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Abstract. We present proofs for typical entries from the Gradshteyn-Ryzhik Table of Integrals
using the Mellin transform method and computer algebra algorithms based on WZ theory. After
representing an identity from the Table in terms of multiple contour integrals of Barnes’ type
and nested sums, we use Wegschaider’s summation algorithm to find recurrences satisfied by
both sides of this identity and check finitely many initial values.

1. Introduction

Considerable work on proving and verifying the entries in the Gradshteyn-Ryzhik Table of
Integrals, Series and Products [6] is being done by Victor Moll, et.al., in a series of articles, the
latest being [1]. Moreover, an introduction to the art of evaluating definite integrals using a variety
of techniques can be found in [5].

We continue this effort with an approach based on the Mellin transform method for rewriting
definite integration problems in terms of nested Mellin-Barnes integrals. This way, we end up with
complex contour integrals over hypergeometric terms which are in the input class of summation
algorithms based on the WZ-paradigm, as it was shown in [13]. Viewing the identities in [6] from
the perspective of the Mellin transform method seems natural, especially since most entries from
the table of Mellin transforms [9] are also found there.

In this section we introduce the general Mellin transform method and hint at the role of
algorithmic tools like Wegschaider’s summation algorithm [14]. Let us first recall that the Mellin
transform of a locally integrable function f : (0,∞) → C is defined by

(1) f̃(z) =
∫ ∞

0

xz−1f(x)dx

where the integral converges, usually on an infinite strip of the form α < Re(z) < β. Our main
tool will be the inversion formula, given by

(2) f(x) =
1

2πi

∫ δ+i∞

δ−i∞
x−z f̃(z)dz

which uniquely determines f(x) from f̃(z). The contour of integration is a vertical line in the
z-plane and must be placed in the strip of analyticity α < δ < β.

To introduce our approach to identities involving definite integrals, we prove the main property
of the Mellin convolution:

(3)
∫ ∞

0

g(xy)h(y)dy =
1

2πi

∫ δ+i∞

δ−i∞
x−z g̃(z)h̃(1− z)dz,

where g, h : (0,∞) → C are defined such that the left hand side integral exists and the Mellin
transforms g̃(z) and h̃(1 − z) have a common domain of analyticity with δ lying in this common
domain. Note that the special case x = 1 of (3) is called the Parseval formula for the Mellin
transform [10].
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Foundation FWF.
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To prove (3), we start with the Mellin convolution on the left-hand side and use the inversion
formula to insert g̃(z). By Fubini’s theorem, we interchange the order of integration

∫ ∞

0

g(xy)h(y)dy =
1

2πi

∫ δ+i∞

δ−i∞
x−z g̃(z)

(∫ ∞

0

y−zh(y)dy

)
dz

and since the inner definite integral is precisely h̃(1− z) the proof is complete.
From here on we will avoid using properties of the Mellin transform apart from the definition

of the reciprocal pair (1) and (2). The proof of property (3) has here merely a didactic purpose
since we use a similar technique to prove identities from the table of integrals [6].

More precisely, we rewrite the definite integrals appearing in table entries considered here by
inserting a Mellin-Barnes integral representation of type (2) for a factor of the integrand. We are
doing this in the hope that after interchanging the order of integration, the inner integral becomes
an easily computable definite integral and we end up with a contour integral of Barnes’ type over
a hypergeometric integrand.

For example, when proving the identity ([6], 3.383.1)

(4)
∫ u

0

xν−1(u− x)µ−1eβxdx = B(µ, ν)uµ+ν−1
1F1 (ν; ν + µ;βu) , [Re µ > 0, Re ν > 0]

we rewrite the left-hand side by plugging in the Mellin-Barnes integral representation

eβx =
1

2πi

∫ δ+i∞

δ−i∞

1
(−β)z

Γ(z)x−zdz, δ > 0.

This representation of the exponential function is to be found in [9] or can be obtained by observing
that its Mellin transform is given by ([2], 1.1.18)

(5) Γ(z) =
∫ ∞

0

xz−1e−xdx, Re z > 0

and using the inversion formula (2) afterwards.
Hence, the left-hand side of (4) becomes

∫ u

0

xν−1(u− x)µ−1eβxdx =
1

2πi

∫ δ+i∞

δ−i∞

1
(−β)z

Γ(z)
(∫ u

0

xν−z−1(u− x)µ−1dx

)
dz.

After several changes of variables, the inner definite integral is given by
∫ u

0

xν−z−1(u− x)µ−1dx = uν+µ−1−zB(ν − z, µ),

where B denotes the beta function. The identity (4) is equivalent to

Γ(ν + µ)
2πiΓ(ν)

∫ δ+i∞

δ−i∞

Γ(ν − z)
Γ(ν + µ− z)

Γ(z)(−uβ)−zdz = 1F1 (ν; ν + µ; βu) ,

which is the Barnes’ integral representation for the confluent hypergeometric function 1F1; see for
instance section 4.2 in [2]. Note that identity (4) constitutes the base case for a proof by induction
in n of the entry 3.478.3 from [6].

Proving more involved identities from [6] using the Mellin transform method requires inserting
the Barnes type integral representations for two or more factors of the integrand. In this case
we will end up with multiple nested contour integrals over hypergeometric terms and a sum
representation for such integrals is not always easily determined. Examples of such situations are
included in section 3.

Section 2 describes how Wegschaider’s summation algorithm [14] can be used to compute
homogeneous and inhomogeneous recurrences not only for nested sums but also for multiple Mellin-
Barnes integrals over hypergeometric terms. This algorithmic method of proving and computing
recurrences for contour integrals of this type was already used in [13] for a class of Ising integrals.

Wegschaider’s algorithm [14] adds more power to the Mellin transform method. Finding
recurrences for both sides of an identity reduces the problem to checking finitely many initial
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values. Even though several non-algorithmic aspects are involved in the proofs, we are able to
tackle more and more involved entries from the table.

2. An algorithmic approach

2.1. Deriving Recurrences Algorithmically. Wegschaider’s algorithm [14] is an exten-
sion of multivariate WZ summation [16], and in this context it is used to compute recurrences for
sums of the form

(6) Sum (µ) =
∑

κ1∈R1

· · ·
∑

κr∈Rr

F (µ, κ1, . . . , κr) .

Loosely speaking, this algorithm [14] can be applied if the summands F (µ, κ) are hyperge-
ometric in all integer variables µi from µ = (µ1, . . . , µp) and in all summation variables κj from
κ = (κ1, . . . , κr) ∈ R where R := R1 × · · · × Rr ⊆ Zr is the summation range.

Remark: Recall that an expression F (µ, κ) is called hypergeometric [17, 16] if there exists a
rational function rm,k(µ, κ) such that F(µ,κ)

F(µ−m,κ−k) = rm,k(µ, κ) at the points m ∈ Zp and k ∈ Zr

where this ratio is defined.
The algorithm first finds a recurrence for the summand F (µ, κ) called certificate recurrence

of the form

(7)
∑

m∈S
am (µ)F(µ + m,κ) =

r∑

j=1

∆κj


 ∑

(m,k)∈Sj

bm,k (µ, κ)F(µ + m,κ + k)


 ,

where the polynomials am (µ), not all zero, bm,k (µ, κ) and the sets Sj ⊂ Zp+r are determined
algorithmically.

The forward shift operators denoted above with ∆κj are defined as

∆κjF (µ, κ) := F (µ, κ1, . . . , κj + 1, . . . , κr)−F (µ, κ) .

Moreover, the right hand side of (7) can always be rewritten as

(8)
r∑

j=1

∆κj


 ∑

(m,k)∈Sj

bm,k (µ, κ)F(µ + m,κ + k)


 =

r∑

j=1

∆κj (rj (µ, κ)F(µ, κ)) ,

where rj are rational functions of all variables from µ = (µ1, . . . , µp) and κ = (κ1, . . . , κr).
Remark: In the certificate recurrence (7), the coefficients am (µ) are polynomials free of the

summation variables κj from κ, while the coefficients bm,k (µ, κ) of the delta-parts are polynomials
in all the variables from µ and κ.

Finally, the recurrence for the multisum (6) is obtained by summing the certificate recurrence
(7) over all variables from κ in the given summation range R. Since it can be easily checked
whether the summand F(µ, κ) indeed satisfies the recurrence (7), the certificate recurrence also
provides a proof of the recurrence for the multisum Sum (µ).

Two further remarks are required. First, Wegschaider’s algorithm determines certificate recur-
rences, after making an Ansatz about their structure (i.e., fixing the structure set S), by solving a
large system of linear equations over a field of rational functions. If the input of the algorithm is in-
volved, computations will be time consuming. To this purpose, the procedure FindStructureSet
included in the package MultiSum and already used in [7], implements an algorithm based on
modular computation for finding small structure sets. To use this procedure and the summation
algorithm [14], one loads the package MultiSum1 within a Mathematica session:
In[1]:= << MultiSum.m

MultiSum Package by Kurt Wegschaider (enhanced by Axel Riese and Burkhard Zimmer-
mann) – c© RISC Linz – V2.02β (02/21/05)

To be more precise, the algorithm [14] terminates successfully, for a large enough structure
set, if we restrict our input class to proper hypergeometric summands; see [16] for the definition of
proper hypergeometric terms and also regarding the existence conditions for certificate recurrences.

1available at http://www.risc.uni-linz.ac.at/research/combinat/software/
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Secondly, we remark that in many applications the function F(µ, κ) has finite support. In
these cases, if we sum the recurrence (7) over a domain that is larger than the support of the
function, the ∆-parts on the right hand side telescope and the values that are not in the support
vanish. So, from the summand recurrence one obtains a homogeneous recurrence for the sum

(9)
∑

m∈S
am (µ)Sum (µ + m) = 0.

This is not the case in general; i.e., in specific situations human inspection is still needed
to pass from the recurrence (7) to a homogeneous or inhomogeneous recurrence for the sum (6).
More information on this subject can be found in [16].

2.2. From Summation to Integration. In this section we will show how Wegschaider’s
algorithm [14] can be used to determine recurrences for multiple contour integrals of Barnes’ type

(10) Int (µ) =
∫

Cκ1

. . .

∫

Cκr

F (µ, κ1, . . . , κr) dκ1 . . . dκr,

where the integrands F (µ, κ) are hypergeometric in all integer variables µi from µ = (µ1, . . . , µp)
and in all integration variables κj from κ = (κ1, . . . , κr) ∈ Cr. This idea, going back to W. Zudilin
[3], was already used in [13] to prove recurrences for a class of Ising integrals.

As in the case of the summation problem (6), the fundamental theorem of hypergeometric
summation stated by Wilf and Zeilberger in [16] proves the existence of non-trivial certificate
recurrences of the form (7) for the function F (µ, κ). Using WZ summation methods, Wegschaider’s
algorithm [14] delivers recurrences of the form (7) for the hypergeometric integrand from (10),
and as remarked in section 2.1, the coefficients on the left hand side of this recurrence are free of
all integration variables κ = (κ1, . . . , κr).

Remark: Although discrete functions are our main interest, one can evaluate the function
F (µ, κ) also for complex values of the variables µi and κj for all 1 ≤ i ≤ p and 1 ≤ j ≤ r except at
certain poles. In our case, the singularities of the numerator gamma functions need to be excluded
from the evaluation domain. The function F (µ, κ) is then continuous on its evaluation domain,
and by taking limits it can be shown that the computed recurrences hold in Cp+r.

After successively integrating over the Barnes paths of integration Cκj for 1 ≤ j ≤ r, (7) leads,
in some cases, to a homogeneous recurrence for the integration problem (10), i.e.,

(11)
∑

m∈S
am (µ) Int (µ + m) = 0.

However, again in analogy to the summation case, after integrating over the contours of
integration Cκj for 1 ≤ j ≤ r, it is not clear in general that we obtain a homogeneous equation of
the type (11). Consequently, one needs to analyze the behavior of the contour integrals over the
left hand side of (7).

For this purpose, we study the following integration problems:

(12) Ij :=
∫

Cκj

∆κjF (µ, κ) dκj =
∫

C′κj

F (µ, κ) dκj −
∫

Cκj

F (µ, κ) dκj ,

where the Barnes path Cκj runs vertically over (cj − i∞, cj + i∞) while C′κj
denotes the shifted

path (1 + cj − i∞, 1 + cj + i∞) for all 1 ≤ j ≤ r.
For any 1 ≤ j ≤ r, consider now the contour integral IN

j over a rectangle with vertices at the
points cj − iN , cj + iN , 1 + cj + iN and 1 + cj − iN with N ∈ N; i.e.,

IN
j =

cj+iN∫

cj−iN

F (µ, κ) dκj +

1+cj+iN∫

cj+iN

F (µ, κ) dκj(13)

−
1+cj+iN∫

1+cj−iN

F (µ, κ) dκj +

cj−iN∫

1+cj−iN

F (µ, κ) dκj .
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If in any such rectangular region of integration, we have the asymptotic behavior

(14) F (µ, κ) = O
(

1

|κj |d
e−c|κj |

)
as |κj | → ∞ with c ≥ 0, d > 0

then IN
j → Ij as N → ∞. When the function F (µ, κ) is dominated by an exponential with

negative exponent, it suffices to to analyze the integrals (12) instead of the integrals over the right
hand side of (8).

On the other hand, we can calculate the integrals (13) by considering the residues of the
function F (µ, κ) at the poles lying inside the closed rectangular contours. If for all 1 ≤ j ≤ r, the
Barnes paths of integration Cκj

can be chosen such that the function F (µ, κ) has no poles inside
these rectangular regions, then the integrals (12) will be zero.

Under these restrictions, we obtain from the certificate recurrence (7) a homogeneous recur-
rence (11) for the multiple Barnes’ type integral (10). Note that a different choice of the integration
contours will lead to inhomogeneous recurrences for multiple Barnes’ integrals which satisfy the
asymptotic condition (14).

We consider the entry ([6], 6.512.3) as an explanatory example

(15)
∫ ∞

0

Jν(αx)Jν−1(βx)dx =
βν−1

αν
, [β < α]

where Jν denotes the Bessel function of the first kind of order ν; see for instance ([2], 4.5.2). The
Mellin-Barnes integral representation of Jν is given by ([9], 10.1)

(16) Jν(αx) =
1

4πi

∫ δ+i∞

δ−i∞

Γ
(

ν+z
2

)

Γ
(
1 + ν−z

2

)
(αx

2

)−z

.

Using the Mellin transform method presented in section 1, we obtain a simple Mellin-Barnes
integral representation for the left hand side of (15)

(17)
∫ ∞

0

Jν(αx)Jν−1(βx)dx =
1

2πiβ

∫ δ+i∞

δ−i∞

(
β

α

)z
dz

ν − z

where −ν < δ < 3
2 .

We denote the integral on the right hand side of (17) by

(18) Int[ν] =
∫

F [ν, z]dz

and observe that F [ν, z] = O
(
|z|−1

e|z| log β
α

)
.

Once we input the integrand

In[2]:= F [ν , z ] :=
1

2πiβ(ν − z)

„
β

α

«z

we compute a certificate recurrence in the integer parameter ν using either the Mathematica
implementation of Zeilberger’s algorithm [11] or the command
In[3]:= FindRecurrence [F [ν, z], ν, z, 1] ;

from the package MultiSum and shift this recurrence accordingly:
In[4]:= ShiftRecurrence [%[[1]], {ν, 1}, {z, 1}]

Out[4]= βF [ν, z]− αF [ν + 1, z] = ∆z [αF [ν + 1, z]] .

Here we need to think about the contour of integration. Since δ can be chosen such that the
rectangular regions described above do not contain the pole of the function F [ν + 1, z], we find
the homogeneous recurrence satisfied by the left hand side of (15) as the output of the following
command:
In[5]:= rec1 = SumCertificate [%] /.SUM → INT

Out[5]= βINT[ν]− αINT[ν + 1] = 0.
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While in this simple case we can read off the solution of the recurrence relation, in general
situations, solving might be done using the package Hyper [12]. In this case since the right side
of the identity (15) is given, one can simply check that it also satisfies the recurrence above:

In[6]:= RHS[ν ] :=
βν−1

αν

In[7]:= CheckRecurrence [rec1, RHS[ν]]

Out[7]= True.

The initial value that needs to be checked is a known property of the Bessel function. A
similar approach works for the other two cases given in the table for this identity.

3. Examples

3.1. A simple example. To prove the identity ([6],7.245.1)

(19)

2π∫

0

P2m+1(cos θ) cos θdθ =
π

24m+1

(
2m

m

)(
2m + 2
m + 1

)

we use the change of variable sin θ =: x and the following representation for the Legendre function
of the first kind

Pν(z) = 2F1

( −ν
2 , ν+1

2
1 ; 1− z2

)
.

Since, in our case, ν = 2m + 1 with m ∈ N by converting the 2F1 to a Barnes integral,
reversing the order of integration and evaluating the innermost integral, we rewrite (19) as

1
2πiΓ(−m− 1

2 )Γ(m + 1)

∫ δ+i∞

δ−i∞

Γ(−m− 1
2 + s)Γ(m + 1 + s)Γ(−s)

Γ(1 + s)
(−1)s

(2s + 1)
ds(20)

=
π

24m+3

(
2m

m

)(
2m + 2
m + 1

)
.

This path of integration is curved to put the poles of the gamma functions Γ(−m − 1
2 + s) and

Γ(m + 1 + s) to the left of the path and the poles of Γ(−s) to the right.
Using Wegschaider’s algorithm [14], we find a recurrence for the integrand:

In[8]:= F [m , s ] :=
Γ(−m − 1/2 + s)Γ(m + 1 + s)Γ(−s)(−1)s

2πiΓ(−m − 1/2)Γ(m + 1)Γ(1 + s)(2s + 1)
In[9]:= FindRecurrence [F [m, s], m, {s}, 1]

In[10]:= rec1 = ShiftRecurrence [%[[1]], {m, 1}, {s, 1}]

Out[10]= 2(1 + m)(1 + 2m)(3 + 2m)(9 + 4m)F [m, s] + 3(7 + 4m)(11 + 14m + 4m2)F [1 + m, s]

− 4(2 + m)(3 + m)(5 + 2m)(5 + 4m)F [2 + m, s] = ∆s[2(1 + 2m)(3 + 2m)(9 + 4m)sF [m, s]

− 2(300 + 610m + 446m2 + 140m3 + 16m4 + 297s + 510ms + 276m2s + 48m3s)F [1 + m, s]

+ 4(2 + m)(3 + m)(5 + 2m)(5 + 4m)F [2 + m, s]]

To check the asymptotic condition (14), we use Stirling’s formula ([2], 1.4)

(21) log Γ(z + a) = (z + a− 1
2
) log z − z +O(1).

Since |eiπy| = 1 for any real y, we write PI for the pure imaginary terms and we obtain

log F [m, s] = −5
2

log |s|+ (arg(−s)− arg(s)− π) Im s + PI +O(1).

Here we distinguish two cases, either Im(s) > 0 or Im(s) < 0, and in either of these cases the
function F [m, s] is of the form (14).

Integrating over the certificate recurrence with a suitable contour leads to a zero integral over
the ∆s part and we obtain a homogeneous recurrence for the left hand side of (20):
In[11]:= rec2 = SumCertificate[rec1]/.SUM → INT

Out[11]= 2(1 + m)(1 + 2m)(3 + 2m)(9 + 4m)INT[m] + 3(7 + 4m)(11 + 14m + 4m2)INT[1 + m]− 4(2 + m)(3 + m)(5 +

2m)(5 + 4m)INT[2 + m] = 0
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Now we check that the right hand side of (20) also satisfies the recurrence:

In[12]:= RHS[m ] :=
π

24m+3

“2m

m

”“2m + 2

m + 1

”

In[13]:= CheckRecurrence[rec2, RHS[m]]

Out[13]= True.

Lastly, we see that we only need to show that identity (19) holds for two initial values m = 0
and m = 1, and this is done by looking up the appropriate Legendre polynomials.

3.2. Examples involving orthogonal polynomials. For the functions considered so far,
the Mellin transform existed as defined in (1) and the contour of integration for its Mellin-Barnes
integral representation passing through δ ∈ R lied in the strip of analyticity α < δ < β. In the
case of a polynomial of order n ∈ N we have α = 0 and β = −n. Hence, the Mellin transform does
not exist as defined in (1).

A constructive approach to this problem is presented in ([4], 4.3). We first decompose the
function f(x) into two functions defined on disjoint intervals, for instance,

f1(x) =
{

f(x), x ∈ [0, 1)
0, x ∈ [1,∞) , f2(x) =

{
0, x ∈ [0, 1)
f(x), x ∈ [1,∞) .

Then, by analytic continuation of their Mellin transforms, we obtain the Mellin transform of the
function f as a meromorphic function defined by

f̃(z) = f̃1(z) + f̃2(z)

on the entire z-plane.
Indeed for the function f(x) = (1− x)n with Re(n) > 0, we have

(22) f̃(z) = Γ(n + 1)
[

Γ(z)
Γ(n + z + 1)

+ (−1)n Γ(−n− z)
Γ(1− z)

]
,

for all z ∈ C except at its simple poles. The asymptotic behavior of these generalized Mellin
transforms and the Parseval formula are considered in section 4.5 of [4].

Remark: From our algorithmic point of view, the Mellin transform (22) is particularly in-
teresting as it is the sum of two proper hypergeometric terms which are shadows of each other.
Therefore, we find the same certificate recurrence for both terms which is also satisfied by their
sum. More on this topic can be found in section 4 of [15].

In more general situations, in order to compute the recurrence for the sum from those of the
terms, we can use the command REPlus from the package GeneratingFunctions [8], since we are
working with holonomic recurrences [18].

From (22) and Euler’s integral representation ([2], theorem 2.2.1) we determine the Barnes’
type integral form of the terminating 2F1

2F1

( −n, b
c

; x
)

=
Γ(c)Γ(n + 1)

2πiΓ(b)

[∫ δ+i∞

δ−i∞

Γ(z)
Γ(n + z + 1)

Γ(b− z)
Γ(c− z)

x−zdz(23)

+(−1)n

∫ η+i∞

η−i∞

Γ(−n− z)
Γ(1− z)

Γ(b− z)
Γ(c− z)

x−zdz

]

where Re(c) > Re(b) > 0, Re(b) > δ > 0 and η < −Re(n).
Next we consider two more examples from the table [6] involving Gegenbauer polynomials.
7.318 We prove the identity

(24)

1∫

0

x2ν(1− x2)σ−1Cν
n

(
1− x2y

)
dx =

Γ(2ν + n)Γ
(
ν + 1

2

)
Γ(σ)

2Γ(2ν)Γ
(
n + ν + σ + 1

2

)P
(ν+σ− 1

2 ,ν−σ− 1
2 )

n (1− y)

for Re(ν) > − 1
2 and Re(σ) > 0. This identity can be shown by simply applying the Mellin

transform method.
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Using the definition of the Jacobi polynomials ([2], page 99), we have

(25) P
(ν+σ− 1

2 ,ν−σ− 1
2 )

n (1− y) =

(
ν + σ + 1

2

)
n

n! 2F1

( −n, n + 2ν
ν + σ + 1

2

;
y

2

)
.

On the left hand side of (24), it is convenient to make the change of variable x2 = z. Then
use the following representation for the Gegenbauer polynomials ([2], 6.4.9 and 6.3.5),

(26) Cν
n(1− zy) =

(2ν)n

n! 2F1

( −n, n + 2ν
ν + 1

2

;
zy

2

)
.

After this preprocessing step, identity (24) can be rewritten as

(27)

1∫

0

zν− 1
2 (1− z)σ−1

2F1

( −n, n + 2ν
ν + 1

2

;
zy

2

)
dz =

Γ
(
ν + 1

2

)
Γ(σ)

Γ
(
ν + σ + 1

2

) 2F1

( −n, n + 2ν
ν + σ + 1

2

;
y

2

)
.

Next, we represent the 2F1 on the left hand side as a sum of Barnes’ type integrals (23) and
identity (27) becomes

Γ(n + 1)
2πiΓ(n + 2ν)

[∫ δ+i∞

δ−i∞

Γ(s)
Γ(n + s + 1)

Γ(n + 2ν − s)
Γ

(
σ + ν − s + 1

2

)
(y

2

)−s

ds + (−1)n

(28)

×
∫ η+i∞

η−i∞

Γ(−n− s)
Γ(1− s)

Γ(n + 2ν − s)
Γ

(
σ + ν − s + 1

2

)
(y

2

)−s

ds

]
=

1
Γ

(
ν + σ + 1

2

) 2F1

( −n, n + 2ν
ν + σ + 1

2

;
y

2

)
,

where we also used the property of the Beta integral
1∫

0

zν−s− 1
2 (1− z)σ−1dz =: B(ν − s +

1
2
, σ) =

Γ(ν − s + 1
2 )Γ(σ)

Γ(ν − s + σ + 1
2 )

.

At last, identity (28) is equivalent to the Barnes type integral representation of the 2F1 appearing
on the right hand side.

As a last example, we prove the more involved identity ([6], 7.314.1)

(29)

1∫

−1

(1− x)ν− 3
2 (1 + x)ν− 1

2 [Cν
n(x)]2 dx =

π1/2Γ
(
ν − 1

2

)
Γ(2ν + n)

n!Γ(ν)Γ(2ν)
.

We first make a change of variable 1−x
2 =: y and then use the duplication formula ([2], 1.5.1)

to write (29) as

(30)

1∫

0

yν− 3
2 (1− y)ν− 1

2 [Cν
n(1− 2y)]2 dy =

Γ
(
ν − 1

2

)
Γ

(
ν + 1

2

)
Γ(2ν + n)

n!Γ(2ν)2
.

For the Gegenbauer polynomials we have the representation (26) with z = 2 and the Barnes’
type integral representation for the terminating 2F1 given by (23). Therefore (30) can be rewritten
as

(31)
Γ

(
ν + 1

2

)2

(2πi)2
∑

i,j∈{1,2}

∫

Ci

∫

Cj

f̃i(s)f̃j(t)
Γ

(
ν − s− t− 1

2

)

Γ(2ν − s− t)
ds dt =

Γ
(
ν − 1

2

)
Γ(2ν + n)

n!
,

where for simplicity of presentation, we introduced the notations

f̃1(s) =
Γ(s)

Γ(n + s + 1)
Γ(n + 2ν − s)
Γ

(
ν + 1

2 − s
) ,

f̃2(s) = (−1)n Γ(−n− s)
Γ(1− s)

Γ(n + 2ν − s)
Γ

(
ν + 1

2 − s
)

and the contours of integrations are of the form C1 = (δ− i∞, δ + i∞) and C2 = (η− i∞, η + i∞).



AN ALGORITHMIC APPROACH TO THE MELLIN TRANSFORM METHOD 9

Since all the integrands on the left hand side of (31) are shadows of each other and will satisfy
the same certificate recurrence, we denote a generic integral of the four by

(32) INT [n] =
∫ ∫

F [n, s, t] ds dt.

Wegschaider’s algorithm [14] delivers a certificate recurrence in the integer parameter n

In[14]:= FindRecurrence [F [n, s, t], n, {s, t} , 1] ;

In[15]:= ShiftRecurrence [%[[1]], {n, 2} , {s, 1} , {t, 1}]

Out[15]= (n+1)(2n+2ν+3)(n+2)2F [n+2, s, t]+(n+1)(n+2ν)2(2n+2ν+1)F [n, s, t]−2(n+1)(n+ν+1)(2n2+4νn+

4n+6ν+3)F [n+1, s, t] = ∆s[2(n+ν+1)(4νn2−4sn2−6tn2−4n2+4ν2n−4νn−4νsn−4sn−8νtn−2stn−8tn−
7n−4ν2−8ν−4νt−4st−2t−3)F [n+1, s, t]−2(n+1)(n+ν+1)(4n+6ν+3)(2ν−2s−2t−3)F [n+1, s, t+1]+4(n+

2)(n+ν+1)(n+s+2)(t+1)F [n+2, s, t]]+∆t[4(n+ν+1)(2n3+6νn2−sn2+8n2+4ν2n+18νn−2νsn−3sn+stn−
tn+10n+8ν2+12ν−4νs−2s−2νt+2st−t+4)F [n+1, s, t]−4(n+2)(n+ν+1)(2n+s+3)(n+t+2)F [n+2, s, t]].

By integrating over this certificate recurrence, we obtain a recurrence for the sum of integrals
from (31). Section 4 of [13] describes the conditions that need to be fulfilled by the integrand
F [n, s, t] in order to obtain from the certificate recurrence a homogeneous recurrence for our
integration problem (32). This homogeneous recurrence is the output of the following command
In[16]:= rec2 = SumCertificate [%] /.SUM → INT

Out[16]= (2n+2ν+3)(n+2)2INT[n+2]+(n+2ν)2(2n+2ν+1)INT[n]−2(n+ν+1)
`
2n2 + 4νn + 4n + 6ν + 3

´
INT[n+

1] = 0.

and it is also satisfied by the right hand side of (31)

In[17]:= RHS [ν , n ] :=
Γ
`
ν − 1

2

´
Γ(2ν + n)

n!

In[18]:= CheckRecurrence [rec2, RHS[n, ν]]

Out[18]= True.

At last, we only need consider two initial values. In the case n = 0, we have Cν
0 (x) = 1 and

(29) is equivalent to the duplication formula. For n = 1, we have Cν
1 (x) = 2νx and the calculations

are again trivial.

4. Conclusions

We have introduced an algorithmic approach to the Mellin transform method by applying
Wegschaider’s algorithm [14] to multiple nested Mellin-Barnes integrals. As shown in [13],
Wegschaider’s algorithm computes recurrences for multisums as well as for nested Barnes type
integrals over hypergeometric terms.

In analogy with the summation case, we prove entries from [6] by first using the Mellin
transform method to bring the integrals to a suitable input form and then algorithmically finding
a recurrence satisfied by both sides of the identity.

We demonstrate that the idea can be successfully used to enlarge the domain of applicability
for this classic integral transform. So far we dealt with table entries containing single definite
integrals over functions with known Mellin transforms. This algorithmic twist especially helps in
the case of involved examples and its applications deserve further investigation.

Acknowledgments: Our collaboration began during a visit of the second author to Tu-
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