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Abstract. During the past few decades there have been many exam-
ples where computer algebra methods have been applied successfully in
the analysis and construction of numerical schemes, including the com-
putation of approximate solutions to partial differential equations. The
methods range from Gröbner basis computations and Cylindrical Alge-
braic Decomposition to algorithms for symbolic summation and integra-
tion. The latter have been used to derive recurrence relations for efficient
evaluation of high order finite element basis functions. In this paper we
review some of these recent developments.
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1 Overview

Many problems in science and engineering are described by partial differential
equations on non-trivial domains which – except in special cases – can not be
solved analytically. Numerical methods such as finite difference methods (FDM)
or finite element methods (FEM) are used to solve these equations. In the past
decades, FEM have become the most popular tools for obtaining solutions of
partial differential equations on complicated domains [9],[12, 13]. The main ad-
vantage of finite element methods is their general applicability to a huge class of
problems, including linear and nonlinear differential equations, coupled systems,
varying material coefficients and boundary conditions.

Symbolic computation has in the last decades gained importance concerning
ease of use and range of applicability in part due to the availability of bigger and
faster computers and the development of efficient algorithms. There are hybrid
symbolic-numeric algorithms for computing validated results, but there are also
examples of collaborations where symbolic methods have been used to analyze
numerical schemes, to develop new ones, and to simplify or speed up existing
ones. We begin by giving a brief overview on some of these cooperations.

In many numerical methods, large scale linear systems of equations need to be
solved and one popular technique for speeding up the iterative solution process is
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using preconditioning. For this preconditioning matrices that are spectrally close
to the given matrix need to be constructed. Langer, Schicho, and Reitzinger [24]
carried this out by symbolically solving the optimization problem arising in this
construction. For this type of problems Cylindrical Algebraic Decomposition
(CAD) as well as Gröbner bases are applicable (in theory), but practically the
issue of computational complexity has to be circumvented.

Levandovskyy and Martin [25] applied CAD to derive von Neumann stability
of a given difference scheme. They also presented symbolic approaches to derive a
finite difference scheme for a single PDE, where they focused on linear PDEs with
constant coefficients as well as the computation of dispersion relations of a linear
PDE in a symbolic, algorithmic manner. These tools were also implemented in
the computer algebra system Singular.

CAD has been applied earlier by Hong, Liska, and Steinberg [18] in the anal-
ysis of (systems of) ordinary and partial differential-difference equations, where
the necessary conditions for stability, asymptotic stability and well-posedness of
the given systems were transformed into statements on polynomial inequalities
using Fourier or Laplace transforms.

Very recently, Cluzeau, Dolean, Nataf and Quadrat [14, 15] have used alge-
braic and symbolic techniques such as Smith normal forms and Gröbner basis
techniques to develop new Schwarz-like algorithms and preconditioners for linear
systems of partial differential equations.

High order FEM are often preferrable in the numerical solution of PDEs
because of their fast convergence, but they require high computational effort.
Hence, every simplification is welcome. In [2], two types of high order basis func-
tions with good numerical properties were constructed. By means of symbolic
summation algorithms recurrence relations for the fast evaluation of these basis
functions were derived entirely automatically.

Koutschan, Lehrenfeld and Schöberl [23] were concerned with an efficient im-
plementation of a numerical discretization of the time-domain Maxwell’s equa-
tions. As part of this algorithm the tensor product structure of the basis functions
and mixed difference-differential relations satisfied by the underlying orthogonal
polynomials were exploited. Below we comment on this type of relations for the
basis functions discussed next.

For the iterative solution of linear systems it is convenient, if the matrices
are sparse. For different types of partial differential equations and the method of
high order finite elements on simplices (i.e., triangles and tetrahedra), families
of basis functions have been proposed [4] that yield sparse system matrices. The
proof of sparsity was carried out using symbolic computation. We review some
of these results and give some recurrences that can be used in fast computation
of the matrix entries.

As another specific example we present symbolic local Fourier analysis (sLFA)
below. Local Fourier analysis (LFA) has been introduced by Brandt [10] to ana-
lyze multigrid methods. Multigrid methods are common iterative solvers for the
large systems arising in FEM or FDM. LFA gives quantitative statements on
the methods under investigation, i.e., it leads to the determination of sharp con-
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vergence rates. Typically only convergence is proven for these methods and the
convergence rate is estimated using brute force numerical interpolation. In [27]
we introduced sLFA to derive a closed form upper bound for the convergence
rate of a model problem with a particular solver.

2 Brief Introduction to FEM

Before we give two specific examples of a symbolic-numeric cooperation we briefly
introduce the basic concept of FEM. Finite element methods are based on the
variational formulation of partial differential equations. Let us consider as an
example the following simple problem: given f , find u (both from appropriate
function spaces) s.t.

u(x)−∆u(x) = f(x),

in a given domain Ω ⊆ Rd, d = 1, 2, 3, where ∆ denotes the standard Laplace
operator ∆u(x) =

∑d
j=1

∂u
∂xj

. The PDE above is multiplied on both sides by a

smooth function v that vanishes at the boundary of Ω and then integrated over
the given domain. By partial integration (exploiting the compact support of v),
we obtain the variational formulation of the given PDE∫

Ω

u(x)v(x) dx+

∫
Ω

∇u(x) · ∇v(x) dx =

∫
Ω

f(x)v(x), (2.1)

where ∇ denotes the gradient operator. In this variational problem the task is:
given f , find u (in a less restrictive function space) s.t. (2.1) is satisfied for all
test functions v, i.e., all smooth functions vanishing on the boundary of the given
domain.

Fig. 1. FE mesh for a crankshaft, left: surface mesh; right: interior tetrahedral elements

For numerically determining an approximate solution to this problem, the
domain of interest is subdivided into simple geometrical objects such as triangles,
quadrilaterals, tetrahedra, or hexahedra. The approximate solution is expanded
in a (finite) basis of local functions {φi}Ni=1, each supported on a finite number
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of elements in the subdivision. Continuing with our example (2.1), we replace

the solution u(x) by the approximate solution uh(x) =
∑N
i=1 uiφi(x) and use

φj(x) as test functions. This yields the system of equations

N∑
i=1

ui

∫
Ω

(φi(x)φj(x) +∇φi(x) · ∇φj(x)) dx︸ ︷︷ ︸
=:Ai,j

=

∫
Ω

f(x)φj(x)︸ ︷︷ ︸
=:bj

to be solved for the unknown coefficients ui. If we define the matrix A =
(Ai,j)

N
i,j=1 and the vectors b = (bj)

N
j=1, u = (ui)

N
i=1, then the above can be

written as the linear system Au = b to be solved for u.
In general, the FE discretization of a PDE yields a (usually large) system

of linear equations that is commonly solved using iterative methods. There are
three main strategies to improve the accuracy of the approximate solution.

(i) The classical approach is to use on each element basis functions of a fixed low
polynomial degree, say p = 1, 2, and to increase the number of elements in the
subdivision. This strategy of local or global refinement of the mesh is called
the h-version of the finite element method, where h refers to the diameter of
the elements in the subdivision. With this approach, the approximation error
decays algebraically (i.e., with polynomial rate) in the number of unknowns.

(ii) An alternative strategy is to keep the mesh fixed and to locally increase
the polynomial degree p of the basis functions. This method is called the
p-version of the finite element method [28, 29] and in the case of a smooth
solution leads to exponential convergence with respect to the number of
unknowns. But in practical problems the solutions usually are not smooth.
In this case the convergence rate of the p-method again degenerates to an
algebraic one.

(iii) Exponential convergence can be regained by combining both strategies in
the hp-version of the FEM [16],[19],[28]. On parts of the domain where the
sought solution is smooth, few coarse elements with basis functions of high
polynomial degrees are used, whereas in the presence of singularities (caused,
e.g., by re-entrant corners) the polynomial degree is kept low and the mesh
is refined locally towards the singularity. The p- and the hp-method are also
referred to as high(er) order finite element methods.

FE basis functions are usually defined on some reference element and then
transformed to the actual element in the mesh. In the case of one dimension
the elements in the subdivision are just intervals and as reference element we
choose Î = [−1, 1].

We give an example for a hierarchic high order finite element basis, i.e., if the
polynomial degree is increased, the set of basis functions is incremented keep-
ing the previously basis functions, in contrast to nodal basis functions such
as Lagrange polynomials where every time the whole set of basis functions
needs to be replaced. The lowest order basis functions are the hat functions
φ̂0(x) = 1−x

2 , φ̂1(x) = 1+x
2 that are also referred to as vertex basis functions.
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They are the piecewise linear functions that are 1 on the defining vertex and
vanish in all other vertices. The vertex basis functions are supported on the two
neighbouring elements sharing the defining vertex. For the higher order basis
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Fig. 2. FE basis functions in 1D, lowest order and higher order for degrees i = 2, . . . , 7

functions of degree i ≥ 2 a common choice for a conforming basis for our model
problem are integrated Legendre polynomials. Different PDEs require different
continuity of the given basis and for the present problem the basis functions are
requried to be continuous across element interfaces. This property is guaranteed
by construction. Let Pn(x) denote the nth Legendre polynomial [1]. Then, for
n ≥ 1 the nth integrated Legendre polynomial p̂0n(x) is defined as

p̂0n(x) :=

∫ x

−1
Pn−1(s) ds.

Note that for n ≥ 2, p̂0n(−1) = 0 (for obvious reasons) and that p̂0n(1) = 0 (by

the Legendre L2(−1, 1)-orthogonality). The basis functions φ̂i(x) = p̂0i (x) for
i ≥ 2 are supported on a single element and are also referred to as cell based
basis functions.

In the definition of the hierarchic basis in two and three dimensions besides
vertex and cell based basis functions in addtion edge and face based basis func-
tions are constructed. Edge based basis functions are nonzero on the defining
edge and vanish on all others and are supported on only those elements sharing
the defining edge. Face based basis functions are nonzero on the defining face
and vanish on all other faces and are supported on the two elements sharing the
defining face. All basis functions are collected in the vector of basis functions
φ = (φ1, . . . , φN ). Then the system matrix A is already sparse because only some
of the basis functions forming its entries share common support.

One reason, why integrate Legendre polynomials are used as basis functions

is that they are orthogonal w.r.t. the inner product 〈f, g〉 =
∫ 1

−1 f
′(x)g′(x) dx

and the L2 inner product
∫ 1

−1 p̂
0
i (x)p̂0j (x) dx vanishes if |i− j| 6= 0, 2. Hence, the

one-dimensional basis introduced above is constructed to yield an even sparser
system matrix. For quadrilateral or hexahedral elements the basis functions are
typically defined as tensor products of 1D basis functions and thus many of the
sparsity properties can be inherited.
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But for approximating complicated domains often triangular or tetrahe-
dral elements are preferred. These elements are usually considered as collapsed
quadrilateral or hexahedron. The construction of basis functions that yield sparse
system matrices for these elements and that satisfy continuity requirements im-
posed by the underlying PDE (i.e., the underlying function spaces) is not obvi-
ous.

3 Sparsity Optimized Basis Functions

Beuchler and Schöberl [8] introduced triangular basis functions that yield sparse
system matrices of the type (2.1). These basis functions are defined using inte-

grated Jacobi polynomials [1]. Let P
(α,β)
n (x) denote the nth Jacobi polynomial.

Then, we define the nth integrated Jacobi polynomial as

p̂αn(x) :=

∫ x

−1
P

(α,0)
n−1 (s) ds.

Integrated Legendre polynomials are special cases of these polynomials as Pn(x) =

P
(0,0)
n (x). The sparsity of the system matrix has been proven by explicitly com-

puting the matrix entries by exploiting relations between Jacobi polynomials of
different parameters. It has been shown that the rows of the inner block of the
system matrix have a constant number of nonzero matrix entries independent of
the maximal polynomial degree.

An extension of this construction to tetrahedral elements was presented in [3].
Again the proof of sparsity of the system matrix was accomplished by explicitly
computing the matrix entries. In three dimensions this was no longer feasible to
be carried out by hand. Hence the computations were handed over to a com-
puter program that evaluated the integrals with a rewriting procedure. In this
process relations between Jacobi polynomials of different parameters were again
exploited. Let us note that these relations can be discovered and proven using
automatic tools for symbolic summation. In our work, we applied the packages
HolonomicFunctions [22] and SumCracker [20], both implemented in Mathemat-
ica.

Subsequently, the construction of basis functions was extended to cover fur-
ther function spaces (i.e., other types of PDEs) [6, 7]. In all these cases the proof
of sparsity was carried out using symbolic computation. The nonzero matrix
entries of the different system matrices are rational functions in the polynomial
degrees of the basis functions. The sparsity already eases handling the system
matrices. Furthermore in [5] an algorithm was presented that computes the ma-
trix entries in optimal complexity based on sum factorization and exploiting the
nonzero pattern of the system matrix. In the remainder of this section we want
to point out how the techniques of [23] can also be applied to the sparsity op-
timized basis functions and how recurrences can be used to quickly set up the
system matrices.
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As a specific example, we consider the following cell based basis functions de-
fined on the triangular reference triangle T̂ with vertices (−1,−1), (1,−1), (0, 1)

φ̂i,j(x, y) = p̂0i

(
2x

1− y

)(
1− y

2

)i
p̂2ij (y),

that are optimal for the example PDE stated in the previous section. In [23] cell
based basis functions that are orthogonal on the reference triangle w.r.t. the L2

inner product were used. In the algorithm to evaluate the gradients of the basis
functions, relations between shifts of Jacobi polynomials and their derivatives
(that are Jacobi polynomials with different parameters) were used. Furthermore,
these relations are required to have coefficients that are independent of the vari-
ables x and y as they are to be turned into relations between integrals over
products of these basis functions. Such relations can be computed automatically
using Koutschan’s package HolonomicFunctions. To facilitate computations, we
use a different representation of the integrated Jacobi polynomials that relates
them to classical Jacobi polynomials,

p̂αn(x) =
1 + x

n
P

(α−1,1)
n−1 (x), p̂0m(x) =

x2 − 1

2(m− 1)
P

(1,1)
m−2(x),

valid for n ≥ 1 and m ≥ 2. Then, in order to obtain the corresponding mixed
relations for φ̂i,j(x, y) as defined above, one proceeds as follows:

In[1]= ann = Annihilator[φ̂i,j[x, y], {S[i], S[j],Der[x],Der[y]}]
Here S[n] (and below Sn) denotes the forward shift in n and Der[x] (and below

Dx) the derivative w.r.t. x. This command quickly delivers the annihilating ideal
for the given input by performing the necessary closure properties. To determine
a relation of the type we need in this annihilating ideal we use the command
“FindRelation”:

In[2]= FindRelation[ann,Eliminate → {x, y},Pattern → { , , 0 | 1, 0}]

Out[2]= {(2i+ j + 3)(2i+ j + 4)(2i+ 2j + 3)S2
i S

2
j Dx− (j + 3)(j + 4)(2i+ 2j + 3)S4

j Dx−
4(j + 1)(i + j + 2)(2i + j + 3)S2

i Sj Dx + 4(j + 3)(i + j + 2)(2i + j + 1)S3
j Dx +

j(j + 1)(2i + 2j + 5)S2
i Dx − 2(2i + 1)(i + j + 2)(2i + 2j + 3)(2i + 2j + 5)SiS

2
j −

(2i + j)(2i + j + 1)(2i + 2j + 5) S2
j Dx}

In[3]= rel = FindRelation[ann,Eliminate → {x, y},Pattern → { , , 0, 0 |
1}];

In[4]= Support[rel]

Out[4]= {{S2
i S

4
j Dy, S

6
j Dy, S

2
i S

3
j Dy, S

5
j Dy, S

2
i S

3
j , S

2
i S

2
j Dy, S5

j , S
4
j Dy, S

2
i S

2
j , S

2
i SjDy, S

4
j ,

S3
j Dy, S

2
i Sj , S

2
i Dy, S

3
j , S2

j Dy}}

The option “Eliminate” specifies which variables are not to occur in the
coefficients and the option “Pattern” defines the admissible exponents for the
operators, i.e., in the first call above any exponent is allowed for the shift oper-
ators, whereas Dx may occur with power at most one and Dy must not be in
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the result altogether. For the second example we only display the support of the
resulting relation for sake of space. For this example, the computation times are
still neglible. The same procedure can be carried out for the tetrahedral basis
functions; however the comuputational effort increases significantly.

Another way to speed up the computations is to use recurrence relations for
the nonzero parts. We continue with the example from the previous section and
consider the two integrals constituting the system matrix A separately. If

Mij;kl =

∫ ∫
T̂

φ̂i,j(x, y)φ̂k,l(x, y) d(x, y),

then the matrix built from these entries is nonzero only if |i − k| ∈ {0, 2} and
|i − k + j − l| ≤ 4. In terms of the offset we have for f(d, i, j, l) = Mi,j;i+d,l for
d = 0, 2 that

f(d, i, j, l) =
2i+ j + l − 8 + d

2i+ j + l + 2 + d
f(d, i, j − 1, l − 1)

+
j − l − 5− d

2i+ j + l + 2 + d
f(d, i, j − 1, l)

− j − l + 5− d
2i+ j + l + 2 + d

f(d, i, j, l − 1),

with different initial values. This recurrence was determined using multivariate
guessing with Kauers’ package Guess [21]. Since all matrix entries have been
computed explicitly, the correctness of the recurrence can easily be verified.

For the second integral defining the system matrix A, the following integrals
need to be computed:

Kxx
ij;kl =

∫ ∫
T̂

d

dx
φ̂i,j(x, y)

d

dx
φ̂k,l(x, y)d(x, y),

Kyy
ij;kl =

∫ ∫
T̂

d

dy
φ̂i,j(x, y)

d

dy
φ̂k,l(x, y)d(x, y).

The sparsity result for these matrices yields that Kxx
ij;kl is nonzero only if k = i

and |j− l| ≤ 2, and, Kyy
ij;kl is nonzero only if |i−k| ∈ {0, 2} and |i−k+ j− l| ≤ 2

(i.e., in both cases we have nonzero only if |i−k+ j− l| ≤ 2). With g(d, i, j, l) =

Kξζ
i,j;i+d,l either of the matrix entries above in terms of the corresponding offsets

satisfies the recurrence

g(d, i, j, l) =
2i+ j + l − 6 + d

2i+ j + l + d
g(d, i, j − 1, l − 1) +

j − l − 3− d
2i+ j + l + d

g(d, i, j − 1, l)

− j − l + 3− d
2i+ j + l + d

g(d, i, j, l − 1),

with different initial values. Let us also note that the integrals over the mixed
products d

dx φ̂i,j(x, y) ddy φ̂k,l(x, y) (that enter in a more general PDE allowing for

a coefficient matrix) satisfy the same recurrence.
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4 Symbolic Local Fourier Analysis

The typically large linear systems that arise in FEM are usually solved approx-
imately using some iterative scheme. The multigrid method is such an iterative
solver and it operates on (at least) two grids in the finite element discretization.
It has two main features: smoothing on the finer grid and error correction on
the coarser grid. Intuitively speaking, the smoother is applied to dampen out
the oscillatory part of the error. After applying a few such steps, the smooth
part of the defect is dominant and the coarse-grid correction takes care of the
low-frequency modes of the overall error.

In multigrid theory commonly convergence is proven, but neither sharp nor
realistic bounds for convergence rates are given [17]. Local Fourier analysis [10]
is a technique to analyze multigrid methods (and also various other numerical
methods) that gives quantitative estimates, i.e., it leads to the determination of
sharp convergence rates. Although it can be justified rigorously only in special
cases such as rectangular domains with uniform grids and periodic boundary
conditions, still results obtained with local Fourier analysis can be carried over
rigorously to more general classes of problems [11].

In order to obtain a bound for the convergence rate, the supremum of some
rational function needs to be computed. Usually this is merely resolved by nu-
merical interpolation. With algorithms carrying out quantifier elimination such
as CAD it is possible to determine an exact bound. This combination of classical
local Fourier analysis and symbolic computation we refer to as symbolic local
Fourier analysis (sLFA) [26, 27]. The proposed approach is certainly applicable
to different kinds of problems and different types of solvers. Next, we give an
overview of the main results of [27].

The particular model problem that we consider is a PDE-constrained opti-
mization problem which has to be discretized so that numerical methods can be
applied. It is an optimal control problem of tracking type: given a desired state
yD and a regularization (or cost) parameter α > 0, find a state y and a control
u s.t. they minimize

J(y, u) :=
1

2

∫
Ω

(y(x)− yD(x))2 dx+
α

2

∫
Ω

u2(x) dx,

subject to the elliptic boundary value problem

−∆y = u inΩ and y = 0 on ∂Ω,

where Ω ⊆ R2 is a given domain with sufficiently smooth boundary. For the
discretization we use FEM with rectangular elements and bilinear basis functions
(i.e., low order FEM). As a solution method we apply a two-grid algorithm. The
steps in the iteration consist of some ν1 (pre-)smoothings steps, then the coarse
grid correction, followed by some ν2 (post-)smoothing steps. The iteration matrix
for this can be written as

TGk−1k := Sν2k
(
I − P kk−1A−1k−1P

k−1
k Ak

)︸ ︷︷ ︸
CGk−1k :=

Sν1k , (4.2)
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where Ak and Ak−1 denote the finite element system matrix on the finer and

coarser level, respectively, P kk−1 and P k−1k =
(
P kk−1

)T
are the intergrid transfer

operators prolongation and restriction, I denotes the identity matrix, and Sk is
the matrix of the smoothing step

Sk = I − τÂk
−1
Ak

with preconditioner Âk
−1

. The matrix CGk−1k above is the iteration matrix of
the coarse grid correction, i.e., at the coarse grid an exact solve is performed.

Summarizing, if x̄k denotes the exact solution on the fine grid, and x
(n)
k , x

(n+1)
k

the nth and n+ 1st iterate, then

x
(n+1)
k − x̄k = TGk−1k

(
x
(n)
k − x̄k

)
.

The convergence rate of the two-grid method can be bounded from above by the
matrix norm of the iteration matrix, i.e.,

q ≤ qTG = ‖TGk−1k ‖.

This estimate is sharp if we consider the supremum over all possible starting
values or, equivalently, all possible right-hand sides. If qTG < 1 then the method
converges for all starting values. If furthermore qTG is independent of the mesh
size and regularization parameter (or any other parameter) then the convergence
is robust and optimal, i.e., the number of iterations does not depend on the pa-
rameters. In local Fourier analysis the iteration matrix is replaced by its symbol,
where for our purpose it is sufficient to know that it is a matrix of fixed finite
dimension. For the model problem at hand with the given discretization it is
an 8 × 8 matrix. Instead of bounding the norm of the iteration matrix TGk−1k

itself, the norm of the symbol is bounded, which can be expressed as the spectral
radius of a certain matrix. For the full definitions of these matrices we refer (for
sake of space) to [27] and its accompanying notebooks1. Up to this point we
followed the steps of classical local Fourier analysis and ususally the bound for
the spectral radius is approximated using numerical interpolation. After some
suitable substitutions the entries of the symbol are rational functions and the
supremum of the spectral radius can be computed explictely (at least in theory)
using CAD.

As it turned out, only for the one-dimensional case, the spectral radius of
the 4× 4 two-grid iteration matrix could be estimated fully in an all-at-once ap-
proach. In two dimensions, the size of the entries of the involved matrices became
prohibitively large. Hence, we proceed in two steps and treat the smoothing rate
and the coarse grid correction separately and obtain this way an upper bound
for the convergence rate. This task is computationally rather ambitious. Let N
denote the matrix under discussion. It is a symmetric matrix that depends on
four parameters (c1, c2, η, q) ∈ [0, 1]2 × (0,∞)2 (the mesh parameter h and the

1 available for download at http://www.risc.jku.at/people/vpillwei/sLFA/
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regularization parameter α are hidden by substitution in the parameter η). After
pulling out the common denominator

256
(
16c42c

4
1η + 16c22c

4
1η + 4c41η + 16c42c

2
1η + 16c22c

2
1η + 4c21η + 4c42η + 4c22η

+144c42c
4
1 − 72c22c

4
1 + 9c41 − 72c42c

2
1 − 126c22c

2
1 + 36c21 + 9c42 + 36c22 + η + 36

)
,

the matrix has polynomial entries of degrees up to 6 in c1, c2 and degrees up
to 4 in q. Already the symbolic computation of the eigenvalues is not possible
using the built-in functions of a computer algebra system. Since the matrix
depends polynomially on q, it is possible to determine the eigenvalues using
exact interpolation in q. This way we find that the eigenvalues are given by

0, q4,
(
e(q) +

√
d(q)

)
and

(
e(q)−

√
d(q)

)
with multiplicity two each, where e and d are rational functions in the unknowns
c1, c2 and η that are too large to be displayed here. With the eigenvalues at hand
it is readily verified that the largest eigenvalue in absolute value is e(q)+

√
d(q).

It remains to determine a bound for this eigenvalue uniformly in the parameters
c1, c2, and η depending on the remaining variable q (the smoothing rate).

In theory, this bound can be determined entirely automatically using CAD.
In practice, however, these computations become too complicated to be carried
out in reasonable time. By considering the boundary of the parametric domain
for (c1, c2, η) the following simple guess for this bound could be found:

qGUESS(q) :=

{
q2+3
4 , 0 < q ≤ Q,

q
√
q2 + 1, Q < q < 1.

The proof that this guess actually gives the true bound can be carried out with
the aid of CAD, if the calculations are broken down to smaller pieces. This
bound of the convergence rate is not sharp – in fact numerical experiments
indicate much faster convergence. This is because the analysis had to be carried
out in two steps. Nonetheless, the result gives quantitative statements on both,
the choice of the parameter τ used in the smoothing iteration, and the number
of smoothing steps ν that have to be applied. Such results cannot be obtained
using a classical analysis based on smoothing and approximation property, even
though the choice of the parameters is a key issue in the implementation of a
numerical method.

It would be desirable to carry out sLFA all at once on the full iteration matrix.
Even though this is currently out of scope of our computational capabilities, the
two-step analysis carried out above hints on a heuristic procedure to determine
the convergence rate of the full method depending on the damping parameter τ
of the smoothing iteration.

Let σ(c1, c2, η, τ) be the spectral radius of the symbol (an 8 × 8 matrix) of
the two-grid iteration matrix TGk−1k as defined in (4.2). Then in the all-at-once
approach we need to bound σ(c1, c2, η, τ) uniformly in (c1, c2, η) ∈ [0, 1]2×(0,∞),
i.e., we need to compute

q2TG(τ) = sup
(c1,c2)∈[0,1]2

sup
η>0

σ(c1, c2, η, τ).
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As the supremum is the least upper bound, q2TG(τ) is the smallest λ(τ) satisfying

∀ (c1, c2) ∈ [0, 1]2 ∀ η > 0: σ(c1, c2, η, τ) < λ.

Computing λ(τ) could be done by quantifier elimination using CAD entirely
automatically, provided that the spectral radius is given (and an algebraic func-
tion). The symbol of the iteration matrix is non-symmetric with only few zero
entries and again everything can be brought to a common denominator

16384(η + 36)2
(
16c42c

4
1η + 16c22c

4
1η + 4c41η + 16c42c

2
1η + 16c22c

2
1η

+ 4c21η + 4c42η + 4c22η + 144c42c
4
1 − 72c22c

4
1 + 9c41 − 72c42c

2
1 − 126c22c

2
1

+36c21 + 9c42 + 36c22 + η + 36
)
.

The matrix entries are now polynomials of degrees either 9 or 10 in c1, c2, degrees
either 2 or 3 in η, and degree 4 in τ . Plugging in specific values quickly shows
that the general formula for the eigenvalues does not have a simple closed form
– other than as the roots of the characteristic polynomial – as the symbol of the
coarse grid correction above.

However, both the upper bound computed in the two step analysis as well
as the sharp bound in an all-at-once approach for the one-dimensional case
were obtained by considering limiting cases at the boundary of the parameter
domain [27]. Hence, as heuristics, we propose to consider limiting cases of the
symbol TG, compute the eigenvalues there using a computer algebra system,
and determine their supremum using CAD. This procedure is backed up by the
rigorous analysis carried out in the other cases.

First, if we consider the corner (c1, c2) = (1, 1), the symbol degenerates to
the singular diagonal matrix diag(0, 0, ξ0, ξ0, ξ0, ξ0, ξ1, ξ1), where

ξ0 =

(
9ητ2 − 24ητ + 16η + 1296τ2 − 1728τ + 576

)2
256(η + 36)2

,

ξ1 =

(
ητ2 − 8ητ + 16η + 576τ2 − 1152τ + 576

)2
256(η + 36)2

,

are the nonzero eigenvalues of the matrix. The upper bound for these eigenvalues
can be determined easily by considering the limits η → 0,∞.

Secondly, we consider the values (c2, η) = (1, 0), for which the symbol is a
singular diagonal matrix with the eigenvalues

0, 1
256 (c1τ − 5τ + 4) 4, 1

256 (c1τ + 5τ − 4) 4,
1

256

(
9c21τ

2 + 9τ2 − 24τ + 16
) (

9c41τ
2 + 54c21τ

2 − 72c21τ + 16c21 + 9τ2 − 24τ + 16
)
.

The supremum of these eigenvalues for all c1 ∈ [0, 1] can then be computed
exactly using CAD. Restricting the matrix to values of the remaining parts of
the parametric domain does not yield any further information. So it turns out
that the spectral radius can be bounded by taking the supremum of these two
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special cases. This way we obtain the following guess for the supremum of the
norm:

qTG(τ) = max

{
1

16
(τ − 4)2,

1

4
|3τ − 2|

√
9τ2 − 12τ + 8

}
.

This guess was, as in the rigorous cases, obtained rather quickly. Compared to
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Fig. 3. Guessed bound (gray line) vs brute force interpolation Maxima (black points)

the large entries in the symbol, the final bound is again rather simple, but not
quite of the form that would easily be used as an ansatz for numerical inter-
polation. Furthermore, since the symbolic bound was found at a point where a
singularity occurs, these values cannot be recovered by brute force interpolation.
This also becomes apparent when comparing the guessed bound to values ob-
tained using a gridding approach for τ close to zero or τ much larger than one,
see Figure 3. We propose to use this heuristic approach also for other PDEs in
order to obtain a more precise insight on the dependence of the parameters.
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