∗ 103 ∗ t3 + 11
3 ∗ 22 ∗ 3 ∗ 1289 ∗ t2F− 11

5 ∗ 2 ∗ 3 ∗ 5 ∗ 31 ∗ tF2

Out[27]= −
17715610

q12
−

797202450

q11
−

13641019700

q10
− · · · − 3863023611723320q + O[q]

2

In[28]:= F
5 − t

4 − 3 ∗ 41t3F− 4093t
2
F

2 − 11
2 ∗ 251 ∗ tF3 − 11

3 ∗ 5 ∗ F4 −
11

2 ∗ 2 ∗ 7 ∗ 103 ∗ t3 + 11
3 ∗ 22 ∗ 3 ∗ 1289t2F− 11

5 ∗ 2 ∗ 3 ∗ 5 ∗ 31 ∗ tF2
+

11
6 ∗ 2 ∗ 5 ∗ F3

Out[28]=
1931001490

q10
−

9903025990

q9
+

619514881700

q8
− · · ·+ 6359340881620540q + O[q]

2

Some remarks are in place. As input for t and f we take their truncated q-series
expansions with one more term than needed to decide equality; i.e., up to O(q2).
In order to keep coefficient growth within bounds we work with F := f/11 instead
of f . Starting with the reduction of F 5 each reduction step works with respect
to a uniquely determined power product taF b. The last reduction displayed shows
a jump from order −12 to order −10. By looking at the monoid 〈5, 4, 8, 12, 16〉
this can be explained by the fact that 11 is the largest integer not contained in
this monoid5. The reduction process stops when the witness identity (7) is fully
revealed.

6. Conclusion

The algorithm we applied to derive the witness identity (7) is a powerful tool also in
much more general situations when dealing with q-series identities in the context of

5Such a number is called Frobenius number. Note that 1, 2, 3, 6, and 7 are the other integers
not contained in the monoid.
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modular functions. For example, it plays an essential role in Radu’s algorithmic ap-
proach to Ramanujan-Kolberg type identities [9]. There, among other things, this
algorithm was used to derive a witness identity for 11|p(11n+6) of completely differ-
ent character than (7); namely, where

∑
n≥0 p(11n+ 6)qn is expressed as a Q-linear

combination of eta-quotients. In order to conclude 11|p(11n+ 6) from this presen-
tation, additional “massage” like “freshman’s dream relations” is needed. However,
Ralf Hemmecke [6] obtained an identity which presents

∑
n≥0 p(11n + 6)qn as a

essentially integer -linear combination which in direct fashion shows the divisibility
by 11. This was done by generalizing the algorithm for deciding membership in a
Q-subalgebra of Q[z] to an algorithm that decides membership in a Z-subalgebra
of Z[z]. Such kind of results indicate additional potential for using variants of this
algorithm to obtain suitable identities which witness divisibility.
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