PROOF OF A CONJECTURE BY AHLGREN AND ONO

SILVU RADU

Abstract. Let \(p(n) \) denote the number of partitions of \(n \). In this paper we prove that if \(\{A_n + B\} \) is an arithmetic progression and \(\ell \geq 5 \) a prime, such that
\[
p(A_n + B) \equiv 0 \pmod{\ell}, \quad n \in \mathbb{N}.
\]
Then \(\ell | A \) and \(\left(\frac{24B-1}{\ell} \right) \neq \left(\frac{-1}{\ell} \right) \). This settles an open problem by Scott Ahlgren and Ken Ono. Our proof is based on results by Deligne and Rapoport.

1. Introduction

For \(\ell \geq 5 \) a prime we define
\[
\delta_\ell := \frac{\ell^2 - 1}{24}, \quad \epsilon_\ell := \left(\frac{-6}{\ell} \right)
\]
and
\[
S_\ell := \{ \beta \in \{0, \ldots, \ell - 1\} : \left(\frac{\beta + \delta_\ell}{\ell} \right) \equiv 0 \pmod{\ell} \}.
\]
Let \(p(n) \) denote the number of partitions of \(n \in \mathbb{N} \). The purpose of this paper is to prove the following theorem conjectured by Scott Ahlgren and Ken Ono [2]:

Theorem 1.1. Suppose that \(\ell \geq 5 \) is prime, \(A, B \in \mathbb{N} \) such that \(A > B \) and
\[
p(A_n + B) \equiv 0 \pmod{\ell}, \quad n \in \mathbb{N}.
\]
Then \(\ell | A \) and there exists \(\beta \in S_\ell \) such that \(B \equiv \beta \pmod{\ell} \).

The importance of this theorem is motivated by a previous paper [1] by the authors where they prove the following theorem:

Theorem 1.2 (Ahlgren and Ono). If \(\ell \geq 5 \) is prime, \(m \) is a positive integer, and \(\beta \in S_\ell \), then there are infinitely many non-nested arithmetic progressions \(\{A_n + B\} \subseteq \{\ell n + \beta\} \), such that for every integer \(n \) we have
\[
p(A_n + B) \equiv 0 \pmod{\ell^m}.
\]

In [1, Sect. 1] the authors write: “In Section 4, we consider those progressions \(\ell n + \beta \) for \(\beta \notin S_\ell \). We give heuristics that cast doubt on the existence of congruences within these progressions.” The proof of the Theorem 1.1 is based on deep results by Deligne and Rapoport [3] and some results in [5] or [7]. We are also using theorems 4.2, 4 and 4.4 which were used in a previous paper and are also based on

S. Radu was supported by DK grant W1214-DK6 of the Austrian Science Funds FWF.
results in [3]. Our contribution is the Lemma 5.5 which takes the main part of the last section.

The organization of this paper is as follows. In Section 2 we prove Theorem 1.1 by citing several theorems in Section 4. In Section 3 we give some preliminaries to modular forms. In Section 4 we make a classification of congruences in the sense that we show that some congruences are implied by others in a progression with smaller modulus. In Section 5 we prove our main result Lemma 5.5 which is needed for proving Lemma 4.6 in Section 4. Also in Section we prove Lemma 5.6 which is a technical result needed to prove Lemma 4.5 in Section 4.

We continue the introduction with the following reformulation of the set S_ℓ in Theorem 1.1.

Lemma 1.3. For $\ell \geq 5$ a prime we have

$$S_\ell = \left\{ \beta \in \{0, \ldots, \ell - 1\} : \left(\frac{24\beta - 1}{\ell}\right) \neq \left(\frac{-1}{\ell}\right) \right\}.$$

Proof. First note that

(1) \[\left(\frac{\beta + \delta_\ell}{\ell}\right) = 0 \iff \left(\frac{24}{\ell}\right) \left(\frac{\beta + \delta_\ell}{\ell}\right) = 0 \iff \left(\frac{24\beta - 1}{\ell}\right) = 0. \]

Similarly

(2) \[\left(\frac{\beta + \delta_\ell}{\ell}\right) = -\epsilon_\ell \iff \left(\frac{24}{\ell}\right) \left(\frac{\beta + \delta_\ell}{\ell}\right) = -\left(\frac{24}{\ell}\right) \epsilon_\ell \iff \left(\frac{24\beta - 1}{\ell}\right) = -\left(\frac{-1}{\ell}\right). \]

Note that \(\left(\frac{1}{\ell}\right) = (-1)^{\frac{\ell-1}{2}} \neq 0 \) implies that for any $\beta \in \{0, \ldots, \ell - 1\}$

$$\left(\frac{24\beta - 1}{\ell}\right) = 0 \quad \text{or} \quad \left(\frac{24\beta - 1}{\ell}\right) = -\left(\frac{-1}{\ell}\right)$$

is equivalent to

$$\left(\frac{24\beta - 1}{\ell}\right) \neq \left(\frac{-1}{\ell}\right),$$

which together with (1) and (2) implies the desired result. \qed

2. The proof

Let $A, B \in \mathbb{N}$ with $A > B$ such that

$$p(An + B) \equiv 0 \pmod{\ell}, \quad n \in \mathbb{N}.$$

Then by Theorem 4.3 there exists a positive integer Q coprime to 6 dividing A and an $\tilde{t} \in \{0, \ldots, Q - 1\}$ with $\tilde{t} \equiv B \pmod{Q}$ such that

$$p(Qn + \tilde{t}) \equiv 0 \pmod{\ell}, \quad n \in \mathbb{N}.$$

Then $\ell | Q$ because if not, then by Theorem 4.4 there exists a positive integer n_0 such that $\ell \nmid p(Qn_0 + \tilde{t})$. Hence we may write $Q = Q_0 \ell^r$ for some positive integers
Q_0, r with $\gcd(Q_0, \ell) = 1$. Now if $24t - 1 \equiv 0 \pmod{\ell}$, then we are finished. So assume that $24t - 1 \not\equiv 0 \pmod{\ell}$. Then by Lemma 4.5

$$ p(\ell Q_0 n + \mathfrak{t}^*) \equiv 0 \pmod{\ell}, \quad n \in \mathbb{N}, $$

where \mathfrak{t}^* is the minimal nonnegative integer such that $\mathfrak{t}^* \equiv \mathfrak{t} \pmod{\ell Q}$. Next we apply Lemma 4.6 to the congruence (3) and we obtain

$$ 24t^* - 1 \not\equiv 0 \pmod{\ell} $$

which together with Lemma 1.3 implies the desired result.

3. Preliminaries

For f a holomorphic function on the upper half plane \mathbb{H} and $\gamma = \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in \text{SL}_2(\mathbb{Z})$ (the set of all 2×2 matrices with integer entries and determinant 1), we define

$$ (f | k \gamma)(\tau) := (c\tau + d)^{-k} f \left(\frac{a\tau + b}{c\tau + d} \right), \quad \tau \in \mathbb{H}. $$

For every positive integer M we denote by $\Gamma(M)$ the set of all matrices in $\text{SL}_2(\mathbb{Z})$ congruent to $\left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right)$ modulo M. For k an integer and Γ a subgroup of $\text{SL}_2(\mathbb{Z})$ containing $\Gamma(N)$ for some N we denote by $M_k(\Gamma)$ the set of all holomorphic functions on the upper half plane \mathbb{H} satisfying

- for all $\gamma \in \Gamma$ we have $f | k \gamma = f$;
- for all $\xi \in \text{SL}_2(\mathbb{Z})$ the function $(f | k \xi)(\tau)$ admits a Laurent series expansion in the variable $q_N := e^{2\pi i \tau/N}$. We call this expansion the q-expansion of $f | k \gamma$.

For N a positive integer let

$$ \Gamma_0(N) := \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in \text{SL}_2(\mathbb{Z}) : c \equiv 0 \pmod{N} \right\} $$

and

$$ \Gamma_1(N) := \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in \text{SL}_2(\mathbb{Z}) : a, d \equiv 1 \pmod{N}, c \equiv 0 \pmod{N} \right\}. $$

In particular $\Gamma(N) \subseteq \Gamma_1(N) \subseteq \Gamma_0(N)$.

4. A Classification of Congruences

Definition 4.1. For m a positive integer and $t \in \{0, \ldots, m - 1\}$ we define $P_m(t)$ to be the set of all $t' \in \{0, \ldots, m - 1\}$ such that

$$ t' \equiv ta^2 + \frac{1 - a^2}{24} \pmod{m}, $$

for some $a \in \mathbb{Z}$ with $\gcd(a, 6m) = 1$.

We have the following important theorems:
Theorem 4.2. Let \(m, l \) be positive integers and \(t \in \{0, \ldots, m-1\} \) such that
\[
 p(mn + t) \equiv 0 \pmod{l}, \quad n \in \mathbb{N}.
\]
Then for all \(t' \in P_m(t) \) we have
\[
 p(mn + t') \equiv 0 \pmod{l}, \quad n \in \mathbb{N}.
\]

Theorem 4.3. Let \(a, b, Q, \nu \in \mathbb{N} \) and \(t \in \{0, \ldots, 2^a3^bQ - 1\} \) with \(\nu, Q > 0 \) and \(\gcd(Q, 6) \). Assume that
\[
 p(2^a3^bQn + t) \equiv 0 \pmod{\nu}, \quad n \in \mathbb{N}.
\]
Then
\[
 p(Qn + \ell) \equiv 0 \pmod{\nu}, \quad n \in \mathbb{N},
\]
where \(\ell \) is the minimal nonnegative integer such that \(t \equiv \ell \pmod{Q} \).

Theorem 4.4. Let \(Q, \nu \) be positive integers such that \(\gcd(Q, 6\nu) = 1, \nu \neq 1 \) and \(t \in \{0, \ldots, Q-1\} \). Then there exists an integer \(n \) such that \(\nu \nmid p(Qn + t) \).

We prove

Lemma 4.5. Let \(r, Q, \nu \) be positive integers, \(\ell \geq 5 \) a prime and \(t \in \{0, \ldots, \ell^rQ - 1\} \). Let \(b \) be the maximal integer such that \(\ell^b | (24t - 1) \). If \(r \geq b + 1 \) and
\[
 p(\ell^rQn + t) \equiv 0 \pmod{\nu}, \quad n \in \mathbb{N},
\]
then
\[
 p(\ell^{b+1}Qn + \ell) \equiv 0 \pmod{\nu}, \quad n \in \mathbb{N},
\]
where \(\ell \) is the minimal nonnegative integer such that \(t \equiv \ell \pmod{\ell^{b+1}Q} \).

Proof. By (6) and Theorem 4.2 we have
\[
 p(\ell^rQn + t') \equiv 0 \pmod{\nu}, \quad n \in \mathbb{N}, \quad t' \in P_{\ell^rQ}(t).
\]
By (4.1) \(t' \in P_{\ell^rQ}(t) \) iff there exists \(a \in \mathbb{Z} \) with \(\gcd(a, 6\ell Q) = 1 \) such that
\[
 a^2(24t - 1) \equiv 24t' - 1 \pmod{\ell^r Q},
\]
and \(t' \in \{0, \ldots, \ell^rQ - 1\} \). By Lemma 5.6 we obtain that for each \(l \in \mathbb{Z} \) there exist \(a_{r,l} \) with \(\gcd(a_{r,l}, 6\ell Q) = 1 \) such that
\[
 a_{r,l}^2(24t - 1) \equiv 24(t + l\ell^{b+1}Q) - 1 \pmod{\ell^r Q},
\]
which implies by (7) that
\[
 \ell + l\ell^{b+1}Q \in P_{\ell^rQ}(t)
\]
for every \(l \in \{0, \ldots, \ell^{b-1}-1\} \), implying together with Theorem 4.2 that
\[
 p(\ell^rQn + \ell + l\ell^{b+1}Q) \equiv 0 \pmod{\nu}, \quad n \in \mathbb{N},
\]
for every \(l \in \{0, \ldots, \ell^{b-1}-1\} \). Since
\[
 \ell^rQn + \ell + l\ell^{b+1}Q = \ell^{b+1}Q(\ell^{b-1}n + l) + \ell
\]
and every nonnegative integer \(m \) can be written as \(m = \ell^{b-1}n + l \) for some nonnegative integers \(n, l \) with \(l \in \{0, \ldots, \ell^{b-1}-1\} \) we conclude
\[
 p(\ell^{b+1}Qm + \ell) \equiv 0 \pmod{\nu}, \quad m \in \mathbb{N}.
\]
\[\square\]
Lemma 4.6. Let $\ell \geq 5$ be a prime, Q a positive integer such that $\gcd(Q, 6\ell) = 1$ and $\beta \in \{0, \ldots, \ell Q - 1\}$. Assume that
\begin{equation}
(24\beta - 1) \equiv 0 \pmod{\ell}, \quad n \in \mathbb{N}.
\end{equation}
Then \(\left(\frac{24\beta - 1}{\ell}\right) \neq \left(\frac{-1}{\ell}\right)\).

The proof is based on the following lemma by Deligne and Rapoport:

Theorem 4.7. [3, VII, Cor. 3.12] Let k, N be positive integers, p a prime number and p^n the highest power of p dividing N, $\gamma = \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right) \in \text{SL}_2(\mathbb{Z})$ and $f \in M_k(\Gamma(N))$. Let π be a prime ideal in $\mathbb{Z}[e^{2\pi i/N}]$ lying above p. Assume that the coefficients in the q-expansion of f are in $\mathbb{Z}[e^{2\pi i/N}]$. Let ν be a nonnegative integer such that $f \equiv 0 \pmod{\pi^\nu}$. Then $f|_{\kappa, \gamma} \equiv 0 \pmod{\pi^\nu}$.

Proof of Lemma 4.6: Assume that
\begin{equation}
\left(\frac{24\beta - 1}{\ell}\right) = \left(\frac{-1}{\ell}\right).
\end{equation}
Then there exists $a \in \mathbb{Z}$ such that
\begin{equation}
(24\beta - 1)a^2 \equiv -1 \pmod{\ell},
\end{equation}
which implies together with $\gcd(Q, 6\ell) = 1$ that there exists $\overline{\pi} \in \mathbb{N}$ with $\gcd(\overline{\pi}, 6\ell Q) = 1$ such that
\begin{equation}
\overline{\pi} \equiv aQ \pmod{\ell}.
\end{equation}
Let $\overline{\beta} \in \{0, \ldots, \ell Q - 1\}$ be uniquely defined by the relation
\begin{equation}
\overline{\pi}^2(24\beta - 1) \equiv (24\beta - 1) \pmod{\ell Q}.
\end{equation}
By [7, Th. 2.14], we have for a suitable positive integer k
\begin{equation}
G(k)_{Q, \overline{\beta}} := \eta^{24k} \left(q^{\frac{2\pi i}{12}} \sum_{n=0}^{\infty} p(\ell Qn + \overline{\beta})q^n \right)^{24Q} \in M_{12(k-\ell Q)}(\Gamma_1(\ell Q)),
\end{equation}
where $\eta(\tau) := e^{\pi i \tau/12} \prod_{n=1}^{\infty} (1 - e^{2\pi i n \tau})^{24}$, $\tau \in \mathbb{H}$ is the Dedekind eta function and satisfies $\eta^{24}|_{12}\gamma = \eta^{24}$ for all $\gamma \in \text{SL}_2(\mathbb{Z})$.

Let $X > 0$ and Y be integers such that
\begin{equation}
24^2 \ell X + YQ = 1.
\end{equation}
Then \(\left(\frac{1-24^2X}{YQ}\right) \in \text{SL}_2(\mathbb{Z})\). We apply Lemma 5.5 with $\gamma = \left(\begin{smallmatrix} A & B \\ C & D \end{smallmatrix}\right) = \left(\begin{smallmatrix} 1 & -24^2X \ell \\ YQ & 1 \end{smallmatrix}\right)$, $x = 24\ell X$, $y = Y$, $m = \ell Q$, $t = \overline{\beta}$ and $r = -1$. We then obtain
\footnote{For given positive integers k, N and $f \in M_k(\Gamma(N))$ with the coefficients of the q-expansion of f in $\mathbb{Z}[1/N, e^{2\pi i/N}]$ we obtain by Theorem [3, VII, Cor. 3.13] that for $\gamma \in \text{SL}_2(\mathbb{Z})$ the coefficients in the q-expansion of $f|_{\kappa, \gamma}$ have the same property. In this case there exists also a power N^j of N such that for $\gamma \in \text{SL}_2(\mathbb{Z})$ the coefficients in the q-expansion of $N^jf|_{\kappa, \gamma}$ are in $\mathbb{Z}[e^{2\pi i/N}]$ (see for example [3, VII, Cor 3.11]). Consequently for a given prime p and a prime ideal $\pi \in \mathbb{Z}[e^{2\pi i/N}]$ lying above p it makes sense to write $f|_{\kappa, \gamma} \equiv 0 \pmod{\pi^\nu}$ if all the coefficients in the q-expansion of $f|_{\kappa, \gamma}$ lie in the ideal π^ν.}
\[e^{\frac{\pi i (3 - Q)}{16}} e^{-\frac{48\pi i X(24\pi - 1)}{Q}} g(\ell Q, \beta, -1, \gamma \tau)(-i(\ell \tau + Y Q))^{1/2} \]

\[= \frac{1}{Q} \sum_{d|Q} d^{-1/2} e^{-\frac{\pi i (d-1)}{4}} \xi^{-1}(d) e^{\frac{2\pi i (24d - 1)\ell^2 \tau}{24Q^2}} \times \sum_{n=0}^{\infty} e^{\frac{2\pi i n^2}{q}} p(\ell n + t_d) T(n, d) \]

where \(t_d \) is the unique integer satisfying

\[(24\beta - 1) \equiv d^2(24t_d - 1) \pmod{\ell}, \quad 0 \leq t_d < \ell - 1, \]

\[\xi(d) = \left(\frac{24\ell}{Q/d} \right) (-1)^{\frac{Q^2 - 1}{d - 1}}, \]

\[T(n, d) = \sum_{\substack{0 < s < Q/d \\text{gcd}(s, Q/d) = 1}} \left(\frac{24\ell s}{Q/d} \right) e^{-\frac{48\pi i X}{Q/d}} (s/d(24(\ell n+t_d)-1)+s(24\pi - 1)) \]

and for \(s, d \in \mathbb{Z} \) such that \(d|Q \) and \(\text{gcd}(s, Q/d) = 1 \), the symbol \(s/d \) is any integer satisfying \(s \cdot t_{s,d} \equiv 1 \pmod{Q/d} \). Next we observe that \(T(n, Q) = 1 \) for all \(n \in \mathbb{N} \) because of \(\frac{Q}{d} = 1 \) for \(a \in \mathbb{Z} \). Because of (9)-(11) and (15) we have \(t_Q = 0 \) and consequently (14) transforms into

\[e^{\frac{\pi i (3 - Q)}{16}} e^{-\frac{48\pi i X(24\pi - 1)}{Q}} g(\ell Q, \beta, -1, \gamma \tau)(-i(\ell \tau + Y Q))^{1/2} \]

\[= \frac{1}{Q} Q^{-1/2} e^{-\frac{\pi i (Q-1)}{4}} \xi^{-1}(Q) q_m^{-\frac{Q^2}{24}} \sum_{n=0}^{\infty} q_m^{Q^2} p(\ell n) \]

\[+ \frac{1}{Q} \sum_{d|Q, d\neq Q} d^{-1/2} e^{-\frac{\pi i (d-1)}{4}} \xi^{-1}(d) q_m^{-\frac{(24d - 1)^2}{24}} \sum_{n=0}^{\infty} q_m^{n^2} p(\ell n + t_d) T(n, d) \]

\[= q_m^{-Q^2/24} F(q_m), \]

where \(m := \ell Q, \quad q_m := e^{\frac{2\pi i}{Q}} \) and \(F(q_m) \) is a Laurent series in \(q_m \) because of \(d^2(24t_d - 1) + Q^2 \equiv 0 \pmod{24} \) because of \(Q^2, d^2 \equiv 1 \pmod{24} \). Next note that \(F(q_m) \) has coefficients in \(\mathbb{Z}[1/m, e^{2\pi i/m}] \) because for \(d|Q \) we have \(d^{1/2} e^{\frac{\pi i (d-1)}{4}} = \pm e(d) d^{1/2} \)

\[\epsilon(d) := \begin{cases} 1, & \text{if } d \equiv 1 \pmod{4} \\ i, & \text{if } d \equiv 3 \pmod{4} \end{cases} \]

and by [4, p. 87] we have

\[e(d) d^{1/2} = \sum_{\lambda=0}^{d-1} e^{\frac{\pi i \lambda^2}{d}} \]

which is obviously in \(\mathbb{Z}[1/m, e^{2\pi i/m}] \). Furthermore, if \(\pi \) is a prime ideal in \(\mathbb{Z}[e^{2\pi i/m}] \) lying above \(\ell \), then it makes sense to reduce the coefficients of \(F(q_m) \) modulo \(\pi \) because all denominators in the coefficients of \(F(q_m) \) are invertible modulo \(\pi \). We observe that

\[F(q_m) \not\equiv 0 \pmod{\pi} \]

because by (16) the order of \(F(q_m) \) is 0 and the coefficient of the term constant term is equal to \(\frac{1}{Q^{3/2}} e^{-\frac{\pi i (Q-1)}{4}} \xi^{-1}(Q) \not\equiv 0 \pmod{\pi} \).

\[^{2}\text{In fact } F(q_m) \text{ is a Laurent series in } q_m \text{ because of } d^2(24t_d - 1) + Q^2 \equiv 0 \pmod{\ell} \text{ because of (9)-(11) and (15).} \]
By (16), Definition 5.3 and Lemma 5.4 we have
\[G^{(k)}_{\ell Q, \beta |_{\kappa}} \left(\frac{1 - 24^2 \ell X}{\ell Y} \right) = \eta^{12k} q^{-1} \ell^{24 \ell Q}(q) \]
where \(\kappa := 12(k - \ell Q) \). Then (17) implies
\[G^{(k)}_{\ell Q, \beta |_{\kappa}} \left(\frac{1 - 24^2 \ell X}{\ell Y} \right) \not\equiv 0 \pmod{\pi}, \]
and by Theorem 4.7
\[G^{(k)}_{\ell Q, \beta |_{\kappa}} \not\equiv 0 \pmod{\pi}, \]
and consequently \(p(\ell Qn + \beta) \not\equiv 0 \pmod{\ell} \) for some \(n \in \mathbb{N} \) and since \(\beta \in P_{\ell Q}(\overline{\beta}) \) because of (11) and Definition 4.1 we obtain by Theorem 4.2 that \(p(\ell Qn + \beta) \not\equiv 0 \pmod{\ell} \) for some \(n \in \mathbb{N} \) which is a contradiction to our assumption (8).

5. A Modular Substitution Formula

Definition 5.1. Let \(m \) be a positive integer and \(c \in \mathbb{Z} \). Then we define \(\pi(m, c) := (m_0, m_c) \) where

- \(m_0, m_c \) are positive integers such that \(m_0m_c = m \);
- \(\gcd(m_0, c) = 1 \);
- for every prime \(p \) we have \(p|m_c \) implies \(p|c \).

We also define the set
\[\Delta(m_0, m_c) := \{(d, l, s) \in \mathbb{Z}^3 \mid d > 0, 0 < s < m_0/d, \gcd(s, m_0/d) = 1, 0 \leq l < m_c \}. \]

Lemma 5.2. Let \(m \) be a positive integer coprime to 6 and \(a, c, m_0, m_c, x, y \in \mathbb{Z} \) such that

(i) \(\gcd(a, c) = 1 \);
(ii) \((m_0, m_c) := \pi(m, c) \);
(iii) \(24xc + m_0y = 1 \).

Then

(a) for any \(\lambda \in \mathbb{Z} \) such that
\[\lambda \equiv -ax + sd + lm_0 \pmod{m} \]
for some \((d, l, s) \in \Delta(m_0, m_c) \) we have
\[\gcd(a + 24\lambda c, m) = d; \]
(b) for any \(\lambda \in \mathbb{Z} \) there exists unique \((d, l, s) \in \Delta(m_0, m_c) \) such that (18). Consequently, we have a mapping \(\lambda \mapsto (d, l, s) \) and the restriction of this mapping to a complete set of representatives of the residue classes modulo \(m \) is a bijection.
Proof. (a): First we note that \(\gcd(a + 24 \lambda c, m) = \gcd(a + 24 \lambda c, m_0) \) because of (i)-(ii). Next we have
\[
a + 24 \lambda c \equiv a + 24(-ax + sd)c \equiv a(1 - 24cx) + 24sd = am_0y + 24sc \pmod{m_0},
\]
which implies
\[
\gcd(a + 24 \lambda c, m_0) = \gcd(24sc, m_0) = d \gcd(24sc, m_0/d) = d.
\]
This proves (a).

(b): We need to show that for any \(\lambda \in \mathbb{Z} \) there exist \(d|m_0 \) with \(d > 0 \) and \(s \in \mathbb{Z} \) with \(\gcd(s, m_0/d) = 1 \) and \(0 \leq s < m_0/d \) such that
\[
\lambda \equiv -ax + sd \pmod{m_0}.
\]
We set \(d := \gcd(a + 24 \lambda c, m_0) \) and \(s := \frac{(a + 24 \lambda c)x}{d} \). Obviously we have \(\gcd(s, m_0/d) = 1 \) and
\[
-ax + sd = -ax + (a + 24 \lambda c)x = 24 \lambda cx \equiv \lambda \pmod{m_0}.
\]
It remains to show uniqueness. Let \((d_1, l_1, s_1), (d_2, l_2, s_2) \in \Delta(m_0, m_e)\) be such that
\[
\lambda \equiv -ax + s_1d_1 + l_1m_0 \equiv -ax + s_2d_2 + l_2m_0 \pmod{m}.
\]
Then because of (19) we have \(d := d_1 = d_2 \) which implies that
\[
(s_1 - s_2)d + (l_1 - l_2)m_0 \equiv 0 \pmod{m}.
\]
and consequently \(s_1 \equiv s_2 \pmod{m_0/d} \). Because of \(s_1, s_2 \in \{0, \ldots, m_0/d - 1\} \) we have \(s_1 = s_2 \) which together with (20) gives \(l_1 \equiv l_2 \pmod{m_e} \).

The final fact that the association \(\lambda \mapsto (d, l, s) \) indeed is a bijection modulo \(m \) is just straight forward verification. \(\square \)

Definition 5.3. For \(m \) a positive integer coprime to 6, \(t \in \{0, \ldots, m - 1\} \) and \(r \in \mathbb{Z} \). Then we define
\[
g(m, t, r, \tau) := \frac{1}{m} \sum_{\lambda=0}^{m-1} e^{2 \pi i (\tau + 24 \lambda r) / m}, \quad \tau \in \mathbb{H}.
\]

A proof of the following lemma can be found in [7, Lem. 1.12].

Lemma 5.4. Let \(m \) be a positive integer coprime to 6, \(t \in \{0, \ldots, m - 1\} \) and \(r \in \mathbb{Z} \). Then
\[
g(m, t, r, \tau) = q^{\frac{24 \pi m}{24 \tau}} \sum_{n=0}^{\infty} p_r(mn + t)q^n, \quad \tau \in \mathbb{H}, \quad (q = e^{2 \pi i \tau}).
\]

Lemma 5.5. Let \(m \) be a positive integer coprime to 6, \(t \in \{0, \ldots, m - 1\} \), \(r \in \mathbb{Z} \),
\[
\gamma = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}) \text{ with } \gcd(A, 6) = 1, A > 0, C > 0 \text{ and } (m_0, m_0) := \pi(m, C)
\]
and assume that \(m_C | C \). For any integers \(s,d \) such that \(\gcd(s, m_0/d) = 1 \) let \(t_{s,d} \) be any integer satisfying \(s \cdot t_{s,d} \equiv 1 \pmod{m_0/d} \). Let \(x, y, A' \) be any integers such that
\[
(i) \quad 24xC + ym_0 = 1 \text{ and } x \equiv 0 \pmod{24C}, x < 0;
\]
\[
(ii) \quad AA' \equiv 1 \pmod{24C}.
\]
Define
\[\tau'(s, d) := \frac{dr + 24x(-xt_{s,d} + dd)}{m_0/d} + d^2 g(BA' + 24sdD^2) \]
and
\[\xi(d) := \left(\frac{24C}{m_0/d} \right) \left(\frac{Ad}{Cm_C} \right) (-1)^{\frac{Cn_0d - Ad - 1}{2}}. \]

Then
\[e^{\frac{\pi i Ar(mC-3)}{r^2}} e^{-\frac{2\pi i A_{r+s}(24t+r)}{m}} g(m, t, r, \gamma \tau)(-i(C\tau + D))^{-r/2} \]
\[= \frac{1}{m} \sum_{d|m_0} d'/d \sum_{\substack{0 \leq s < m_0/d \leq m_0/d \leq d}} \sum_{t=0}^{m_C-1} e^{\frac{2\pi i \lambda (24t+r)}{m_0}} \left(\frac{s}{m_0/d} \right)^r e^{\frac{2\pi i (24t-24\tau \tau)}{m}} \]
\[\times e^{\frac{\pi i A_{r+s}(mC-3)}{r^2}} e^{-\frac{2\pi i A_{r+s}(24t+r)}{m}} g(m, t, r, \gamma \tau)(-i(C\tau + D))^{-r/2} \]
\[= \frac{1}{m_0} \sum_{d|m_0} e^{\frac{\pi i A_{r+s}(mC-3)}{r^2}} \sum_{\substack{0 \leq s < m_0/d \leq m_0/d \leq d}} \sum_{t=0}^{m_C-1} e^{\frac{2\pi i \lambda (24t+r)}{m_0}} \left(\frac{s}{m_0/d} \right)^r \]
\[\times \sum_{n=0}^{m_C-1} e^{\frac{2\pi i d^2 (r + 24x)}{m_0}} p_r(m_C n + t_d)T(n, d) \]
where \(t_d \) is the unique integer satisfying
\[A^2(24t + r) \equiv d^2(24t_d + r) \pmod{m_C} \]
and \(0 \leq t_d < m_C - 1 \) and
\[T(n, d) := \sum_{\substack{0 \leq s < m_0/d \leq m_0/d \leq d}} \left(\frac{24Cs}{m_0/d} \right)^r e^{\frac{2\pi i \lambda (24(nm_C + t_d) + r)}{m_0}}. \]

Proof. Proof of (21): By Lemma 5.2 and Definition we have
\[g(m, t, r, \gamma \tau) \]
\[= \frac{1}{m} \sum_{d|m_0} \sum_{\substack{0 \leq s < m_0/d \leq m_0/d \leq d}} \sum_{t=0}^{m_C-1} e^{\frac{2\pi i (-A_{r+s}d + m_0)}{m}} \left(\frac{s}{m_0/d} \right)^r \left(\frac{\gamma \tau + 24(-Ax + sd + m_0)}{m} \right). \]

Next we note that for \((d, l, s) \in \Delta(m_0, m_c)\) we have
\[\frac{\gamma \tau + 24\lambda}{m} = M_\lambda \frac{dr + (B + 24\Lambda D)x_\lambda + 24mDy_\lambda}{m/d}, \]
where
\[\lambda := -Ax + sd + lm_0, \]
\[M_\lambda := \left(\frac{\lambda + 24\lambda C}{d\lambda} \right)^{-24y_\lambda} \]
and \(x_\lambda, y_\lambda \) are integers such that
\[(A + 24\lambda C)x_\lambda + 24mCy_\lambda = d. \]
Newman [6] proved that for each \(\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}_2(\mathbb{Z}) \) with \(a, c > 0 \) and \(\gcd(a, 6) = 1 \) we have

\[
\eta(\gamma \tau) = (-i(\tau + d))^{1/2} \epsilon(a, b, c, d) \eta(\tau), \quad \tau \in \mathbb{H},
\]

where

\[
\epsilon(a, b, c, d) := \left(\frac{c}{a} \right) e^{-\frac{i\pi}{12}(c-b-3)}.
\]

By (25) and (28) we obtain

\[
\eta \left(\frac{\gamma \tau + 24\lambda}{m} \right) = (-id(C\tau + D))^{1/2}
\times \epsilon \left(\frac{A + 24\lambda C}{d}, -24y_\lambda, Cm/d, x_\lambda \right) \eta \left(\frac{d\tau + (B + 24\lambda D)x_\lambda + 24mDy_\lambda}{m/d} \right).
\]

By (26) and (i) we have

\[
\epsilon \left(\frac{A + 24\lambda C}{d}, -24y_\lambda, Cm/d, x_\lambda \right) = \epsilon(\frac{Aym_0/d + 24(Cs + lm_0C)/d}{Aym_0/d + 24(Cs + lm_0C)/d}),
\]

which together with (29) implies that

\[
\epsilon \left(\frac{A + 24\lambda C}{d}, -24y_\lambda, Cm/d, x_\lambda \right) = (\frac{Cm/d}{Aym_0/d + 24(Cs + lm_0C)/d}) e^{\frac{2\pi i Aym_0/d}{12}(Cm/d-3)}
\]

and by standard properties of the Jacobi symbol

\[
\left(\frac{Cm/d}{Aym_0/d + 24(Cs + lm_0C)/d} \right) = (-1)^{\frac{Cm/d-1}{2} \frac{Aym_0/d-1}{2}} \left(\frac{Aym_0/d + 24(Cs + lm_0C)/d}{Cm/d} \right)
\]

\[
= (-1)^{\frac{Cm/d-1}{2} \frac{Aym_0/d-1}{2}} \left(\frac{24Cs}{m_0/d} \right) \left(\frac{Aym_0/d}{Cm} \right)
\]

\[
= (-1)^{\frac{Cm/d-1}{2} \frac{Aym_0/d-1}{2}} \left(\frac{24Cs}{m_0/d} \right) \left(\frac{Ad}{Cm_0} \right).
\]
because by \((i)\) we have \(ym_0 \equiv 1 \pmod{24C}\). By the above calculation we have
\[
e^{\left(\frac{A + 24\lambda C}{d}, -24y_\lambda, Cm_0/d, x_\lambda\right)} = (-1)^{\frac{Cm_0/d - 1}{d}} \left(\frac{A}{Cm_0/d}\right) e^{-\frac{\pi i Aym_0/d}{12}(Cm_0/d-3)} \tag{32}
\]
\[
= (-1)^{\frac{Cm_0/d - 1}{d}} \left(\frac{A}{Cm_0/d}\right) e^{-\frac{\pi i A}{Cm_0/d}(Cm_0/d-3)}
\]
\[
e^{\frac{\pi i A(\lambda - mC)}{12}} e^{\frac{\pi i A(mC-3)}{12}} \xi(d) \left(\frac{s}{m_0/d}\right),
\]
by using \(ym_0 \equiv 1 \pmod{24}\) and \(d^2 \equiv 1 \pmod{24}\). By (30) and (32) and because of
\[
\eta(\tau + 24) = \eta(\tau)
\]
we obtain
\[
e^{\frac{\pi i A(mC-3)}{12}} (-i(C\tau + D))^{-1/2} \eta \left(\frac{\gamma \tau + 24\lambda}{m}\right) =
\]
\[
d^{1/2} e^{\frac{\pi i A(d-1)}{12}} \xi(d) \left(\frac{s}{m_0/d}\right) \left(\frac{d\tau + (B + 24\lambda D)x_\lambda}{m/d}\right),
\]
Next we obtain a better expression for \(x_\lambda\). By (27):
\[
\frac{A + 24\lambda C}{d} x_\lambda \equiv 1 \pmod{m_0/d}
\]
and by (31):
\[
\frac{A + 24\lambda C}{d} \equiv 24Cs \pmod{m_0/d}
\]
which implies
\[
24Cs x_\lambda \equiv 1 \pmod{m_0/d}
\]
which together with \((i)\) implies
\[
x_\lambda \equiv x_{s,d} \pmod{m_0/d}.
\]
By (34) we conclude that
\[
x_\lambda = x_{s,d} + v m_0/d.
\]
By (27), (35) and \((i)\) we find
\[
A(x_{s,d} + v m_0/d) \equiv Av m_0/d \equiv d \pmod{24C}
\]
because by assumption \((i)\) we have \(x \equiv 0 \pmod{24C}\). By (36), \(i\) and \((ii)\) we obtain
\[
v \equiv A' d y \pmod{24C},
\]
which together with (35) implies
\[
x_\lambda \equiv x_{s,d} + A' y v m_0 \pmod{24m_0 C/d}
\]
Using the above formulas we compute \((B + 24\lambda D)x_\lambda\) modulo \(24Cm_0/d\). By using
\[
(37)
\]
and (26) we find
\[
(B + 24\lambda D)x_\lambda
\]
\[
= (24D m_0 A' y d + BA' y d - 2AA' D dx y + 24Ds d^2 A' y + 24Dlx_{s,d}) m_0
\]
\[
+ B x_{s,d} - 24AD x^2_{s,d} + 24D l x_{s,d}
\]
\[
\equiv (24D m_0 A' y d + BA' y d + 24Ds d^2 A' y) m_0 + B x_{s,d} - 24AD x^2_{s,d} + 24D l x_{s,d}
\]
because of \(x \equiv 0 \pmod{24C} \) by (i)

\[
\equiv (24D^2ld + BA'yd + 24D^2sd^2y)m_0 + Bxt_{s,t} + 24ADx^2_{t_{s,t}} + 24Ddx_{t_{s,t}}
\]

because of \(ym_0 \equiv 1 \pmod{24C} \) by (i) and \(24A' \equiv 24D \pmod{24C} \) because of \(AD - BC = 1 \)

because of (ii) and \(x \equiv 0 \pmod{24C} \) by (i)

\[
\equiv (24D^2ld + BA'yd + 24D^2sd^2y)m_0 + x(Bt_{s,t} - 24ADxt_{s,t} + 24Dd) \pmod{24m_0C/d}
\]

because of \(B - 24ADx = B(1 - 24Cx) - 24x = Bym_0 - 24x \) by (i) and because of \(AD - BC = 1 \).

Next note that if \(v_1 \) and \(v_2 \) are integers such that \(v_2 = v_1 + i(24m_0C/d) \) for some integer \(i \), then

\[
\eta \left(\frac{d\tau + v_2}{m/d} \right) = \eta \left(\frac{d\tau + v_1}{m/d} + i24m_0C/m \right) = \eta \left(\frac{d\tau + v_1}{m/d} \right),
\]

because of \(\eta(\tau + 24) = \eta(\tau) \) and \(mC \mid C \) by assumption. Using this fact with \(v_1 = (B + 24\lambda D)x\lambda \) and \(v_2 = 24D^2ld + BA'yd + 24D^2sd^2y)m_0 + x(-24x_{t_{s,t}} + 24Dd) \) on (33) we obtain

\[
\begin{align*}
(-i(C_D + D))^{1/2} & e^{\frac{i\lambda(d-1)}{4}} \xi(d) \left(\frac{s}{m_0/d} \right) \eta \left(\frac{d\tau + (B + 24\lambda D)x\lambda}{m/d} \right) \\
&= d^{1/2} e^{\frac{i\lambda(d-1)}{4}} \xi(d) \left(\frac{s}{m_0/d} \right) \eta \left(\frac{d\tau + x(-24x_{t_{s,t}} + 24Dd) + (24D^2l + BA'y + 24D^2sd^2y)d^2}{mC} \right) \\
&= d^{1/2} e^{\frac{i\lambda(d-1)}{4}} \xi(d) \left(\frac{s}{m_0/d} \right) \eta \left(\frac{\tau'(s, d) + 24D^2d^2l}{mC} \right)
\end{align*}
\]

(38)
By (38) and (24)
\[e^{\frac{\pi i}{m} (mC-1)} \left(-i(C\tau + D) \right)^{-r/2} g(m, t, r, \gamma \tau) \]
\[= \frac{1}{m} \sum_{d|m_0} \sum_{0 \leq s < \frac{m_0}{d}} \sum_{\substack{0 \leq c < \frac{m_0}{d} \\text{gcd}(s, m_0/d) = 1}} e^{2\pi i (-Ax + x + im_0) (-24t - r)} \]
\[\times d^{r/2} e^{\frac{\pi i}{m} (d-1)} \left(\frac{s}{m_0/d} \right)^r \eta^r \left(\frac{\tau'(s, d) + 24D^2d^2l}{mC} \right) \]
\[= e^{\frac{\pi i}{m} (24t + r)} \sum_{d|m_0} d^{r/2} e^{\frac{\pi i}{m} (d-1)} \left(\frac{s}{m_0/d} \right)^r \eta^r \left(\frac{\tau'(s, d) + 24D^2d^2l}{mC} \right) \sum_{\substack{0 \leq c < \frac{m_0}{d} \\text{gcd}(s, m_0/d) = 1}} e^{2\pi i (-24t - r)} \]
\[\times \sum_{l=0}^{mC-1} e^{\frac{\pi i}{m} (-24t - r)} e^{\frac{\pi i}{m} (d-1)} \xi^r (d) \left(\frac{s}{m_0/d} \right)^r \eta^r \left(\frac{\tau'(s, d) + 24D^2d^2l}{mC} \right) . \]

Summing in the last sum over any set of modulo mC representatives does not change the value of the sum. In particular, we make the substitution $l = A^2(ym_0/d)^2l'$ and observe that $D^2d^2A^2(ym_0/d)^2 \equiv 1 \pmod{mC}$ because of (i) and $AD - BC = 1$. Thus we obtain (21).

Proof of (22): By (21) and Definition 5.3
\[e^{\frac{\pi i}{m} (mC-1)} \frac{2\pi i (24t + r)}{m} g(m, t, r, \gamma \tau) \left(-i(C\tau + D) \right)^{-r/2} \]
\[= \frac{mC}{m} \sum_{d|m_0} d^{r/2} e^{\frac{\pi i}{m} (d-1)} m_0/d \sum_{\substack{0 \leq s < \frac{m_0}{d} \\text{gcd}(s, m_0/d) = 1}} \left(\frac{s}{m_0/d} \right)^r \eta^r \left(\frac{\tau'(s, d) + 24D^2d^2l}{mC} \right) g(mC, t_d, r, \tau'(s, d)) \]

By Lemma 5.4
\[g(mC, t_d, r, \tau) = e^{\frac{2\pi i (24t + r)}{mC}} \sum_{n=0}^{\infty} p(mCn + t_d) e^{2\pi i \tau n} , \quad \tau \in \mathbb{H}. \]

By (41)
\[\sum_{\substack{0 \leq s < \frac{m_0}{d} \\text{gcd}(s, m_0/d) = 1}} \left(\frac{s}{m_0/d} \right)^r e^{\frac{2\pi i (-24t - r)}{mC}} g(mC, t_d, r, \tau'(s, d)) \]
\[= \sum_{\substack{0 \leq s < \frac{m_0}{d} \\text{gcd}(s, m_0/d) = 1}} \left(\frac{s}{m_0/d} \right)^r e^{\frac{2\pi i (-24t - r)}{mC}} e^{2\pi i \tau'(s, d) \frac{dD^2}{mC}} \sum_{n=0}^{\infty} p(mCn + t_d) e^{2\pi i \tau n} \]
\[= \sum_{\substack{0 \leq s < \frac{m_0}{d} \\text{gcd}(s, m_0/d) = 1}} \left(\frac{s}{m_0/d} \right)^r e^{\frac{2\pi i (-24t - r)}{mC}} e^{2\pi i \tau'(s, d) \frac{dD^2}{mC}} \sum_{n=0}^{\infty} p(mCn + t_d) e^{2\pi i \tau n} \]
\[\times \sum_{n=0}^{\infty} p(mCn + t_d) e^{2\pi i \left(\frac{dD^2}{mC} + d^2 y(BA' + 24dD^2) \right) n} \]
\[\sum_{0 \leq s < m_0/d \atop \gcd(s, m_0/d) = 1} \left(\frac{S}{m_0/d} \right)^r e^{2\pi i \left(\frac{dr + 24s(-x_{s,d} + dD)}{m_0/d} \right)} e^{2\pi i \left(\frac{d^2(BA' + 24x_dD^2)}{24mC} \right) (24t_d + r)}\]

\[\times \sum_{n=0}^{\infty} p(mCN + t_d) e^{2\pi n(\pi + 24zD) \frac{2}{m_0} (24t_d + r)} \]

\[= e^{2\pi i (\pi + 24zD) \frac{2}{m_0} (24t_d + r)} \sum_{n=0}^{\infty} p(mCN + t_d) e^{2\pi n(\pi + 24zD) \frac{2}{m_0} (24t_d + r)} \]

by first substituting \(d^2D^2ym_0(24t_d + r) \equiv ym_0(24t + r) \pmod{m} \) which follows from (23) and \(AD - BC = 1 \) and next substituting \(1 - ym_0 = 24zC \) because of (i). Next we exploit the identity,

\[T(n, d) = \sum_{0 \leq s < m_0/d \atop \gcd(s, m_0/d) = 1} \left(\frac{S}{m_0/d} \right)^r e^{-2\pi i \frac{24z}{m_0} \left(24x_d + 24nm_C + 24Cs(24t + r) \right)} \]

\[= \sum_{0 \leq s < m_0/d \atop \gcd(s, m_0/d) = 1} \left(\frac{24Cs}{m_0/d} \right)^r e^{-2\pi i \frac{24z}{m_0} \left(24x_d + 24nm_C + 24Cs(24t + r) \right)} \]

because \(s \mapsto xs\) is a bijection modulo \(m_0/d\) together with \(24x'C \equiv 1 \pmod{m_0/d}\).

Finally substituting in (40) we obtain (22).

Lemma 5.6. Let \(Q\) be a positive integer, \(v \in \mathbb{Z}\) with \(v \neq 0\) and \(p \geq 5\) a prime. Let \(b\) be maximal such that \(p^b | v\). Then for any integer \(r \geq b + 1\) and \(l \in \mathbb{Z}\) there exists \(a_{r,l} \in \mathbb{Z}\) with \(\gcd(a_{r,l}, 6pQ) = 1\) such that

\[a_{r,l}^2 v \equiv v + 24l/p^{b+1}Q \pmod{p^bQ}.\]

Proof. Fix \(l \in \mathbb{Z}\). Then the statement holds for \(r = b + 1\) with \(a_{r,l} = 1\). Next assume that the statement is true for \(r = R \geq b + 1\) and prove it for \(r = R + 1\).
That is there exists $a_{R,l}$ such that

$$a_{R,l}^2v \equiv v + 24lp^{b+1}Q \pmod{p^RQ}.$$

We make the “ansatz” $a_{R+1,l} := a_{R,l} + 24p^{R-b}Qx$. Because of (42) it makes sense to define s to be the integer satisfying

$$a_{R,l}^2v - v - 24lp^{b+1}Q = sp^RQ.$$

Then we need to show that there exists x such that

$$(a_{R,l} + 24p^{R-b}Qx)^2v \equiv v + 24lp^{b+1}Q.$$

We have

$$(a_{R,l}^2 + 48a_{R,l}xp^{R-b} + 242p^{2R-2b}Q^2x^2)v - v - 24lp^{b+1}Q$$

$$\equiv (a_{R,l}^2 + 48a_{R,l}xp^{R-b})v - v - 24lp^{b+1}Q$$

because of $24^2x^2Q^2p^{2R-2b}v \equiv 0 \pmod{p^{R+1}Q}$ because of $v \equiv 0 \pmod{p^b}$ and $R \geq b + 1$

$$\equiv 48a_{R,l}xp^{R-b}Qxv + sp^RQ \equiv 0 \pmod{p^{R+1}Q},$$

because of (43).

This implies

$$48a_{R,l}xp^{R-b} + s \equiv 0 \pmod{p},$$

which is solvable for x because of $\gcd(48a_{R,l}Qxp^{-b}, p) = 1$. Hence the proof is finished by the induction principle. \[\Box\]

References

Research Institute for Symbolic Computation (RISC), Johannes Kepler University, A-4040 Linz, Austria