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Abstract

In his pioneering work [1, 2], Michael Karr introduced ΠΣ-fields which provide a rather
general framework for symbolic summation. He worked out the first algorithmic steps to
represent indefinite nested sums and products as transcendental extensions over a computable
ground field K called the field of constants. Furthermore, he presented an algorithm that
solves the parameterized telescoping problem, and as special case the telescoping and creative
telescoping problem [3] within a given ΠΣ-field.

Over the recent years, Karr’s ΠΣ-field approach has been extended to a difference ring
approach [4, 5]. In this new framework also algebraic products like αn with α being a primitive
root of unity can be tackled. More precisely, a general machinery is obtained in which indefinite
nested sums defined over hypergeometric products can be rephrased in the setting of the so-
called RΠΣ∗-ring extensions. Moreover, general algorithms have been developed that solve
the parameterized telescoping equations within such a constructed difference ring.

This machinery implemented within the summation package Sigma [14] works in general
if one knows in advance how the arising hypergeometric products can be rephrased within
an RΠΣ∗-ring extension. In particular, restricting to a field K that is given as the quotient
field of a unique factorization domain U, such a construction can be done automatically [6, 4]:
given a finite set of hypergeometric products that evaluate to elements in K, one can construct
an RΠΣ∗-extension with constant field K in which the products can be rephrased. This is
especially the case, if U forms a polynomial ring over Q or over Q(i). However, when one tries
to extend the constant field to include other number fields, one looses the unique factorization
property inherent in the constant field K.

In a nutshell, in order to obtain a complete summation machinery in which one can rep-
resent hypergeometric products defined over K where K is a rational function field over an
algebraic number field, and more generally, in which one can rephrase indefinite nested sums
over such hypergeometric products, we will solve the following missing building block that can
be formulated as follows.

Product-representation in RΠ-extensions:
Given a finite number of hypergeometric products that evaluate to our general field K (see
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above); construct an RΠ-extension (where the constant field K might be extended by alge-
braic number extensions) and compute elements in the obtained difference ring such that they
represent the given input products.

With the obtained algorithm, we can rephrase, for instance, the hypergeometric product
expression

P (n) =
n∏

k=1

−945
√
−5

189 k
+

n∏
k=1

−7056 k

45
√
−5
(
i +
√

3
)4 (

k + 2
)2 +

n∏
k=1

−51631104 k

15
√
−5
(
i +
√

3
)10

(k + 2)5
(1)

in a difference ring with constant field K = Q
(
(−1)

1
6 ,
√
−5
)

where (−1)
1
6 =

√
3+i

2 . We
omit the explicit construction in this summary, but present the output reinterpreted again as
hypergeometric products. More precisely, we will find the following identity:

P (n) =

((
(−1)

1
6

)n)9 ((√
5
)n)3

n!
+

4
((

(−1)
1
6

)n)11 (
7n
)2((√

5
)n)3 (

n+ 1
)2 (

n+ 2
)2
n!

+
32
((

(−1)
1
6

)n)5 (
7n
)5((√

5
)n)3 (

n+ 1
)5 (

n+ 2
)5 (

n!
)4 . (2)

Besides this algorithmic representation within the setting of difference rings, we will emphasize
the following aspects:

1. Based on difference ring theory [7, 8] the produced representation is given in terms of
hypergeometric products that are algebraically independent among each other. E.g., the
right hand side of (2) can be given within a Laurent polynomial ring. More precisely,
they can be given within the ring
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defined over the ring K(n)
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2. Adjoining the first two products in (1) to K(n) with K = Q
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would lead to
a Π-extension. However, the third product cannot be handled this way since there is the
relation(

n∏
k=1

−51631104 k

15
√
−5
(
i +
√

3
)10

(k + 2)5

)2

=

(
n∏

k=1

−945
√
−5

189 k

)3( n∏
k=1

−7056 k

45
√
−5
(
i +
√

3
)4 (

k + 2
)2
)5

.

In general, obtaining such relations can be non-trivial and one will have to resort to our
algorithm to construct the ring (3) to represent such hypergeometric products.

3. Further, we solve the zero-recognition problem for the class of expressions in terms of
hypergeometric products: a polynomial expression in terms of hypergeometric products
evaluates to the zero-sequence (from a certain point on) if and only if the expression is
simplified with our algorithm to the 0 element. This important feature is exploited, e.g.,
in [8, 9] to solve the zero-recognition problem for nested sums over such hypergeometric
products.

4. Moreover, our produced result produces hypergeometric products where the degrees in
the numerators and denominators of the multiplicands have minimal degrees. Restricting
to just one hypergeometric product, this problem has been treated also in [10].
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The outline of the poster is as follows. We first begin with a detailed problem specification
within the setting of sequences and the underlying computer algebra formulation in the setting
of difference rings. Then we will work out in detail how one can represent hypergeometric
products in the setting of RΠ-extensions. Here we generalize non-trivially the techniques
presented in [6, 4] which are based on sub-algorithms of [1]. In addition, we utilize Ge’s
algorithm [11] (see also [12, 6]) which solves the orbit problem: given f1, . . . , fd ∈ K∗, his
algorithm computes a basis of the Z-module {(z1, . . . , zd) ∈ Zd | fz11 · · · f

zd
d = 1}. Finally, we

observe that the presented algorithm can be extended further to the class of q-hypergeometric,
multibasic and mixed hypergeometric products [13, 15] and give some further comments how
this can be accomplished.
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