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Introduction

Computing integrals is a common task in many areas of science, antiderivatives are one way to accomplish this.
In differential algebra the problem of elementary integration in finite terms can be stated as follows. Given
a differential field (F,D) and f ∈ F , compute in finitely many steps g from some elementary extension of
(F,D) such that Dg = f if such a g exists.

This problem has been solved for various classes of fields F . For rational functions (C(x), d
dx

) such a g al-
ways exists and algorithms to compute it are known already for a long time. In 1969 Risch [4] published an

algorithm that solves this problem when (F,D) is a transcendental elementary extension of (C(x), d
dx

). Later
this has been extended towards integrands being Liouvillian functions by Singer et. al. [5] via the use of regular

log-explicit extensions of (C(x), d
dx

). Also Bronstein [1, 2] and several other authors published related results.
Our algorithm extends this to handling transcendental Liouvillian extensions (F,D) of (C, 0) directly without the
need to embed them into log-explicit extensions. For example, this means that

∫

(z−x)xz−1e−x dx = xze−x

can be computed without including log(x) in the differential field F .

Before turning to the main results recall the following definitions of the notions used.

Definition: A differential field (F,D) = (C(t1, . . . , tn), D) is called a regular Liouvillian extension
of its constant field Const(F ), if
1. all ti are algebraically independent over C,

2. Const(F ) = C, and

3. each ti is a Liouvillian monomial over Fi := C(t1, . . . , ti−1), i.e. either

(a) Dti ∈ Fi, in this case ti is called primitive over Fi, or

(b) Dti
ti

∈ Fi, in this case ti is called hyperexponential over Fi.

Definition: A differential field (F (t1, . . . , tn), D) is called an elementary extension of the differential
subfield (F,D) if each ti is elementary over Fi := F (t1, . . . , ti−1), i.e.
1. ti is algebraic over Fi, or

2. Dti = Df
f

for some f ∈ Fi (i.e. ti is a logarithm of f), or

3. Dti
ti

= Df for some f ∈ Fi (i.e. ti is an exponential of f).

We say that f ∈ F has an elementary integral over F if there exists an elementary extension (E,D)
of (F,D) and g ∈ E such that

Dg = f.

Parametric integration

We present a decision procedure for the following parametric variant of the problem of integration in finite
terms.

Problem: parametric elementary integration in finite terms

Given (F,D) a regular Liouvillian extension of its subfield of constants C and f0, . . . , fm ∈ F .

Compute in finitely many steps a vector space basis of all (c0, . . . , cm) ∈ Cm+1 such that the linear
combination c0f0 + · · · + cmfm has an elementary integral over F , together with corresponding g’s
from some elementary extension of F such that

c0f0 + · · · + cmfm = Dg.

The algorithm follows the general recursive structure of its precursors proceeding through the transcendental
extensions one by one. Integrands from F =: K(tn) are reduced to integrands from the differential subfield
K = C(t1, . . . , tn−1) and at the same time parts of the integral are computed as follows.

Structure of one step in the recursive reduction algorithm

input integrands from K(tn)
1. Hermite Reduction for reducing the denominators

2. Residue Criterion for computing part of integral in elementary extensions of the form

k
∑

i=1

∑

Qi(α)=0

α log(Si(α, tn))

where Qi ∈ C[z] and Si ∈ K[z, tn]

3. for integrating reduced integrands from K〈tn〉 := {a
b
∈K(tn) | a, b∈K[tn], b|Db} compute degree

bounds and coefficients by solving auxiliary problems in K

remaining integrands are from K

Then a refined version of Liouville’s theorem has to be used for reducing the question of having an elementary
integral over F to having an elementary integral over K. Thereby the original problem is reduced to a problem
of the same type but in a smaller field. A special case of the following theorem is already implicitly contained
in [5]. When dealing with non-elementary extensions this naturally leads to a parametric version of the problem
as above even when we started with just one single integrand.

Theorem:

Assume t is transcendental over (K,D) and C := Const(K(t)) = Const(K). Let f ∈ K such that
f has an elementary integral over K(t), then the following statements hold.
1. If t is elementary over K, then f has an elementary integral over K.

2. If t is primitive over K, then there exists a c ∈ C such that f − cDt has an elementary integral
over K.

3. If t is hyperexponential over K, then there exists a c ∈ C such that f − cDt
t has an elementary

integral over K.

Above refinement is crucial to obtain a decision procedure for Liouvillian extensions. Without it some elementary
integrals, e.g. like the first of the examples below, would not be found.

Examples

Some examples of integrals that can be computed by our algorithm (for comparison: the current versions of
Maple and Mathematica can compute the first example only, whereas Maxima only succeeds on the second):

• Let F = Q(t1, t2, t3), where Dt1 = 1, Dt2 = 1
t1
, Dt3 = 1

t2
. Then t3 represents the logarithmic integral

li(x) =
∫ x
0

1
log(t)

dt. The algorithm detects that c0
(t1+1)2

t1t2
+ c1t3, c0, c1 ∈ C, has an elementary integral over

F only for c0 = c1.
∫

(x + 1)2

x log(x)
+ li(x) dx = (x + 2)li(x) + log(log(x))

• Let F = Q(t1, t2, t3, t4), where Dt1 = 1, Dt2 = 1
t1−1, Dt3 = −t2

t1
, Dt4 = t3

t1
. Here the polylogarithms

Li2(x) = −
∫ x
0

log(1−t)
t dt and Li3(x) =

∫ x
0

Li2(t)
t dt are represented by t3 and t4 respectively.

∫

Li3(x) − xLi2(x)

(1 − x)2
dx =

x

1 − x
(Li3(x) − Li2(x)) +

log(1 − x)2

2

• Let F = Q(a, b)(t1, t2, t3, t4), where Dt1 = 1, Dt2 = at2
t1
, Dt3 = b t3

1−t1
, Dt4 = t2t3

t1(1−t1)
. Then t4 represents

the incomplete Beta function Bx(a, b) =
∫ x
0 ta−1(1 − t)b−1 dt.

∫

(a + b)x − a

xa+1(1 − x)b+1
Bx(a, b) dx =

Bx(a, b)

xa(1 − x)b
+ log

(

1 − x

x

)

Properties of the algorithm

In some sense our algorithm can be viewed as unification of the algorithms presented in [5, Theorem A1] and
[2]: On the one hand it is a full decision procedure for parametric elementary integration over transcendental
Liouvillian extensions. On the other hand it also minimizes the computations done in algebraic extensions and
tries to avoid factorization into irreducibles as much as possible.

From the algorithmic point of view the main improvement compared to the other algorithms is in how the nec-
essary restrictions for the linear combinations of the integrands are determined during phase 2 of the recursion
displayed on the left. To this end [5] relies on irreducible factorization of the denominator in CK[tn] with
subsequent partial fraction decomposition. Whereas the algorithm for the single-integrand case given in [2] – a
generalization of [3] – avoids computing unnecessary algebraic extensions and complete factorization, but does
not carry over to the parametric case. However, reformulating the Rothstein-Trager resultant appropriately we
obtained an algorithm which is parametric, eliminates the need for full factorization, and reduces computations
in algebraic extensions as can be seen from the theorem below.

Theorem:

Assume t is transcendental over (K,D), Dt ∈ K[t], C := Const(K(t)) = Const(K) and that
we can find a basis for the constant solutions of linear systems with coefficients from K. Let
a0, . . . , am, b ∈ K[t] with b 6= 0 and gcd(b,Db) = 1, then using modular inversion in K[t] we
can compute a vector space basis of all (c0, . . . , cm) ∈ Cm+1 such that

h +
c0a0 + · · · + cmam

b
∈ K(t) has an elementary integral over K(t) for some h ∈ K〈t〉.

The last phase of one step in the recursive algorithm requires solving auxiliary problems such as the parametric
logarithmic derivative problem and the parametric Risch differential equation. For this the parametric loga-
rithmic derivative heuristic from [2] has been turned into a decision procedure along the idea sketched in [4]
for solving the following variant of parametric integration where in addition the integrals are required to be
expressible as logarithms of radicals of field elements. This subproblem is the only part of the algorithm where
factorization into irreducibles is still required.

Parametric logarithmic derivative problem:

Given (F,D) a regular Liouvillian extension of its subfield of constants C and f0, . . . , fm ∈ F .

Compute in finitely many steps a vector space basis of all (c0, . . . , cm) ∈ Qm+1 such that the linear
combination c0f0 + · · · + cmfm is the logarithmic derivative of an F -radical, together with corre-
sponding g ∈ F and k ∈ Z∗ such that

c0f0 + · · · + cmfm =
Dg

kg
.

Conclusion

We developed an algorithm suitable for solving indefinite integration problems with Liouvillian integrands. That
algorithm has some computationally desirable properties such as avoiding unnecessary algebraic extensions. The
extension of this algorithm towards definite integration is currently being explored, especially for the case when
additional parameters are involved.
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