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Abstract 

 Deploying a Beowulf-type high-performance cluster is a challenging task. Many problems, 

regarding the underlying hardware infrastructure and the used software components need to be 

solved in order to make a set of machines work as a single computer. The task becomes even more 

complicated when heterogeneous commodity hardware platforms are utilized. This research is 

provoked by the idea of using a company’s old desktop computers for achieving computing 

performance at a low cost. While the existing cluster middleware provides many solutions for 

utilizing distributed resources, it still fails to be suitable for some cluster setups. This thesis 

represents the results of an evaluation in the field of heterogeneous high-performance computing. A 

systematic analysis of available tools for high-performance clustering aims to reveal both their 

strong and their weak sides. In addition, a detailed evaluation is provided from the point of view of 

administrators and users. The thesis describes the process of building a fully-functioning parallel 

environment using three different tools for cluster deployment - OSCAR v6.0.2, ROCKS v5.1 and 

CAOS-NSA v 1.0. These tools are compared in detail, so that the most suitable one can be 

determined. As a result two test environments are built. Numerous examples of tests runs, executed 

on the two environments, are described. Usability, with regards to different tools like resource 

managers, schedulers, and MPI, is assessed taking into consideration the underlying hardware 

platforms. The capabilities of the clusters are evaluated against a parallel application for route 

optimization. 
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Chapter 1 

Introduction 

 
 Ever since the invention of the first calculating machines the need for more processing 

power has been the driving force for further development and innovation. Today’s computer 

hardware evolves rapidly in order to be able to keep up with the extreme demands of the 

applications and the users. Even though, in the fields of science and research there is still a growing 

need for more computational power. What is more, professional business applications are becoming 

more and more advanced and, thus, start requiring more computing resources as well. For years, the 

solution has been utilization of specialized massive computers that have proprietary hardware and 

architecture in order to achieve topmost computing performance. However, these machines are still 

rather costly to be used in everyday business life. An alternative solution, that proves to be also 

cheaper, is using the joint computing power of collection of more simple computers. 

 This thesis focuses on studying the capabilities of such architectures. A collection of 

computers that work together towards achieving a common goal define a parallel environment. The 

main idea behind parallel environments is to split a heavy computational task into smaller ones and 

then distribute them to multiple processing units for calculation. This technique sets the foundations 

of introducing massive speed-ups that can be equal to the number of processors used. An 

application running concurrently on ten processors can execute ten times faster than on a single one. 

Today’s multi-core processors aim to achieve parallelism by dividing the workload of a single 

machine between the separate cores. While using a single machine proves to be rather effective, it 

also suffers from hardware constraints that limit the reachable performance. Thus, an alternative 

solution is creating a parallel environment that consists of separate machines, each of which has its 

own processor and memory, connected together via means of networking. This architecture is 

referred to as a cluster of machines. What brings them together to work as a single computer is the 

middleware software. It is the gluing component that lies between the operating system and the user 

applications. In the common case, clusters are completely different from the massively parallel 

computers that utilize special hardware and interconnection methods between the nodes. What is 

more, clusters which are built using commodity hardware prove to be quite productive as well. The 

process of designing, building and using computers for solving extremely advanced computational 

problems is referred to High-Performance Computing (HPC). Clusters are often used in the area of 

HPC because they show to be able to provide performance at a lower price. This thesis focuses on 

analyzing the HPC capabilities of clusters built from commodity hardware machines that are of 

heterogeneous type. Recent research in the field of HPC shows that there are certain advantages in 

utilizing different computers in cluster environments. Machines with different processors and 

different memory capacity show to be more flexible in solving heavy computational tasks and, what 

is more, they open broader horizons for improvements in the field of parallel programming. 

 The work in this thesis is inspired by the challenges, which a local company in upper Austria 

is confronted to. RISC Software GmbH is a company that brings to the market software solutions 

that combine up-to-date science with most recent research. It is a spin-off of the RISC Institute 
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(Research Institute of Symbolic Computation). The current research in the area of parallel 

programming provoked this analysis of clustering technologies and methods. Numerous projects in 

the company solve advanced computational problems that require vast amount of processing power. 

In addition, others need to be parallelized in order to achieve reasonable computational time and 

provide solutions fast. All these, require a parallel environment to be built so that tests runs can be 

performed. Up to this point, RISC Software GmbH was using remote distributed resources for 

testing as no alternative was available locally, at the company. What is more, a concrete application 

dealing with route optimization for industrial logistics was being developed at the time of writing. 

This application could only be tested effectively on a parallel cluster environment. Building such a 

testing set-up could not be achieved previously because the crew at RISC Software GmbH was 

missing necessary experience in the field of clustering. Additionally training was not an option 

because of the limited size of the development team and their current workload.  

 Cluster middleware presents numerous challenges that need to be studied previous to 

deploying a production cluster. This thesis presents a solution for creating a fully-functioning 

parallel environment by providing a systematic evaluation and comparison of different techniques 

and tools. Existing achievements in the field of HPC computing are studied. Appropriate tools were 

chosen for creating a heterogeneous computing environment based on different criteria like, for 

instance, ease of utilization and provided functionality. Cluster middleware in the form of the 

cluster deployment tools ROCKS, OSCAR, CAOS-NSA, is thoroughly analyzed. Detailed 

description of the experience gained during the installation process aims to provide a comparison 

between these tools and assess their qualities. Furthermore, usability of the achieved environments 

is tested by evaluating the tools for job distribution, resource management and resource monitoring 

included in the software of the clusters. Then, the functionality of the achieved clusters is compared 

using the route-optimization application implemented by RISC Software GmbH. Finally, conclusion 

are drawn that aim to provide a guideline for creating an effective production cluster for high-

performance computing. 

 The thesis has the following structure. Chapter 2 describes in detail what cluster computing 

is and what problems it faces when a heterogeneous hardware is used. In addition, an overview of 

the most recent achievements in the area aims to present different options for clustering tools. In 

Chapter 3 high-level middleware is studied by focusing on the experience gained from installation 

and configuration of tools for cluster deployment. Additionally, different techniques for building a 

cluster are discussed and compared. Chapter 4 provides users with guidelines how to benefit from 

the tools a cluster provides. Here, series of examples show how both parallel and sequential jobs 

can be submitted to the cluster. Chapter 5 analyzes the behavior of the built environments when 

confronted to the challenges of a real-life production application. Different conclusions regarding 

parallel execution are discussed here. Finally, Chapter 6 summarizes all gained experience, presents 

conclusions and opened possibilities for further development. 
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Chapter 2 

State of the Art 

 
This chapter describes the state of the art in cluster computing and discusses the tools mostly 

used for building a heterogeneous cluster environment. Section 2.1 gives a basic overview of 

clusters and defines some different kinds of clusters. Section 2.2 focuses on programming for 

clusters, describing some common difficulties. Finally, Section 2.3 is dedicated to cluster 

middleware, which is described in the frame of four subsections: low level middleware, parallel file 

systems, high level middleware, and grid middleware.  

2.1 Introduction to Clusters 

The following section is mainly based on [Buyya vol.1, 1999]. 

Parallel computers introduce a way to overcome constraints of traditional sequential computers. 

They divide workload, distribute it among nodes and carry out calculations simultaneously.  Large 

computational problems can be divided into smaller ones, which then can be solved concurrently in 

an environment of multiple processors. Often, proprietary parallel computers implement such an 

environment on a single large machine. A simple alternative is to connect multiple single processor 

machines and coordinate their work. That way similar result can be achieved at a lower cost.  

Parallel computers are known to have a number of different architectures [Buyya vol.1, 1999]. 

The Massively Parallel Processor (MPP) is a large parallel system. Normally, it consists of several 

hundred processing elements (nodes). The nodes are connected via high-speed network and each of 

them runs a separate copy of an operating system. MPP implements a “shared-nothing” architecture. 

Often, each node consists only of main memory and one or more processors. Additional 

components, like I/O devices, could be added. In contrast, the Symmetric Multiprocessor (SMP) 

system has a “shared-everything” architecture. Each node can also use the resources of the other 

nodes (memory, I/O devices). A single operating system runs on all the nodes. Finally, a distributed 

parallel architecture defines a network of independent machines, usually over a wide geographical 

area. Each node is a completely separate machine with its own operating system. Furthermore, each 

node can be of completely different architecture. Any combination of MPPs, SMPs or plain 

computers could be added to a distributed system.  

[Buyya vol.1, 1999] defines “A cluster is a type of parallel or distributed processing system 

which consists of a collection of interconnected stand-alone computers working together as a single, 

integrated computing resource”. A computer node can be a single or multiprocessor system (PC, 

workstation, or SMP) with memory, I/O facilities, and an operating system. Different terms arise to 

define different cluster “flavors”: Networks of Workstations (NOW) or Cluster of Workstations 

(COW), clusters of PCs (CoPs) or Piles of PCs (PoPs). 
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Originally, clusters were only used for processing computation-intensive tasks in the frame of 

high-performance computing. Later on, they showed to be useful in other areas as well. Today, 

except high performance (HP) clusters, there are also high-availability (HA) clusters and load-

balancing (LB) clusters.  

High-availability (also called failover) clusters implement the concept of redundancy [Sloan, 

2004]. They are used for mission-critical applications. An example is a web server at a company 

that must not fail. HA is achieved by having multiple secondary servers that are exact replicas of a 

primary server. Constantly, they monitor the work of the primary server waiting to take over if it 

fails. In this basic form, only a single machine (server) is in active use while the remaining ones are 

in stand-by mode. 

Load-balancing clusters provide better performance by distributing workload among nodes in a 

cluster [Sloan, 2004]. Consider a web server. If load-balancing is implemented, different queries are 

handed to different nodes for processing. Concurrent processing of queries results in faster overall 

response time of the server. LB is accomplished by a number of techniques. A simple round-robin 

algorithm or more complex algorithms that rely on feedback from the individual machines can 

determine which machine is best suited for handling the next task. 

The term "load-balancing" bears different meaning in different scenarios. LB for a high-

performance cluster is completely different from LB for a web server. In this thesis we focus 

entirely on high performance computing utilizing a cluster of commodity-hardware machines. In 

this case load-balancing is used distributing computational tasks among different nodes in 

accordance to their processors speed, current load, and memory capacity. The goal is to achieve 

overall speed-up of tedious calculations.  

Clusters and high performance clusters in particular can be composed of computing elements of 

different ownership and architecture. We distinguish dedicated and non-dedicated nodes, 

homogeneous and heterogeneous types of nodes. In practice, these two categorizations are tightly 

dependent because, as it turns out, dedicated nodes are of homogeneous nature and non-dedicated 

are heterogeneous: in the case of large supercomputers comprised of thousands of dedicated nodes 

administration is much easier if all nodes are of homogeneous architecture. And, with non-dedicated 

clusters sometimes it is just not possible to have a network of homogeneous nodes. Nevertheless, 

the purpose of this study is to show that heterogeneous dedicated nodes prove to achieve better 

results in the field of high performance computing. 

Dedicated nodes of a cluster are devoted entirely to the computational tasks of the cluster 

[Buyya vol.1, 1999]. They utilize a shared set of resources in order to perform parallel computation 

across the entire cluster. Usually, nodes are situated in a controlled environment with high-speed 

interconnections. There is one terminal for the whole cluster.  

The alternative, non-dedicated nodes are owned by individuals. Cluster tasks are executed by 

“stealing” unused CPU cycles [Buyya vol.1, 1999]. Consider an office building or a NOW. Most 

workstation CPU-cycle capacity remains unused, even during peak hours. Workstation clusters are 

easier to integrate into existing networks than special parallel computers. They are highly scalable, 

meaning that new stations can be added any time. Workstation clusters are cheap because they use 

commodity hardware. Last, but not least, the development tools for workstations are more mature 

compared to the proprietary solution for parallel computers. 
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On the other hand heterogeneity of nodes can be defined both, at hardware and software level 

[Buyya vol.1, 1999]. Often nodes in a company network differ in the utilized CPU types and 

speeds, memory capacity, network interconnect speed.  Also, operating systems may vary. But 

different types of nodes can perform differently on a set of tasks. Matching tasks to suitable nodes is 

a problem in such an environment. Other problems regard administration and development. 

Different hardware architectures define different interfaces and techniques to be managed and 

programmed for. Additionally networks introduce bottlenecks, as processors are still faster in 

computations than communications on commodity low-cost networks. Inevitably, latency is 

introduced by network delays and synchronization in the system. 

In this thesis we focus on building a cluster of dedicated heterogeneous workstations. We will 

show that utilizing such a cluster for enterprise needs proves to be a cost effective alternative for 

achieving high performance. 

2.2 Cluster Software Development - Mapping and Scheduling 

Achieving high performance on a heterogeneous cluster requires a lot more than setting up a 

proper hardware and software environment. Speed-up needs to be achieved in the first place, i.e. a 

program must execute faster on a high-performance computer than on a sequential one. Utilizing a 

parallel environment to achieve this requires programs to be parallelized as well, i.e. to be broken 

down to tasks which can be executed concurrently on different processors. Only when all 

processors fully utilized, real speed-up is achieved. Before tasks are executed they need to be 

assigned to processors. The process of assigning tasks to processors is referred to as mapping 

[Buyya vol.1, 1999]. Proper assignment can show great influence on the speed of a parallel 

program. This is especially true in the case of heterogeneous parallel computers. Take into account 

the different architecture of CPUs, their different speeds, and interfaces. Some processors are faster 

in computing floating point operations while others like graphical processors are faster working on 

vector input data. The problem is to define which processor is most suitable for executing a task in a 

way that the overall execution of a program is minimized. In contrast, in a homogeneous 

environment, where all the processors are the same, the problem reduces just to constructing and 

distributing the tasks.  

The problem of mapping complicates furthermore by the need of communication between tasks. 

As the tasks are a part of one program they need to synchronize and pass values between each other. 

This is often referred to as communication overhead in parallel programming. Mapping has to take 

into account the communication load when deciding where to execute tasks. In order to achieve full 

parallelism, tasks should be spread as evenly as possible and fully exploit all processors. However, 

distributing the processes among the parallel computer leads to elevating communication between 

them and thus slows down the whole execution. One solution to this problem is to place tasks that 

communicate most in one processor or in closely located processors. This way, however, 

complicates the mapping problem even more as it already goes into conflict with the choice of the 

most appropriate processor. Hence, mapping has to keep balance between computation and 

communication load.    

On the other hand, scheduling is the process which determines when tasks are executed. [Buyya 

vol.1, 1999] defines “scheduling is to solve a set of tasks serviced by a set of processors to get the 

best result according to a certain policy, which can be described in a number of different ways in 

different fields.” Scheduling techniques are implemented by most modern operating systems today. 
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The difference is that in this case they focus only on allocating CPU cycles to local processes. In a 

parallel environment scheduling manages a set of processes that are created and executed on 

different machines. While mapping determines the best machine for a task, scheduling controls the 

order of which tasks are executed. Furthermore, it determines if a task should be suspended, moved 

to another machine, or resumed. All this is done in a way that maximizes the total speed at which 

parallel computations are carried out. In the general form the scheduling problem is known to be NP 

complete. However, optimal solutions can be found for a number of situations. Well known 

scheduling algorithms are FIFO, round robin task distribution, shortest-job-first, and the shortest-

job-remaining-time.  

According to [Buyya vol.1, 1999] “The processing capacity of a heterogeneous computing 

system cannot be efficiently exploited unless the resources are properly scheduled”. Load balancing 

is a scheduling technique that takes care of idle CPU cycles. It tries to distribute work evenly 

between processors, so that no processor remains idle. Load balancing can be of significant 

importance to heterogeneous computing environments. As work is distributed to most appropriate 

processors it could happen that faster processors are congested with tasks while slower ones remain 

idle for longer periods. Of course, scheduling should take care of this situation, allocating processes 

to less powerful machines. Additionally, some techniques could be adopted that classify tasks as 

“easy” or “hard” so that hard tasks are given to faster processors and the easy ones - to slower 

processors. An example is producing many fine-grain tasks. In this way the number of tasks could 

determine the level of difficulty that each processor works with.  

Task granularity is defined as the ratio between computation and communication [Buyya vol.1, 

1999]. The granularity of tasks refers to the “independent” parts of an application that can be 

processed in parallel. They determine the overall execution speed of a parallel program. Fine 

grained tasks are small; relatively simple and most importantly they are a large number. So, they 

introduce large communication overhead as they are inevitably very dependant of one another and 

need constant exchanging of synchronization information. Also, tasks will be completed very fast 

resulting in constant context switches and also message passing with the scheduler of the system. 

Large-grained tasks, in contrast, are difficult to schedule and limit parallelism.  

As discussed, parallel programming introduces a number of difficulties regarding proper 

distribution of work load among nodes in order to minimize overall execution time. There exist 

some open source cluster schedulers like MAUI.  

2.2.1 MAUI Scheduler 

 According to its home page MAUI is a highly configurable open-source job scheduler 

[MAUI, 2009]. It determines where, when and how to execute jobs on a cluster or supercomputer. It 

is well suited for high performance computing (HPC) incorporating a large set of features. It relies 

on configurable scheduling policies, priorities, and limits to maximize resource use and minimize 

response time. MAUI controls an external resource manager such as Torque, OpenPBS, PBSPro, or 

Sun Grid Engine (SGE) and operates upon the information gathered by it. Users usually submit 

their jobs through the resource manager. The scheduler then decides how these jobs are executed 

and forces its decisions upon the cluster using the resource manager.  

MAUI is an advanced batch scheduler that implements different mechanisms for optimal 

utilizations of available resources. Some of these mechanisms are advance reservations, QOS 
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levels, backfill, and allocation management. Advanced reservations dedicate certain resources to 

specific users over a given timeframe. Reservations are managed through reservation-specific 

access control lists. Quality of service (QOS) mechanism gives special privileges to particular users 

that may include extended access to resources and services, special policy exemption, or job 

prioritization. Backfill is a scheduling approach that increases system utilizations by executing jobs 

“out-of-order” from the scheduler’s priority queue. Jobs with lower priority are run together with 

the highest priority jobs in the queue without delaying them. Essential to this technique is 

estimating beforehand how long a job will run in order to determine whether it will be delayed or 

not.  This estimate should be provided by the user. In addition to these techniques, MAUI provides 

an extensive administrative control allowing configurations to be enforced on scheduling, job 

priorities, and reservation policies.   

2.3 Middleware 

When a pool of interconnected computers appears as a single unified computing resource we 

can say that these machines have a Single System Image (SSI) [Buyya vol.1, 1999]. The SSI is 

achieved by a software layer that lies on top of the operating system and actively interacts with it. 

This software is referred to middleware. It actually resides in the middle between the operating 

system and the user applications. Middleware “glues” resources by message passing, moving 

processes across machines, monitoring and synchronizing work of nodes. 

The following sections describe middleware that is used for this project. Tools and standards are 

divided into three categories according to level of abstraction. Low level defines cluster middleware 

that lies closest to the machine level. Parallel file systems describe a way of building a single file 

system over the disks of interconnected computers. High Level middleware is based on tools of the 

previous two levels. Finally Grid middleware is discussed concerning the possibility for further 

extension of the project and including the cluster into a large-scale network.  

2.3.1 Low Level Middleware 

2.3.1.1 MPI 

The Message Passing Interface (MPI) defines a standard for data movement across 

interacting processes in a distributed system [Gropp, 1999]. MPI is not a programming language or 

an implemented library. It describes how basic functions for message exchange should look like. It 

defines the names, calling sequences, and results. Some defined functions are for point-to-point 

communication between processes, for collective operation execution, and for process management. 

MPI is typically realized as a communications interface layer that resides on the facilities of the 

underlying operating system. Bindings are defined for C, FORTRAN, and C++ as well as for 

various other languages. Programming with MPI requires explicit parallelization of code. The 

programmer is responsible for identifying which areas of the code can be paralyzed and then 

implementing a parallel algorithm using the MPI functions.  

On the other hand MPI suffers some drawbacks [Dongarra, 2004]. The number of tasks 

working on a parallel program has to be defined in beforehand and cannot change during runtime. 

Another problem is the lack of interoperability between MPI implementations. One vendor’s 

implementation of MPI cannot exchange messages with another vendor’s implementation. 
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Additionally, in its basic form MPI does not define fault tolerance. The only specification is that if 

an error occurs during execution the application should be able to exit. An implementation of MPI 

that focuses on this problem is Fault-Tolerant MPI (FT-MPI). It offers both user and system level 

fault tolerance.  

The second issue of the MPI standard (MPI-2) addresses some problems and introduces 

solutions for them [Barley, 2009]. The key areas of new functionality are Dynamic Processes, One-

Sided Communications, Extended Collective Operations, External Interfaces, and Parallel I/O.  

Dynamic processes remove the static process model of MPI. One-sided communications provides 

routines for one directional communications. External interfaces define routines that allow 

developers to layer on top of MPI, such as for debuggers and profilers. 

2.3.1.2 Open MPI 

We will describe Open MPI based on the information provided on [Open MPI, 2009]. Open 

MPI is an open source complete implementation of the MPI 1.2 and MPI-2 standards. Its primary 

goal is to create a high-efficient, production-quality MPI library for high-performance computing. 

The project allows and encourages involvement of the HPC community with external development 

and feedback. Thus, it provides a better quality peer-reviewed implementation. Open MPI combines 

research and experience gained from previous implementations. It merges some of the well-known 

MPI implementations:  FT-MPI, LA-MPI, LAM/MPI, and PACX-MPI. The driving motivation 

behind Open MPI is to bring together good ideas and technologies from the individual projects and 

form one open source MPI implementation. 

Open MPI is very portable. It implements a variety of communication protocols for the most 

popular interconnection networks used in today’s parallel machines. Additionally, it supports 

network heterogeneity and fault tolerance. These ideas were first explored in LA-MPI and further 

developed in Open MPI. Other features include multi-threaded programming and thread safety. 

Open MPI prevents the “forking problem” common to other MPI projects.  

Open MPI relies on new design architecture to implement MPI - it uses the Modular 

Component Architecture (MCA). MCA defines internal APIs called frameworks that are particular 

services such as process launch. Each framework contains one or more components which are 

specific implementations for a framework. Components can be dynamically selected at runtime. 

Open MPI provides point-to-point message transfer facilities via multiple MCA frameworks.  

Open MPI works on three abstraction layers. The Open MPI (OMPI) layer provides standard 

MPI functions to the user. Below it lies the Open Run-Time Environment (ORTE) that implements 

a parallel run-time interface that is platform independent. Finally, on the lowest level resides Open 

Portable Access Layer (OPAL) which interacts with the operating system and the hardware 

providing an abstraction layer that hides system specific particularities. 

2.3.1.3 PVM 

PVM (Parallel Virtual Machine) is an integrated set of tools and libraries that form a 

framework for building a single parallel computer from a collection of interconnected 

heterogeneous computers [Geist, 1994]. The primary goal of PVM is to build a flexible, cost-

efficient solution to large computational problems relying on the aggregate power of many 

computers. PVM’s design allows it to interconnect machines of different architecture - from laptops 
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to CRAYs. Transparently to the user it handles message passing, data conversion, and task 

scheduling across such a network. 

Primary goal to PVM is to form a Single System Image or a “virtual machine” from a set of 

heterogeneous nodes connected by a network. Computers form a pool of resources and the user can 

specify which computers are to be used for executing a current set of tasks. PVM handles changes 

to the pool allowing machines to be added or deleted from the virtual machine at runtime. 

Computations are carried out by system processes. PVM API allows processes to be started or 

stopped according to different criteria, imposed also by external schedulers or resource managers. It 

supports also exchange of messages that check if a process is alive or inform when a process leaves 

the system. However, PVM allows only blocking send. Non-blocking send is available with MPI. 

Additionally, PVM is favored for its fault tolerance that allows users to write long running 

applications that resist task failure and changes in the resource pool [Dongarra, 2004]. 

Basically PVM systems include two parts [Geist, 1994]. First part is a daemon resides in 

every node that is part of the virtual machine. A daemon is a program that constantly runs in 

background. In the case of PVM daemons monitor system’s resources and exchange messages with 

other daemons. Second part is a library interface routines that contains a complete set of primitives 

to handle cooperation between tasks. PVM relies on the notion that an application is divided into 

tasks. Each task is responsible for a part of the computational workload of an application. 

Functional and data parallelism of tasks are supported, as well as a mixture between the two.  

2.3.2 Middleware for Parallel File Systems 

2.3.2.1 MPI-IO 

MPI I-O provides parallel I/O capabilities for the Message Passing Interface. It was developed 

in 1994 in the IBM’s Watson Laboratory [MPI-IO, 2003]. Now it is a part of the MPI-2 standard. 

MPI-IO is designed to work with distributed data sets similarly to exchanging messages in native 

MPI. Writing files is similar to sending MPI messages and reading is similar to receiving MPI 

messages. All basic file manipulation actions are supported namely opening, closing, deleting, and 

resizing of files. MPI-IO incorporates its own file-representation strategy as a collection of etype 

units (elementary data type). Etypes control file access and positioning. Additionally, views are 

another concept which defines which parts of a file are visible to a task and how a task should 

interpret them. 

MPI-IO implements different ways of accessing data which introduces flexibility to the I/O 

process. Data access is characterized by positioning, synchronization, and coordination. These 

define whether tasks should share a common file pointer in a collective manner or not, whether a 

process is blocked till data is written/read or not, whether access is coordinated or “free-for-all”.  

Data representations (data sizes, byte ordering, etc.) may vary between different platforms. A 

feature called File Interoperability makes MPI-IO very portable.  Interoperability guarantees that 

data written to a file could be read afterwards obtaining the initial meaning. MPI-IO supports 

external and user-defined data representations. These make sure of proper handling of data coming 

from a machine with a different architecture or another MPI environment.  MPI-IO defines internal 

data representations modes which ensure that file data written by one process can be read by any 

other process within a single MPI environment [MPI-IO, 2003]. 



13 
 

MPI-IO has proven to be effective in a heterogeneous computing environment. Parallel 

programming using MPI benefits from ease of integration of MPI-IO.  

2.3.2.2 PVFS 

The Parallel Virtual File System (PVFS) is a parallel file system for clusters of workstations 

[PVFS, 2009]. The main goal of PVFS is to provide high-performance data management over a 

distributed environment, where concurrent access to files is common. It provides dynamic 

distribution of I/O workload and in that way can scale even to high-end systems. Additionally, 

PVFS is designed for managing large data sets - often of hundreds of terabytes. Data is dividing 

across the discs of the cluster nodes giving applications multiple different paths to reach a file 

through the network. Thus, bottlenecks are eliminated and total bandwidth is increased. 

PVFS supports different access models - collective I/O, independent I/O, non-contiguous and 

structured access patterns [PVFS, 2009]. It supports the UNIX I/O interface and allows existing 

UNIX I/O programs to use PVFS files without recompiling. UNIX file tools (ls, cp, rm, etc.) 

operate on PVFS files and directories as well. However, relying on the native UNIX tools for 

parallel I/O introduces overhead as commands have to go through the operating-system’s kernel. 

PVFS overcomes this obstacle by introducing a native API - a library which implements a subset of 

the UNIX operations.  It directly contacts PVFS servers rather than passing through the local kernel. 

Another PVFS interface is ROMIO. It implements the MPI2 I/O calls in a separate library allowing 

MPI programmers to access PVFS files through the MPI-IO interface. 

PVFS defines three different roles of cluster nodes in the system architecture: compute node, 

I/O node, and manager node [PVFS, 2009]. Normally, there is only one management node in a 

system and other nodes are dedicated to either computing or data storage. In the case of small 

clusters management, computation, and I/O can be carried out on the same nodes. The management 

node maintains all metadata of the file system, controls operations on it, and validates permissions. 

The metadata describes a file – for example, its name, owners, locations in the system, hierarchy in 

the file system, etc. When a computing node needs to access a file it contacts first the management 

node. Then, after all the necessary metadata is obtained, the computing node can start exchanging 

file data with the I/O nodes. PVFS manages file data scattering and gathering completely 

transparently. An application only uses the PVSF API. PVFS implements the different roles of 

nodes through a set of daemons. Management and I/O nodes that run the corresponding daemons 

exchange data with the computing nodes in a client-server mode. 

PVFS is designed mainly to provide high performance parallel I/O. Taking this into 

consideration together with the easy installation and implementation that relies on commodity 

network and storage hardware, proves PVFS to be quite applicable for Beowulf-type clusters. 

2.3.2.3 Hadoop 

Apache Hadoop is a software platform that creates a distributed file system over the discs in a 

cluster [Hadoop, 2009]. It is designed to unify storage resources of big clusters built of commodity 

hardware. Based on Java it allows developing applications that process large data-sets. Data 

manipulation is completely transparent to the user and furthermore, multiple copies of data are 

maintained over the nodes. This provides applications with reliability and shorter paths to data, 

resulting in high aggregation bandwidth.  
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 The distributed file system implemented by Hadoop (HDFS) takes care of storing file data 

and reallocating it in case of failure [Hadoop HDFS, 2009]. HDFS relies on a computational model, 

named Map/Reduce [Hadoop M/R, 2009], which has two main processing phases and manages to 

reduce overall amount of data without loss of meaning. Applications are required to specify 

input/output locations for files and also can define map and reduce functions to be applied over 

them. HDFS API helps do this with appropriate interfaces and abstract classes. After a job is 

configured in this way, data is divided into independent pieces which are then processed in parallel 

by the map tasks. All computations of mapping are carried out in the memory across nodes and 

results are then stored as files and handed in to the reduce tasks. Reducing collects the results; 

forms a single file and applies the predefined reduce function on it. 

Typically computation and storage jobs are carried out on the same node which facilitates 

scheduling. Tasks are executed close to the data they operate on following the rule “Moving 

computations is cheaper than moving data” [Hadoop HDFS, 2009]. Even though, HDFS 

implements a client-server architecture having a single NameNode or master server that maintains 

meta-data of files and controls the mapping of files to physical locations in the cluster. The other 

nodes, named DataNodes, take care of the storage attached to them and serve read and write 

requests. DataNodes perform data manipulations upon instruction of the NameNode. Clients contact 

first the master server before they start exchanging data. HDFS maintains a file-system hierarchy 

and stores data in files. Internally, files are stripped into blocks which are stored on different 

DataNodes and replicas are also maintained. 

HDFS is a Java framework that works on top of GNU/Linux operating system. It is designed to 

bring up fault-tolerant file system on clusters of low-cost commodity machines. Namely, Bowulf-

type clusters could be a possible application. 

2.3.2.4 Sector-Sphere 

Sector-Sphere is an open source project of the National Center for Data Mining at the 

University of Illinois at Chicago [Sector-Sphere, 2009]. It is a system for distributed data storage 

over a single cluster or a network of geographically distributed clusters. It is designed to utilize 

computers built of commodity hardware. Basically the system has two main components – Sector 

and Sphere. They take care respectively of storage and computing services.  

Sector is a distributed file system that combines resources of nodes and clusters interconnected 

with high-speed commodity networks [Sector-Sphere, 2009], [Yunhong, 2008]. It provides tools for 

data access and data manipulation. But mainly it focuses on maintaining file system semantics like 

file hierarchy, user access control, and common file access APIs. It is designed for read intensive 

tasks maintaining multiple replicas of files across the nodes in the cluster. Writing is slow because 

Sector does it exclusively, meaning that when a file is being written no other operations are 

permitted on this file. Similarly to other distributed file systems, Sector’s architecture comprises of 

a master node that handles files metadata and coordinates the other slave nodes that store the files 

and process requests. There is one additional security node that manages permissions and 

passwords.  

Sphere is built on top of Sector storage facilities, allowing it efficiently process data [Yunhong, 

2008]. The system uses “stream processing paradigm” where stream refers to large static dataset. 

Elements of the dataset are processed independently by a processing function or a group of 
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processing functions. This could be the Map/Reduce functions or other user-defined functions. Thus 

large amounts of data could be processed in parallel in a distributed environment. Sphere takes care 

internally of locating and moving of data, of load-balancing and fault-tolerance allowing developers 

that use the API to focus on implementing data-intensive parallel applications.  

2.3.3 High Level Middleware 

2.3.3.1 Beowulf 

According to [Buyya vol.1, 1999] no concrete definition of a Beowulf cluster can be given as no 

two clusters of this kind share the same architecture. Nevertheless, Beowulf defines a class of 

distributed cluster computing that strives for achieving highest performance on lowest price. This 

design model results in machines less expensive than proprietary supercomputers or MPPs but of 

comparable performance.  

The most notable characteristic of Beowulf clusters is that they rely on low-cost commodity 

hardware. With broad selection of models and manufacturers available for any specific component, 

Beowulf clusters show great flexibility. They provide the possibility to configure, optimize and 

restructure the system to optimally run a particular application whenever it might be advantageous. 

The nodes of such a cluster are dedicated, meaning that their only purpose is to work on application 

together. Hence, a node can only consist of the most basic components, such as one or many 

processors, memory and means of network connectivity.  Even hard drives can be omitted. Only the 

head node necessitates a keyboard and a monitor. In most cases a Beowulf cluster consists of a few 

old desktop computers interconnected via Ethernet. The term a Pile-of-PCs is very suitable for a 

Beowulf cluster. The software or the middleware is what brings out the power of these computers 

when working together. In contrast to MPPs which use mainly proprietary software components, 

Beowulf uses no-cost open source software as foundation of the system. All of the nodes usually 

run some distribution of Linux operating system. On top of it lies middleware which brings the 

system together. Basically all Beowulf clusters use MPI and PVM libraries. In addition other 

software components may be added according to the application that the cluster is being used to 

run. For example schedulers like MAUI and openPBS can be used together with resource managers 

like Condor. The core development environment for Beowulf machines is typically a GNU 

compiler, of which C, C++ and FORTRAN are most commonly used. 

These characteristics of Beowulf clusters make them very suitable for utilizing an environment 

of heterogeneous computer components for achieving high performance. Beowulf.org gives a short 

definition of Beowulf: “Beowulf clusters are scalable high-performance clusters based on 

commodity hardware. Some Linux clusters are built for reliability instead of speed. These are not 

Beowulf.” 
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2.3.3.2 OSCAR 

OSCAR (Open Source Cluster Application Resources) is a software package that simplifies the 

process of setting up a cluster [Sloan, 2004], [OSCAR, 2009]. A collection of open source cluster 

software, OSCAR includes everything that one might need for a Beowulf-type, high-performance 

cluster. Installing OSCAR builds a completely functioning cluster out of a network of computers. 

Thus it is suitable for novices in the area of cluster computing, allowing them to gain experience 

after they build a cluster.  

OSCAR is designed with the idea to bring high performance to cluster computing but in practice 

it can be used for any cluster application. Basically, its design suggests that the computer nodes are 

dedicated to the cluster. Some of them can remain in standby mode waiting to take over if a failure 

occurs implementing in this way asymmetric cluster architecture [Sloan, 2004]. Usual OSCAR 

architecture consists of one head/server node and many other client nodes. Installation is done on 

the cluster's head node first. Then the OSCAR installs the remaining machines, from the server 

using the System Installation Suite (SIS). Since the head node is used to build the client image, it is 

also the home for most user services, and is used to administer the cluster.  

OSCAR was born with the idea of moving cluster installation towards a unified standard. That 

is why OSCAR is a complete system that installs “best-of-class” software in one stroke eliminating 

the need of downloading, installation, and configuration of individual components. Still, most of the 

components exist as standalone versions and undergo further development and improvement. 

Installation is very flexible allowing the user to exclude some packages and include others 

depending on the overall purpose of the cluster and thus, for example, turning a high-performance 

cluster into a high-availability one.  The package contains MPI, OpenMPI, PVM, MPICH and LAM 

(Local Area Multicomputer is an MPI programming environment and development system for 

heterogeneous computers on a network) [OSCAR, 2009]. For scheduling OSCAR relies on the 

Torque Resource manager and the MAUI Scheduler. The Maui scheduler handles task scheduling 

using some more sophisticated algorithms. These algorithms show to be very flexible allowing also 

to be configured by the cluster administrator. Torque has a first-in-first-out scheduler, but by default 

OSCAR uses the Maui Scheduler as it is more flexible and powerful. The Cluster Command 

Control (C3) tools comprise a set of cluster tools that take care of, for example, global command 

execution, remote shutdown and restart, file retrieval and distribution, and process termination. 

In addition the OSCAR package can be also installed on PlayStation3 running YellowDogLinux 

(YDL) 5.0. This functionality gives the possibility to include graphical processors in a cluster like 

the 8-core Cell Processor which PlayStation3 comes equipped with. 

2.3.3.3 OpenMosix 

OpenMosix (Multicomputer Operating System for unIX) is a Linux kernel extension that turns a 

collection of ordinary computers into a supercomputer [Sloan, 2004]. The software package 

facilitates setting up a high-performance cluster with putting aside worries of installation of extra 

libraries and doing extra configurations. Applications often need little or no change to run on such 

an environment. It also supports a graphical management interface – openMosixView. Additionally 

it integrates very well within a Beowulf environment improving the performance of an MPI or 

PVM [Moche, 2002]. However, the openMosix Project has officially closed as of March 1, 2008. 

Nevertheless, it is currently still available for use and download. 
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A big advantage of OpenMosix, in contrast to other cluster environments, is when running an 

application on such cluster it requires no recompilation or integrations of additional libraries. MPI 

applications greatly benefit from this. OpenMosix also supports automatic resource-use 

optimizations techniques that control distribution of application’s processes over the cluster. It 

implements advanced algorithms based on market economics. Although a process starts one node, 

automatically it is determined whether it would be better to run it on another, less loaded node. This 

process can be controlled by the system administrator, too. He can affect the load at runtime by 

manual configuration beforehand, specifying where applications have to run and directing the load 

distribution to certain nodes. There are some limitations to this process, however [Buytaert, 2004]. 

For example, applications that rely on pthreads will not migrate, but this is considered to be a Linux 

problem instead of an OpenMosix limitation.  Furthermore, OpenMosix features a tool for auto-

discovery which makes configuration of an OpenMosix cluster very easy. The tool detects when 

new nodes are added or removed from the network and modifies configurations on all nodes to 

reflect the changes. 

 

2.3.3.4 CAOS NSA/ Perceus 

 CAOS-NSA is an open-source Linux distribution that is entirely community-managed and 

maintained [CAOSHome, 2009], [CAOSWiki, 2009]. Initially, it was developed together with the 

operating system CentOS as a Community Assembled Operating System (CAOS-Linux). Both of 

them are descendents of Red-Hat. The latest version CAOS-NSA 1.0, however, is combining 

various features of GNU/Linux in order to make the distribution simple, lightweight and fast. The 

goal of the developers is to implement a stable core operating system that can serve to be the basis 

for building different kind of clusters, servers, custom appliances.  
 CAOS-NSA (Node, Server, Appliance) 1.0, supports all x86_64 and i386 hardware varying 

from desktop machines to servers and clusters. It is an “all-in-one” suite that fully integrates all 

specific tools needed to turn a computer into a production server or a network of computers into a 

high performance cluster. CAOS-NSA simplifies cluster installation by combining the operating 

system and the Cluster Management System (CMS) in one distribution [Layton, 2009]. CMS is a 

tool or set of tools that help achieving a basic single system image (SSI) from separate computing 

nodes. It creates an image of an operating system, transfers it to the nodes, installs it and then starts 

monitoring them. CMS is not cluster middleware in the sense that it does not do scheduling, 

mapping or solve problems in parallel [Layton, 2008]. The CAOS system manager Sidekick takes 

care of installing components and tools for cluster deployment. Perceus is the main component that 

CAOS-NSA integrates. It installs all nodes together with cluster middleware and prepares the 

environment for running parallel jobs. It includes OpenMPI for message passing support, Warewolf 

for monitoring, Slurm and Torque for scheduling [CAOSHome, 2009]. Additionally, it can install a 

parallel file system like PVFSv2 or Hadoop and support of fast communication links like 

InfiniBand, which are commonly used in modern HPC clusters [CAOSWiki, 2009].  

 

2.3.3.5 ROCKS 

 ROCKS is a cluster deployment tool designed and implemented by the Rocks Cluster Group 

at the San Diego Supercomputer Center at the University of California [ROCKS, 2009]. It is a 

complete software bundle that installs everything that one might need to turn a network of 

computers into a production parallel environment. It can be referred to as a “cluster out of a DVD”. 
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The installation package of ROCKS includes even the operating system – CentOS. ROCKS is 

tightly integrated into the operating system and not only installs it automatically but also configures 

it together with all necessary low-level tools in order to achieve a single-system image from the 

computers in a cluster. 

 Additional tools for parallel computations, scheduling and mapping, monitoring, 

virtualization, etc. are also included in the “bundle”. They can be installed and configured at initial 

set up or later, when there is need for them. ROCKS implements a separation strategy for its 

components – different packages are available in the form of rolls. The rolls are defined by their 

purpose and can include a whole set of different tools in them. Thus, a single installation adds to the 

cluster a new feature instead of a new tool. An example is the HPC roll that includes OpenMPI, 

MPICH, MPICH2, PVM and additional benchmarks for testing their functionality. Other rolls that 

come with the installation of ROCKS 5.1 are Area51, Bio, Ganglia, Java, SGE and Xen. The Area 

51 roll takes care of system security, the Bio roll installs bioinformatics utilities, Ganglia is a cluster 

monitoring tool, Java installs Sun Java SDK and JVM, SGE is the Sun Grid Engine job queuing 

system, and Xen installs tools for virtualization. In addition, there are also available for installation 

the Condor roll which adds to the system the high-throughput computing tool Condor, the pvfs2 

roll, which installs the parallel virtual file system v2, and, finally, the Torque/Maui roll which 

includes the job queuing system Torque and the scheduler Maui (packaged by HPC Group at 

University of Tromso, Norway). All these tools are installed and configured automatically, so that 

users have a fully-functioning cluster environment at the end of the installation process. 

Furthermore, third-party rolls can add different functionality to the cluster like support of high-

speed cluster networks like Myrinet and Infiniband, or for parallel programming on graphical 

processors with CUDA. 

2.3.4 Grid Middleware 

2.3.4.1 Condor 

The following section is based on the description of Condor on its home page 

Condor is the product of the Condor Research Project at the University of Wisconsin-Madison 

[Condor, 2009]. It is a scalable software system that creates a High-Throughput Computing (HTC) 

environment. It usually utilizes large collections computing resources that are of distributed 

ownership. In contrast to High Performance Computing (HPC), which delivers a tremendous 

amount of compute power over a short period of time, HTC focuses on the need of large amounts of 

computational power over a long period of time. Problems computed are of a much larger scale. 

Interest is on how many jobs can be completed over a long period of time instead of how fast an 

individual job can complete. 

Condor is a full-featured batch system that distributes the workload of compute-intensive jobs 

[Condor, 2009]. It was the scheduler software used to distribute jobs for the first draft assembly of 

the Human Genome. Condor implements different scheduling techniques that include job queuing, 

different priority schemes and scheduling policies as well as mechanisms for resource monitoring 

and resource management. Jobs are submitted to the system, which places them in a queue and then 

according to certain policies decides when and where to run them. Distribution of jobs works on the 

basis of issuing resource requests and resource offers by the individual nodes. The ClassAd 
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mechanism provides a flexible framework for matchmaking resource requests with resource offers. 

In addition, users can influence the process of mapping by describing and prioritizing jobs.  

While providing functionality similar to that of a more traditional batch queuing system, Condor 

can be used to manage a cluster of dedicated compute nodes (such as a "Beowulf" cluster) [Condor, 

2009]. It is suitable for cluster resource management as well as for efficient job distribution. The 

idea is to install it on every machine that is part of the cluster. A Condor cluster is referred to as 

pool. Jobs can be launched from any machine, which gives certain flexibility to architecture design. 

After a job is submitted, Condor searches for a currently idle machine with resources that match the 

requirements of the job. When such a machine is found, Condor transfers the job, executes it and 

gathers the results back on the initial machine. In addition Condor has been ported to most primary 

flavors of Unix as well as Windows. A single pool can contain multiple platforms which gives 

possibility to utilize a heterogeneous environment. 

One of the features of Condor is that it does not require programs to be modified to run on the 

cluster [Condor, 2009]. But code can be associated with the Condor libraries gaining the ability to 

produce job checkpoints and perform remote system calls. A checkpoint contains the thorough 

information about the state of a job allowing it to be resumed on every other machine at any time. 

This is both a failover mechanism and a mechanism that returns the resources of a machine to its 

owner in the case of a non-dedicated cluster environment. For long-running computations, the 

ability to produce and use checkpoints can save days, or even weeks of accumulated computation 

time. Condor uses remote system calls to preserve the local execution environment and hide that 

jobs are executed on remote machines. To users a program feels like being executed on the local 

machine. Condor determines the remote node or set of nodes to execute the program’s tasks and 

also takes care of logging-in and transferring the data needed for the computations.  

Condor can be used to build Grid-style computing environments that cross administrative 

boundaries. A "flocking" technology allows multiple Condor compute installations to work together. 

Additionally, Condor incorporates many of the emerging Grid-based computing methodologies and 

protocols. For instance, Condor-G is fully interoperable with resources managed by Globus. 

Condor-G allows Condor jobs to be forwarded to foreign job schedulers. Currently, Torque/PBS 

and LSF are supported. Support for Sun Grid Engine is also under development. 

2.3.4.2 Globus ToolKit 

Globus ToolKit (GT) is an open-source software “toolkit” used to bring together computing 

resources, databases and other tools across geographically distributed networks [Foster, 2005]. 

People can share resources securely without sacrificing local autonomy.  The toolkit supports 

resource monitoring, discovery, and management, as well as file management, all carried out upon 

secure channels. 

Globus relies mostly on Web Services to define its interfaces and structure its components 

[Foster, 2005]. For example, web services use XML-based mechanisms to describe, discover or 

invoke network services. What is more, these document-oriented protocols are very well suited for 

loosely coupled computations, which are preferred in distributed systems. GT uses Web services for 

most of its major components. The Grid Resource Allocation and Management service (GRAM) 

implements interfaces for management of computational elements, Reliable File Transfer service 

(RFT) manages data transfers. The GridFTP provides libraries and tools for secure, reliable, high-
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performance data movement but it still does not implement web services. 

Mechanisms for monitoring and discovery of resources are very important in a distributed 

environment [Foster, 2005]. Globus implements them in its MDS system. Monitoring of resources 

allows administrators to find and diagnose problems early. Discovery mechanisms identify 

resources and find services which meet desired properties. Both, collect information from multiple 

and perhaps distributed sources. GT implements data exchange using XML-based resource 

properties and accesses them via either pull mode (query) or push mode (subscription). These 

mechanisms are built into every GT service and container, and can also be incorporated easily into 

any user-developed service. Globus also provides three aggregator services that collect recent state 

information from registered information sources. 

Security in distributed environments is another important issue considering that multiple users 

from different locations can access a grid network [Foster, 2005]. At the lowest level GT 

implements protocols that support message protection, authentication, delegation, and authorization. 

GT relies on X.509 public key credentials. When communication takes place entities can validate 

each other’s credentials, or use them to create a secure channel for message exchange. Furthermore, 

delegated credentials can be created, transported and used in a way that allows a remote component 

to act on a user’s behalf for a limited period of time. 
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Chapter 3 

Installation Report 

 
This chapter focuses on high level cluster middleware and its installation process. It shows the 

process of installing and configuring a cluster using three different tools for cluster deployment – 

OSCAR v6.0.2, CAOS-NSA v1.0, and ROCKS v5.1. For this, eight machines were used in total for 

building two separate testing clusters. All used computers have commodity hardware installed on 

them. What is more, all machines are completely different, meaning that they use different 

processors, have different physical memory capacity and storage capacity. Table 1 shows the 

utilized hardware configuration. Computers 1 to 4 are used for creating the first testing cluster and 

computers 4 to 8 were used for the other. Additionally, the testing environments use entirely 

commodity means of networking - Ethernet. Machines in the both clusters are connected into two 

separate 100Mbit switched networks using small (5 ports), 100Mbit switches Netgear. 

 Comp. 1 Comp. 2 Comp. 3 Comp. 4 Comp. 5 Comp. 6 Comp. 7 Comp. 8 

CPU Intel 

Pentium4 

@ 

2,40Ghz 

Intel 

Pentium4 

@ 

2,40Ghz 

Intel 

Celeron 

@ 

2.60Ghz 

Intel Core 

2 6300 @ 

1.86Ghz 

AMD 

Athlon 64 

3000+ @ 

2Ghz 

AMD 

Athlon 64 

3000+ @ 

2Ghz 

Intel 

Pentium3 

@ 

866Mhz 

AMD 

Athlon 64 

4200+ 

Core2 

@2.2Ghz 

RAM 0.99 GB 1.98 GB 1.48 GB 2 GB 1 GB 1 GB 1 GB 2 GB 

Table 1 Testing hardware environment 

In particular the chapter focuses on three different tools for cluster deployment – OSCAR, 

CAOS-NSA, and ROCKS. Section 3.1 describes OSCAR cluster suite. Section 3.2 gives an 

overview of CAOS NSA and Perceus together with a detailed description of installation of PVFS 

v2.  Then, Section 3.3 describes ROCKS and installation of PVFS v2.  

3.1 OSCAR 6.0.2 

3.1.1 Why OSCAR? 

OSCAR is a tool designed to ease cluster installation. What is more, according to its home page 

[OSCAR, 2009], OSCAR suite includes “everything needed to install, build, maintain, and use a 

Linux cluster”. Installation uses a graphical interface that guides users through a process that is 

usually considered to be very difficult. Building a Beowulf-type of cluster consists of a lot more 

work than just connecting computing nodes into a network. One should focus on details that might 

be starting from hardware and choosing a proper operating system that not only supports that 

hardware but also utilizes it in the best way. Then comes the installation of all different nodes 

together with the configuration of services like secure remote login (ssh), time synchronization 

using NTP (Network Time Protocol), network addressing and name resolution, the maintenance of a 

database with node information, the management of local repositories. This is just a small example 
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of tools and services that might be necessary to bring a network of computers to work as one 

computer. In addition, low level middleware like a parallel file system or an MPI implementation 

needs to be installed and configured to make the cluster able to perform parallel computations. If all 

this is taken to the scale of several hundred computing nodes, one could imagine the amount of 

work necessary for building a cluster and the chance for error that is introduced in such process.  

The Beowulf type of clusters only suggests that commodity low-cost hardware is used together with 

open-source operating system and tools in order to reduce the price to power ratio [Buyya vol.1, 

1999]. Achieving a production environment of this kind could be a demanding task even for experts 

in the field.  

OSCAR is an effort to automate the whole building process creating an all-in-one suite that 

takes care of installing and configuring all necessary components [OSCAR, 2009]. The cluster 

installation process comes down to installing OSCAR on one computer or head-node and then all 

other nodes connected to it get installed automatically. In this way, one builds a fully-functioning 

and fully-configured cluster with one installation which is of the primary reasons to start our cluster 

set-up with OSCAR. The suite itself contains some of the most widely used low level middleware 

in the area of high performance computing. It includes OpenMPI, PVM, MPICH and LAM (Local 

Area Multicomputer is an MPI programming environment and development system for 

heterogeneous computers on a network) [OSCAR, 2009]. Compared to other high level middleware 

like ROCKS or CAOS NSA, OSCAR builds a complex environment with a wide range of tools and 

thus provides a broader opportunity for experimenting and testing.  For scheduling OSCAR relies 

on the Torque Resource manager and the MAUI Scheduler. The Cluster Command Control (C3) 

tools comprise a set of cluster tools that take care of global command execution, remote shutdown 

and restart, file retrieval and distribution, and process termination. All these are stand-alone 

components and OSCAR mechanism allows using their newest releases, thus building a computing 

environment that is up-to-date with latest achievements in the area of HPC.  

Furthermore, OSCAR is an out-of-the box cluster installation. It is a package that installs on top 

of an existing Linux distribution. Similar to the way Windows users are installing software, OSCAR 

uses an installation manager that installs it on the existing operating system. In comparison, 

ROCKS first formats the hard-drive, installs CentOS and then integrates itself on it. CAOS NSA is 

a stand-alone Linux distribution that is optimized for cluster computing. OpenMosix is a Linux 

patch. This independence of the underlying operating system makes OSCAR very flexible. Users 

have the possibility to utilize any hardware in hand as long as the operating system supports it. This 

gives the opportunity to take full advantage of heterogeneous environments and use them for high 

performance cluster computing. OSCAR was designed with the idea of being very portable. 

However, achieving full platform and hardware independence is still far from possible. Currently 

OSCAR supports different Linux distributions by developing packages especially for each of them. 

What is more, the installation differs between distributions for different hardware architectures like 

x86_64, i386 or ppc (power PC).  

Among other reasons for testing OSCAR before other middleware lies the fact that it really can 

be installed on low-cost commodity hardware. System requirements specify a CPU no older than 

i586 and storage space of at least 8GB (4GB for / and 4GB for /var) for the head-node. In 

comparison, ROCKS requires at least 1GB of memory and at least 30 GB of storage space per node. 

Even though such hardware is not that hard to find today, the possibility to use older computers is 

essential for our project and hence this could be considered as a big advantage of OSCAR. 
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3.1.2 Two Versions of OSCAR 

Currently OSCAR exists in two versions [OSCAR, 2009]. Developers maintain version 5.1 

which was released in 2008 and is still considered to be the latest production version. At the time of 

writing version 6.0.2 is the latest release which dates from April 2009. The reason for the 

maintaining two separate versions lies in the effort of reaching the state of independence from the 

operating system. While version 5.1 comes as a complete software bundle with everything included 

in it, version 6.0.x implements a completely new installation strategy using binary packages.  

To understand this better one should become familiar with the architecture of OSCAR. At the 

lowest level OSCAR is a set of tools aimed at deploying and configuring sets of machines. These 

components for basic functionality form the OSCAR core. The core depends on other software 

components. Together with 3rd party software they form OSCAR base. What is remarkable about 

this approach is the separation of elements into independent binary packages. In this case the 

version of OSCAR is actually the version of the core.  According to the design, the core should be 

independent of all 3rd party software and other “external” tools that are installed through RPM/deb 

dependencies. That way packages can change and update without affecting the core or an already 

working cluster set-up. The OSCAR infrastructure can use regular RPM/deb packages to install 

tools for parallel computation. The services and interfaces that connect these “external” tools to the 

OSCAR core are called OSCAR packages (Opkg). This separation of roles allows changing only 

opkg packages to tune a system for using a new implementation of a tool. An installation approach 

like this one provides more flexibility and scalability. In contrast to the all-in-one version 5.1, where 

particular versions of tools are tightly integrated into the package, the new version 6.0.x implements 

dependencies of the type “greater than” and “less than”. This allows changing one tool with a newer 

version without breaking any functionality.  For example when Oscar-core is installed and it 

depends on system-imager 4.1.3. If for a particular Linux distribution system-imager 4.1.6 is 

available, then it will be installed. Current work, however, still shows OSCAR to be rather limited. 

Undergoing work has managed to port OSCAR core and base to the newly supported Linux 

distributions. Third party binaries for parallel computation are not yet fully supported.  

Introducing this new approach to installation is actually a solution to supporting a broader range 

of Linux distributions. While an all-in-one installation package has to be ported for each platform 

and Linux distribution, tuning the new installation requires changing only certain packages. That 

way, developers of OSCAR can tune the suite faster and with less chance of error. Initially OSCAR 

was developed especially for Red Hat Linux. Today the suite aims to support the most popular 

distributions both of the Red-Hat and Debian family. Table 2 shows the distributions that version 

5.0 supports [OSCAR, 2009]. People familiar with evolution of the Linux operating system can 

easily see that the listed distributions are with rather limited variety and are also rather outdated. 

Although developers surely do their best to keep up with the changes in the operating systems, 

OSCAR is still far from being independent from them and thus provides rather limited choice for 

parallel research. Work is underway for version 5.2 beta that provides broader support to new 

distributions including YellowDog Linux that can be installed on Sony Play Station 3. On the 

contrary, the new approach to the installation of OSCAR shows that this goal can be achieved. 

Table 3 shows the distributions supported already in version 6.0.2. These distributions are both 

relatively new and update packages could still be found for them. According to the OSCAR home 

page [OSCAR, 2009] the new approach introduces fast improvement as already Debian 4 Etch is 

supported together with partial support of the new Debian 5 Lenny and their relatives Ubuntu 8.4 
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and Ubuntu 8.10. These operating systems are already “today’s” technology and are broadly 

supported with update packages and security patches. An installation of a cluster could now be done 

without worries of having security vulnerabilities with the nodes connected to internet. The cluster 

can be secured using the built-in functionality of the operating system like better firewalls or relying 

on the fact that “known” security “holes” are fixed. 

Distribution and 

Release 

Architecture Tarball Name 

part 

/tftpboot/distro/ path 

Fedora Core 4 i386 fc-4-i386 fedora-4-i386 

Fedora Core 4 x86_64 fc-4-x86_64 fedora-4-x86_64 

Fedora Core 5 i386 fc-5-i386 fedora-5-i386 

Fedora Core 5 x86_64 fc-5-x86_64 fedora-5-x86_64 

Mandriva 2006 i386 mdv-2006-i386 mandriva-20060i386 

SuSE Linux 10.0 
(openSUSE) 

i386 suse-10.0-i386 suse-10.0-i386 

Redhat Enterprise Linux 

4 AS 

i386 rhel-4-i386 redhat-el-as-4-i386 

Redhat Enterprise Linux 

4 WS 

i386 rhel-4-i386 redhat-el-ws-4-i386 

Redhat Enterprise Linux 
4 AS 

x86_64 rhel-4-x86_64 redhat-el-as-4-x86_64 

Redhat Enterprise Linux 
4 WS 

x86_64 rhel-4-x86_64 redhat-el-ws-4-x86_64 

Scientific Linux 4 i386 rhel-4-i386 scientificlinux-4-i386 

Scientific Linux 4 x86_64 rhel-4-x86_64 scientificlinux-4-x86_64 

CentOS 4  i386 rhel-4-i386 centos-4-i386 

CentOS 4 x86_64 rhel-4-x86_64 centos-4-x86_64 

Table 2 – Supported distributions by OSCAR 5.0.  

Source: OSCAR home page [OSCAR, 2009] 

Distribution and Release Architecture Status Known Issues 

Red Hat Enterprise Linux 5 

/ CentOS 5 

x86 Fully supported None 

Red Hat Enterprise Linux 5 
/ CentOS 5 

x86_64 Fully supported None 

Debian 4 x86 Fully supported Not all OSCAR packages are 
supported 

Debian 4 x86_64 Fully supported Not all OSCAR packages are 

supported 

Ubuntu 8.04 x86 Fully supported Not all OSCAR packages are 

supported 

Ubuntu 8.04 x86_64 Fully supported Not all OSCAR packages are 

supported 

Debian 5 x86_64 Experimental Testing still needed 

Fedora Core 9 x86 Experimental Testing still needed 

Open Suse 10 x86 Experimental Testing still needed 

Table 3 – Supported distributions by OSCAR 6.0.2.  

Source: OSCAR home page [OSCAR, 2009] 

 Another goal of the new installation approach is to provide support for the Debian family of 

Linux distributions. Currently, the Linux world is divided between the Red-Hat’s and Debian’s 

installation packages and systems that manage them. Binary packages of the two systems are 

incompatible with each other and thus a software installation must be ported separately for both of 

them. Red-Hat defines its software package format as RPM (Red-Hat Package Manager) while 

Debian packages just use the file format “.deb”. The RPM family includes Fedora Core, CentOS, 
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Scientific Linux, Mandriva, Suse, etc.  While OSCAR was initially developed to support only RPM 

based systems, the latest version focuses on supporting Debian too. Currently only OSCAR core is 

ported for Debian and none of the tools for parallel computation could be installed yet. 

OSCAR stores all packages in online repositories. The differences between the two Linux 

families suggest different organization of the repositories for them [OSCAR, 2009]. The Debian 

world assumes that the repository is driven by the version of the distribution and thus OSCAR 

version cannot be included in the name of the repository. What is more, packages for different 

architecture and distribution can be stored together (e.g. Debian 4 and Ubuntu 8.04). In this case, an 

installation tool like apt-get relies on proper metadata description to determine which the needed 

packages to install are.  In contrast, in the RPM world the repository name specifies distribution, 

version and architecture. A common solution that OSCAR is using is a name including only 

distribution and architecture. For example the online repository for OSCAR 6.0.2 is 

http://bear.csm.ornl.gov/repos/debian-4-x86_64/ etch /.  

The installation of the suite itself is straightforward. The user specifies a repository address 

like the one already mentioned. Depending on which family the hosting operating system belongs 

to, the address is specified either in the /etc/apt/sources.list for Debian systems, or by placing a file 

with the address in it in /etc/yum.repos.d for RPM-based ones (See Table 4). Then the OSCAR 

packages are automatically downloaded and installed using a package management tool like yum 

for RPM systems or apt-get for Debian. To complete the installation one should follow the 

described steps in Table 3 logged in as root user. 

  Debian Based Systems RPM Based Systems 

Installation on the head node 

1 Define online 

repository (e.g. 

for a x86_64 
architecture) 

Copy 

http://bear.csm.ornl.gov/repos/debian-

4-x86_64/ etch / in 
/etc/apt/sources.list 

Add the following file: CentOS-

x86_64-OSCAR.repo to 

/etc/yum.repos.d 

2 Update the 

system (Do not 
upgrade) 

apt-get update yum update 

3 Installation of 

OSCAR 

apt-get install oscar yum install oscar yume 

packman orm perl-AppConfig 

4 Specifying the 

current 

distribution 

oscar-config –setup-distro <distro>-

<version>-<arch> 

oscar-config –setup-distro 

<distro>-<version>-<arch> 

5 Install 

prerequisite 

packages and 
OSCAR server 

packages. Start 

services 

oscar-config --bootstrap oscar-config --bootstrap 

6 Check if system 

is properly 

configured 

system-sanity system-sanity 

Cluster Installation 

7 Start OSCAR 

cluster 
installation GUI 

oscar_wizard install oscar_wizard install 

Table 4 – Installation process of OSCAR 
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3.1.3 Installation 

The whole installation process is well described in the documentation of OSCAR provided 

online [OSCAR, 2009]. That is why this section focuses on some points that determine the 

installation process as well as it describes experience gained from installing OSCAR 6.0.2 on 

different Linux distributions.  

3.1.3.1 Environment Considerations 

 OSCAR is designed to implement a typical Beowulf cluster architecture. The installation 

process first installs OSCAR on the head-node (server, frontend, master node) and then it uses this 

installation to distribute itself and install on the client nodes (computing nodes). The head-node is 

usually a computer more powerful than the rest of the nodes in terms of memory capacity and 

processing power. It serves the requests of the clients, maintains a database with client information, 

distributes jobs among the clients, etc. In the case of OSCAR the only actual requirement for the 

head-node is to have two network interfaces. One is required to connect the head-node to the 

Internet and the other to connect it to the cluster network. OSCAR builds a cluster having only the 

head node connected to the “outside” world. The rest of the computing nodes utilize a local 

switched network. The head-node is the only one accessible on the internet and thus serves as a 

firewall for the rest of the cluster. That way installation does not have to take care of configuring 

security on the computing nodes. The head-node can be configured to use a firewall or port 

forwarding. It even can implement routing policies to provide access to the internet for the 

computing nodes. This, however, has to be configured manually as it is not part of the OSCAR 

installation.  OSCAR only gives addresses to the nodes from a specified range and takes care of 

name resolution by modifying the /etc/hosts file.   

 According to the OSCAR installation guide provided on its home page [OSCAR, 2009], 

OSCAR can be installed on a pre-existing server nodes but it is highly recommendable to use a 

fresh installation for building a new cluster. What is more, one should be very careful when 

choosing a distribution and should first consult with the documentation whether a distribution is 

supported and to what extent (see to Table 2 and Table 3). Although work is underway the current 

version is reported to work thoroughly only on Red Hat Linux. However, obtaining update packages 

for this distribution requires a license and it is not free. Thus, free distributions like Debian are 

preferred. However, at the time of testing installation supports only OSCAR core and base packages 

without support of any additional tools for parallel computing. They have to be installed separately 

after building the cluster.   

Having a fresh installation one should not hurry and upgrade it because OSCAR still might 

depend on older versions of some tools. One should consider upgrading only security packages and 

installing security patches. Upgrades can install new versions of tools like the scripting language 

python, visualization libraries that the OSCAR GUI depends on, and many others. OSCAR makes 

heavy use of Perl and Python script for its installation and configuration and changing their versions 

might result in loss of functionality. Furthermore, often, even the kernel itself gets renewed and this 

means that the current version of OSCAR will no longer work because it is not supported. In this 

case the node has to be reinstalled and configured again. 
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 What should be initially considered when configuring the head node is networking. The 

head-node needs to have Internet connectivity especially if a version 6.0.x is being installed as it 

uses online repositories to download the packages from. The configuration can be done using either 

the Command line interface (CLI) or a graphical network management tool. One might stumble 

upon problems of any sort. For instance, Ubuntu 8.10 has a bug with the Gnome Network Manager 

included with the release. It resets any static IP address settings when system is rebooted and sets 

the system to use dynamically obtained addressing via DHCP. This could cause troubles with an 

OSCAR cluster because it usually uses static addressing for the local network interconnecting the 

nodes and the head-node. The solution is to remove the Gnome Network Manager and manually 

configuring the interfaces by modifying the /etc/network/interfaces file. Tutorials for configuring it 

can be easily found on the Web. Another thing that could cause trouble is the naming which the 

operating system uses for the network interfaces. By default OSCAR is configured to use eth1 as 

the interface connected to the public network and eth0 as the one that connects the frontend to the 

cluster network. In a case when the head-node operates in a corporate network it might get its 

addressing configuration via DHCP. Then, in order to have internet connectivity an interface’s 

hardware address may be registered in the network. If the case is such that eth0 is registered and 

eth1 is not, one might want to use them the other way around. OSCAR defines which interface to 

use for the internal network in its configuration file. It can be changed in the first line of 

/etc/oscar.conf.  Furthermore, configuration of a firewall has to be carefully done for the local 

network in order not to restrict access to and from the computing nodes. 

3.1.3.2 Installing OSCAR on the Head-node 

Installing an OSCAR cluster starts with the installation of an appropriate operating system 

in accordance with the list of supported Linux distributions (see Table 2 and Table 3). Then one 

should think about configuration especially of networking. Only then, after the head node is 

prepared OSCAR can be installed on it (see Table 4). If the operating system is supported 

installation goes straightforward without any errors. Our experience showed that this is rarely the 

case with OSCAR 6.0.2. Bootstraping the system on step 5 (see Table 4) prepares the head-node for 

being a server for OSCAR services. At this stage it downloads and installs prerequisite 3rd-party 

packages needed for OSCAR installation and operation. It also starts and restarts services. Often, 

during this step errors are generated about missing packages and dependencies. OSCAR was 

implemented to try finding the missing packages and installing them on its own. However, one 

might need to install some dependencies manually. Some distributions, like Ubuntu 8.x, are rather 

light in terms of included tools and packages. Installation on Ubuntu 8.10 required manual 

installation of 16 packages including openssh, apache2, mysql-server, nfs-kernel-server. At the time 

of testing only Ubuntu 8.04 was reported to be supported. It managed to find these packages on its 

own and install them. In this case one could observe how important it is to install a supported 

distribution.  However, OSCAR did not install on Ubuntu 8.04, too. The bootstrapping stage did not 

find a package system-imager-initrd-template-<arch>, where <arch> specifies some different 

architectures like ppc, ppc64, ppc64-ps3, etc. A search showed that such package exists only for 

i386 and x86_64 architectures, and not for the ones reported missing. These two packages could not 

be installed as they depend on opkg-sis-server which turned out not to support them.   

When the bootstrapping stage succeeds, the software environment on the head-node is 

prepared for OSCAR installation and deployment of the cluster. One should check this by executing 

system-sanity check. It runs a series of scripts that check configuration. Usually it returns a warning 
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or error message about network configuration. This can be fixed by configuring the /etc/hosts file 

because the scripts check configuration in this file. 

At this point the installation can continue by using the graphical user interface of OSCAR 

(see Table 4, step 7). Bringing up this interface of course requires the Linux distribution to support 

either of the two Linux graphical environments – KDE and GNOME. The oscar-wizard install 

command launches the interface. Oscar documentation gives a detailed description of the interface 

and how one can use it [OSCAR, 2009]. Here it is worth mentioning that the interface uses perl-Qt 

libraries for drawing on the screen and thus might not run if it does not find some components. At 

the time of testing OSCAR 6.0.2 on Fedora Core 9 had this problem. Although, according to 

OSCAR documentation this problem is only with OpenSUSE, it turned out that FC 9 also needs to 

manually install the Qt packages (qt, qt3-devel, libsmokeqt, libqt3). Proceeding with the 

installation, one should be aware that step 3 of the graphical interface installs OSCAR core, servers 

and components onto the head-node. The installation can also fail on this step. Fedora Core 8 is 

missing a package python-elementtree. This package is reported to be obsolete with Fedora Core 

and has been dropped out as being too old. OSCAR 6.0.3 is reported to have fixed problems like 

this and that now it supports FC 8 and 9. 

The installation of OSCAR 6.0.2 was fully successful only on Debian 4 Etch. Even though 

the head-node in hand was of 64-bit CPU architecture a decision was made to install Debian 4 for 

32-bit architecture. One should pay attention to what hardware is available for the cluster. The 

operating system, installed on the head-node, gets included in the client image and thus is 

distributed among the computing nodes during cluster set-up. If there are nodes of 32-bit 

architecture in the heterogeneous environment a possibility arises of having serious difficulties 

when trying to install the OSCAR image on those nodes. What is more, most 64bit commodity 

computers can operate simulating 32bit mode exactly because of compatibility issues with the 

operating systems. On the other hand, OSCAR provides a possibility to tune the image and build 

different images for different sets of nodes according to their architecture. This, however, increases 

the chance of having a serious problem with cluster deployment and was not a preferred option at 

the time of testing.  

The installation process is without any errors only when relying on some tricks that take 

advantage of the development work on OSCAR 6.0.3.  Starting with a “clean” installation one 

should keep in mind to remove the word testing from all mirrors listed in /etc/apt/sources.list. 

Because this file defines the http and ftp addresses the system uses for downloading updates, it is 

crucial not to allow downloading of new testing versions of tools. Then the system should be 

updated but not upgraded. This means that only lists of available updates are downloaded without 

the files themselves. The difference is more obvious when considering the two separate commands 

apt-get update and apt-get upgrade. One should follow the steps of the installation process 

described on OSCAR’s home page (see Table 4). According to the architecture of the Linux 

distribution a choice has to be made whether to use the online repository for x86_64 and i386 

architecture. On step 7, when trying to run the installation GUI, OSCAR issues an error message for 

not finding a Selector.pl file. For fixing this, one should configure OSCAR to use the unstable 

online repository by changing the /etc/apt/sources.list file and/or /tftpboot/ distros/debian-4-i386.url 

file. Initially the /tftpboot/distros folder and the file do not exist. They are created only when 

distribution is defined on step 4 of the installation process (see Table 4). After this adjustment 

OSCAR needs to be bootstrapped once again. When dependencies are resolved one should change 
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back to the original repository. It is important to change back the file before installing the server 

packages at step 3 of the GUI interface. It is not recommended to specify the unstable repository at 

initial set-up because that will lead to downloading and installing the next testing version of 

OSCAR and related packages. Specifying the stable repository downloads and installs packages 

from the current release. In this matter one should be very careful when changing the 

/etc/apt/sources.list file and then issuing an update (or upgrade) of the system with apt-get update 

(upgrade). Still, fixing some problems regarding dependencies and missing packages might require 

switching to the address of the unstable repository. Currently there are two online repositories that 

can be used. One starts with: “http://bear.csm.ornl.gov/ repos/” and the other starts with 

“http://bison.csm.ornl.gov /repos/”. Both can be configures in /tftpboot/distros/debian-4-i386.url 

file. Changing between the unstable repositories on these two servers showed to be helpful and 

eliminated some errors at step 3 of the GUI installation. When the dependencies are resolved one 

should remember to change back to the original repository address. 

3.1.3.3 Installing the Cluster 

OSCAR gets installed and configured by following the process described in Table 4 and the 

steps of the GUI installation manager. The installation process guides users through deploying the 

cluster as well. The cluster deployment starts at step 4 (“Build OSCAR Client Image…”) of the 

GUI installer. At this step OSCAR builds an image of the existing operating system and its 

configuration. The image is approximately 2GB of size and is stored in 

/var/lib/systemimager/images directory. Interface prompts users to specify CPU architecture and 

Linux distribution for the image as well as hard drive type. These options provide opportunity for 

creating several different images in case of utilizing heterogeneous hardware. Even though, the 

purpose of this thesis is to study the behavior of heterogeneous environments, a decision was made 

to use a unified image for all computing nodes. The image is of Debian 4 Etch, i386, which is 

actually an image of the head-node.   

OSCAR installs the nodes of the cluster using the System Installation Suite (SIS) [OSCAR, 

2009]. SIS is a set of tools for automated massive Linux installations for both Red-Hat and Debian 

systems [Dague, 2002]. It has three major components: SystemImager, SystemInstaller, and 

SystremConfigurator. All of them are stand-alone components but are designed to integrate well 

with each other. SystemInstaller is the tool used to build a Linux image and place it on a server. 

SystemImager actually propagates, installs and manages the images on the clients. Finally the 

SystemConfigurator provides a single API for Linux configuration like tuning the network setup, 

boot loader setup, and ramdisk creation. It takes care of adjusting the images after they were 

installed by the SystemImager in order to tune them according to the underlying hardware.  

Central to the whole process is the notion of an image. An image is a “clone”, a replica of 

the operating system and its configuration on a certain node. This node is referred to as “golden 

client”. Images are captured from running machines and are full live file systems. Then they are 

stored on an image server where the other nodes (clients) can download them from. In the case of 

OSCAR the golden client and the image server are one and the same – the head-node. The clients 

are the computing nodes to be installed. 

According to the guideline of the OSCAR GUI installer, the installation process continues 

with step 5 (“Define OSCAR Clients…”) which allows users to define a number of hosts that will 

be installed, name pattern for them (for example: oscarnode-0-x) and most importantly a network 
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address range. The address range determines the IP addresses the nodes will use for the local cluster 

network. At the next step (“Setup Networking…”) client installation is initiated. The process starts 

with registering clients MAC addresses and mapping them to IP addresses in the order they get 

discovered. During this stage OSCAR is already running an image server and listens for client 

requests on the internal network. Client nodes have to be configured to use network boot from their 

BIOS (Basic Input/ Output System) configuration. OSCAR counts that the client nodes use PXE 

(Preboot eXecution Environment) to establish initial connection to the server. PXE is a popular 

method for booting a system using the network. Clients obtain a temporary network addressing and 

search for Preboot server to download a boot kernel via TFTP (Trivial File Transfer Protocol). In the 

case of OSCAR, and SystemImager in particular, after booting, the clients download to their RAM 

memory a small kernel of Embedded Linux called BOEL (Brian’s Own Embedded Linux). It helps 

the systems to initiate a proper BOOTP/DHCP request for obtaining an IP addressing configuration. 

When BOEL has brought the client machine to the network, it starts looking for an auto-install shell 

script. The script is named <nodename>.sh and is usually located in the 

/var/lib/systemimager/scripts/ directory on the server. The auto-install script determines the rest of 

the installation process. It defines how the hard-drive will be partitioned, mounts the newly created 

partitions on /a, invokes the System Configurator to tune the image to the particularities of the 

client’s hardware [OSCAR, 2009]. Following this configuration the actual image starts 

downloading and installing. The file transfer uses rsync, which is a mechanism for remote file 

synchronization that provides a possibility to use a secured ssh connection. OSCAR can also use 

bittorrent or multicast (flamethrower) mechanisms for file transfer. Step 6 (“Stup Networking…”) 

also gives users the possibility to burn a SystemImager boot CD that can be used in the case nodes 

do not support PXE-boot mode. The installation process remains the same with the only difference 

that the nodes need to be configured to use the CDROM for initial boot device instead of the 

network controller. 

The installation of the cluster should be as easy as booting the computing nodes and wait for 

them to install. Our experience showed that problems may occur here, as well. When images were 

being installed an error occurred regarding the component grub-install. GRUB (Grand Unified 

Bootloader) is a small piece of software responsible for loading and initial loading configuration of 

the operating system. GRUB is a boot loader similar LILO (Linux Loader) but only more flexible 

and tunable. As it turned out, the image of the system did not include GRUB’s home directory to the 

directory tree. Thus nodes were missing this directory and that is what caused error messages to be 

generated during the installation process. Adding a directory ~/boot/grub to the image hierarchy tree 

on the head-node fixed the problem. 

3.1.3.4 Local Repository Setup 

At this stage OSCAR 6.0.2 has built a working cluster environment on top of Debian Etch 

Linux. OSCAR core and base packages together with OSCAR database are configured and running 

in a way that makes the testing installation on four old desktop computers work as a cluster. 

However, at this stage the OSCAR cluster is far from being a working Beowulf-type parallel 

environment. Manual installation of numerous tools is the only way to get this set-up to the level of 

a parallel environment. OSCAR 6.0.2 does not install any of the stand-alone tools for parallel 

computation like OpenMPI, LAM, MPICH, Torque/Maui, Ganglia. What is more, it does not even 

install a time synchronization mechanism between the compute nodes and the head-node. This is 

something that tools for parallel computation may rely on. Also, most tools need to be able to access 
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the computing nodes without using a password. Remote login is supported to the extent that open-

ssh is installed but configuration is still required to remove the need for password on remote 

command execution. This situation demands for a solution to how to provide installation packages 

to the nodes of the cluster. One has to consider the fact that the nodes usually have no internet 

connectivity and are “hidden” behind the head-node from the rest of the world. Several approaches 

were tried in this situation. One is to define a proxy server on the head node and thus provide each 

node with internet connectivity. Another is to define a local repository on the head-node, fill it with 

all necessary packages and provide access to them either via HTTP or FTP. That way initial cluster 

architecture is preserved and again, all nodes can have unified images of the software installed on 

them. 

A single package installation is all needed to install a proxy server on the head-node. Then it 

has to be properly configured to provide access only to certain sites. In the configuration file (e.g. 

/etc/apt-proxy/apt-proxy-v2.conf) on the head-node one can specify the addresses of the allowed 

sites. Under the tag [debian] one can add 

backends= http://ftp.us.debian.org/debian 

  http://ftp.de.debian.org/debian 

  http://ftp2.de.debian.org/debian 

  ftp://ftp.uk.debian.org/debian 

  http://bear.csm.ornl.gov/repos/debian-4-i386 

Then, on each node the file /etc/apt/sources.list has to be modified with the address and the port of 

the proxy server. An example is 

deb http://oscar_server:9999/ftp.de.debian.org/debian etch main 

deb http://oscar_server:9999/bear.csm.ornl.gov/repos/debian-4-i386 

etch / 

where oscar_server defines the address of the head-node in the local cluster network and 9999 is the 

port defined by the proxy server. With this configuration the compute nodes should have access to 

the sites, where they can download update packages and installation packages using the native 

installation tool of the operating system. In the case of Debian this is apt-get. Furthermore, OSCAR 

helps in this case as it installs a tool for parallel command execution, file retrieval and distribution. 

The Cluster Command Control (C3) tool provides a way of issuing commands on all nodes at the 

same time. Using cexec (cluster execute) command, one can easily issue an update of the nodes 

from the head-node and even install packages. For example NTP packages can be installed by 

issuing 

# cexec apt-get update 

# cexec apt-get install --force-yes ntp –allow-unauthenticated 

cexec does not support interactive mode, meaning that if a command requires a user response at 

some point, cexec will crash. It cannot return the question to the head-node and distribute the 

answer again. One has to make sure that any possible questions that might appear during the 

command execution are answered in advance (for instance, specifying –force-yes in apt-get 

options).  
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 On the other hand, this approach to providing installation packages for the clients may 

introduce a number of difficulties and was not used on the testing environment. To start with, it 

introduces a conflict with the initial architecture design of the cluster. The head-node provides a 

single point of access to the outside world and thus it protects the cluster. Giving internet access to 

all nodes in the cluster introduces numerous security breaches and exposes the cluster to danger of 

external attacks. Nodes need to be configured additionally in order to improve security. Security 

patches have to be installed and even network configuration has to be changed. Even more, giving 

the nodes possibility to download their own packages makes administration of the whole cluster 

more difficult. There is no longer a single point of administration as, most certainly, nodes have to 

be configured separately. In general, all nodes should have the same software with the same 

versions installed on all of them in order to simplify control over the cluster. Any differences may 

result in having services that are not working. A slight overlook in installation of new packages 

could lead in having different versions of a tool running on the cluster. For example, if two versions 

of OpenMPI are running on the cluster, a parallel program might not utilize the nodes running the 

newer version. The result is loss of performance. 

 There is a second solution to providing installation packages to the computing nodes – a 

local repository on the head-node. It aims at eliminating both the problem of administration and the 

problem of security. This follows the initial design of the cluster, where the head-node is a central 

point of administration and access to the cluster. It can host necessary installation and update 

packages and provide access to them ether via HTTP or FTP. The computing nodes will need 

minimum configuration after they are installed. Additional packages can be installed on all of them 

using cexec and Debian’s native package management tool. The advantage in this case is that all 

nodes will surely install the same packages. Monitoring and control of the updates and upgrades in 

this case become easier as cluster administrators only need to make sure that the local repository is 

properly managed. What is more, security is no longer an issue because the internal cluster network 

does not need to implement security policies except secure remote login (ssh). Security of the 

cluster comes down to defining security on the head-node and its connection to the outside world. 

 A local package repository for the cluster is not more than a file server running on the head-

node. Probably, the only thing that distinguishes this file server from others is that clients will only 

download from it but will not store files on it. This can be achieved in two ways according to the 

way files are transmitted. One solution is to rely on the File Transmit Protocol (FTP). This means 

launching an FTP server on the head-node. With operating system like Debian, an ftp server is 

installed by installing a single package which in our case is vsftpd. Configuration (if needed) is also 

straightforward. The installation that we tested required placing all files in a single directory (e.g. 

/home/ftp/). Then the server uses this directory to share the files in it. Similar is the approach using 

an HTTP server for sharing the files over the cluster network. An advantage to using an ftp server is 

that an instance of an HTTP server is already installed and configured with OSCAR. OSCAR needs 

such server running because it maintains an oscar-database with node information like MAC 

addresses and names. Version 6.0.2 requires installing Apache2 server on the head-node. At this 

point administrators of the cluster can take advantage of the already running apache server and 

create the repository by placing binary packages in the right directory. By default the directory 

apache uses is /var/www/, meaning that when a client connects to the server requesting a WEB page 

or a file the server will start looking for them in this directory.  
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Let us assume that the directory of the local repository is /home/cluster/distro/debian-4-

i386/. Then the address that the nodes have to use to connect to the server will look like 

http://gateway/repo/home/cluster/distro/debian-4-i386 etch /. This is rather long address and that is 

why one can use a simple Linux trick to make it shorter and more intuitive. What we did is adding a 

symbolic link file to the default directory of the HTTP server (/var/www/). The file /var/www/repo 

points to the actual directory of the repository /home/cluster/distro. This way nodes can use only an 

address like http://gateway/repo/debian-4-i386 etch / to connect to the server. 

 In order to download installation packages, the compute nodes can rely only on Debian’s 

native package management tool apt-get. When an update is issued it tries to connect to FTP and/or 

HTTP servers defined in the file /etc/atp/sources.list.  Hence, each node in the cluster has to have 

this file modified with an address of the kind deb http://gateway/repo/debian-4-i386 etch /. 

However, an update downloads only a list of all available binary packages in the repository (e.g. 

Packages.gz). After that, when installation of a package is requested, the manager checks the list 

whether there is an appropriate package of this kind on the server. This specific functionality of the 

manager requires the repository to have this “description” file. What is more, it has to be a 

compressed file (with gzip or bzip2) and also has to be renewed each time a package is changed or 

removed. At this point, it is worth mentioning that creation of a repository is often related to 

building and maintaining a special file hierarchy. Meaning, that in general binary packages and their 

description file can share the same directory but this is often not the case. The package management 

tool apt requires the description file to be separated from the rest of the package files. In our test 

environment three different tools were tried with different success for creating this file and the file 

hierarchy around it. 

The directory of the repository can contain a controlled set of packages or just all packages 

that the head-node has already downloaded. Debian stores all “.deb” packages in 

/var/cache/apt/archives/. One can place files in the repository just by copying them from this 

directory. After all needed packages are present a description file has to be created. Dpkg (Debian 

package) is a low level tool for managing .deb packages. It can install, remove and manage 

packages just like apt and aptitude but in a more basic manner. The tool dpkg-scanpackages can be 

used to create a compressed list of all packages in the repository. According to its man page “dpkg-

scanpackages sorts through a tree of Debian  binary  packages  and creates  a  Packages file”. In the 

command line one can specify 

# dpkg-scanpackages debian-4-i386 . /dev/null | gzip -9c debian-4-

i386/Packages.gz  

where debian-4-i386 is the directory that contains all binary packages. This command has to be 

issued from the directory “above” it. Then, a description file (Packages.gz) is created in the same 

directory. 

 To manage repository hierarchy one should rely on more complicated tools that actually 

make use of dpkg-scanpackages in a controlled way. One such tool is debarchiver [Liedert, 2005]. 

It is a tool to sort files into the file structure used by the Debian package management tools like apt-

get, dselect, etc.  All the user has to do is place files in a predefined input directory and debarchiver 

produces a sorted hierarchy into a predefined destination directory. Input and output directories can 

be changed in the configuration file /etc/debarchiver.conf. Debarchiver is implemented to be called 

repeatedly over a certain time period. By default this period is 5 minutes but this can be configured 
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by tuning the file /etc/cron.d/debarchiver.   

 The last tool tried on the OSCAR head-node in order to make a repository out of a set of 

files, is rapt. Rapt is a tool that comes with OSCAR installation. It is a wrapper for apt-get that aims 

at managing cluster repositories. More specifically, according to its man page “Rapt is a tool for 

setting up, exporting apt repositories and executing apt-get commands for only those repositories”. 

[OSCAR, 2009] explains that the tool is designed to support repositories for different distributions 

and architectures. That is why it creates the file hierarchy specific for OSCAR repositories. As it is 

described in the section “Two versions of OSCAR” the repository hierarchy of OSCAR includes a 

distribution name and architecture (e.g. debian-4-i386). Then, according to this hierarchy the 

Packages.gz file is placed in the directory ~ /debian-4-i386/dists/etch/binary-i386/.  The following 

command builds the metadata cache (Packages file) for all binary packages issuing a call to dpkg-

scanpackages. It takes care of creating the file hierarchy on its own 

# rapt --repo /home/cluster/distro/debian-4-i386/ --prepare 

Then a similar command is used to export the local repository via http utilizing the installed Apache 

server for this. 

# rapt --repo /home/cluster/distro/debian-4-i386/ --export 

 At this point all nodes should be able to download the packages list file and install files from 

the local repository on the head-node. However, building this local repository is only an effort to fix 

the functionality of OSCAR 6.0.2. This production version is still far from being complete and 

introduces more difficulties in the process of building a Beowulf-type cluster than it eases it. 

OSCAR implements a strong feature set that will surely prove to be productive only when problems 

with support of the underlying distributions are resolved. Our testing environment showed that a 

working cluster can be achieved with Debian Etch as a foundation. However, it also showed that the 

cluster is not suitable for production. Even with a local repository running, installation and 

integration of tools for parallel computation turned out to require a lot more effort and time. An 

attempt to install OpenMPI returned many dependency errors and finally led to irresolvable 

situation as core libraries for C/C++ required upgrading of the core. And changing the core of the 

operating system to a newer one results in OSCAR not functioning anymore because compatibility 

issues. 

3.2 CAOS-NSA 

CAOS-NSA (Node, Sever, Appliance) is open-source RPM-based Linux distribution. Originally 

it was developed as a freely distributed descendant of Red-Hat Linux known as only CAOS 

(Community Assembled Operating System). However, the lifecycle of CAOS ends with version 2 

giving birth to the project CAOS-NSA. It aims at providing production and scientific computing 

environments with an operating system that is both stable and lightweight. In contrast to other 

Linux distributions installation is rather small and consists of a single CD image of 608MB. After 

the system is installed it automatically updates itself with the latest packages. Only after that, the 

clean and simple operating system can be tuned to carry out a specific task. Additional tools and 

packages are downloaded, installed and integrated into it in order to make the operating system 

most suitable for performing this particular task. CAOS-NSA can be tuned to optimize system 

resources for creating a dedicated server environment, a cluster, or a development environment. For 

this CAOS-NSA uses Sidekick. Sidekick is a text-based tool for post-installation administration and 
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configuration [CAOSWiki, 2009]. It is automatically launched during initial system installation 

process and guides users through configuration starting from language and keyboard-layout 

selection. Sidekick makes the installation a controlled process by letting the operating system 

automatically take care of configuration. It is also used to pre-configure the system for carrying out 

a particular role such as Graphical environment, Email server, Web server (LAMP), File-Server, 

Database administration, Support of virtual machines, Clustering. Once a profile is selected, the 

system starts downloading prerequisite packages and configuring itself. After all packages are 

installed some additional configuring may be necessary in order to tune the tools to the particular 

application in hand. Nevertheless, CAOS-NSA takes care on its own to integrate the new tools into 

the system and configure them. This way it minimizes the chance of error by minimizing user 

interaction. If another system profile is needed at some later point, it can be added to the running 

system again by using Sidekick. It installs all new tools without uninstalling the old ones. However, 

it deletes all meta-packages for the old profile preventing it from being able to update furthermore. 

This way the system focuses only on one particular role and dedicates to it.  

The installation process of CAOS-NSA is described in detail on the wiki page [CAOSwiki, 

2009]. It is straightforward, simple and fast (takes around 10 minutes). The clustering profile of 

CAOS-NSA prepares the initial system to be a master node for a HPC (High Performance 

Computing) cluster. According to the CAOS home page [CAOSHome, 2009] the operating system 

is designed and implemented to eliminate performance regressions at the lowest level of the single 

system so that when this system is brought to a large scale it does not create an aggregating 

performance drop. Installation of the clustering profile starts with installing the Perceus 

management tool, which is actually responsible for deploying the cluster. There is detailed 

information about installation and configuration techniques in the user guide of Perceus [Perceus, 

2009]. CAOS-NSA, however, imports it and takes care of its complete configuration. Our 

experience shows that installation is simple and straightforward. Perceus then installs a number of 

other tools. In contrast to other high level middleware like ROCKS and OSCAR, it installs only 

OpenMPI as a tool for parallel computations. This provides rather limited range of MPI 

implementations to choose from considering the fact that both OSCAR and ROCKS include also 

MPICH, MPICH2 and PVM. On the other hand, Perceus adds the mechanism of environment 

modules that allows users to add different libraries and compilers for parallel computing. 

Environment modules allow users to change the execution environment by maintaining a set of 

module files, which hold the necessary information to configure the shell for an application. 

Furthermore, CAOS-NSA also downloads the Slurm job scheduler and the parallel file system 

Gluster2 and makes them available to be instantly included in the cluster configuration. 

After Perceus is installed on CAOS-NSA it has to be configured with number of nodes to be 

added to the cluster and IP address range of the internal network. Like OSCAR and ROCKS, 

Perceus assumes that the master node has at least two network interfaces - one to be used for the 

internal cluster network and the other to be used for connecting the master node to the Internet. In 

contrast to ROCKS, Perceus can use dynamic address configuration for the interface connected to 

the Internet. Like in the case of OSCAR and ROCKS, Perceus also implements a cluster 

architecture where there is only one master node and all other nodes are connected to it via switched 

network. This way the master node acts as a central point for service provision to the rest of the 

nodes. According to the Perceus documentation [Perceus, 2009], such implementation is only 

applicable to small to medium sizes clusters. Clusters with more than 500 nodes may need another 
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server in the network. Our test environment includes only four nodes, which requires installation of 

a single master node. All four nodes are desktop computers and have commodity hardware installed 

on them. It is crucial to note that Perceus runs on systems with CPUs of x86 architecture (e.g. ia32, 

x86_64). Hardware, like ia64 and PPC64 are still not supported. Although the supported 

architectures are rather popular and widely used, Perceus puts certain limits on the hardware that 

can be used for building a production cluster. 

Nevertheless, CAOS-NSA together with Perceus manage to implement a fast and robust way to 

cluster deployment. According to [Layton, 2009] installation of the master node takes not more than 

10 minutes and deploying a cluster with two nodes (master and slave) takes around 23 minutes. 

What is more, the documentation of Perceus [Perceus, 2009] states that a single master node can 

install simultaneously 32 computing nodes. So, one can have a cluster of 32 nodes running in 25 

minutes, which according to [Layton, 2009] is faster than any other tool for cluster deployment. 

To understand how this is possible one needs to become familiar with the installation technique 

Perceus employs. Similarly to OSCAR, nodes are installed with an image of the operating system 

provided by an image server that resides on the master node. A major difference is that Perceus 

installs all nodes in a cluster with a stateless operating system - nodes do not install the image on 

their local media but they load it into their random access memory (RAM). This is a fast and 

efficient way of installing as all operations takes place in the RAM and they do not involve any 

read/write operations of the hard drive. What is more, nodes can have no hard drives at all. Often in 

a high performance environment where nodes are dedicated only to performing fast calculations 

there is no need for have hard drives. In this way one can build an HPC environment that minimizes 

costs. Furthermore, a stateless operating system is easy to upgrade and modify. All that is necessary 

is to change the image on the master node and reboot all other nodes. Then all of them will boot 

with the new image. This solution provides great flexibility for the cluster and saves the time of 

administrators as nodes’ hard drives need not be reinstalled. In comparison, ROCKS requires all 

nodes to be reinstalled after a new roll is installed and the golden image changes. On the other hand 

this approach of installing the operating system in the RAM has a major drawback – every reboot of 

a node requires an image to be provisioned. An image server has to be running in the cluster all the 

time.  Usually this is the master node. Considering the fact that it also takes care of several other 

services like job distribution and scheduling and remote access to the cluster, it can happen that the 

master node crashes. Having a single point of failure is always a bad idea especially in a production 

environment when calculations are carried out upon sensitive data. The cluster administrators have 

to back up the image server and provide redundancy. Another point is that the whole cluster is rather 

susceptible to loss of power. Additional power supply is needed for a production cluster where 

nodes keep all the data they operate on in the RAM memory. Ram memory is erased when power is 

lost. Perceus supports a stateful installation, too. If nodes have a local hard drive installed and it is 

configured to use an active swap partition then the operating system can be swapped to the disk 

[Perceus, 2009]. 

Another feature of stateless systems that Perceus also implement is file system hybridization. 

This is a technique that aims at conserving memory space. Images distributed amongst the nodes in 

the cluster need to be as small as possible because of the limitations of both the network bandwidth 

and the local memory capacity. Also, images have to provide the functionality of a fully installed 

system. A solution is to install only those parts of the operating system that are actually used and all 

the other ones that are not that frequently accessed can reside on a remote location. Programs, 
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libraries and data can be installed as non-local parts of the system image and can be hosted by 

another node using the NFS (Network File System) to achieve this. 

 Perceus installs all nodes in a cluster using a VNFS (Virtual Network File System) image. 

The image distributed amongst the nodes of the cluster is created by utilizing a VNFS capsule. It is 

a software bundle that contains all files needed to create a diskless boot image starting from a Linux 

distribution, hardware configuration and applications stacks. Perceus has a capsule that installs with 

it but one can always download a new one. An example of a capsule name is ~/CaosNSA-node-0.9-

301.stateless.x86_64.vnfs. Images are provisioned in two stages [Perceus, 2009]. Our experience 

shows that the whole process is straight forward and very quick. (It takes not more than a minute). 

Nodes must be configured to use the PXE (Preboot Execution Environment) to be able to boot from 

the local network. The master node runs a pxe server that waits for initial requests. Once a node 

boots and sends one, the server replies with proper addressing configuration and then it transfers the 

pxelinux and Perceus Operating System via TFTP. The Perceus OS is then booted and it starts a 

Perceus client daemon which issues a DHCP request to the Perceus image server (also running on 

the master node). At this point the master node registers that a new node is found and notes down its 

network hardware address (MAC) address. Perceus uses the MAC address to identify the nodes in 

the cluster. The master node assembles command sequence and sends it to the node. It helps the 

node receive the VNFS image. Once the image is transferred and prepared Perceus will execute the 

runtime kernel contained in the VNFS and load it into the RAM. Only then the initial Perceus OS is 

purged out of the memory. 

3.2.1 Installing PVFSv2 

 The wiki page of CAOS-NSA [CAOSwiki, 2009] describes how one can install and 

configure PVFSv2. According to it, installation is rather simple with only a single make install 

command issued from the directory /usr/src/cports/packages/pvfs2/2.6.1/. PVFSv2 is prepackaged 

with the configuration of the parallel environment. Source files are provided and installation comes 

down to compiling them. Our experience showed that this installation process also requires some 

tuning. The configuration on our test environment showed that three different source versions were 

present. Currently, the latest version of PVFSv2 is 2.8.1 [PVFS2, 2009]. This section describes its 

installation. 

 Installation process starts with making a new directory under the directory where sources are 

stored (/usr/src/cports/packages/pvfs2/). Then all files from one of the other versions have to be 

copied to that same directory in order to be updated to the new version. 

# cd /usr/src/cports/packages/pvfs2/ 

# mkdir 2.8.1 

# cp –R <directory-with-older-source> 2.8.1/ 

At this point, the Makefile has to be adjusted by editing the following fields: 

 MATER_SITES=http://localhost 

 VERSION=2.8.1 

 The homepage of PVFSv2 [PVFS2, 2009] contains links for downloading a compressed release of 

the latest version. Nevertheless, an update of the already existing files in the 2.8.1-directory is 

required. For this, we use the online repository for source code (via cvs – Code Versioning System). 
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The following commands create a folder pvfs2 under the directory they are issued from and copy 

the source files of the latest development version there. It is crucial to note that these source files 

are still under development and might not produce a correctly working environment. Logging in the 

cvs server asks for a password. Users can use any password as the server grants public access.  

#cvs -d :pserver:anonymous@cvs.parl.clemson.edu:/anoncvs login 

#cvs -d :pserver:anonymous@cvs.parl.clemson.edu:/anoncvs co pvfs2 

#cvs -d :pserver:anonymous@cvs.parl.clemson.edu:/anoncvs logout 

After all files are downloaded (around 5MB) one has to rename the source directory.  

# mv pvfs2 pvfs2-2.8.1 

After that a compressed package has to be created from the source files of the new version.  

# tar czfv pvfs-2.8.1.tar.gz pvfs-2.8.1 

This package is going to be used to install the new version. Because the Makefile of the old one 

already states that the main site for downloading is localhost, all that one needs to do to make the 

installation available is to copy this package into the home directory of http://localhost.  This 

directory can be changed by modifying the file /etc/http/conf/http.conf. A line DocumentRoot  can 

be configured to, for instance, DocumentRoot=/svr/www/html.  

# cp pvfs-2.8.1.tar.gz /svr/www/html 

Finally, before installing PVFSv2, the system needs to be upgraded with an additional package that 

contains development libraries and tools for database management.  

# smart query db* 

# smart install db4-devel 

To install PVFSv2 it is necessary to execute make install from the directory of the source files 

(~/2.8.1). With the modified Makefile, installation has to download the compressed package from 

http://localhost, uncompress it and install it.  

# export PATH=/sbin:$PATH 

# cd /usr/src/cports/packages/pvfs2/2.8.1 

# make install 

After installation one can check whether the pvfs2 module is loaded by issuing: 

# module avail 

If the module does not appear to be loaded a small trick solves the problem: 

#cp -R /usr/cports/modulefiles/nsa-1.i386/pvfs2 /etc/modulefiles 

# module load pvfs2 

At this point the module pvfs2 should be loaded and one can continue with configuration of 

PVFSv2 according to the documentation on the home page [PVFS2, 2009]. 
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3.3 ROCKS 

 ROCKS is tool designed to simplify cluster installation and cluster deployment. It is a 

complete software bundle that installs everything that one might need to turn a network of 

computers into a production parallel environment. It can be referred to as a “cluster out of a DVD”. 

In contrast to OSCAR, it does not install on top of an existing operating system and what is more, it 

does not assume that any software configuration took place before installation. The installation 

process starts with formatting the hard drive and installing the operating system on it. ROCKS is 

tightly integrated into the distribution. This means that it is installed and also configured together 

with the operating system. Thus, a state of interaction is achieved that strives to maximize 

performance and eliminate chance of errors. The installation creates a controlled environment 

where the main source of errors - the user, is left out.  User input is required only at certain points 

and consists of choosing packages to be installed and configuring the network addressing. This way, 

ROCKS takes complete control over of the process of building a cluster. Users do not need to start 

or stop services, configure tools or install prerequisite packages as in the case of OSCAR.  

 Additional tools for parallel computations, scheduling and mapping, monitoring, 

virtualization, etc. are also included in the “bundle”. They can be installed and configured at initial 

set up or later, when there is need for them. Like OSCAR, ROCKS also implements a separation 

strategy for its installation components. It uses rolls. They are not that fine grained as the binary 

package in the case of OSCAR - a single roll is a collection of several packages. This solution 

eliminates problems with dependencies and prerequisite packages as it includes all packages needed 

to make a certain tool or service work. Adding tools to the cluster in this way focuses on reducing 

the chance of errors regarding dependencies or incompatibility between installed components.  

Again, users are left out as they do not need to install and configure additional components. What is 

more, rolls are defined by their purpose and include a whole set of different tools that have the same 

purpose.  Thus, a single installation adds to the cluster a new feature instead of a new tool. An 

example is the HPC roll that includes OpenMPI, MPICH, MPICH2, PVM and additional 

benchmarks for testing their functionality. The Torque roll includes the Torque and Maui job-

scheduling systems. These two rolls together with Area51, Bio, Ganglia, Java, SGE and Xen are 

optional but come together with the installation DVD. The basic installation of ROCKS requires 

only the Kernel/Boot Roll, the Core Roll, OS Roll Disk 1 and OS Roll Disk 2 [ROCKS, 2009]. 

Additionally, third party rolls are developed that add support for utilization of high-speed cluster 

networks like Myrinet (1G, 2G) and  Infiniband, or for parallel programming on graphical 

processors with CUDA. ROCKS has a management system that takes care of adding new 

components and integrating them within the configuration so no previous functionality is lost or 

broken. 

3.3.1 Installation 
 At the time of writing the latest version of ROCKS is 5.1. This is the version used on our 

testbed to build a heterogeneous parallel environment. Installation process is well described by the 

user guide on the home page of ROCKS [ROCKS, 2009]. That is why in this section the description 

of the installation will focus on certain points that define it or may cause problems if being 

neglected as well as it will describe installation of PVFS on the cluster. 
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3.3.1.1 Environment Considerations 

 ROCKS is a tool that aims at building a Beowulf-type high performance cluster. Such type 

of cluster is defined as one which utilizes low-cost hardware together with open-source software. 

The goal is to achieve maximum performance at lowest price. Our experience shows that the newer 

the version of ROCKS is the more hardware resources it requires to work. According to the user 

guide [ROCKS, 2009] of the latest version 5.1 both the frontend and the computing nodes need at 

minimum 1GB of RAM memory and a storage space of at least 30 GB. In comparison to other high 

level middleware this requirements are rather costly. Today such hardware requirements cannot be 

considered expensive but for the purpose and our project they are rather limiting. Our experience 

showed that ROCKS can be installed on nodes that have less memory - in our case it was a node 

with 764 MB. However, after installation was complete, and when the node tried to boot up, it 

displayed an error message for not having enough memory. That is why one should consider which 

version of ROCKS to install according to the hardware in hand. In comparison ROCKS 4.3 

(released in 2007) requires only 640MB of memory and 20GB of storage space, while ROCKS 4.1 

(released in 2006) requires 512MB of memory and 16GB of storage space. On the other hand, one 

should bear in mind that ROCKS is a complete software bundle that includes the operating system, 

too. Initially, ROCKS was integrated into Red-Hat. Starting from version 4.0 (released in 2005) 

ROCKS installs and integrates into CenOS, which the open-source descendent of Red-Hat. 

Currently, the latest version of ROCKS uses CentOS 5.0. This distribution is relatively new (the 

latest at the time of writing is 5.3) and is still well supported with update and installation packages.  

In case, an older version of ROCKS is installed it will come with CentOS 4 and different set of 

updates. And installing an older distribution is not always a good idea as tools become obsolete with 

it and also updates are not that easy to find. On the other hand, new versions do not always provide 

proper support for new hardware. CentOS 5 is still being developed to support a wider range of 

processor architectures, while the older version 4 supports s390/s390x (IBM zSeries and IBM 

S/390) together with  ppc/ppc64 (IBM Power, Mac), SPARC (Sun SPARC processors) and Alpha 

(DEC Alpha processors) [CentOS, 2009]. 

 Another requirement for the frontend is to have two network interfaces. ROCKS implements 

a traditional cluster architecture according to which all computing nodes together with the frontend 

are connected to an internal switched network. The frontend is the only one that has a connection to 

the Internet and to the outside world. Hence, one network interface connects the frontend to the 

cluster network and the other connects it to the public one. This way, the frontend “hides” the 

cluster and protects it from external security threats.  What is more, this setup minimizes 

configuration and maintenance efforts as security needs to be enhanced only on the frontend.  

 One should be aware that during the installation process the ROCKS asks users to fill in the 

initial configuration for networking. Addresses for the external and internal networks are required. 

It is crucial to note that the initial configuration is saved and then it is populated amongst the nodes. 

All host-name resolution and routing tables are configured in accordance with it. ROCKS is 

implemented to use only fixed static addresses for both of its network interfaces. Cluster-wide 

services require the frontend to always have a constant address and fully qualified domain name 

(FQDN). ROCKS does not work well when dynamically obtained addressing is used for any of its 

network interfaces. A dynamic addressing server runs on the frontend and it is configured to give 

always the same IP addresses to the same nodes. Functionally may be lost if users change the dhcpd 

configuration on the frontend and it starts giving different addresses to the nodes. What is more, the 
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frontend itself looses internet connectivity if it receives its network configuration dynamically via 

DHCP.  In this case networking configuration has to be manually adjusted every time a new address 

is obtained. The frontend will not be affected only if it receives the same configuration every time. 

This is why, one should make sure that if the frontend operates in a managed network it has one of 

its network interfaces registered with it so it can always receive the same address. When ROCKS 

starts installing it determines which interface is connected to the public network and suggests its 

settings as default settings so users need not remember them. 

 

3.3.1.2 Installation on the Frontend 

 Installation of ROCKS 5.1 is straightforward and simple. The home page [ROCKS, 2009] 

provides a detailed user guide that describes the process thoroughly. Users can choose to download 

an installation “jumbo” DVD that includes the Kernel/Boot Roll, the Core Roll, OS Rolls and the 

rolls that install tools for parallelism Area51, Bio, Ganglia, Java, SGE, HPC, Web-Server and Xen. 

The installation process first detects the network interfaces so that later when the graphical user 

interface of the installer starts the user can choose whether to use the DVD or the network for 

source of rolls to install. Network installation takes much longer as all rolls have to be downloaded 

and this means downloading around 4GB. On the other hand, choosing the web as a source provides 

a broader range of rolls - with the current release it adds to the list also Condor and PVFSv2. At the 

time of writing PVFSv2 roll was recently completed and released for version 5.1. If the purpose of 

the cluster is determined at this point and one is certain about which rolls it will use, it is 

recommended that installation of additional tools takes place at this time. It is better to let the 

system configure itself and integrate the tools on its own. Adding them later, onto a working 

environment, can break working functionality as described in the section “Installing PVFSv2”, 

where installation of PVFSv2 breaks the functionality of adding new nodes to the cluster.    

 Installation process on the frontend takes around 20 minutes when the installation DVD is 

used. After it completes the system reboots and CentOS 5 loads. The system has only a single user – 

the root user. After first login, when a terminal window is opened, the user is asked to create a 

security key (rsa key) to be used for ssh. It is recommended that one accepts all default values 

suggested and does not define a passphrase. This is important because ROCKS distributes the 

public key of the frontend to the nodes in order to enable secure remote login via ssh. If the key is 

encrypted with a passphrase, the user will be prompted to enter it every time a remote login is 

required. This can cause some tools for parallel computations to stop working as they do not have 

direct access to the nodes. What is more, one should also create a new user account different from 

root at this point. Tools for parallel computation require that executables are run from a non-root 

user account. For example OpenMPI has this requirement. 

3.3.1.3 Installing the Cluster 

 Installation of the cluster nodes is also straightforward and follows the user guide [ROCKS, 

2009]. Our testbed includes four machines of heterogeneous commodity hardware. All of them are 

desktop computers that have different processors, memory capacity and storage capacity. The 

frontend uses Intel dual core processor, while the others have processors of older architecture. In 

total, there are 5 processors, 6GB of dynamic memory and 470GB of storage space. All nodes are 

connected via a switch into a 100Mb Ethernet network. Thus, the testing environment aims at 

building a heterogeneous Beowulf-type cluster. ROCKS supports all the different hardware as long 
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as the operating system, it is integrated into, supports it. In the case CentOS 5 is developed to 

support most of the available on the market commodity hardware (32-bit and 64-bit Pentium, 

AMD). 

 Nodes are added to the cluster in a similar fashion as with OSCAR. On the frontend one has 

to start the application that discovers and registers the nodes by typing in the command line: insert-

ethers. The difference is that nodes are installed according to their functional role. Initially nodes 

can be “Compute” nodes but if PVFSv2 is installed, for example, nodes can be also “Compute + 

PVFS I/O Node”, “PVFS I/O Node”, and “PVFS Metadata Node”. Tuning the installation 

according to the specifics of the individual nodes is done in a completely different manner from 

OSCAR. There is no “golden image” of the operating system of the frontend. The installation 

process uses Kickstart, which is a method for automated Red-Hat installations [Papadopoulos, 

2002]. It enables administrators to specify in advance the exact software package and software 

configuration of a system. The kickstart method suggests that a single textual file is created 

containing the answers of all questions that are asked during normal interactive installation. In the 

common case, when the same nodes are installed over the network, a single static kickstart file can 

be distributed to all of them. But if nodes differ in some way they require an own specific copy of 

that file in order to be able to build their own image. A downside is that there is no scripting 

language for kickstart files and thus a single file has to be created for every node that is to be 

installed. ROCKS solves the situation by first distributing a script (CGI) amongst the nodes, which 

creates the kickstart file locally according to their specifics. Only then installation of the operating 

system can start and it is able to determine which packages are needed for the installation.  

 To download the script and start installation the nodes need to boot using the network (PXE 

boot) or using local media (CD, DVD). One has to configure the BIOS boot order in advance. Our 

testing environment showed that none of the nodes is able to utilize the network to boot. All of them 

had to be booted from the installation DVD. In this case, there is a difference to the installation 

process compared to the frontend. One should not type anything at initial prompt mode or should 

just press “Enter”. A vmlinux.img and initrd.img are loaded together with drivers for the hardware. 

Only then, the system installer sends a DHCP request to the frontend. The server marks their 

request and replies with a static address, which is usually the last available address in the specified 

at installation range (for example the first given address from the range 192.168.1.0/255.255.255.0 

is 192.168.1.254). At this point the screen of insert-ethers on the frontend must change with 

information about the node. The /etc/dhcpd.conf file also registers the new node by noting its MAC 

address. A star at the end of the line on the screen of insert-ethers on the frontend marks when the 

kickstart script was transferred successfully. Then installation begins by downloading the operating 

system from the frontend.  

 Installation is different according to the functional role of the nodes. Using the DVD to 

install the frontend gives the possibility to install only Compute nodes after that. If PVFSv2 is 

installed nodes can be of different type. Then their installation and configuration differs from the 

rest. In this way one could make a cluster especially for high speed computations or make one for 

fast parallel data storage and management. A combination of the two is also possible by making the 

nodes of type “Compute + PVFS I/O Node”. This, however, is discouraged according to the user 

manual of ROCKS [ROCKS, 2009]. Compute nodes that have scheduled jobs on them often crash 

and if a node crashes it brings down the whole PVFS system. What is more, the PVFSv2 roll 

installed on our testbed showed to crash the node-insertion process by making insert-ethers hang 
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with nonsense displayed on the screen. Nevertheless, one should bear in mind, when installing 

different type of nodes that restarting the insert-ethers application might not be enough to start over. 

In the case when PVFS was tested, restarting insert-ethers showed that even installation of compute 

nodes fails after that. The solution is to reboot the frontend. That way compute nodes could be 

installed again. 

 After installation of the cluster is complete, one can inspect the overall state of the 
environment by launching the Web interface of Ganglia. It shows the hardware configuration of all 
nodes together with statistics for the load of each node. The information is presented in the form of 
various graphs. Ganglia gets configured and starts running from the beginning without further 
adjustments. In case the cluster installation process requires some manual network configuration 
one should be aware that Ganglia can lose connectivity to the nodes in the cluster. It reports that the 
nodes are down even though they are not. This is often the case when a ping commands are issued 
from the nodes. To fix this, one has to restart the ganglia daemon on all of the nodes by issuing on 

all of them /etc/init.d/gmond restart. Furthermore, network analysis done in our test 
environment show that the frontend generates constant UDP traffic on the cluster network. It acts as 
heartbeat signal that checks whether there is connectivity to the nodes and also collects information 
about their current load. This extra traffic might introduce certain level of network latency in an 
intense production environment. Nevertheless, the Ganglia monitoring tool is useful for debugging 
and troubleshooting on a large-scale cluster. 

 ROCKS 5.1 introduces another problem with Ganglia. A configuration conflict causes the 
monitoring tool to lose connectivity to all nodes in the cluster. What is more, after the cluster is 
restarted it no longer has records for any of the nodes. The frontend is the only node listed by the 
system and it is reported to be in a down state. In this case the first thing that one can do is to restart 
the main components of Ganglia – the daemons gmond and gmetad, on both the frontend and the 
compute nodes. However, this leads to an error being generated when the Ganglia Web interface is 
launched. Instead of displaying the proper page, the browser alredy shows an error message: 
“Cannot find any metrics for selected cluster <cluster_name>”. According to the ROCKS support 
mail list this is a known issue of version 5.1 and it will be fixed in the next release. Philip 
Papadopoulos, who is a member of the development team of ROCKS, believes that “there is a bug 
in the way Xen is building their bridges in that not all routes are properly maintained”. Xen is a tool 
that is included in the Jumbo installation DVD of ROCKS. It supports creation and maintaining of 
virtual machines over the cluster nodes. For this Xen installs several virtual network interfaces on 
the frontend causing at the same time a configuration problem - no multicast route is set on the 
fronted. The frontend transmits constant UDP traffic to the nodes of the cluster in order to 
determine their state. This heartbeat traffic is exchanged using a multicast address in the range 
224.0.0.0 and port 8946. Xen bridge scripts break this functionality when they build the virtual 
network devices and rename them. Device specific routes (like the multicast route) turn out not to 
be automatically handled causing all data that is sent to gmond to be lost. To restore the correct 
functionality of Ganglia one has to add manually the multicast route every time the cluster starts. 
Then the Ganglia daemons have to be restarted on both the frontend and the compute nodes. As root 
user one has to issue from the command line 

# route add –net 224.0.0.0/4 dev eth0 

# service network restart 

# service gmond restart 

# tentakel “service gmond restart” 
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3.3.1.4 Installing PVFSv2 

 Installation of the PVFSv2 roll can take place during the process of initial installation and 

configuration of ROCKS or it can be added after that. Both ways of installation were tried on the 

test environment but none of them showed any satisfactory results. Nevertheless, it is recommended 

to include the roll during the initial installation process. That way ROCKS will take care of 

configuring and integrating it into the system. Adding it onto a working cluster requires either the 

whole cluster to be reinstalled or a new set of nodes to be added and installed with the new 

configuration. Existing nodes cannot be tuned to use the new functionality in a dynamic way. They 

have to be reinstalled with a new set of packages and configuration. ROCKS defines the type of a 

node at the time when it is added to the cluster. According to its functional role it can be either a 

“Compute” node or one of the following: “Compute + PVFS I/O Node”, “PVFS I/O Node”, and 

“PVFS Metadata Node”. In order to preserve the capability to perform parallel computations, the 

nodes in the test environment had to be turned into “Compute + PVFS I/O Node”.  

 The installation process starts with downloading the PVFSv2 roll. It is an ISO image file of 

size 5MB. Then in order to install it on the frontend one should execute a series of commands as 

root user. First, from the directory where the ISO file is located, one should issue the following 

command that unpacks the files of the image and places them in a proper directory hierarchy 

# rocks add roll pvfs2*iso 

After that the roll has to be enabled by issuing:  

# rocks enable roll pvfs2 

At this point one can check whether the roll is enabled by issuing # rocks list rolls. 

Only then the ROCKS distribution can be rebuilt. The distribution includes all installation packages 

of the operating system and the additional tools that are transferred to the nodes during their 

installation. The following command should be executed from the directory /export/rocks/install. It 

is worth not note that this could take a while to complete 

# cd /export/rocks/install 

# rocks create distro 

PVFS is now ready to be installed on the frontend. It is a 2 step process as the cluster database 

needs to be completed with an additional table. This step has to be executed manually as it requires 

a root password. 

# kroll pvfs2 | bash 

# mysql -u root -p cluster < /tmp/pvfs2.sql 

# kroll pvfs2 | bash 

Installation process on the frontend completes with rebooting the system. At this stage the system 

enables swap space on the hard drive and thus a substantial delay takes place. 

# init 6 

 While the system is rebooting and after the swap space is enabled one can observe an error 

message indicating that the PVFS server cannot start. The message is “Configuration file error. No 

host ID specified for alias gateway”. It is generated because the configuration file does not get 
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created. Normally, the PVFS configuration file is located in /opt/pvfs2/etc/pvfs2-fs.conf. When 

PVFS is installed during the initial ROCKS installation it creates this file but a message for 

unknown configuration options is displayed the first time the system reboots. One can try to 

generate a configuration file manually by issuing #/opt/pvfs2/bin/pvfs-genconfig, 

which starts an interactive-mode console application that requests the user to define a number of 

parameters. Generating the configuration file in this way is difficult for a non-experienced user. 

This is why a conclusion was reached that the configuration file must get generated when “I/O” 

nodes are installed and configured. At this point issuing insert-ethers with “Compute + PVFS I/O 

Node” or “PVFS I/O Node” option selected leads the application to crash with nonsense displayed 

on the screen. Network monitoring showed that the application crashes exactly at the moment it 

receives a DHCP request from a node. The node then is unable to download the kickstart script file 

and goes into manual configuration mode. It starts searching for a location to download the image 

file from. The HTTP server on the frontend hosts this file and a node can be tricked to start 

downloading it by specifying the location: /install/rocks-dist/i386/. The ROCKS system installer 

Anaconda starts and downloads the image file. However, the node hangs just before bringing the 

graphical interface to the screen. After a while it reports “Cannot allocate requested partitions”, 

“Not enough space left to create partition /boot”. As a result PVFSv2 cannot be installed used on 

the testing environment running ROCKS. 

3.3.1.5 Running an MPI Test 

In order to test OpenMPI functionality one can use at first the tests that come with the 

implementation. ROCKS installs also MPICH and MPICH2, too. There are two separate tests 

present both as binaries and source codes in the directory /opt/mpitests/. One test makes each node 

report the process running on it and the other makes processes send 1KB of data and then each 

process replies upon receipt of that data. These two tests are useful as they determine whether basic 

MPI functionality is running correctly. To be able to execute them, OpenMPI requires the frontend 

to have an extra user defined besides the root user. Adding a new user account to the frontend can 

be done by issuing from the command line adduser <newuser> and then passwd 

<newuser> to set a password for the new account. If the account is added after the nodes are 

installed the new account configuration needs to be populated by issuing in the command line 

#rocks sync users. Then, one should login as the new user - for example, by issuing the 

command # su - <newuser>. At this point the new user will be asked to create a security key 

for secure remote login via ssh. Again, as with initial configuration, it is recommended to accept all 

default values. One should make sure that the new user is able to login in the nodes without 

password being required for that. If this is not the case the new-user’s public key has to be copied to 

the authorized_keys file on the remote machines. This can be done by issuing from the command-

line 

# scp /home/<newuser>/.ssh/id_rsa.pub <newuser>@compute-0 \ 

-2:.ssh/authorized_keys  

where scp is an application for secure copying of files over the network and <newuser>@compute-

0-2 specifies that the file should be copied in the directory /home/<newuser> on the node with 

address compute-0-2. Before issuing the command one should make sure that ROCKS 

synchronized correctly with the nodes and created the new user and its home directory. Otherwise, 

the above command will return a message that such directory does not exist. 
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 Finally, ssh has to be configured and then a test can be run using the new user account. 

# ssh-agent $SHELL 

# ssh-add 

# /opt/openmpi/bin/mpirun –np 4 –machinefile /home/<newuser>/ \ 

machines /opt/mpitests/bin/mpiring 

where –np defines the number of processes that will be started on the machines. The machines file 

is a text file in the home directory of <newuser> that contains a list of the names of the nodes 

included in the computation process. For example, it can contain gateway compute-0-2 

compute-0-4 compute-0-5 where each of the names has to be in a new line. The 

/opt/mpitests/bin/mpiring file is the executable that makes all processes exchange 1 

MB of data. 

3.4 Summary 

 This chapter describes how one can turn a collection of desktop computers into a parallel 

environment for high-performance computing. It shows the process of installing and configuring a 

cluster using three different tools for cluster deployment – OSCAR v6.0.2, CAOS-NSA v1.0, and 

ROCKS v5.1. A detailed description of the installation process on our testing environment aims at 

revealing both the strong and the weak sides of these tools. Without going into detail, the 

installation process follows a similar way for all of them. First, a single computer is installed, which 

is intended to be the head node of the cluster. Only after being fully configured, the head node can 

install the nodes of the cluster by spawning an image of the operating system through the local 

network. All of the three tools use different techniques for creating the images. OSCAR 

dynamically creates an image of the current operating system and its configuration, while CAOS-

NSA and ROCKS use predefined images that come with the installation. Upon installation the 

image is tuned in accordance to the hardware by means of configurations scripts. What is more, all 

three tools are designed to implement a simple cluster architecture, where there is only one Master 

node controlling the whole cluster and accepting jobs from users. All other nodes are dedicated to 

computing and, independently of the underlying hardware, have the same software installation and 

configuration. Thus, the head node becomes a single point of administration and, what is more, is 

the single point of access to the cluster – usually it is the only one that has connectivity to the 

Internet and the outside world. In our testing environment all computing nodes are connected with 

the head-node using a switched network.  

 Installation tests start with OSCAR v6.0.2, which at the time of testing was going through a 

process of renovation and migration to a completely new approach to the installation process. The 

software suite installs on top of an existing Linux distribution and uses its current configuration to 

create images for installing the nodes. Previous versions of OSCAR consist of one single 

installation bundle that needs to be ported and tuned for each Linux distribution while the new 

approach proves to be more flexible by dividing the installation into small pieces. This way, 

developers try to achieve broader and faster support of both RPM-based and Debian-based 

distributions. OSCAR allows users to choose a Linux distribution in accordance to their preferences 

and the requirements of hardware in hand. However, together with giving liberty to users, OSCAR 

requires them to have some experience in the field of clustering. Users are responsible for choosing 

an appropriate operating system that supports both their hardware and the OSCAR software. Also, 

they have to manually configure the system before and during the installation process. What is 
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more, the current version is a development version and it is still being tested. Our testing 

environment showed that a working cluster can be achieved with Debian Etch as a foundation but it 

does not provide an installation of any tools for clustering. An approach for installing additional 

tools on the cluster was tested - a local repository was build. However, even with it, installation and 

integration of tools for parallel computation turned out to require a lot of effort and time. The 

production version OSCAR 6.0.2 is still far from being complete and introduces more difficulties in 

the process of building a Beowulf-type cluster than it eases it. OSCAR implements a strong feature 

set that will surely prove to be productive only when problems with support of the underlying 

distributions are resolved.  

 On the other hand, CAOS-NSA proves to be useful and easy to use when deploying a high-

performance cluster. Using it, a test cluster of four computers with commodity hardware was 

deployed (see Table 1, Comp. 5-8). CAOS-NSA is a Linux distribution that is modified in order to 

provide a production environment with an operating system that is stable, reliable, lightweight, and 

fast. Upon installation users choose a profile for the system and it installs and configures itself for 

performing the tasks specific for that profile. In our testing environment CAOS-NSA is installed 

with tools for clustering. A major drawback in comparison to OSCAR and ROCKS, is that the 

installation includes only a basic set of tools for clustering. For example, MPI is supported only 

through OpenMPI. Additional tools have to be manually installed. Furthermore, CAOS-NSA 

implements a different approach to installing the nodes of the cluster. They are installed with a 

stateless image, which does not reside on the hard drive but is loaded into the physical memory. 

This way, using a small image, a cluster deployment can be achieved in a matter of minutes. What 

is more, this approach allows new tools to be installed on the cluster very fast as nodes need only to 

be rebooted and to load the new upgraded image. However, this is also the major disadvantage of 

using CAOS-NSA. The whole cluster is highly dependent on the head-node as it provides remote 

access to files and services. Additionally, should loss of power occur, the cluster has to be deployed 

once again. These reasons make CAOS-NSA unsuitable for fulfilling the needs of a production 

environment.  

 The cluster deployment tool ROCKS showed to be most usable of all three. A cluster of four 

machines of heterogeneous type was deployed and tested for the purpose of this research (see Table 

1, Comp. 1-4). ROCKS incorporates an installation process that handles system configuration 

automatically. It installs the operating system and all tools for clustering by itself achieving at the 

end a fully-functioning cluster environment. After the head node is installed, cluster deployment 

comes down to booting the rest of the nodes. Compared to the other two tools, ROCKS turns out to 

be rather demanding when it comes to hardware requirements as it demands at least 1Gb of RAM 

and 30 Gb of storage space per node. Nevertheless, it integrates in the software environment of the 

cluster numerous useful tools like Ganglia, Condor, the Sun Grid Engine, MPI, etc. Our experience 

showed that other tools like PVFS v2 are difficult to be added to the system and do not work with 

this version of ROCKS.  
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Chapter 4 

Product Evaluation 

 
 While the previous chapter describes how a cluster can be deployed using the tools OSCAR, 

ROCKS, CAOS-NSA, this chapter focuses on some tools that make the cluster environment useful. 

For this, the cluster environment created by ROCKS is studied in detail. A basic overview of the 

integrated tools, which facilitate job handling, submission and monitoring, is presented. The chapter 

discusses how they can be used and what can be achieved with them. A description of features and 

examples aim at revealing how these tools can be used for increasing the performance of a 

heterogeneous cluster environment.  

 The chapter is divided into four main sections dedicated to each of the tools that facilitate 

the utilization of the cluster. Section 4.1 describes the cluster monitoring tool Ganglia. Section 4.2 

focuses on parallelism by presenting an example of a MPI application. The test application is 

presented first in its sequential form and then it is compared to a parallel implementation. Section 

4.3 describes the batch system Condor. Section 4.4 shows examples for job submission under the 

resource managers Sun Grid Engine and Torque/Maui. 

4.1 Ganglia 

 The ROCKS suite installs and configures the real-time cluster monitoring tool Ganglia. It is 

implemented to provide vast amount of statistical data in a simple form using a Web-based 

interface. Data is gathered using a multicast listen/announce technique which allows the tool to be 

used for monitoring clusters of up to 2000 nodes [Massie, 2004]. Resource utilization data is stored 

in a database and can be used for long-term analysis.  In ROCKS, Ganglia v3.0.7 is integrated into 

the cluster software environment upon cluster deployment. Section 3.1.3 of the Installation Report 

(see Chapter 3) describes the process of building a small cluster of 4 nodes using ROCKS 5.1. This 

small testing environment is used to show how Ganglia operates and how one can use it to monitor 

cluster resources. Section 3.1.3 also describes why Ganglia may not be working correctly 

immediately after installation and gives a simple solution to this problem. 

    A common approach to building a cluster environment is to have a centralized point of 

administration and control over the cluster. The frontend node is usually used for monitoring and 

reconfiguring all other nodes. This, however, turns into a tedious task for administrators even in the 

case when the cluster is not that big, like the one in our testing environment. What is more, one can 

consider a case when a hardware failure has to be pointed out in a cluster of 1000 nodes. A tool that 

provides an overview of the hardware resources of the whole cluster proves to be more than useful. 

Ganglia aims at providing a simple graphical representation of all machines in a cluster or cluster of 

clusters. In this way, troubleshooting in large-scale clusters becomes rather achievable. An example 

of finding a problem would be if jobs are queued for execution in a cluster but they are not started 

even though nodes are available [Hoffman-Ganglia, 2003]. Furthermore, Ganglia reports on the 

average load of each machine with respect to its CPU, memory, network, etc. This resource 

utilization information is more than valuable in a heterogeneous HPC environment where tasks 



49 
 

have to be mapped to proper machines for execution. Ganglia provides users with a fast way of 

determining which machines are in use and to what extent. Jobs can be scheduled based on this 

information to achieve better performance.  

 Ganglia operates using mainly two daemon programs – the ganglia monitoring daemon 

(gmond) that runs on every node of a cluster and the ganglia meta daemon (gmetad) which runs 

only on the frontend [Massie, 2004]. Additionally, it incorporates a gmetric tool that defines new 

metrics for the monitoring tool to track. It can be used to add for monitoring some application 

specific metrics. Also, Ganglia includes a command-line tool for executing simple distributed jobs 

over the cluster, named gexec.  The gmond daemon is a multi-threaded program that carries out 

monitoring of a single cluster. It runs on every machine and implements the multicast 

listen/announce protocol. gmond collects local metrics information, sends it to the other nodes in 

the form of XDR (eXternal Data Representation) messages and gathers messages from others.  A 

collect and publish thread in gmond is responsible for collecting local node information and 

transferring it to all nodes using a multicast address (of the range 224.0.0.0) and port 8946. The 

listening threads take care of receiving data from the multicast channel and updating the gmond’s 

local database. Each node in the cluster maintains in-memory storage in the form of a hierarchical 

hash table of monitoring metrics. That way, each node has an image of the state of the whole cluster 

and can distribute it in case of a crash. Entries in that storage are tagged with a time of reception. If 

certain period of time passes information is considered to be outdated and gets deleted. Finally, a 

thread pool of XML report threads are dedicated to handling client requests for monitoring data. 

Additionally, the gmond multicasts only the metrics that are defined for monitoring and only when 

they exceed a certain change threshold or the time since the last transmission passes a certain time 

threshold. All this configuration data can be modified in the configuration file of gmond 

/etc/gmond.conf. These policies are implemented to reduce network traffic. “For example, the 

number of CPUs is multicast only once per hour, but the 1-minute load average might be sent as 

often as every 15 seconds” [Hoffman-Ganglia, 2003]. Nevertheless, network is occupied by 

constant traffic of heartbeat message between the nodes. This way gmond implements a 

membership protocol that aims at determining whether new nodes are added or existing nodes have 

failed. Heartbeat messages are exchanged periodically over a random period of time, so no 

synchronization takes place between the nodes. 

 Ganglia implements a hierarchical design allowing users to monitor clusters of clusters (see 

Fig.1). On the frontend of each Ganglia cluster runs another program gmetad which reports the state 

of the local cluster in the form of XML and over unicast channel [Massie, 2004]. It replies to 

requests from other gmetad programs. gmetad is responsible, also, for storing all collected statistical 

data in a Round Robin database (using the RRDTool). It can be used later on for analysis of cluster 

load and performance. What is more, the web front-end uses this information to present data and 

graphics to the web browser. 
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Fig.1 Ganglia architecture  
Source: [Massie, 2004] 

 In a cluster environment created using ROCKS 5.1 the web front-end of Ganglia loads as 

soon as a Web browser is started. The web front-end of Ganglia provides real-time visualization of 

all collected data. The RRDTool is used for both storing the monitoring data in a Round Robin 

database and visualizing it. It generates various graphs which present how metrics change over 

time. They are posted on the web front-end which is implemented in PHP scripting language. Pages 

are dynamically generated by parsing the complete Ganglia XML tree which is obtained by 

contacting the local gmetad on port 8951 [Hoffman-Ganglia, 2003].  Fig.2 shows the contents of the 

starting monitoring page for our ROCKS cluster. In the center of the page four graphs always show 

the load for the last hour of the cluster as a whole together with the involved CPUs, the memory and 

the network. In the bottom of the page all nodes are depicted in a color according to their current 

load level (in our case there are four nodes). On the left users can find statistical data for the average 

load of the cluster for the last minutes (15, 5, 1) in percentage. At the upper part of the page, under 

the tag Metric users can choose a certain metric from a drop-down menu that causes the page to 

reload displaying statistical data for that metric per node. Data can be queried according to the past 

hour, day, week, month by choosing an option from the Last menu. 
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Fig.2 Screenshot of Ganglia web frontend on the testing ROCKS cluster 

 The Web front-end allows users to see data about the monitored environment on different 
levels that start from a general view of all monitored clusters – the multi-cluster view (Fig.2), and 
go through the physical view that shows only one cluster (Fig.3) until finally the node view shows 
detailed information about a certain node (Fig.4, Fig 5). The Physical view shows a list of all nodes 
with basic information about their CPU speed, total memory size and average load. It also contains 
summarized hardware information about the whole cluster like total memory (6.3GB in our case) 
and total disc space (470.7GB in our case) along with the name of the node which has most full 
disk. 



52 
 

 
Fig.3 Ganglia Physical view 

 
Fig.4 Ganglia Node view 

 Finally, Fig. 4, Fig.5 show how Ganglia presents node information. The page on Fig.4 shows 
only an overview with most important information together with system average load and CPU 
average load while Fig. 5 shows similar information only expanded with numerous graphs that 
show how all monitored metrics change over time for this particular node. 
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Fig.5 Ganglia Node View 

4.2 MPI 

 The installation of ROCKS 5.1 creates a parallel environment out of a collection of 

interconnected machines. Upon cluster deployment OpenMPI, MPICH and MPICH2 are installed 

and configured to make the cluster ready for executing MPI applications. While many of the tools 

included into the software environment are necessary to make all machines work as a single 

computer, an installation of an MPI implementation is crucial for a High Performance production 

environment. Distributing the workload of an application among the computing nodes defines the 

purpose of creating a cluster. Section 3.3.1.5 of the Installation Report (see Chapter 3) describes 

how one can use the parallel environment. Namely, MPI code is compiled using the command 

mpicc/mpiCC and ran using mpirun. The example in Section 3.3.1.5 and all examples in this section 

utilize the installed OpenMPI 1.2.7 (/opt/openmpi/). This section, however, aims to describe a 

concrete example of a parallel application that shows how a parallel environment can be used to 

speed up an, otherwise, slow sequential application.  

 Our testing application solves the mathematical problem of calculating the value of a 

definite integral of a function. In the simplest form, a definite integral calculates the signed area 

enclosed between the graph of a function, the x-axis and the points within which the integral is 

defined. A solution can be found using Numerical Integration. Without going into detail, numerical 

integration is the approximate calculation of a definite integral and it incorporates several different 



techniques. For describing the one used, assume that the interval, over which the integral is defined, 

is partitioned into multiple subintervals of equal size. Then the method calculates the sum of the 

area of all trapezes defined by the subintervals and the values of the function in the end points of 

each subinterval (Fig.6) 

Fig.6 Trapezoidal rule
of a definite integral

 Our testing application calculates the value of the following function using the 
rule for numeric integration.  

The interval [0, 1] is divided into multiple subintervals of equal size. Then

area of the corresponding trapeze is calculated and added to the total area. The accuracy of the 

calculation can be scaled arbitrary by increasing the number of subintervals. In fact, the sequential 

implementation relies on this to achieve as much computational time as possible.  The result of the 

calculation is an approximation of Pi.

 Paralyzing the solution to this problem is not a difficult task as the problem area provides an 

obvious way of dividing the work among the computing n

calculating the area of each trapeze and then adding all areas into a single result. Hence, each 

computing node can be handled a portion of trapezes to compute. It is important to note here that all 

trapezes are defined by a subinterval of [0, 1], which are all of the same size, and the same function. 

This makes all of them equal for computing in the sense that the area of each trapeze can be 

computed independently of all others. Thus, there is no importance to the order tha

computed in. Having this in mind, parallelizing the solution can be done in two ways. The first 

solution suits best a parallel environment where all nodes (processors) are of the same type and 

have the same speed. It does not take into considera

another but relies more on the fact that computations on all machines will take equal amount of time 

because of their equal performance capabilities. A second solution utilizes the possible 

heterogeneity of an environment as it distributes more workload to faster machines and less to 

slower ones. It leaves no machine idle until computations are finished.

 The first solution suggests that the problem area is divided into equal
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results are collected onto one machine which adds them into a single, final result. This is the 

solution that our testing application uses as it is simple and fast to implement. 
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Considering the case when a cluster of computers utilizes a switched, 100Mbit Ethernet network, 

latency of constant inter-process communication can lead to great performance loss. This first 

solution proposes that messages are exchanged only twice during the whole computational process. 

What is more, traffic does not affect computations as it takes place just before actual work starts and 

just aster it is done. Messages need to be exchanged at the beginning to speci

every node has to work on and at the end to collect the results.  

solution, which distributes work dynamically, allowing each process to fetch the next available 

piece of work (trapeze) as soon as it is done computing its current one.

  The solution used to test the functionality of the installed OpenMPI relies on the first 

approach. Each processor is handed a portion of all trapezes to compute. In fact, each processor 

computes the area of the trapeze, whose sequential number equals the number of the last computed 

one plus the number of processors. Fig.7
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function takes care of automatically collecting all intermediate results from the involve

and adding them. Furthermore the application calculates its exact execution time using the function 

MPI_Wtime(). It returns on the calling processor the elapsed wall

application calls this function two times 

more time, at the end of execution to calculate the difference in seconds.

Fig.7 Dividing work among four processors

 A key feature of the application is that it aims at dividing the problem area into as 

pieces as possible. For this a variable NUM_PIECES is defined to hold the static value 

2’147’483’647 (231).  This is the maximum value that 32

long int as defined by the macros

testing, larger integer numbers can be used, too. However, in a heterogeneous environment where 

processors are of different architecture (e.g. both 32bit and 64bit) using the MAX values for 

numerical types can lead to erroneous results.
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Fig.7 shows a situation when 4 processors have to split the work 

between them. The area of the equally colored trapezes is computed by the same processor. 

way of handling all pieces of work is much simpler than dividing the problem area into equal parts 
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It returns on the calling processor the elapsed wall-clock time in seconds. The 

application calls this function two times – once at the beginning to mark the starting time and one 
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A key feature of the application is that it aims at dividing the problem area into as 

pieces as possible. For this a variable NUM_PIECES is defined to hold the static value 

).  This is the maximum value that 32-bit machines have for the type 
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testing, larger integer numbers can be used, too. However, in a heterogeneous environment where 
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for(i = 0; i < NUM_PIECES; ++i){ 

 x_new = (long double)(i+1) * a_step; 

 x_old = i * a_step; 

 area = ((((long double)4/(1+(x_new*x_new))) + ((long 

double)4/(1+(x_old*x_old))))* a_step ) / 2; 

 sum+=area; 

} 

 compute-0-2 

Intel P4  

2.4Ghz 

compute-0-4 

Intel P4  

2.4Ghz 

compute-0-5 

Intel Celeron 

2.6Ghz 

gateway 

Intel Core 2 6300 

1.86Ghz 

1 284 284 252 170.76 

2 279 283 256 170.17 

3 274 281 258 170.52 

4 288 285 260 170.62 

5 289 285 264 170.83 

6 288 285 264 170.54 

AVG 283 284 258 170.58 

Table 5 Execution wall-clock timings (in seconds) for the sequential 
implementation of the Numerical Integration Test application 

 Paralyzing the sequential code of the test application according to the described approach 

and techniques requires little change (see Appendix A for the full code). The code below shows the 

main part of the MPI implementation, which actually is responsible for handling the computations. 

MPI initialization and timing measurements are deliberately omitted. 

step = 1.0 / NUM_PIECES; 

for(i = myid; i < NUM_PIECES; i+=numprocs){ 

 x_new = (long double)(i+1) * step; 

     x_old = i * step; 

     area = ((((long double)4/(1+(x_new*x_new))) + ((long 

double)4/(1+(x_old*x_old)))) * step ) / 2; 

     mysum+=area; 

     } 

MPI_Reduce(&mysum, &sum, 1, MPI_LONG_DOUBLE, MPI_SUM, 0, 

MPI_COMM_WORLD); 

 Then the testing application has to be compiled using the OpenMpi compiler program 

mpicc. Running the program requires using the command mpirun. The example below is executed 

from the home directory of <newuser>, which can be essentially any user different from root.  

# export PATH=/opt/openmpi/bin/:$PATH 

# mpicc TestSources/NumIntegrationTest.c –o\ 

NumIntegrationTest.exe 

# ssh-agent $SHELL 

# ssh-add 
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# mpirun –np 4 –machinefile machines /export/home/<newuser>/ 

where –np defines the number of processes that will be started on the machines. The machines file 

is a text file in the home directory of <newuser> that contains a list of the names of the nodes 

included in the computation process. For example, it can contain gateway compute-0-2 

compute-0-4 compute-0-5 where each of the names has to be in a new line. 

 Table 6 shows the execution timings in seconds for five separate runs. The application is 

implemented in the way that it measures its execution time in each process separately and then, just 

before exiting, reports on the total execution time. The different runs, described in Table 6, prove 

that the parallel implementation of our testing application is faster than the original sequential one. 

The average execution time from five runs shows that the application executes for 73.84 seconds. 

Compared to the timings of sequential one this reaches a speed-up of 3.9 times which is almost the 

perfect speed-up an application can achieve when distributed over 4 processors. The perfect speed-

up of a parallel application equals the number of processors it is distributed to.  

 Run 1 Run 2 Run 3 Run 4 Run 5 

gateway 

Intel Core 2 6300 1.86Ghz 

42.94 42.94 42.93 42.93 42.93 

compute-0-5 

Intel Celeron 2.6Ghz 

68.41 68.39 68.39 68.47 68.40 

compute-0-2 

Intel P4 2.4Ghz 

73.07 73.08 73.06 73.07 73.08 

compute-0-4 

Intel P4 2.4Ghz 

73.74 73.74 73.82 73.81 73.81 

Total execution time 73.799 73.7979 73.8572 73.8826 73.85 

Table 6 Execution wall-clock timings (in seconds) for the parallel implementation  
of the Numerical Integration Test application 

4.3 Condor 

 The software bundle of ROCKS 5.1 can include an installation of the Condor roll. Users 

have the possibility to add it when they choose to install ROCKS using an online repository. Then, 

Condor v7.0.5 is installed, configured and fully integrated into the software environment of the 

cluster. The user manual of Condor [Condor-Manual, 2009] defines it as being “a specialized batch 

system for managing compute-intensive jobs”. In other words, Condor is a tool that takes care of 

finding computing resources for executing a job in a distributed environment. Once a cluster starts 

having multiple users who submit jobs to it, a need arises for a tool that handles distribution of these 

jobs to the available machines. What is more, it is often the case that users have preferences 

regarding the machines that execute their jobs. For example, a certain job may require a fast 

processing unit while another one requires more available memory, and a third one requires a Linux 

operating system. In this case, the users of the cluster can start competing for available computing 

resources especially in a heterogeneous computing environment which incorporates computers with 
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different characteristics. A solution is a common batch system that distributes jobs to the nodes of 

the cluster taking into consideration both, the requirements of the job and the characteristics of the 

single machines. Condor is such system that can be used in a Beowulf-type cluster environment 

where all computing nodes are dedicated to executing tasks and fall under centralized management. 

However, Condor was designed to suit the needs of large-scale distributed environments like 

Networks of Workstations (NoWs) or the Grid. These resources no longer fall into the 

characteristics of a cluster as they are usually of non-dedicated type, meaning that the single 

machines are normally used for other purposes (e.g. desktop computers in a company). What is 

more, the resources can be distributed geographically and thus belong to different networks with 

different management policies. Condor implements a mechanism of job migration if the current 

machine becomes unavailable. That way, when the owner of certain computing resources claims 

them back, Condor reschedules the job to another machine and continues executing it there. Before 

all, however, Condor is a queuing system. It maintains a common job queue for all nodes. Jobs can 

be submitted by any node and they are defined by their owner (the user who submitted them), their 

requirements and their priority. Based on those characteristics Condor decides when and where to 

place the jobs for execution. The order in which jobs get executed is based either on their priority or 

simply on the FIFO property of the queue.  

 The concept of ClassAds [Condor-Manual, 2009] is central to understanding how the 

Condor’s scheduling mechanism works. The name comes from classified advertisements in a 

newspaper and aims to define the process of matching jobs to machines. Similarly to advertisements 

in a newspaper, where sellers advertise what they have to sell and buyers advertise specifics about 

what they want to purchase, the scheduling algorithm implemented by Condor works by matching 

resource advertisements issued by the machines (sellers) with job requirements issued by the users 

(buyers). This process involves constant exchanging of ClassAds between machines in the Condor 

pool of resources and its central point of administration – the Central Manager node. A pool of 

resources is formed by all machines that fall under the management of a Central Manager node. 

Each machine in the pool “advertises” its own ClassAds (machine ClassAds) by sending 

periodically a list of attributes to the Central Manager describing its own hardware and software 

profile. Attributes include CPU architecture and speed, available RAM memory, disk size, virtual 

memory size, current load average, name of the machine, operating system, etc. What is more, 

machine ClassAds are designed to facilitate scheduling of jobs on non-dedicated nodes by 

providing a possibility for the owners of the nodes to define under what conditions the resources 

can be used and what type of job can run on them. For example, machine ClassAds can be tuned to 

advertise that a machine is available only at night time or when there is no keyboard activity. 

Furthermore, it can specify the type of jobs a machine accepts like a user who submits them or a 

rank of a job. On the other hand, upon job submission, users can define a number of requirements 

and preferences for where the job should be executed. For example job ClassAds can include a 

requirement for a machine that has at least 1Gb of RAM memory or one that uses certain CPU 

architecture. The Central Manager collects all the machine ClassAds and according to the job 

ClassAds of the first non-running job in the job queue computes its best match. One can see a 

simple summary of the machine ClassAds by issuing condor_status from the command-line 

interface on the Central Manager node. Fig. 8 shows the output in our testing environment that has 

only 3 computing nodes. The command “condor_status –l <node_name>” gives a detailed list of 

the machine ClassAds advertised by a node. And the command “condor_q –l <jobID>” returns all 

ClassAds specific for a job. 
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Fig. 8 Output of condor_status command 

 Condor operates by maintaining a number of daemon programs running on the machines in 

a pool [Hoffman-Condor, 2003]. The condor_schedd is the daemon that allows jobs to be submitted 

from a machine. It sends job ClassAds to the Central Manager and usually runs on all computers in 

the pool. The condor_startd is the daemon that makes a node an execute machine as it allows jobs 

to be started on it. It sends periodically machine ClassAds to the Central Manager and 

communicates with the scheduler program running on it. Any node in the pool can be an execute 

machine, even the Central Manager. Furthermore, the Central Manager is responsible for collecting 

all job and machine ClassAds and for matching them in the proper way. For this several daemons 

run only on it. The condor_collector is part of the Central Manager and is responsible for collecting 

all advertisements from both submit and execute machines while the condor_negotiator performs 

all match-making between jobs and resources. The last communicates with both the condor_schedd 

and the condor_startd sending requests to them for ClassAds. For every job submitted from a 

machine a condor_shadow daemon is started locally. It watches over the job providing it with 

access to the local resources (e.g. files) and handling system calls. All daemons running in a Condor 

pool are controlled by a single top-level program – the condor_master. It runs constantly and 

ensures that all other daemons are running correctly. If they hang or crash, it restarts them. 

4.3.1 Jobs and Condor 

 Condor is designed to ease job management in a distributed environment by giving users the 

freedom to submit jobs of various sorts. In most cases executables do not need to be changed as 

long as the local software environment is able to run them. Code written in C, C++, FORTRAN, 

JAVA, or using MPI does not need further recompilation and can be submitted directly to the 

system. For this Condor implements a mechanism of supporting numerous run-time environments 

referred to as universes. Each universe aims at tuning the environment for executing specific code.  

For instance, JAVA needs a virtual machine to be started and MPI might require some environment 

variables to be adjusted.  Condor v7.0.5 supports several universes for user jobs: Standard, Vanilla, 

MPI, Grid, Java, Scheduler, Local, Parallel, VM. Of course, each universe is used according to the 

specifics of a job but the most commonly used ones are the Standard and Vanilla. In our testing 

environment the Parallel universe was also tested. Although Condor provides certain freedom to the 

kind of jobs that it can schedule, it also introduces some restrictions to how jobs should operate. 

Jobs must be able to run in background. After scheduling a job to a certain machine Condor leaves 

it unattended and running in the background. This way jobs that require interactive input and output 

cannot be executed correctly. Hence, it is recommended that jobs are implemented in a way that 
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they read all their input from a file. In a case where only a few simple arguments are needed Condor 

provides a way of redirecting the standard input (stdin) to a file where all necessary keystrokes can 

be coded. It also takes care automatically of redirecting the console output (stdout and stderr) to 

files on the submission machine.   

 The Standard and Vanilla universes are the two most commonly used execution 

environments.  However, they can be used for submitting sequential programs only. While the 

Standard universe provides mechanisms for job migration and remote system calls, the Vanilla 

universe is used for more simple applications that do not require much I/O operations [Condor-

Manual, 2009]. It is particularly useful for execution of shell scripts. Test runs in our testing 

environment showed these universes to be equivalent when used in a cluster environment where all 

nodes are dedicated to execution. Furthermore, the Grid universe provides an interface for 

submitting jobs intended for remote management systems. The Java universe can run a job on any 

machine that has a JVM running, regardless of its location or owner. Additionally, the Scheduler 

and Local universes schedule jobs to be executed directly on the submitting node. And, the Parallel 

universe takes care of executing parallel code written in MPI. Finally, the VM universe facilitates 

the execution of jobs that are not a single executable but are a disk image and require a virtual 

machine to be executed (e.g. VMware and Xen). 

 In more detail the Standard universe is intended to provide support of execution of 

sequential programs in a non-dedicated environment where each machine has its owner and is used 

for performing a specific task. Compared to the Vanilla universe, it supports the mechanism of job 

migration which ensures that a job reaches its completion point even if the initial machine, which it 

started executing on, fails. Condor implements this by a technique called check-pointing. A 

checkpoint image saves the current state of a program by saving its Program Counter (PC) and the 

memory block it occupies. This way a job can be moved around the different available machines 

until it finally completes. Check-pointing takes place automatically at regular intervals but it can be 

also forced by the commands condor_checkpoint and condor_vacate. Checkpoint images get 

transferred back to the Central Manager. Depending on the particular application they can be rather 

big in size. That is why it is often the case that in a large-scale environment a checkpoint server 

stores all checkpoints for the pool. Additionally, the Standard universe also implements a 

mechanism of remote-system calls. This mechanism provides uniform access to the resources of the 

submitting machine from any other node in the pool. The job perceives that it is being executed on 

its home machine because remote system calls transfer each request for local resources to the 

condor_shadow running for that job on the submit machine. The daemon program executes the 

request and sends back the result to the execute machine. For instance a job requires a file stored on 

the submitting machine to be opened and read. Then the condor_shadow program will find this file, 

read it and will send the contents to the computer executing the job. In this way the Standard 

universe handles file I/O operations easily and without the need of additional file system like for 

example the NSF. In contrast, the Vanilla universe does not support remote system calls and thus 

needs to use either a shared file system or to transfer the input and the output files between the 

submitting and the executing machine. For this Condor implements a mechanism for transferring 

files on behalf of a user.  

 On the other hand the Standard universe has some major drawbacks [Condor-Manual, 

2009]. First of all, an executable can be run under this environment only after it is re-linked to use 

the Condor libraries. This is the only way that support for check-pointing and remote system calls 
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can be added to the application. Nevertheless, re-linking is rather simple using the condor_compile 

command. Furthermore, standard jobs are quite limited at certain system level as no multi-process 

jobs are allowed (system calls such as fork(), exec(), and system()) together with no  inter-process 

communication, no sending and receiving of thr signals SIGUSR2 and SIGTSTP, no alarms, timers, 

and sleeping, etc. [Condor-Manual, 2009]. In comparison, the Vanilla universe has no restrictions 

and what is more, does not require any changes to an executable. 

4.3.2 Submitting a Job 

 This section describes how one can submit jobs to Condor. The examples and all tests are 

run under our ROCKS cluster environment. ROCKS installs and configures Condor in the way that 

the frontend node is the Central Manager and also is the only entry point for job submission in the 

cluster. All computing nodes (in our case compute-0-2, compute-0-4, compute-0-5) form the pool of 

resources. In addition, ROCKS installs a user account named condor with a home directory 

/export/home/condor. One can either use this account or any other to submit jobs.  

 Jobs are submitted to the system with the command condor_submit [Condor-Manual, 2009]. 

It is a complex command but in the most common case it takes only one parameter – a submit-

description file. This file is a simple text file that describes the characteristics of a job. Usually it 

consists of several lines that control the details of job submission like what executable to run, the 

name of the files used for input and output, simple list of arguments, job requirements. It is crucial 

to be noted here that job ClassAds are specified in the submit-description file. The following 

examples show how our sequential test application NumIntegrationTest is submitted to the system 

starting with the Vanilla universe. A very simple submission file has the following contents: 

#Example 1 

Executable  = NumIntegrationTest.exe 

Universe  = vanilla 

Output  = NumIntegrationTest.out 

Error  = NumIntegrationTest.err 

Log   = NumIntegrationTest.log 

Queue 

 The above contents are saved in a file ~/NumIntegrationTest.submit. They specify the name 

of the binary (NumIntegrationTest.exe), the type of the runtime environment (vanilla) and the 

names of the files that will hold the contents of the standard output. If the universe command is 

omitted then Condor will use the Standard universe by default. Condor automatically redirects the 

stdin, stdout, and stderr of any job to files. These files are usually stored in the home directory of 

the submitting user. If no names are defined for any of the commands input, output, or 

error (like in this example there is no name for the input) the stdin, stdout, and stderr will refer 

to /dev/null. A log file is also generated that holds the information about what happened to the job 

during its lifecycle inside Condor. It is very useful for debugging and troubleshooting. Furthermore, 

this simple example does not define any requirements for the platform the job should be executed 

on. In this case, Condor assumes that the job has to be executed on a machine with the same 

architecture and operating system as the submitting machine.  
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 The next example shows a slightly modified subscription file that is used for instantiating 10 

different jobs that execute the same binary NumIntegrationTest.exe.  

#Example 2 

Executable  = NumIntegrationTest.exe 

Universe  = vanilla 

Output  = out.$(Process).NumIntegrationTest 

Error  = err.$(Process).NumIntegrationTest 

Log   = NumIntegrationTest.log 

Initialdir = tests 

Queue 10 

 This example aims at demonstrating how flexible the syntax of the submit-description file 

can be. First of all, starting from the last line, it places 10 jobs in the queue, all of them executing 

the same task. To differentiate between output of the different jobs the files are named using the 

sequential number of each job ($(Process) is replaced with a number) resulting in creating 10 

out files (out.0.NumIntegrationTest, out.1.NumIntegrationTest,…) and 10 err files. This time, 

however files are placed in a separate directory /export/home/<user>/test defined by the command 

Initialdir. One can notice that the log output remains directed to a single file. This way 

monitoring of job status is eased because the information about all jobs is printed in one place. 

What is more, troubleshooting is also eased in this way. Finally, the job is submitted using the 

condor_submit command 

# condor_submit NumIntegrationTest.submit 

Submitting job(s)...  

Logging submit evet(s)... 

10 job(s) submitted to cluster 35. 

 Once a job is submitted to the system, there are several ways to monitor its execution 

lifecycle. The command condor_q is the starting point of every monitoring process over a job 

[Condor-Manual, 2009]. It displays information about jobs in the Condor job queue. Issued without 

any options or arguments, it lists all jobs that are currently in the queue together with their status, 

current runtime, priority, owner, and ID. An “R” in the status column means the job is currently 

running. An “I” stands for idle - the job is not running right now, because it is waiting for a machine 

to become available. The status “H” is the hold state. In the hold state, the job will not be scheduled 

to run until it is released. condor_q is useful as a starting point when performing troubleshooting 

on a job. One can immediately notice when a job remains in the idle state even when there are 

available resources in the cluster. Fig.9 shows a screen shot taken on our testing environment after 

submitting the job in the above example. 
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Fig. 9 Output of condor_q command 

 Another very useful approach to monitoring a job’s status is through the user log file. If the 

submit description script of the job contains the command “log”, a log file is generated for a job or 

a set of jobs. It contains a detailed list of all events that take place during the execution lifecycle of 

a job. What is more it can be used for real time monitoring through the command “tail -f” as the file 

is generated as soon as the job is submitted. The file contents follow a certain formatting model 

when describing the events [Condor-Manual, 2009]. Four fields are always present in the 

description. The first one is a 3-digit numeric value that describes the event type. Condor defines 28 

values that describe different types of events. The most basic ones that are present in every log file 

are 000 indicating that a job was submitted; 001 - a job started executing; and 005 - job terminated. 

The second field identifies the job uniquely by specifying in parenthesis the ClassAd job attributes 

of ClusterId value, ProcId value, and the MPI-specific rank (if executed in the MPI universe, 

otherwise zeros). The third field marks the time the event took place and the fourth field contains a 

brief description of the event. The log file is particularly useful for determining immediately on 

which node a job gets executed. This can be achieved using the condor_status command as well. 

One can list the names of all machines that run a job submitted from a certain user by issuing  

# condor_status -constraint 'RemoteUser="<name_of_user>" 

What is more, upon job completion the description of the termination event contains exit code and 

status together with statistical data like total time of execution, bytes send and received. 

Furthermore, the contents of the log-file indicate when a job is suspended or resumed, when the 

check-point image is captured or updated and when errors occur because of a bad executable.  

 When a job is submitted to the system but it remains in the idle state even though resources 

are available for executing it, Condor provides a mechanism of defining automatically what the 

cause might be. The command condor_q issued with the options –analyze and –better_analyze tries 

to determine why a job is not running by performing analysis of all machines in the pool. The “-

analyze” option tries to determine how many resources are available for executing the job. “The 

reasons may vary among failed constraints, insufficient priority, resource owner preferences and 

prevention of preemption by the PREEMPTION_REQUIREMENTS expression” [Condor-Manual, 

2009]. The option “-better_analyze” performs a more time consuming analysis, which is also more 

extensive and finds how many resources are available for a job. When it comes to analyzing jobs in 

large-scale networks of machines, the Condor manual recommends issuing “-better_analyze” for 
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only one job as it consumes significantly more resources. The screenshot in Fig. 10 shows the 

output of “condor_q -better_analyze” in a moment when the job queue has six jobs (37.000 – 

37.005) and the first three are running while the rest are in idle state waiting for available resources 

(our testing environment consists of only three machines). 

 

Fig.10 Output of conor_q –better_analyze 

 A final option of tracking the progress of a job is to use the built-in mechanism of sending 

notifications to users upon job completion.  One can set notifications to be send to the submitting 

users in the form of an e-mail message. The command “notification = < Always | Complete | Error | 

Never >” can be added to the submit-description file. It sets the system to notify users when certain 

events take place. If the argument is “Always” e-mail messages will be send whenever the job 

produces a checkpoint, as well as when the job completes. If defined by “Error” users are notified 

only when a job exits abnormally. The default e-mail address used is job-owner@submit-

machine-name. It can be configured using the command “notify_user = <email-

address>” that has to be defined also in the description file. The message itself contains the job’s 

exit status together with a lot of statistical data like timings of running, check-point status, I/O 

statistics.  

  A job can be submitted to the Standard universe using the same submit-description file as in 

the case of using the Vanilla universe. The only difference is that the key word “standard” has to be 

specified. However, the binary file used to initiate a job must be re-linked with the libraries of 

Condor. This can be done using the command condor_compile [Condor-Manual, 2009].  It is 

used in a similar way to compiling source code files using a conventional compiler. If the program 

is fully-installed on the system it allows users to enter any command or program, including make or 

shell-script programs. Otherwise, users are restricted to use only one of the following programs - 

cc (the system C compiler), acc (ANSI C compiler, on Sun systems), c89 (POSIX compliant C 

compiler, on some systems), CC (the system C++ compiler), f77 (the system FORTRAN 

compiler), gcc (the GNU C compiler), g++ (the GNU C++ compiler), g77 (the GNU FORTRAN 

compiler), ld (the system linker), f90 (the system FORTRAN 90 compiler). Because our testing 

application uses the programming language C it is compiled like 

# gcc –c NumIntegrationTest.c –o NumIntegrationTest.obj 

# condor_compile gcc NumIntegrationTest.obj –o   \ 

NumIntegrationTest.exe 
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 Condor facilitates utilization of heterogeneous parallel environments with the 

condor_submit commands requirements and rank. They can be specified in the submit-

description file and are a powerful tool for defining job ClassAds. Users can set numerous 

preferences regarding the platform that is going to run their applications. The requirements 

command defines the job requirements. Using these, Condor filters the list of available resources 

and creates a set of machines that match these requirements. A job can be run on any one of them. 

The list can be sorted additionally using the ranking criteria defined by the rank command. That 

way, a perfect match can be found for a job. In the case when a heterogeneous environment is used 

to execute jobs, users can help the system to place their executable on the most appropriate 

machine. The requirements command can resolve expressions that evaluate to being true or 

false (boolean expressions), which are written in a similar way to how they would be written using 

the programming language C. These expressions can define the processor architecture, available 

physical memory, operating system, etc. An example is 

Requirements = Memory>=1000 && ARCH==”INTEL” 

which defines a requirement for machines to have at least 1Gb of physical memory and their 

processors to be of x86 architecture. The tags “Memory” and “ARCH” are classID tags. They are 

case insensitive, while the values are case sensitive. All available classID tags can be displayed 

using the “condor_status –l” command issued from the command-line interface. What is 

more, before constructing a requirement, one can check its validity by displaying all machines in 

the pool which fulfill it. This can be achieved by issuing “condor_status – constraint 

<Boolean expression>”. Furthermore, when users specify ranking scheme in the submit-

description file, Condor asserts each machine according to that rank value. The one with the highest 

value is matched to the job. For instance,  

Rank = memory 

causes a job to be matched to the machine with the highest amount of physical memory available. 

Another example is  

Rank = kflops  

which causes the machines with most powerful floating point processor to be chosen [Condor-

Manual, 2009]. This example shows how ranking can lead to scheduling a job to the wrong 

machine. While all commodity machines today have a processing unit that is dedicated to managing 

floating-point operations, not all of them have the kflops attribute defined. In a case, when there are 

machines in the pool that do not have this attribute set, the ranking mechanism will only assert the 

ones that have it defined. That way a machine with the fastest floating-point capabilities could be 

left out. To prevent this from happening, users have to check the list of machines against the 

criteria. This can be done using the command “condor_status –constraint <boolean 

expression>”.   

4.3.3 Modifying a Job 

 Condor is a system which makes sure that heavy computational tasks get completed. 

Sometimes, however, a running job may start producing erroneous results or it may take too long 

time to complete. In these cases (and many others) administrators of the parallel environment may 

have to alter a job’s behavior in order to free resources for other applications. Condor provides 

some commands that can be used to cancel a job, pause it, resume it or reschedule it.  
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 A submitted job can be cancelled and removed from the queue using the command 

condor_rm [Condor-Manual, 2009]. It takes as an argument a job Id to stop a certain job; a 

username to stop all jobs started from this user. A very useful option of the command is the “-

constraint”, which removes all jobs that match the job ClassAd expression constraint. For example, 

the following line removes all jobs of the user named sgeorgiev that are not currently running.  

# condor_rm sgeorgiev -constraint Activity!=\"Busy\" 

 Jobs can be made to free the occupied computing resources and return in the queue. Condor 

provides users with the command condor_hold that puts a job in the hold state [Condor-Manual, 

2009]. Jobs remain in the queue waiting to be resumed by a condor_relese command. When 

one puts a job in the hold state, this causes a hard kill signal to be sent to the machine executing the 

job. For a Standard universe job, this means that the job is stopped without allowing it to update its 

check-point image. When resumed it continues from the last checkpoint image. In the case when the 

job was running under the Vanilla universe, it starts simply starts over. Both commands take as an 

argument a job Id or a name of a user. If no user name is specified both commands assume, by 

default, that they have to manipulate only the jobs of the user that issued the command. In the 

following example all jobs of the user sgeorgiev are put on hold together with the ones that are not 

currently running. 

# condor_hold sgeorgiev -constraint "JobStatus!=2" 

4.4 Sun Grid Engine and Torque/Maui 

 This section provides a basic overview of how one can use resource managers in the 

production environment created with the installation of ROCKS. Series of examples aim at 

providing a basic understanding of how pieces of work (jobs) can be submitted to the cluster, how 

they can be monitored and how they can be modified. 

 Upon installation ROCKS 5.1 includes into the software environment of the cluster a 

resource management tool - the Sun Grid Engine (SGE) v6.1u5. It gets fully configured and after 

cluster deployment it is ready to be used without further configuration. ROCKS provides a 

possibility for installing a second popular tool for resource management. The roll with Torque/Maui 

is available for download on the main page of ROCKS [ROCKS, 2009]. It needs to be manually 

installed (instructions are available on [ROCKS, 2009]) and adds to the environment the resource 

manager Torque v2.3.6 together with the scheduler Maui v3.2.6. The two resource managers 

operate in a way similar to the way the batch system Condor operates as they both implement a 

mechanism of matching pending workload to the available resources of the cluster environment. It 

is worth mentioning here that a resource manager is different from a scheduler although they both 

manage and distribute jobs. Resource managers usually have a scheduler integrated with them. In 

the case of Torque it has a simple built-in scheduler pbs_sched, but its design aims at providing a 

common interface that facilitates utilization of different schedulers (like Maui in our case). The 

SGE also has a scheduler included in its implementation, which allows jobs to be scheduled over 

time (when to start and how long to run). A scheduler program implements a way of finding a 

proper order for executing jobs that corresponds to their priority and timing preferences and is in 

accordance with the availabe resources. On the other hand a resource manager focuses on providing 

a low-level functionality of managing job queues, starting and stopping jobs, monitoring their 

status. A scheduler alone cannot control jobs. Furthermore, another similarity between the two 
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resource management tools is that they both inherit from the outdated resource manager and 

scheduler OpenPBS (Portable Batch system). Torque is a direct derivative of OpenPBS and still 

implements an architecture that consists of a Master Node and Compute Nodes via the daemon 

programs pbs_server and pbs_mom. The SGE, on the other hand, builds a different environment 

using a Qmaster daemon program that resides on one node and a Qmaster shadow daemon that 

handles overhead load and resides on some of the execution nodes.  What is important, in this case 

is that both Torque and SGE use the same technique of job submission (using a shell script) and 

utilize the set of same commands for job handling (there are small differences). 

 The Torque/Maui roll needs to be manually added to the software environment created by 

ROCKS 5.1. Installation is simple and includes several commands [ROCKS, 2009]. It starts with 

installing the roll on the frontend and then the image of the other nodes in the cluster needs to be 

updated. This requires all nodes to be reinstalled. Our experience showed that all this takes around 

30 min. After downloading the installation roll (10MB) on the frontend the following commands 

install it and then renew the image of all compute nodes. Finally, installation can be verified by the 

command “pbsnodes –a”, which  lists all known to the system nodes together with their 

attributes (state and hardware configuration). 

# rocks add roll /path/to/torque/roll 

# rocks enable roll torque 

# cd /export/home/install 

# rocks create distro 

# kroll torque | bash 

# reboot 

# tentakel /boot/kickstart/cluster-kickstart 

 Both SGE and Torque manage submitted jobs by using a queue. A queue determines where 

and how jobs are executed. Different scheduling policies (e.g. job priority, user priority, job 

requirements, etc.) determine which of all submitted jobs will be matched to available resources 

first.  Torque implements a mechanism of supporting different queues with different properties. 

Usually there is a single queue that spans on all hosts and all submitted jobs are placed in it. Using 

the command qmgr [Torque-Manual, 2009] users can create additional queues that for example 

allow only certain users to submit jobs to them, or match jobs only to a subset of the execution 

hosts. SGE, on the other hand, implements a different mechanism for achieving this [SGE-Guide, 

2008]. A queue is as an abstraction that aggregates a set of job slots on one or more execution hosts. 

Job slots are defined as the capacity of a node for executing a job. Normally, the system assigns a 

slot to each available processor or core on an execution node. That way a queue determines the 

distribution of jobs to available slots. The SGE supports creation of different queues that can be 

configured to utilize, for instance, only certain job slots or to be used only by certain users (Fig. 11). 

The dnetc.q is configured to use only one slot per execution host. After installation of SGE, a 

default queue is automatically defined (called all.q) that spans on all hosts in the cluster and can 

use all available job slots. By default, all jobs, submitted by all users get assigned to it. Being an 

abstraction, a queue in SGE operates by managing the queue instances that it consists of. A queue 

instance is defined by the execution host it is associated with. It manages its free slots. The name of 

a queue instance is formed by the name of the queue it belongs to and the name of the host it 

describes. In Fig.11 there are seven queue instances: all.q@paikea, dnetc.q@paikea, 
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#!/bin/sh 

#$ -S /bin/sh 

#$ -cwd 

#$ -V 

#$ -N NumInt 

$HOME/NumIntegrationTest.exe  

 This script file contains only options for the qsub command together with the name of the 

executable that is going to initiate a new job. The SGE ignores the first line of the script and it uses 

the queue’s default shell csh for executing jobs. That is why users can specify the preferred shell 

using the “-S” option. In the example it defines usage of the sh shell. Following the options list, the 

“-cwd” defines that the job is executed in the current working directory it was submitted from. If 

this option is not specified the job will be executed in the home directory of the submitting user. 

Specifying a separate working directory is important if several runs of the same job are instantiated 

and all of them require different input files. As with Condor, SGE and Torque automatically 

redirects input and output (stdin, stdout, stderr) to files. The names of these files can be specified 

additionally by using the options “-i” for an input file, “-o” for output file, and “-e” for a file that 

contains error messages. If these options are not defined, like in the example above, input is 

redirected to /dev/null and output creates two files. In our example they will be placed in the 

submitting directory because “-cwd” is specified. The names of the output files are formed like 

<job_name>.o<jobID> and <job_name>.e<jobID> (e.g. NumInt.o3, NumInt.e.3). Additionally SGE 

provides another option “-j y” for manipulation of the stdout and stderr. It causes the output of 

the two streams to be merged into a single file for easier manipulation and readability. The next 

option “-V” passes all environment variables of the submitting shell to the executing shell (“-v”, 

lower case, passes only a certain environment variable). Finally, “-N” defines the name of the job. 

 SGE provides the possibility to define job requirements upon job submission. The 

requirements about the platform of the execution host can determine the speed at which an 

application is executed in a heterogeneous environment. Users have a notion of how much 

processing power their application needs or how much memory it consumes. That is why it is 

recommended that hardware requirements are specified when a job is submitted as the built-in 

scheduler has no other way of finding which the best match for a job is.  An extra option “-l” to the 

qsub command defines a subset of machines which can execute a particular job. It can be used to 

specify resource requirements for the remote host like free physical memory (mem_free), CPU 

architecture (arch), or a hostname. The example below shows two requests – one for nodes that 

have 1Gb of free physical memory and CPUs of x86 architecture and another specifying a concrete 

host. Users can check the available options for resource requirements using the qhost command. 

Issued no arguments, it shows the hardware configuration of all nodes in the cluster (Fig. 12). It lists 

all nodes together with their CPU architecture, number of CPUs, memory capacity, current load, 

and used memory. Issued with the option “-l attr=val” it generates a filleted list of all nodes that 

match the requirement.  

#$ –l mem_free=1G, arch= lx26_x86 

#$ –l hostname=compute-0-2 
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Fig.12 qhost output 

After the script file is created the test job NumInt can be submitted using qsub.   

# qsub SubmitScript.sh 

 SGE allows users to manipulate the system using an X-Windowing environment. It is an 

aggregation of the command-line tools, which make up the SGE, into one graphical environment. 

The interface can be started by issuing the command qmon. A small window appears on the screen 

at start-up (Fig.13) that contains a number of icon buttons, each of which initiates a dialogue 

window for fulfilling one of the major administrative and user tasks on the environment. These 

dialogues are Job Control, Queue Control, Job Submit, Complex Config, Host Config, Cluster 

Config, Scheduler Config, Calendar Config, User Config, PE Config, Checkpoint Config, Ticket 

Conf, Project Conf, Browser, and Exit. The first button (top, left) starts a Job Control dialog 

window which has three tabs each containing a table with a list of pending jobs, running jobs, and 

finished jobs. Here users can suspend and resume jobs, reschedule, delete them or change their 

priority. The second button starts a job submission dialog window (Fig.14). One can easily notice 

that all fields match the options that can be specified in a subscription file. Executables, still, have 

to be specified inside a script file. The name of the job can be specified together with a list of 

arguments, working directory, shell to be used and name of I/O files. 

 

 

Fig. 13 SGE’s graphical interface Main Control 
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Fig. 14 Graphical interface for job submission 

 Once a job is submitted to the system, it is placed into a queue. In our testing environment 

the SGE uses its default configuration. Hence, no additional queues are defined in the system and it 

uses the global one (all.q). Users can check the status of the submitted jobs using the command 

qstat. Torque uses the same command. Fig.15 shows a screenshot taken from our testing 

environment after submitting the job in the above example. Without specifying any options the 

command returns a list of all jobs in the default queue. Jobs are described by their ID, priority, 

name, state, submission time, allocated queue instance and number of occupied slots. From the 

output one can determine what state the job is in (waiting, running, suspended, error).  If it is in 

state Rr (running), like in Fig.4, one can also determine on which node it has been assigned to for 

execution (in this case node compute-0-5). If the job does not appear in the queue statistics 

immediately after submission one must to check the contents of the automatically generated error-

report file. 

 

Fig.15 Output of qstat for a serial job 

 Furthermore, the qstat command proves to be quite useful for monitoring the queues in 

the system and the jobs submitted to them.  

• qstat –j <jobname_or_ID> prints various information about a job. If the job is in 

the error state, the error reason is displayed andif it is in the running state it shows 

information on resource utilization. 
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• qstat –f specifies a “full” format display of information. Summary information of all 

available queues in the system is displayed. 

• qstat –u <Username> displays information about all jobs and queues the specified 

user has access to. It is useful for troubleshooting as it lists the contents of some 

environment variables, specific for SGE. They contain paths to binaries and libraries. 

4.4.2 Modifying a Job 

 Jobs submitted to a cluster environment might be such that they require lots of time to 

complete or they do not schedule the way they are expected to. In cases like this, cluster 

administrators might have to suspend a slow job or even stop it permanently. A job can be canceled 

using the command qdel (qdel <jobname_or_ID> | -u <username>).  If the job is 

already in the running the system will refuse to stop it with a warning message. To force stopping 

the job one can use the option “-f”. If a user is specified as an argument, then all jobs submitted by 

him will be cancelled. Torque uses qdel to cancel jobs, too.  

 Jobs can also be put into a suspended mode. In this state they free the occupied resources 

and return to the queue waiting to be resumed. Modifying a job is achieved using the qmod 

command. It can be used to suspend/resume jobs, to disable/enable them, reschedule them, or clear 

their error states. When a job restarts after being in suspended mode or is rescheduled its status is 

already “Rr”. 

• qmod –sj <jobname_or_ID> suspends a job. 

• qmod –usj <jobname_or_ID> resumes a job. 

• qmod –rj <jobname_or_ID> reschedules a job. 

• qmod –f –rj <jobname_or_ID> force reschedules a job. 

4.4.3 Troubleshooting 

 After a job completes its execution, all output is contained in the automatically-generated 

output files (NumInt.e.63 and NumInt.o.63). If an error occurs at some point during execution it is 

listed in the error output file. That is why this should be the first thing to be checked when a job 

finishes executing. Additionally, users can see statistics about the execution process by issuing from 

the command-line qacct –j <jobID>. The command provides an access to statistical data 

regarding all executed jobs. It produces summary information for wall-clock time, CPU-time, and 

system time together with exit status, and node that handled execution. Its options allow users to 

search the data for entries that match a specific time period, user, job, hostname, etc. When a job is 

rescheduled to use another machine or it simply occupies several machines during execution time, 

summary is printed for each machine involved. In the case of Torque, the command tracejob 

<jobID|name> provides summary information of the execution process. Example output is 

shown in Fig. 16. The command pints a job’s exit status, execution time on the CPU, wall time, 

used physical memory. 

 
Fig.16 Output of tracejob 
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 Finally, if a job does not run at all or generates errors, SGE provides a way of answering 

why this might be happening. The command qstat –explain c –j <jobID> provides a 

reasonable message.  An example is “queue instance all.q@compute-0-4.local dropped because it is 

temporary unavailable”, which indicates that compute-0-4 might be offline.  

4.4.4 Submitting an MPI Job 

 The SGE introduces a way of submitting parallel jobs to the cluster as well. What is more, 

OpenMPI also implements support for the grid engine starting from version 1.2.0. This means that 

when an mpirun command is executed in an SGE job, it will automatically use the SGE 

mechanisms to launch and kill processes [OpenMPI, 2009]. In addition, it uses the SGE 

configuration of the environment and its knowledge about the nodes in it. An mpirun command no 

longer needs specifying a machine file containig a list of nodes to which workload must be 

distributed. SGE allocation is done at a higher level and it generates its own machine-file which is 

usually placed in $TMPDIR/machines. 

 SGE provides two different ways of submitting parallel jobs to the cluster. The first way is 

more suitable for executing small tasks on all nodes in the cluster. It uses the SGE command qrsh, 

which operates in a similar way to the normal rsh command with the difference that no hostname 

is passed as an argument. Instead, an executable or a shell script is run on every node of the cluster 

at the same time. The results are directed back to the submitter’s terminal. qrsh operates 

differently from qsub as it does not place the job into the queue. If the job cannot be run 

immediately, it is dropped. Additionally, the input and output streams are not redirected 

automatically to files but users have to specify this explicitly using the shell redirect operators. 

Nevertheless, the following example runs our MPI test application on the cluster. 

# qrsh –V –pe orte 3 mpirun –np 3 \ 

$HOME/MpiNumIntegrationTest.exe  

 The second option for running an MPI parallel application is using the command qsub and 

a shell script. The script used to run our test application is the following 

#!/bin/sh 

#$ -S /bin/sh 

#$ -cwd 

#$ -j y 

#$ -V 

#$ -N MpiTest 

#$ -pe orte 3 

MPI_DIR = /opt/openmpi/bin 

$MPI_DIR/mpirun –np $NSLOTS --mca pls_gridengine_verbose 1 

$HOME/MpiNumIntegrationTest.exe  

where the difference to the example submitting a serial job, is in the options “-j y” and “-pe orte 3”. 

The first one causes the output of the error stream to be merged with the output of the standard 

output stream into one file. The second option holds, actually, the main difference to the first 

example. This option specifies a parallel programming environment that handles the execution of an 

MPI application with a number of processes in it. The current configuration has three predefined 

parallel environments (PEs): mpi, mpich and orte. A list of the available PEs can be displayed using 

the command “qconf -spl”. What is more, details about what parameters each parallel 
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environment contains can be displayed by issuing “qconf –sp <orte|mpi|mpich>” (see 

Fig. 17). All of them have defined 9999 slots and differ in the configuration of the parameters 

start_proc_args and stop_proc_args. For orte they both contain /bin/true/ and for mpi 

they contain /opt/gridengine/mpi/startmpi.sh $pe_hostfile and ~/stopmpi.sh. One can add a new 

parallel environment using the command qconf –ap <pe-name>. However, for doing this and 

modifying the SGE environment in general one must be a manager of the environment. Upon initial 

configuration ROCKS sets the root user to be the manager. SGE usually does not grant 

administrator privileges over the system even to the root user – a different user is normally defined 

to be an SGE manager. Nevertheless, in the ROCKS environment the command works by opening a 

“Vi” text editor which is intended to create a help environment for configuring a new PE. All 

options are already defined and filled in with default values. Users have to save the file when they 

are done with the configuration. Finally, a newly created PE can be removed with the command 

qconf –dp <pe-name> and modified with the qconf –mp <pe-name>. 

 

Fig. 17 Parallel environment configuration using the SGE GUI 

 After the script file is created the test job MpiTest can be submitted using qsub.  The job 

is immediately put into the queue and then it is executed occupying 3 slots (all available compute 

nodes). Fig. 18 shows the contents of the queue all.q.   

# qsub SubmitScript.sh 

 

Fig. 18 Output of qstat for a parallel job 
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 Our experience showed that using the SGE’s mechanisms for submitting parallel jobs puts 

certain constraints to the execution process compared to using the conventional OpenMPI interface. 

The grid engine operates in a way that on each execution host an execution daemon is installed, that 

takes care of handling the particularities around a local job execution process. It is also responsible 

for determining the capacity of the machine to run jobs by defining available slots for it. The SGE 

does not limit the number of job slots that the daemon can offer, but normally it associates a job slot 

to each processor or core available on the machine. This way, the resource pool consists of available 

slots that can be matched to a job. When an MPI job is submitted to the system the SGE tries to 

create an optimal execution environment by initiating a number of processes that matches the 

currently available slots in the system. If there are machines with quad core (8 cores) processors, the 

SGE will create 8 different processes on each of those machines. In our case, however, all machines 

in the cluster consist of single core processors. That is why, when an MPI job is submitted to the 

cluster it can use only a number of processes that matches the number of processors (3 in our case). 

When a larger number of processes are specified the SGE replies with an error message that slots 

are not available and refuses to run the job. The job remains in the queue in an idle state. Thus, in an 

environment of four machines, like the one used for testing, the SGE allows only 3 of them to be 

used effectively. The frontend is recognized as manager-submit node and does not contribute to the 

number of available slots with its processor(s). In contrast, the conventional OpenMPI interface has 

no such restriction. It allows users to create any number of processes as long as the hardware is able 

to support them. What is more, the machines used for executions are defined only by an installation 

the OpenMPI and the frontend can be also included. For instance, the same application can be 

submitted for execution using 200 processes through the OpenMPI interface. This, of course, does 

not lead to any improvement of performance as the hardware capabilities of the testing cluster are 

rather limited. When using it, however, one has to keep track manually of the available processors 

in the resource pool and only then to specify the optimal number of processes to be created. 

4.5 Summary 

 ROCKS 5.1 provides a set of tools that help users to manage the hardware and software 

resources of a cluster and properly distribute the workload in a way that best matches them. These 

tools are reviewed in the form of examples that aim to describe what can be achieved with them and 

how they can be used. A basic overview of the main features and the ideas behind their functionality 

show that the tools Ganglia, OpenMPI, Condor, Sun Grid Engine, Torque/Maui are more than 

useful in a parallel production environment.  

 The chapter starts with a section dedicated on the real-time monitoring tool Ganglia. It is a 

simple but powerful tool for monitoring the resources of high-performance clusters or federation of 

clusters (clusters of clusters). The tool produces a vast amount of statistical data regarding resource 

utilization at any point in time. What is more, it saves this information in a database so that analysis 

can be performed on the performance of the cluster upon execution of a certain application. Cluster 

administrators can benefit greatly from using Ganglia as it provides a general overview of the whole 

environment in the form of easy-to-read images. This makes Ganglia usable for both 

troubleshooting and monitoring the available resources. 

 Furthermore, the chapter continues with presenting an example of a parallel application that 

aims to show how useful MPI still is for achieving parallelism in applications. MPI provides a 

strong programming interface for low-level control of processes spawned on different machines but 

working all together on a single application. It also provides an irreplaceable mechanism for 
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implementing different parallel algorithms and techniques in order to increase the performance of 

an application. Utilizing it, however, requires users to manually analyze the available hardware 

resources and the interconnection method in order to create an implementation that best suits them.  

 The tools described in the following sections aim at solving this problem automatically. 

They implement mechanisms of keeping track of the available resources and matching the cluster 

workload to them. The main difference is that their design focuses mostly on finding the most 

appropriate machine to execute a single application (a job). While they also allow users to submit 

parallel applications (e.g. MPI binaries), these are executed under some restrictions compared to the 

conventional MPI mechanism.  

 The first tool, Condor, is a batch system that creates an environment for assigning jobs to 

available computing resources. In contrast to others, its main purpose is not only to find the best 

machine for executing a job but also to ensure that long-time-running jobs complete eventually. For 

this, Condor relies on a mechanism of job migration (using checkpoints) that allows a job to 

continue executing on a different machine in case the initial one fails. Thus, it is designed to serve 

large-scale networks of machines of distributed ownership like Networks of Workstations or the 

Grid. In this way the created ROCKS cluster can be easily included into a larger scale distributed 

environment.  

 Two other tools that work similarly to Condor are the resource managers Sun Grid Engine 

(SGE) and Torque/Maui. Compared to Condor both tools are more cluster oriented. SGE 

implements a wide variety of policies to facilitate matching of jobs to machines. What is more, it 

provides a convenient GUI for manipulating the system. Similarly to Condor it also supports the 

mechanism of check-pointing through its API called DRMAA. It also supports submission of 

parallel jobs to the system by providing a wide variety of parallel programming environments. 

However, jobs are executed with some differences to the conventional MPI mechanism because of 

the specifics around handling the resources in the SGE system. Nevertheless, users are relieved 

from manually analyzing the available resources as the SGE automatically occupies those machines 

that respond to the user-specified requirements of the application. SGE includes a scheduler in its 

implementation that decides which jobs are going to be run next. In comparison, Torque uses an 

external scheduling module – Maui. Still, SGE proves to be more than useful in a ROCKS cluster 

environment. 
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Chapter 5 

Test Application 

 
 This chapter aims to describe the behavior of the achieved testing environments when 

confronted to the challenges of running a real-life production application. Developed by RISC 

Software GmbH, this application solves compute-intensive tasks by utilizing optimized algorithms, 

complex data structures and the message passing interface. It is designed and implemented to run 

on a distributed environment in order to achieve faster execution time. The two testing clusters built 

with ROCKS and CAOS-NSA, were used to run the application. Results, in the form of wall-clock 

timings, network load and memory load, are analyzed and compared. 

 Section 5.1 provides an overview of the application and the techniques it incorporates. 

Section 5.2 shows the results obtained during testing. Here, a comparison is made between the two 

clusters used. Section 5.3 summarizes the gained experience and provides conclusions.  

5.1 Application Description  

 A real-life production application is used for testing the functionality of the ROCKS and 

CAOS-NSA clusters. This application is a product of the joint effort of the parallel-programming 

team at RISC Software GmbH and the University of Applied Science, both located in Hagenberg, 

Austria. It is developed by Andreas Scheibenpflug under the supervision of Michael Krieger.  

  The application itself is designed to serve the needs for other more complicated pieces of 

software that deal with problems in the area of route optimization. It provides a core component for 

industrial logistics applications which often need to solve the problem of how transportation and 

delivery of goods can be organized so that travelling expenses are minimized. This problem is 

known as the Travelling Salesman Problem (TSP). While there is no known algorithm that solves 

the TSP in the general case, many optimizations and limitations can lead to finding a satisfactory 

solution.  The application used for testing provides a basic module for computing the TSP – it 

calculates the shortest paths between numerous of sites. It does not deal with computing the TSP 

itself but it creates a graph data structure based on map data that contains customer locations and 

the shortest paths between them. All values for a predefined set of customer sites are saved in a 

matrix (often referred to as a distance matrix) which is then used for creating the graph.  

 Unlike TSP, finding the shortest paths between vertices in a graph is a problem which there 

are numerous solutions to. However, it proves to be a compute intensive task when the problem area 

becomes too big. In our case, the test application works on a data structure that represents the street 

network of Austria. This data structure is a graph that consists of about 900’000 nodes and 1.1 

million edges. It is generated based on real map data that contains information about streets (type, 

direction, length), intersections, addresses, etc. This data is simplified in order to remove all 

unnecessary details resulting in a graph representation where all intersections are introduced as 

nodes and all streets between these intersections as edges. The optimized data structure holds the 

information about the complete street network of Austria in a file that is of size 110 MB. During 
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execution time, this file is loaded in the physical memory and, thus, makes the application free from 

interacting with the hard-drive. Another optimization is that the test application only computes the 

shortest paths between a small subset of nodes which represent the client sites. Furthermore, the 

core component of the application is the algorithm which, actually, is responsible for how optimal 

the distance matrix computation is. Dijkstra’s algorithm was chosen for several reasons. First, it 

shows to be faster compared to others when computing the single-source shortest path problem 

even when executed on a conventional desktop computer. In fact, this is why the application does 

not parallelize the algorithm itself but runs multiple instances of it on different machines that work 

on different sets of input data. More importantly, the algorithm relies of the fact that the shortest 

path to a node in a graph structure consists of all shortest paths to all preceding nodes in that path. 

This means that shortest path between two nodes can be computed independently from the one 

between other two nodes and then results can be combined into a single path that is also the 

shortest. The parallel implementation benefits from this by being able to dividing the workload. 

Hence, when utilizing a parallel environment, input data can be easily divided between computing 

nodes so that computations are carried out independently and results are combined at the end. The 

application itself is implemented using MPI. It incorporates a client/server approach, where the 

master process is responsible for providing work to the slaves and then collecting the results which 

form the distance matrix. Communication between processes is kept to minimum but 

synchronization still takes place between the server and the clients. 

5.2 Testing and Comparison 

 This section describes the results obtained from running the distance-matrix calculation on 

our testing cluster environments. Upon development, the application was tested using different 

technologies and approaches in order to compare them and determine which one results in 

achieving lowest execution time. In addition to MPI, an alternative implementation was also created 

using OpenMP. What is more, the application was tested also using the middleware BOINC and 

several desktop computers. However, previous to testing it on the two cluster environments it had 

not been executed on another HPC parallel computer. Hence, the obtained results only determine 

the behavior of the ROCKS cluster in comparison to the CAOS-NSA one. 

 There exists an alternative implementation of distance-matrix calculation using OpenMP. 

OpenMP is a programming approach that is used for paralyzing computations in shared-memory 

environments. Instead of creating different processes, like MPI, it creates multiple threads that work 

concurrently on a single machine. This way, the Dijkstra’s algorithm could be tested using one and 

two threads on a multi-core desktop computer. Using an input of 100 nodes, the OpenMP 

implementation executes for an average of 86.6 sec when utilizing a single thread on a dial core 

machine (see Table 1, comp. 4). Five different runs were performed for obtaining this value. 

Another five runs reveal that the application executes for an average of 93.67 sec. when 2 threads 

are used on the same dual-core machine. Comparison of these values clearly shows that the 

implemented algorithm is not parallelized effectively. Not only, it achieves no speed up when using 

more processors, but it shows performance degradation.  
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 As described in Chapter 3, two cluster environments were built using the cluster deployment 

tools ROCKS and CAOS-NSA. Table 1 (see Chapter 3) provides a list of the machines included in 

each of them together with their hardware configuration. Both clusters consist of four machines, 

three of which have single core processors and one (the head node) has a dual core processor. 

Hence, there are 5 processors in total available on each cluster.  

 The application is tested first on the ROCKS cluster using different sets of input data against 

different number of processors. Testing data includes different files containing IDs of nodes from 

the graph representation of street network in Austria. Four different test files were used containing 

10, 35, 50, and 100 IDs in them. The application computes the shortest path between each pair of 

nodes using the street graph. However, for the purpose of presenting the behavior of the parallel 

environment in terms of execution time, this section focuses mainly on the most compute-intensive 

example of calculating the shortest paths between 100 nodes. 

 Using input data of 100 nodes the MPI implementation of the distance-matrix calculation is 

executed on the ROCKS cluster. Table 7 shows a detailed overview of the execution behavior by 

describing the wall-clock runtime of each process together with the total execution time for five 

separate runs. The average total execution time on the five processors is 70.13 sec. In order to pass 

a basic notion of how the speed-up improves when multiple processors are involved a comparison is 

made to the execution time of the OpenMP implementation. The current design of the MPI 

application does not allow it to be executed on a single process because it implements a 

server/client architecture and at least two processes need to be started. Thus, there is no other 

alternative for comparison to a sequential implementation that the OpenMP one. Of course, the 

obtained results from the two techniques cannot be compared fairly as the OpenMP implementation 

operates completely differently on both the hardware and software level. One has to consider that 

threads are faster than processes and they use shared memory to communicate. Nevertheless, a 

comparison reveals that utilizing 5 processors instead of 2 in the computation process results in 

achieving a relative speed-up of 1,34. This result is far from being satisfactory as little absolute 

speed-up is achieved but it still shows that the parallel environment introduces better speed-up than 

using a single dual-core machine. 

 Run 1 Run 2 Run 3 Run 4 Run 5 

Server Process (gateway) 10.66 13.13 11.27 13.31 13.29 

compute-0-2 68.82 68.30 68.41 69.33 68.68 

compute-0-5 63.58 62.57 63.20 63.19 63.33 

compute-0-4 65.77 69.44 69.59 70.27 70.94 

gateway 54.04 51.50 52.18 52.03 52.55 

Total execution time 69.1883 69.8349 70.9970 70.6682 71.3777 

Table 7 Execution timings (in seconds) for each process executing 
 the distance-matrix calculation on the ROCKS cluster 
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 When the distance-matrix calculation is executed numerous times using different number of 

processes (processors) it reveals an important characteristic of every parallel application – 

increasing the number of processors increases the execution speed. This shows how scalable 

parallel implementations are in means of achieving speed-up. Fig 19 shows the execution wall-

clock timings measured on the ROCKS cluster with an input of 100 nodes. One can see how 

increasing the number of processors improves the execution timing drastically but only up to the 

point of reaching the optimal value of 70.13 sec. However, the chart also shows how the 

environment is limited by its hardware profile. The ROCKS cluster contains in total 5 processors 

(See Table 1, Comp1-4). Thus, speed-up is only achievable up to the point that the number of 

processes meets the number of available processors. Starting more processes introduces significant 

degradation in performance. Similar results can be observed on the CAOS-NSA cluster.  

 

Fig. 19 Execution timings (in seconds)  
on the ROCKS cluster for different number of processes 

 Introducing more processes to a system that cannot support them with its available hardware 

results in loss of performance for a parallel application. The reason is that more processes require 

additional memory and CPU clock cycles. If none are available, processes have to wait for others to 

finish or what is even worse they start executing, by stealing clock cycles from an already running 

process causing synchronization and context-change overhead. What is more, in the case of MPI 

applications, more processes results in more communication demands and synchronization for 

networking resources. Table 8 shows how network traffic increases with the number of processes 

started in the system. These results are obtained using the Ganglia monitoring tool. They clearly 

show that network traffic increases with the number of processes as, in the case of our application, 

processes receive work from the master process and have to synchronize with it. More processes 

result in more data traffic which indicates that a production HPC environment which contains even 

several hundred processors requires fast communication links. Otherwise network throughput will 

surely not be able to cope with the speed of the processors and network latency will result in 

processes being idle waiting for a message.  
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Number of 

processes 

Data Transfer 

2 4-6 MB 

3 4-6 MB 

4 7-8 MB 

5 11-12 MB 

7 16 MB 

10 22-23 MB 

Table 8 Network traffic for different number of processes 
measured on the ROCKS cluster 

 On the other hand, increasing the number of processes in a parallel system does not always 
result in achieving speed-up even in the case when the underlying hardware infrastructure supports 
multiple processors. Our experience shows that execution time of an MPI application is also tightly 
dependent on the problem size. For large input data sets, which obviously require lots of 
computational time, more processors compute faster. But, when input is small in size, then the 
application suffers from inter-process communication rather than it benefits from it. The larger the 
number of processes is, the bigger the communication overhead becomes. In cases like this, 
network latency takes over parallelism resulting in performance difference. Table 9 shows a 
comparison between execution wall-clock timings for 4 and 5 processes measured on the ROCKS 
cluster with input data 10. Table 10 shows a similar result comparing execution wall-clock timings 
for 3 and 4 processes measured on the CAOS-NSA cluster. In both cases, adding one more process 
introduces a delay of roughly 2 seconds.   

Number of 

processes 

Run 1 Run 2 Run 3 Run 4 Run 5 AVG 

4 32.7486 32.8408 34.1129 32.9065 32.7829 33.1781 

5 34.4617 35.1585 35.4698 34.8707 37.5924 35.5106 

Table 9  Execution timings (in seconds) for 4 and 5 processes 
on the ROCKS cluster for input of 10 nodes 

Number of 

processes 

Run 1 Run 2 Run 3 Run 4 Run 5 AVG 

3 34.1212 34.3120 34.0535 34.4155 34.3218 34.2448 

4 36.3170 36.4842 36.0285 36.0721 36.0940 36.1991 

Table 10 Execution timings (in seconds) for 4 and 5 processes 
on the CAOS-NSA cluster for input of 10 nodes 

 In this last example one can notice that for the CAOS-NSA cluster (see Table 1, comp.5-8) 

the comparison is made between 3 and 4 processes even though the environment supports 5. The 

reason is that the CAOS-NSA cluster revealed a major downside to utilizing heterogeneous 

environments. It showed that the whole system is as slow as its slowest part. In contrast to the 

ROCKS cluster, this one contains a node that has rather old architecture (PIII 866Mhz). When the 

distance-matrix calculation is executed this node shows significant slow-down making all the other 

nodes wait after they finish. This proves that a heterogeneous cluster environment can benefit in 
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achieving faster computations only when it utilizes similar processors. Once a node introduces a 

processor that is significantly different from the others, it will cause synchronization problems. 

Even in the case the processor is much faster than the other ones it will not perform at its best 

because it will either remain idle till the others are done or it will be stuck in waiting states while 

trying to synchronize. These difficulties can be overcome only at programming level. Applications 

have to be designed to implement a different kind of parallelism that takes into account the 

heterogeneous nature of the execution environment. This way slower nodes can be given less 

workload and thus finish in time with the others.  

 In the following examples the slow node was excluded from the CAOS-NSA cluster. The 

tables below aim to show the behavior of both the ROCKS and CAOS-NSA clusters when 

executing the distance-matrix calculation with different input data and different number of 

processors. All described results are obtained as an average of five different runs. Table 11 describes 

average wall-clock timings using different input data on the ROCKS cluster. The example contains 

measurements of runtime using 3 and 4 processors so that comparison can be made to the CAOS-

NSA environment. Table 12 shows the results for the CAOS-NSA cluster. It does not contain a third 

line with timings for 5 processes because the slowest node was eliminated previous to performing 

the tests.  

Number of 

Processors 

Input Data 10 Input Data 50 Input Data 100 

3 35.1203 58.9195 90.3378 

4 33.1781 53.74345 91.8233 

5 35.5106 47.6663 70.1273 

Table 11 Execution timings in seconds for different number  
of processors and different input measured on the ROCKS cluster 

Number of 

Processors 

Input Data 10 Input Data 50 Input Data 100 

3 34.2448 58.1279 87.4807 

4 36.1991 52.7227 75.2497 

Table 12 Execution timings in seconds for different number  
of processors and different input measured on the CAOS-NSA cluster 

 While the average execution timings for using 3 processes show that the CAOS-NSA cluster 

performs, more or less, equally to the ROCKS one, the timings for 4 processes reveal a significant 

difference especially when input data reaches the maximum value of 100. Then the CAOS-NSA 

cluster performs rather faster than the ROCKS one beating its time with roughly 15 seconds. 

Nevertheless, this result cannot be explained with the software advantages of one environment over 

the other. Both utilize OpenMPI and in this case it operates independently from the underlying 

clustering software. Thus, at this point no reasonable explanation can be provided regarding the 

utilized tools for parallelism. The matter requires further analysis and investigation. One 

explanation can be that the CAOS-NSA set of machines performs better under these circumstances 

as the utilized hardware happens to be more suitable for solving this particular problem. 
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5.3 Summary 

 This chapter analyzes the behavior of the ROCKS and CAOS-NSA cluster environments 

when executing a real-life application. The application, developed by RISC Software GmbH, was 

chosen to be tested on the clusters as it was designed to operate in a distributed parallel 

environment. Both, the application and the performance of the cluster were assessed with the 

described test runs. This way the development team received valuable data about execution timings. 

The application itself computes the shortest paths between a set of points taken from the road-map 

of Austria. It is intended to be integrated into industrial logistics applications in order to help route 

optimization in the area of transportation and delivery of goods. The application creates a distance-

matrix carrying out computations in parallel.  

 The application was tested against different sets of input data and different number of 

processes on both the ROCKS and CAOS-NSA clusters. Results do not reveal any advantage or 

disadvantage of using either software environment but prove that the used hardware plays 

significant role in how fast computations are performed. What is more, results undoubtedly show 

how speed-up of a parallel application increases with increasing the number of processors involved 

in the computations. Again, hardware puts certain limits and determines a maximum value for this 

speed-up. Results describe how communication and synchronization overhead take over after a 

certain point resulting in loss of performance. On the other hand, the test runs on different input 

data confirm that speed-up is also tightly dependent on the size of the problem area. When size is 

too small, the performance decreases as it suffers from all the process creation, handling, and 

communication. Finally, monitoring execution behavior upon different test cases proves that one 

can determine which machines in the heterogeneous environment are more suitable for performing 

calculations and adjust the environment every time a subset of computers is needed. In addition, 

certain machines can show significant slow-down when confronted to an application and thus 

degrade the performance of the whole system.  
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Chapter 6 

Conclusions and Future Work 

 
 This thesis describes thoroughly the process of building a Beowulf-type cluster for high-
performance computing. The presented evaluation focuses on techniques and approaches for 
creating a parallel production environment that uses heterogeneous commodity hardware platforms 
instead of specialized high-performance ones. What is more, the study reveals the possibilities of 
reaching maximum performance at the lowest price by using common desktop computers. This is 
an important result for companies that already use or create software that requires a parallel 
environment in order to run faster and more effectively.  

 Creation of a fully-functioning parallel environment for high-performance computing 
requires installation and configuration of cluster middleware. This is the gluing component that 
makes a collection of interconnected machines work like a single more powerful computer. That is 
why, the thesis starts with an overview of different middleware. Further, cluster middleware is 
systematically analyzed by following a process of creating a real heterogeneous cluster 
environment. For this high level middleware is assessed in detail by comparison of the cluster 
deployment tools OSCAR v6.0.2, ROCKSv5.1, CAOS-NSA v1.0. An elaborate description of the 
installation process of each of the tools aims to reveal both its strong and weak sides. The latest 
version of OSCAR (and the one used for testing) shows to be quite limited as it is still under 
development. In general OSCAR is a tool that brings a strong feature set and has proven its 
effectiveness towards building HPC parallel environments. However, at the time of testing a 
renovation process was taking place that aimed to improve the installation process and make the 
tool more flexible and independent from the underlying Linux distribution. Our testing environment 
showed that a working cluster can be achieved with Debian Etch as a foundation but it does not 
provide an installation of any tools for clustering. An approach for installing additional tools on the 
cluster was tested - a local repository was build. However, even with it, installation and integration 
of tools for parallel computation turned out to require a lot of effort and time. Thus, our experience 
showed that the current version of OSCAR does not provide the required functionality and, what is 
more, it introduces lots of difficulties to the installation process. CAOS-NSA, on the other hand, 
implements a quite fast way of cluster deployment. A cluster of four computers was deployed 
within 25 minutes. The reason why this is possible is that CAOS-NSA installs stateless images on 
all nodes in the cluster. These do not reside on the local hard drives but occupy only the physical 
memory of the machines. Because of this, CAOS-NSA proves to be quite effective for building a 
parallel cluster environment for testing MPI. However, compared to ROCKS and OSCAR, it 
incorporates a quite poor list of tools for clustering. Taking this into account together with the fact 
that the whole cluster is highly dependent on the head-node for remote access to files and services 
makes CAOS-NSA not that reliable to be used in a production environment. Further, using the 
cluster deployment tool ROCKS we created a fully-functional cluster with four heterogeneous 
computers. ROCKS showed to be easy to install on all machines. What is more, it has reached a 
state of full automation of the installation process where there is very little interaction with the user. 
This is a major advantage of the tool making it the preferred tool.  

 Because of this the assessment of the functionality of the built environments focuses 
basically on the tools provided by ROCKS. It installs a rich variety of tools for resource 
management, resource monitoring, and submission of sequential and parallel jobs. Series of 
examples, executed on the cluster, reveal both the strong and weak features of the tools. The batch 
system Condor is compared to the resource mangers Sun Grid Engine (SGE) and Torque/Maui. 
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Examples, of submitting serial and parallel jobs to the cluster provide guidelines for users how to 
utilize the cluster environment for professional purposes. While Condor implements features that 
make it more suitable to be used in large-scale distributed environments, the Sun Grid Engine 
together with Torque/Maui show to be more suitable to be used on a cluster. What is more, the SGE 
implements more advanced feature set than Condor and definitely beats its competitors by 
providing users with a GUI, which, on top of that, supports the full functionality of the system.  

 Finally, the functionality of MPI is tested using a simple test application which proves that 
absolute speed-up can be achieved on the cluster. On the other hand, test runs of a real production 
application show that achieving absolute speed-up depends mainly on the implementation and the 
utilized methods for parallelization. Examples reveal that in certain cases communication overhead 
can take over and result in decreasing the performance of the whole system. What is more, this 
application proved that a cluster is as fast as its weakest element. This result suggests that 
heterogeneous environments can demonstrate better performance only when hardware is combined 
in a proper way. Utilization of processors drastically different in speed leads to loss of performance.  

 Using heterogeneous environments for high-performance computing is a relatively new 
approach for achieving better performance with a Beowulf-type cluster. The examples and 
achievements described in this thesis prove that such an environment can be created and, more 
importantly, it can be used for implementing better parallel algorithms. The two small testing 
clusters created using ROCKS and CAOS-NSA can be further improved, so that, RISC Software 
GmbH can benefit from having a real production parallel environment instead of the testing set-ups. 
What is more, such a production environment can be built by combining the two test clusters into a 
single large cluster that consists of 8 machines, 10 processors, and 10 GB RAM. This cluster can 
already provide a broader range of opportunities for testing and research. As discussed in chapter 5, 
with larger number of processors incorporated in the cluster, network traffic increases. Hence, 
testing the capabilities of such an environment requires considering faster means of networking. 
Gigabit Ethernet or even faster technologies can be further studied and evaluated in order to 
determine their impact on the performance of the parallel computations. Once the larger cluster 
proves to be productive, it can be used for conducting further research in the area of high 
performance computing.  Even more, existing parallel algorithms can be tuned to take advantage of 
the heterogeneity of the machines. Heterogeneous computing is still relatively new area and there is 
plenty of room for testing and improving.  Thus, it requires research and development of new 
techniques. Job schedulers and resource managers can be further improved to make better use of the 
heterogeneous resources. Additionally, new scheduling techniques need to be studied so that job 
distribution is handled automatically depending on current machine load, machine speeds, and 
current network load. Resource managers can be tuned, for instance, to make processes migrate as 
soon as faster hardware becomes available in the cluster. This idea, together with many others can 
be implemented and tested on the larger cluster.  

 Another opportunity to improve performance in a heterogeneous environment is using 
graphical processors for performing computations. This idea is relatively new to the field of HPC 
and has become recently popular with the release of the 8-core Cell Processor on Play Station 3. 
The popularity of this gaming console makes the computing resources included in it available for 
testing in a heterogeneous computing environment. While ongoing research proves that this 8-core 
processor is quite powerful, research is still needed to determine whether it can be used in an 
environment that consists of conventional commodity CPUs (e.g. typical Beowulf cluster). 
Interaction between machines has to be controlled by advanced programming techniques that divide 
workload among the computers in a way that the 8-core processor receives more tasks. Also, a 
parallel implementation has to arrange computations so that they match the specifics around the 
way graphical processors operate. Furthermore, when using conventional desktop computers (like 
in our testing environment) one has to consider the fact that every desktop computer has a graphical 
processing unit installed on it, because each machine must support displaying of graphical user 
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interfaces. Having this in mind, a reasonable idea is using these processors for performing 
computations as well. This is a challenging task due to the difference in the architecture of these 
processors and the fact that they are optimized for performing a single operation over and over 
again on different input data sets (e.g. addition of vectors). However, in the case of a cluster (like 
the one built upon testing) using the available GPUs doubles the number of available processors. Of 
course, making use of such processors requires different programming tools and techniques (e.g. 
CUDA). These require further studying, so that eventually an application can be executed in parallel 
on all types of available processors.  

 Finally, having an HPC cluster does not always provide the best resources for testing and 

development. This is why, the achieved cluster can be included into a large-scale network like, for 

example, the Austrian Grid. The grid is an innovative undertaking that aims to combine computing 

resources distributed geographically. It incorporates techniques for distributing workload among 

machines which fall under different administrative control and follow different security policies. In 

fact, the project is relatively young and still requires research. This is why, including the cluster in 

such a network can provide further opportunity for testing. Grid-oriented parallel applications can 

be executed and analyzed. Parallel algorithms can be tuned to run faster in such an environment. 

What is more, ROCKS already supports grid job submission with Condor. 
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Appendix A 
Parallel implementation of Numerical Integration of a function, Chapter 4 “Tool Evaluation”, 

Section 4.2 MPI 

#include <stdio.h> 

#include <stdlib.h> 

#include <limits.h> 

#include <time.h> 

#include "mpi.h" 

 

#define NUM_PIECES 2147483647 

 

long double calculateArea(long double a_step, int a_myid, int a_numprocs, char* 

a_processor_name) 

{ 

        unsigned long int i = 0; 

        long double sum = 0.0; 

        long double area; 

        long double x_old, x_new; 

        clock_t start = clock(); 

        double end; 

 

        for(i = a_myid; i < NUM_PIECES; i+=a_numprocs) 

        { 

                x_new = (long double)(i+1) * a_step; 

                x_old = i * a_step; 

                area = ( ( ((long double)4/(1+(x_new*x_new))) + ((long 

double)4/(1+(x_old*x_old))) ) * a_step ) / 2; 

                sum+=area; 

        } 

        end = ( (double)clock() - start) / CLOCKS_PER_SEC; 

        printf ( "Calculation Time on %s: %lf sec.\n", a_processor_name, end); 

         

 return sum; 

} 

 

int main(int argc, char* argv[]) 

{ 

      int myid; 

 int numprocs; 

 int namelen; 

 char processor_name[MPI_MAX_PROCESSOR_NAME]; 

 double wtime; 

 clock_t start_time = clock(); 

 double end; 

 long double step; 

 long double sum = -1.0; 

 long double mysum = -1.0; 

 

 MPI_Init(&argc, &argv); 

 

      MPI_Comm_size(MPI_COMM_WORLD, &numprocs); 

      MPI_Comm_rank(MPI_COMM_WORLD, &myid); 

 MPI_Get_processor_name(processor_name, &namelen); 

 

 //Start Measuring Total Computation Time 

 MPI_Barrier(MPI_COMM_WORLD); 

 if(myid == 0){ 

  wtime = MPI_Wtime(); 

  puts("Parallel Numerical Integration of 4/(1+sqr(x)) in C"); 

 } 
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 //DOWORK                

 step = 1.0 / NUM_PIECES; 

      mysum = calculateArea(step, myid, numprocs, &processor_name); 

 MPI_Reduce(&mysum, &sum, 1, MPI_LONG_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD); 

 //END OF DOWORK 

 

      MPI_Barrier(MPI_COMM_WORLD); 

 if(myid == 0){ 

  printf("Elapsed Wall Clock time is %.10lf sec.\n", MPI_Wtime()-

wtime); 

  printf("Area is %.56Lf\n", sum); 

 } 

  

 MPI_Finalize(); 

 

 return 0; 

} 
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