

Evaluation of Cluster Middleware in a Heterogeneous

Computing Environment

MASTER'S THESIS

for obtaining the academic title

Master of Science

in

INTERNATIONALER UNIVERSITÄTSLEHRGANG
INFORMATICS: ENGINEERING & MANAGEMENT

composed at ISI-Hagenberg

Handed in by:
Stefan Georgiev, 08024

Finished on:
17 July 2009

Scientific Advisor:
A.Univ.Prof. DI Dr. Wolfgang Schreiner

Hagenberg, July, 2009

1

Abstract

 Deploying a Beowulf-type high-performance cluster is a challenging task. Many problems,

regarding the underlying hardware infrastructure and the used software components need to be

solved in order to make a set of machines work as a single computer. The task becomes even more

complicated when heterogeneous commodity hardware platforms are utilized. This research is

provoked by the idea of using a company’s old desktop computers for achieving computing

performance at a low cost. While the existing cluster middleware provides many solutions for

utilizing distributed resources, it still fails to be suitable for some cluster setups. This thesis

represents the results of an evaluation in the field of heterogeneous high-performance computing. A

systematic analysis of available tools for high-performance clustering aims to reveal both their

strong and their weak sides. In addition, a detailed evaluation is provided from the point of view of

administrators and users. The thesis describes the process of building a fully-functioning parallel

environment using three different tools for cluster deployment - OSCAR v6.0.2, ROCKS v5.1 and

CAOS-NSA v 1.0. These tools are compared in detail, so that the most suitable one can be

determined. As a result two test environments are built. Numerous examples of tests runs, executed

on the two environments, are described. Usability, with regards to different tools like resource

managers, schedulers, and MPI, is assessed taking into consideration the underlying hardware

platforms. The capabilities of the clusters are evaluated against a parallel application for route

optimization.

2

Contents:
1 Introduction 4

2 State of the Art 6

2.1 Introduction to Clusters 6

2.2 Cluster Software Development – Mapping and Scheduling 8

2.2.1 MAUI Scheduler 9

2.3 Middleware 10

2.3.1 Low Level Middleware 10

2.3.1.1. MPI 10

2.3.1.2. PVM 11

2.3.1.3. Open MPI 11

2.3.2 Parallel File Systems 12

2.3.2.1. MPI I/O 12

2.3.2.2. PVFS 13

2.3.2.3. Hadoop 13

2.3.2.4. Sector-Sphere 14

2.3.3 High Level Middleware 15

2.3.3.1. Beowulf 15

2.3.3.2. OSCAR 15

2.3.3.3. OpenMosix 16

2.3.3.4. CAOS NSA/ Perceus 17

2.3.3.5. ROCKS 17

2.3.4 Grid Middleware 18

2.3.4.1. Condor 18

2.3.4.2. Globus ToolKit 19

3 Installation report 21

3.1 OSCAR 6.0.2 21

3.1.1 Why OSCAR? 21

3.1.2 Two versions of OSCAR 23

3.1.3 Installation 26

3.1.3.1. Environment Considerations 26

3.1.3.2. Installing OSCAR on the Head-node 27

3

3.1.3.3. Installing the Cluster 29

3.1.3.4. Local Repository Setup 30

3.2 CAOS NSA/ Perceus 34

3.2.1 Installing PVFSv2 37

3.3 ROCKS 39

3.3.1 Installation 39

3.3.1.1. Environment Considerations 40

3.3.1.2. Installation on the Frontend 41

3.3.1.3. Installing the Cluster 41

3.3.1.4. Installing PVFSv2 44

3.3.1.5. Running an MPI Test 45

3.4 Summary 46

4 Product Evaluation 48

4.1 Ganglia 48

4.2 MPI 53

4.3 Condor 57

4.3.1 Jobs and Condor 59

4.3.2 Submitting a Job 61

4.3.3 Modifying a Job 65

4.4 Sun Grid Engine and Torque/Maui 66

4.4.1 Submitting a Serial Job 68

4.4.2 Modifying a job 72

4.4.3 Troubleshooting 72

4.4.4 Submitting an MPI Job 73

4.5 Summary 75

5 Test Application 77

5.1 Application Description 77

5.2 Test Results 78

5.3 Summary 83

6 Conclusions and Future Work 84

References 87

Appendix A 90

Curriculum Vitae 92

4

Chapter 1

Introduction

 Ever since the invention of the first calculating machines the need for more processing

power has been the driving force for further development and innovation. Today’s computer

hardware evolves rapidly in order to be able to keep up with the extreme demands of the

applications and the users. Even though, in the fields of science and research there is still a growing

need for more computational power. What is more, professional business applications are becoming

more and more advanced and, thus, start requiring more computing resources as well. For years, the

solution has been utilization of specialized massive computers that have proprietary hardware and

architecture in order to achieve topmost computing performance. However, these machines are still

rather costly to be used in everyday business life. An alternative solution, that proves to be also

cheaper, is using the joint computing power of collection of more simple computers.

 This thesis focuses on studying the capabilities of such architectures. A collection of

computers that work together towards achieving a common goal define a parallel environment. The

main idea behind parallel environments is to split a heavy computational task into smaller ones and

then distribute them to multiple processing units for calculation. This technique sets the foundations

of introducing massive speed-ups that can be equal to the number of processors used. An

application running concurrently on ten processors can execute ten times faster than on a single one.

Today’s multi-core processors aim to achieve parallelism by dividing the workload of a single

machine between the separate cores. While using a single machine proves to be rather effective, it

also suffers from hardware constraints that limit the reachable performance. Thus, an alternative

solution is creating a parallel environment that consists of separate machines, each of which has its

own processor and memory, connected together via means of networking. This architecture is

referred to as a cluster of machines. What brings them together to work as a single computer is the

middleware software. It is the gluing component that lies between the operating system and the user

applications. In the common case, clusters are completely different from the massively parallel

computers that utilize special hardware and interconnection methods between the nodes. What is

more, clusters which are built using commodity hardware prove to be quite productive as well. The

process of designing, building and using computers for solving extremely advanced computational

problems is referred to High-Performance Computing (HPC). Clusters are often used in the area of

HPC because they show to be able to provide performance at a lower price. This thesis focuses on

analyzing the HPC capabilities of clusters built from commodity hardware machines that are of

heterogeneous type. Recent research in the field of HPC shows that there are certain advantages in

utilizing different computers in cluster environments. Machines with different processors and

different memory capacity show to be more flexible in solving heavy computational tasks and, what

is more, they open broader horizons for improvements in the field of parallel programming.

 The work in this thesis is inspired by the challenges, which a local company in upper Austria

is confronted to. RISC Software GmbH is a company that brings to the market software solutions

that combine up-to-date science with most recent research. It is a spin-off of the RISC Institute

5

(Research Institute of Symbolic Computation). The current research in the area of parallel

programming provoked this analysis of clustering technologies and methods. Numerous projects in

the company solve advanced computational problems that require vast amount of processing power.

In addition, others need to be parallelized in order to achieve reasonable computational time and

provide solutions fast. All these, require a parallel environment to be built so that tests runs can be

performed. Up to this point, RISC Software GmbH was using remote distributed resources for

testing as no alternative was available locally, at the company. What is more, a concrete application

dealing with route optimization for industrial logistics was being developed at the time of writing.

This application could only be tested effectively on a parallel cluster environment. Building such a

testing set-up could not be achieved previously because the crew at RISC Software GmbH was

missing necessary experience in the field of clustering. Additionally training was not an option

because of the limited size of the development team and their current workload.

 Cluster middleware presents numerous challenges that need to be studied previous to

deploying a production cluster. This thesis presents a solution for creating a fully-functioning

parallel environment by providing a systematic evaluation and comparison of different techniques

and tools. Existing achievements in the field of HPC computing are studied. Appropriate tools were

chosen for creating a heterogeneous computing environment based on different criteria like, for

instance, ease of utilization and provided functionality. Cluster middleware in the form of the

cluster deployment tools ROCKS, OSCAR, CAOS-NSA, is thoroughly analyzed. Detailed

description of the experience gained during the installation process aims to provide a comparison

between these tools and assess their qualities. Furthermore, usability of the achieved environments

is tested by evaluating the tools for job distribution, resource management and resource monitoring

included in the software of the clusters. Then, the functionality of the achieved clusters is compared

using the route-optimization application implemented by RISC Software GmbH. Finally, conclusion

are drawn that aim to provide a guideline for creating an effective production cluster for high-

performance computing.

 The thesis has the following structure. Chapter 2 describes in detail what cluster computing

is and what problems it faces when a heterogeneous hardware is used. In addition, an overview of

the most recent achievements in the area aims to present different options for clustering tools. In

Chapter 3 high-level middleware is studied by focusing on the experience gained from installation

and configuration of tools for cluster deployment. Additionally, different techniques for building a

cluster are discussed and compared. Chapter 4 provides users with guidelines how to benefit from

the tools a cluster provides. Here, series of examples show how both parallel and sequential jobs

can be submitted to the cluster. Chapter 5 analyzes the behavior of the built environments when

confronted to the challenges of a real-life production application. Different conclusions regarding

parallel execution are discussed here. Finally, Chapter 6 summarizes all gained experience, presents

conclusions and opened possibilities for further development.

6

Chapter 2

State of the Art

This chapter describes the state of the art in cluster computing and discusses the tools mostly

used for building a heterogeneous cluster environment. Section 2.1 gives a basic overview of

clusters and defines some different kinds of clusters. Section 2.2 focuses on programming for

clusters, describing some common difficulties. Finally, Section 2.3 is dedicated to cluster

middleware, which is described in the frame of four subsections: low level middleware, parallel file

systems, high level middleware, and grid middleware.

2.1 Introduction to Clusters

The following section is mainly based on [Buyya vol.1, 1999].

Parallel computers introduce a way to overcome constraints of traditional sequential computers.

They divide workload, distribute it among nodes and carry out calculations simultaneously. Large

computational problems can be divided into smaller ones, which then can be solved concurrently in

an environment of multiple processors. Often, proprietary parallel computers implement such an

environment on a single large machine. A simple alternative is to connect multiple single processor

machines and coordinate their work. That way similar result can be achieved at a lower cost.

Parallel computers are known to have a number of different architectures [Buyya vol.1, 1999].

The Massively Parallel Processor (MPP) is a large parallel system. Normally, it consists of several

hundred processing elements (nodes). The nodes are connected via high-speed network and each of

them runs a separate copy of an operating system. MPP implements a “shared-nothing” architecture.

Often, each node consists only of main memory and one or more processors. Additional

components, like I/O devices, could be added. In contrast, the Symmetric Multiprocessor (SMP)

system has a “shared-everything” architecture. Each node can also use the resources of the other

nodes (memory, I/O devices). A single operating system runs on all the nodes. Finally, a distributed

parallel architecture defines a network of independent machines, usually over a wide geographical

area. Each node is a completely separate machine with its own operating system. Furthermore, each

node can be of completely different architecture. Any combination of MPPs, SMPs or plain

computers could be added to a distributed system.

[Buyya vol.1, 1999] defines “A cluster is a type of parallel or distributed processing system

which consists of a collection of interconnected stand-alone computers working together as a single,

integrated computing resource”. A computer node can be a single or multiprocessor system (PC,

workstation, or SMP) with memory, I/O facilities, and an operating system. Different terms arise to

define different cluster “flavors”: Networks of Workstations (NOW) or Cluster of Workstations

(COW), clusters of PCs (CoPs) or Piles of PCs (PoPs).

7

Originally, clusters were only used for processing computation-intensive tasks in the frame of

high-performance computing. Later on, they showed to be useful in other areas as well. Today,

except high performance (HP) clusters, there are also high-availability (HA) clusters and load-

balancing (LB) clusters.

High-availability (also called failover) clusters implement the concept of redundancy [Sloan,

2004]. They are used for mission-critical applications. An example is a web server at a company

that must not fail. HA is achieved by having multiple secondary servers that are exact replicas of a

primary server. Constantly, they monitor the work of the primary server waiting to take over if it

fails. In this basic form, only a single machine (server) is in active use while the remaining ones are

in stand-by mode.

Load-balancing clusters provide better performance by distributing workload among nodes in a

cluster [Sloan, 2004]. Consider a web server. If load-balancing is implemented, different queries are

handed to different nodes for processing. Concurrent processing of queries results in faster overall

response time of the server. LB is accomplished by a number of techniques. A simple round-robin

algorithm or more complex algorithms that rely on feedback from the individual machines can

determine which machine is best suited for handling the next task.

The term "load-balancing" bears different meaning in different scenarios. LB for a high-

performance cluster is completely different from LB for a web server. In this thesis we focus

entirely on high performance computing utilizing a cluster of commodity-hardware machines. In

this case load-balancing is used distributing computational tasks among different nodes in

accordance to their processors speed, current load, and memory capacity. The goal is to achieve

overall speed-up of tedious calculations.

Clusters and high performance clusters in particular can be composed of computing elements of

different ownership and architecture. We distinguish dedicated and non-dedicated nodes,

homogeneous and heterogeneous types of nodes. In practice, these two categorizations are tightly

dependent because, as it turns out, dedicated nodes are of homogeneous nature and non-dedicated

are heterogeneous: in the case of large supercomputers comprised of thousands of dedicated nodes

administration is much easier if all nodes are of homogeneous architecture. And, with non-dedicated

clusters sometimes it is just not possible to have a network of homogeneous nodes. Nevertheless,

the purpose of this study is to show that heterogeneous dedicated nodes prove to achieve better

results in the field of high performance computing.

Dedicated nodes of a cluster are devoted entirely to the computational tasks of the cluster

[Buyya vol.1, 1999]. They utilize a shared set of resources in order to perform parallel computation

across the entire cluster. Usually, nodes are situated in a controlled environment with high-speed

interconnections. There is one terminal for the whole cluster.

The alternative, non-dedicated nodes are owned by individuals. Cluster tasks are executed by

“stealing” unused CPU cycles [Buyya vol.1, 1999]. Consider an office building or a NOW. Most

workstation CPU-cycle capacity remains unused, even during peak hours. Workstation clusters are

easier to integrate into existing networks than special parallel computers. They are highly scalable,

meaning that new stations can be added any time. Workstation clusters are cheap because they use

commodity hardware. Last, but not least, the development tools for workstations are more mature

compared to the proprietary solution for parallel computers.

8

On the other hand heterogeneity of nodes can be defined both, at hardware and software level

[Buyya vol.1, 1999]. Often nodes in a company network differ in the utilized CPU types and

speeds, memory capacity, network interconnect speed. Also, operating systems may vary. But

different types of nodes can perform differently on a set of tasks. Matching tasks to suitable nodes is

a problem in such an environment. Other problems regard administration and development.

Different hardware architectures define different interfaces and techniques to be managed and

programmed for. Additionally networks introduce bottlenecks, as processors are still faster in

computations than communications on commodity low-cost networks. Inevitably, latency is

introduced by network delays and synchronization in the system.

In this thesis we focus on building a cluster of dedicated heterogeneous workstations. We will

show that utilizing such a cluster for enterprise needs proves to be a cost effective alternative for

achieving high performance.

2.2 Cluster Software Development - Mapping and Scheduling

Achieving high performance on a heterogeneous cluster requires a lot more than setting up a

proper hardware and software environment. Speed-up needs to be achieved in the first place, i.e. a

program must execute faster on a high-performance computer than on a sequential one. Utilizing a

parallel environment to achieve this requires programs to be parallelized as well, i.e. to be broken

down to tasks which can be executed concurrently on different processors. Only when all

processors fully utilized, real speed-up is achieved. Before tasks are executed they need to be

assigned to processors. The process of assigning tasks to processors is referred to as mapping

[Buyya vol.1, 1999]. Proper assignment can show great influence on the speed of a parallel

program. This is especially true in the case of heterogeneous parallel computers. Take into account

the different architecture of CPUs, their different speeds, and interfaces. Some processors are faster

in computing floating point operations while others like graphical processors are faster working on

vector input data. The problem is to define which processor is most suitable for executing a task in a

way that the overall execution of a program is minimized. In contrast, in a homogeneous

environment, where all the processors are the same, the problem reduces just to constructing and

distributing the tasks.

The problem of mapping complicates furthermore by the need of communication between tasks.

As the tasks are a part of one program they need to synchronize and pass values between each other.

This is often referred to as communication overhead in parallel programming. Mapping has to take

into account the communication load when deciding where to execute tasks. In order to achieve full

parallelism, tasks should be spread as evenly as possible and fully exploit all processors. However,

distributing the processes among the parallel computer leads to elevating communication between

them and thus slows down the whole execution. One solution to this problem is to place tasks that

communicate most in one processor or in closely located processors. This way, however,

complicates the mapping problem even more as it already goes into conflict with the choice of the

most appropriate processor. Hence, mapping has to keep balance between computation and

communication load.

On the other hand, scheduling is the process which determines when tasks are executed. [Buyya

vol.1, 1999] defines “scheduling is to solve a set of tasks serviced by a set of processors to get the

best result according to a certain policy, which can be described in a number of different ways in

different fields.” Scheduling techniques are implemented by most modern operating systems today.

9

The difference is that in this case they focus only on allocating CPU cycles to local processes. In a

parallel environment scheduling manages a set of processes that are created and executed on

different machines. While mapping determines the best machine for a task, scheduling controls the

order of which tasks are executed. Furthermore, it determines if a task should be suspended, moved

to another machine, or resumed. All this is done in a way that maximizes the total speed at which

parallel computations are carried out. In the general form the scheduling problem is known to be NP

complete. However, optimal solutions can be found for a number of situations. Well known

scheduling algorithms are FIFO, round robin task distribution, shortest-job-first, and the shortest-

job-remaining-time.

According to [Buyya vol.1, 1999] “The processing capacity of a heterogeneous computing

system cannot be efficiently exploited unless the resources are properly scheduled”. Load balancing

is a scheduling technique that takes care of idle CPU cycles. It tries to distribute work evenly

between processors, so that no processor remains idle. Load balancing can be of significant

importance to heterogeneous computing environments. As work is distributed to most appropriate

processors it could happen that faster processors are congested with tasks while slower ones remain

idle for longer periods. Of course, scheduling should take care of this situation, allocating processes

to less powerful machines. Additionally, some techniques could be adopted that classify tasks as

“easy” or “hard” so that hard tasks are given to faster processors and the easy ones - to slower

processors. An example is producing many fine-grain tasks. In this way the number of tasks could

determine the level of difficulty that each processor works with.

Task granularity is defined as the ratio between computation and communication [Buyya vol.1,

1999]. The granularity of tasks refers to the “independent” parts of an application that can be

processed in parallel. They determine the overall execution speed of a parallel program. Fine

grained tasks are small; relatively simple and most importantly they are a large number. So, they

introduce large communication overhead as they are inevitably very dependant of one another and

need constant exchanging of synchronization information. Also, tasks will be completed very fast

resulting in constant context switches and also message passing with the scheduler of the system.

Large-grained tasks, in contrast, are difficult to schedule and limit parallelism.

As discussed, parallel programming introduces a number of difficulties regarding proper

distribution of work load among nodes in order to minimize overall execution time. There exist

some open source cluster schedulers like MAUI.

2.2.1 MAUI Scheduler

 According to its home page MAUI is a highly configurable open-source job scheduler

[MAUI, 2009]. It determines where, when and how to execute jobs on a cluster or supercomputer. It

is well suited for high performance computing (HPC) incorporating a large set of features. It relies

on configurable scheduling policies, priorities, and limits to maximize resource use and minimize

response time. MAUI controls an external resource manager such as Torque, OpenPBS, PBSPro, or

Sun Grid Engine (SGE) and operates upon the information gathered by it. Users usually submit

their jobs through the resource manager. The scheduler then decides how these jobs are executed

and forces its decisions upon the cluster using the resource manager.

MAUI is an advanced batch scheduler that implements different mechanisms for optimal

utilizations of available resources. Some of these mechanisms are advance reservations, QOS

10

levels, backfill, and allocation management. Advanced reservations dedicate certain resources to

specific users over a given timeframe. Reservations are managed through reservation-specific

access control lists. Quality of service (QOS) mechanism gives special privileges to particular users

that may include extended access to resources and services, special policy exemption, or job

prioritization. Backfill is a scheduling approach that increases system utilizations by executing jobs

“out-of-order” from the scheduler’s priority queue. Jobs with lower priority are run together with

the highest priority jobs in the queue without delaying them. Essential to this technique is

estimating beforehand how long a job will run in order to determine whether it will be delayed or

not. This estimate should be provided by the user. In addition to these techniques, MAUI provides

an extensive administrative control allowing configurations to be enforced on scheduling, job

priorities, and reservation policies.

2.3 Middleware

When a pool of interconnected computers appears as a single unified computing resource we

can say that these machines have a Single System Image (SSI) [Buyya vol.1, 1999]. The SSI is

achieved by a software layer that lies on top of the operating system and actively interacts with it.

This software is referred to middleware. It actually resides in the middle between the operating

system and the user applications. Middleware “glues” resources by message passing, moving

processes across machines, monitoring and synchronizing work of nodes.

The following sections describe middleware that is used for this project. Tools and standards are

divided into three categories according to level of abstraction. Low level defines cluster middleware

that lies closest to the machine level. Parallel file systems describe a way of building a single file

system over the disks of interconnected computers. High Level middleware is based on tools of the

previous two levels. Finally Grid middleware is discussed concerning the possibility for further

extension of the project and including the cluster into a large-scale network.

2.3.1 Low Level Middleware

2.3.1.1 MPI

The Message Passing Interface (MPI) defines a standard for data movement across

interacting processes in a distributed system [Gropp, 1999]. MPI is not a programming language or

an implemented library. It describes how basic functions for message exchange should look like. It

defines the names, calling sequences, and results. Some defined functions are for point-to-point

communication between processes, for collective operation execution, and for process management.

MPI is typically realized as a communications interface layer that resides on the facilities of the

underlying operating system. Bindings are defined for C, FORTRAN, and C++ as well as for

various other languages. Programming with MPI requires explicit parallelization of code. The

programmer is responsible for identifying which areas of the code can be paralyzed and then

implementing a parallel algorithm using the MPI functions.

On the other hand MPI suffers some drawbacks [Dongarra, 2004]. The number of tasks

working on a parallel program has to be defined in beforehand and cannot change during runtime.

Another problem is the lack of interoperability between MPI implementations. One vendor’s

implementation of MPI cannot exchange messages with another vendor’s implementation.

11

Additionally, in its basic form MPI does not define fault tolerance. The only specification is that if

an error occurs during execution the application should be able to exit. An implementation of MPI

that focuses on this problem is Fault-Tolerant MPI (FT-MPI). It offers both user and system level

fault tolerance.

The second issue of the MPI standard (MPI-2) addresses some problems and introduces

solutions for them [Barley, 2009]. The key areas of new functionality are Dynamic Processes, One-

Sided Communications, Extended Collective Operations, External Interfaces, and Parallel I/O.

Dynamic processes remove the static process model of MPI. One-sided communications provides

routines for one directional communications. External interfaces define routines that allow

developers to layer on top of MPI, such as for debuggers and profilers.

2.3.1.2 Open MPI

We will describe Open MPI based on the information provided on [Open MPI, 2009]. Open

MPI is an open source complete implementation of the MPI 1.2 and MPI-2 standards. Its primary

goal is to create a high-efficient, production-quality MPI library for high-performance computing.

The project allows and encourages involvement of the HPC community with external development

and feedback. Thus, it provides a better quality peer-reviewed implementation. Open MPI combines

research and experience gained from previous implementations. It merges some of the well-known

MPI implementations: FT-MPI, LA-MPI, LAM/MPI, and PACX-MPI. The driving motivation

behind Open MPI is to bring together good ideas and technologies from the individual projects and

form one open source MPI implementation.

Open MPI is very portable. It implements a variety of communication protocols for the most

popular interconnection networks used in today’s parallel machines. Additionally, it supports

network heterogeneity and fault tolerance. These ideas were first explored in LA-MPI and further

developed in Open MPI. Other features include multi-threaded programming and thread safety.

Open MPI prevents the “forking problem” common to other MPI projects.

Open MPI relies on new design architecture to implement MPI - it uses the Modular

Component Architecture (MCA). MCA defines internal APIs called frameworks that are particular

services such as process launch. Each framework contains one or more components which are

specific implementations for a framework. Components can be dynamically selected at runtime.

Open MPI provides point-to-point message transfer facilities via multiple MCA frameworks.

Open MPI works on three abstraction layers. The Open MPI (OMPI) layer provides standard

MPI functions to the user. Below it lies the Open Run-Time Environment (ORTE) that implements

a parallel run-time interface that is platform independent. Finally, on the lowest level resides Open

Portable Access Layer (OPAL) which interacts with the operating system and the hardware

providing an abstraction layer that hides system specific particularities.

2.3.1.3 PVM

PVM (Parallel Virtual Machine) is an integrated set of tools and libraries that form a

framework for building a single parallel computer from a collection of interconnected

heterogeneous computers [Geist, 1994]. The primary goal of PVM is to build a flexible, cost-

efficient solution to large computational problems relying on the aggregate power of many

computers. PVM’s design allows it to interconnect machines of different architecture - from laptops

12

to CRAYs. Transparently to the user it handles message passing, data conversion, and task

scheduling across such a network.

Primary goal to PVM is to form a Single System Image or a “virtual machine” from a set of

heterogeneous nodes connected by a network. Computers form a pool of resources and the user can

specify which computers are to be used for executing a current set of tasks. PVM handles changes

to the pool allowing machines to be added or deleted from the virtual machine at runtime.

Computations are carried out by system processes. PVM API allows processes to be started or

stopped according to different criteria, imposed also by external schedulers or resource managers. It

supports also exchange of messages that check if a process is alive or inform when a process leaves

the system. However, PVM allows only blocking send. Non-blocking send is available with MPI.

Additionally, PVM is favored for its fault tolerance that allows users to write long running

applications that resist task failure and changes in the resource pool [Dongarra, 2004].

Basically PVM systems include two parts [Geist, 1994]. First part is a daemon resides in

every node that is part of the virtual machine. A daemon is a program that constantly runs in

background. In the case of PVM daemons monitor system’s resources and exchange messages with

other daemons. Second part is a library interface routines that contains a complete set of primitives

to handle cooperation between tasks. PVM relies on the notion that an application is divided into

tasks. Each task is responsible for a part of the computational workload of an application.

Functional and data parallelism of tasks are supported, as well as a mixture between the two.

2.3.2 Middleware for Parallel File Systems

2.3.2.1 MPI-IO

MPI I-O provides parallel I/O capabilities for the Message Passing Interface. It was developed

in 1994 in the IBM’s Watson Laboratory [MPI-IO, 2003]. Now it is a part of the MPI-2 standard.

MPI-IO is designed to work with distributed data sets similarly to exchanging messages in native

MPI. Writing files is similar to sending MPI messages and reading is similar to receiving MPI

messages. All basic file manipulation actions are supported namely opening, closing, deleting, and

resizing of files. MPI-IO incorporates its own file-representation strategy as a collection of etype

units (elementary data type). Etypes control file access and positioning. Additionally, views are

another concept which defines which parts of a file are visible to a task and how a task should

interpret them.

MPI-IO implements different ways of accessing data which introduces flexibility to the I/O

process. Data access is characterized by positioning, synchronization, and coordination. These

define whether tasks should share a common file pointer in a collective manner or not, whether a

process is blocked till data is written/read or not, whether access is coordinated or “free-for-all”.

Data representations (data sizes, byte ordering, etc.) may vary between different platforms. A

feature called File Interoperability makes MPI-IO very portable. Interoperability guarantees that

data written to a file could be read afterwards obtaining the initial meaning. MPI-IO supports

external and user-defined data representations. These make sure of proper handling of data coming

from a machine with a different architecture or another MPI environment. MPI-IO defines internal

data representations modes which ensure that file data written by one process can be read by any

other process within a single MPI environment [MPI-IO, 2003].

13

MPI-IO has proven to be effective in a heterogeneous computing environment. Parallel

programming using MPI benefits from ease of integration of MPI-IO.

2.3.2.2 PVFS

The Parallel Virtual File System (PVFS) is a parallel file system for clusters of workstations

[PVFS, 2009]. The main goal of PVFS is to provide high-performance data management over a

distributed environment, where concurrent access to files is common. It provides dynamic

distribution of I/O workload and in that way can scale even to high-end systems. Additionally,

PVFS is designed for managing large data sets - often of hundreds of terabytes. Data is dividing

across the discs of the cluster nodes giving applications multiple different paths to reach a file

through the network. Thus, bottlenecks are eliminated and total bandwidth is increased.

PVFS supports different access models - collective I/O, independent I/O, non-contiguous and

structured access patterns [PVFS, 2009]. It supports the UNIX I/O interface and allows existing

UNIX I/O programs to use PVFS files without recompiling. UNIX file tools (ls, cp, rm, etc.)

operate on PVFS files and directories as well. However, relying on the native UNIX tools for

parallel I/O introduces overhead as commands have to go through the operating-system’s kernel.

PVFS overcomes this obstacle by introducing a native API - a library which implements a subset of

the UNIX operations. It directly contacts PVFS servers rather than passing through the local kernel.

Another PVFS interface is ROMIO. It implements the MPI2 I/O calls in a separate library allowing

MPI programmers to access PVFS files through the MPI-IO interface.

PVFS defines three different roles of cluster nodes in the system architecture: compute node,

I/O node, and manager node [PVFS, 2009]. Normally, there is only one management node in a

system and other nodes are dedicated to either computing or data storage. In the case of small

clusters management, computation, and I/O can be carried out on the same nodes. The management

node maintains all metadata of the file system, controls operations on it, and validates permissions.

The metadata describes a file – for example, its name, owners, locations in the system, hierarchy in

the file system, etc. When a computing node needs to access a file it contacts first the management

node. Then, after all the necessary metadata is obtained, the computing node can start exchanging

file data with the I/O nodes. PVFS manages file data scattering and gathering completely

transparently. An application only uses the PVSF API. PVFS implements the different roles of

nodes through a set of daemons. Management and I/O nodes that run the corresponding daemons

exchange data with the computing nodes in a client-server mode.

PVFS is designed mainly to provide high performance parallel I/O. Taking this into

consideration together with the easy installation and implementation that relies on commodity

network and storage hardware, proves PVFS to be quite applicable for Beowulf-type clusters.

2.3.2.3 Hadoop

Apache Hadoop is a software platform that creates a distributed file system over the discs in a

cluster [Hadoop, 2009]. It is designed to unify storage resources of big clusters built of commodity

hardware. Based on Java it allows developing applications that process large data-sets. Data

manipulation is completely transparent to the user and furthermore, multiple copies of data are

maintained over the nodes. This provides applications with reliability and shorter paths to data,

resulting in high aggregation bandwidth.

14

 The distributed file system implemented by Hadoop (HDFS) takes care of storing file data

and reallocating it in case of failure [Hadoop HDFS, 2009]. HDFS relies on a computational model,

named Map/Reduce [Hadoop M/R, 2009], which has two main processing phases and manages to

reduce overall amount of data without loss of meaning. Applications are required to specify

input/output locations for files and also can define map and reduce functions to be applied over

them. HDFS API helps do this with appropriate interfaces and abstract classes. After a job is

configured in this way, data is divided into independent pieces which are then processed in parallel

by the map tasks. All computations of mapping are carried out in the memory across nodes and

results are then stored as files and handed in to the reduce tasks. Reducing collects the results;

forms a single file and applies the predefined reduce function on it.

Typically computation and storage jobs are carried out on the same node which facilitates

scheduling. Tasks are executed close to the data they operate on following the rule “Moving

computations is cheaper than moving data” [Hadoop HDFS, 2009]. Even though, HDFS

implements a client-server architecture having a single NameNode or master server that maintains

meta-data of files and controls the mapping of files to physical locations in the cluster. The other

nodes, named DataNodes, take care of the storage attached to them and serve read and write

requests. DataNodes perform data manipulations upon instruction of the NameNode. Clients contact

first the master server before they start exchanging data. HDFS maintains a file-system hierarchy

and stores data in files. Internally, files are stripped into blocks which are stored on different

DataNodes and replicas are also maintained.

HDFS is a Java framework that works on top of GNU/Linux operating system. It is designed to

bring up fault-tolerant file system on clusters of low-cost commodity machines. Namely, Bowulf-

type clusters could be a possible application.

2.3.2.4 Sector-Sphere

Sector-Sphere is an open source project of the National Center for Data Mining at the

University of Illinois at Chicago [Sector-Sphere, 2009]. It is a system for distributed data storage

over a single cluster or a network of geographically distributed clusters. It is designed to utilize

computers built of commodity hardware. Basically the system has two main components – Sector

and Sphere. They take care respectively of storage and computing services.

Sector is a distributed file system that combines resources of nodes and clusters interconnected

with high-speed commodity networks [Sector-Sphere, 2009], [Yunhong, 2008]. It provides tools for

data access and data manipulation. But mainly it focuses on maintaining file system semantics like

file hierarchy, user access control, and common file access APIs. It is designed for read intensive

tasks maintaining multiple replicas of files across the nodes in the cluster. Writing is slow because

Sector does it exclusively, meaning that when a file is being written no other operations are

permitted on this file. Similarly to other distributed file systems, Sector’s architecture comprises of

a master node that handles files metadata and coordinates the other slave nodes that store the files

and process requests. There is one additional security node that manages permissions and

passwords.

Sphere is built on top of Sector storage facilities, allowing it efficiently process data [Yunhong,

2008]. The system uses “stream processing paradigm” where stream refers to large static dataset.

Elements of the dataset are processed independently by a processing function or a group of

15

processing functions. This could be the Map/Reduce functions or other user-defined functions. Thus

large amounts of data could be processed in parallel in a distributed environment. Sphere takes care

internally of locating and moving of data, of load-balancing and fault-tolerance allowing developers

that use the API to focus on implementing data-intensive parallel applications.

2.3.3 High Level Middleware

2.3.3.1 Beowulf

According to [Buyya vol.1, 1999] no concrete definition of a Beowulf cluster can be given as no

two clusters of this kind share the same architecture. Nevertheless, Beowulf defines a class of

distributed cluster computing that strives for achieving highest performance on lowest price. This

design model results in machines less expensive than proprietary supercomputers or MPPs but of

comparable performance.

The most notable characteristic of Beowulf clusters is that they rely on low-cost commodity

hardware. With broad selection of models and manufacturers available for any specific component,

Beowulf clusters show great flexibility. They provide the possibility to configure, optimize and

restructure the system to optimally run a particular application whenever it might be advantageous.

The nodes of such a cluster are dedicated, meaning that their only purpose is to work on application

together. Hence, a node can only consist of the most basic components, such as one or many

processors, memory and means of network connectivity. Even hard drives can be omitted. Only the

head node necessitates a keyboard and a monitor. In most cases a Beowulf cluster consists of a few

old desktop computers interconnected via Ethernet. The term a Pile-of-PCs is very suitable for a

Beowulf cluster. The software or the middleware is what brings out the power of these computers

when working together. In contrast to MPPs which use mainly proprietary software components,

Beowulf uses no-cost open source software as foundation of the system. All of the nodes usually

run some distribution of Linux operating system. On top of it lies middleware which brings the

system together. Basically all Beowulf clusters use MPI and PVM libraries. In addition other

software components may be added according to the application that the cluster is being used to

run. For example schedulers like MAUI and openPBS can be used together with resource managers

like Condor. The core development environment for Beowulf machines is typically a GNU

compiler, of which C, C++ and FORTRAN are most commonly used.

These characteristics of Beowulf clusters make them very suitable for utilizing an environment

of heterogeneous computer components for achieving high performance. Beowulf.org gives a short

definition of Beowulf: “Beowulf clusters are scalable high-performance clusters based on

commodity hardware. Some Linux clusters are built for reliability instead of speed. These are not

Beowulf.”

16

2.3.3.2 OSCAR

OSCAR (Open Source Cluster Application Resources) is a software package that simplifies the

process of setting up a cluster [Sloan, 2004], [OSCAR, 2009]. A collection of open source cluster

software, OSCAR includes everything that one might need for a Beowulf-type, high-performance

cluster. Installing OSCAR builds a completely functioning cluster out of a network of computers.

Thus it is suitable for novices in the area of cluster computing, allowing them to gain experience

after they build a cluster.

OSCAR is designed with the idea to bring high performance to cluster computing but in practice

it can be used for any cluster application. Basically, its design suggests that the computer nodes are

dedicated to the cluster. Some of them can remain in standby mode waiting to take over if a failure

occurs implementing in this way asymmetric cluster architecture [Sloan, 2004]. Usual OSCAR

architecture consists of one head/server node and many other client nodes. Installation is done on

the cluster's head node first. Then the OSCAR installs the remaining machines, from the server

using the System Installation Suite (SIS). Since the head node is used to build the client image, it is

also the home for most user services, and is used to administer the cluster.

OSCAR was born with the idea of moving cluster installation towards a unified standard. That

is why OSCAR is a complete system that installs “best-of-class” software in one stroke eliminating

the need of downloading, installation, and configuration of individual components. Still, most of the

components exist as standalone versions and undergo further development and improvement.

Installation is very flexible allowing the user to exclude some packages and include others

depending on the overall purpose of the cluster and thus, for example, turning a high-performance

cluster into a high-availability one. The package contains MPI, OpenMPI, PVM, MPICH and LAM

(Local Area Multicomputer is an MPI programming environment and development system for

heterogeneous computers on a network) [OSCAR, 2009]. For scheduling OSCAR relies on the

Torque Resource manager and the MAUI Scheduler. The Maui scheduler handles task scheduling

using some more sophisticated algorithms. These algorithms show to be very flexible allowing also

to be configured by the cluster administrator. Torque has a first-in-first-out scheduler, but by default

OSCAR uses the Maui Scheduler as it is more flexible and powerful. The Cluster Command

Control (C3) tools comprise a set of cluster tools that take care of, for example, global command

execution, remote shutdown and restart, file retrieval and distribution, and process termination.

In addition the OSCAR package can be also installed on PlayStation3 running YellowDogLinux

(YDL) 5.0. This functionality gives the possibility to include graphical processors in a cluster like

the 8-core Cell Processor which PlayStation3 comes equipped with.

2.3.3.3 OpenMosix

OpenMosix (Multicomputer Operating System for unIX) is a Linux kernel extension that turns a

collection of ordinary computers into a supercomputer [Sloan, 2004]. The software package

facilitates setting up a high-performance cluster with putting aside worries of installation of extra

libraries and doing extra configurations. Applications often need little or no change to run on such

an environment. It also supports a graphical management interface – openMosixView. Additionally

it integrates very well within a Beowulf environment improving the performance of an MPI or

PVM [Moche, 2002]. However, the openMosix Project has officially closed as of March 1, 2008.

Nevertheless, it is currently still available for use and download.

17

A big advantage of OpenMosix, in contrast to other cluster environments, is when running an

application on such cluster it requires no recompilation or integrations of additional libraries. MPI

applications greatly benefit from this. OpenMosix also supports automatic resource-use

optimizations techniques that control distribution of application’s processes over the cluster. It

implements advanced algorithms based on market economics. Although a process starts one node,

automatically it is determined whether it would be better to run it on another, less loaded node. This

process can be controlled by the system administrator, too. He can affect the load at runtime by

manual configuration beforehand, specifying where applications have to run and directing the load

distribution to certain nodes. There are some limitations to this process, however [Buytaert, 2004].

For example, applications that rely on pthreads will not migrate, but this is considered to be a Linux

problem instead of an OpenMosix limitation. Furthermore, OpenMosix features a tool for auto-

discovery which makes configuration of an OpenMosix cluster very easy. The tool detects when

new nodes are added or removed from the network and modifies configurations on all nodes to

reflect the changes.

2.3.3.4 CAOS NSA/ Perceus

 CAOS-NSA is an open-source Linux distribution that is entirely community-managed and

maintained [CAOSHome, 2009], [CAOSWiki, 2009]. Initially, it was developed together with the

operating system CentOS as a Community Assembled Operating System (CAOS-Linux). Both of

them are descendents of Red-Hat. The latest version CAOS-NSA 1.0, however, is combining

various features of GNU/Linux in order to make the distribution simple, lightweight and fast. The

goal of the developers is to implement a stable core operating system that can serve to be the basis

for building different kind of clusters, servers, custom appliances.
 CAOS-NSA (Node, Server, Appliance) 1.0, supports all x86_64 and i386 hardware varying

from desktop machines to servers and clusters. It is an “all-in-one” suite that fully integrates all

specific tools needed to turn a computer into a production server or a network of computers into a

high performance cluster. CAOS-NSA simplifies cluster installation by combining the operating

system and the Cluster Management System (CMS) in one distribution [Layton, 2009]. CMS is a

tool or set of tools that help achieving a basic single system image (SSI) from separate computing

nodes. It creates an image of an operating system, transfers it to the nodes, installs it and then starts

monitoring them. CMS is not cluster middleware in the sense that it does not do scheduling,

mapping or solve problems in parallel [Layton, 2008]. The CAOS system manager Sidekick takes

care of installing components and tools for cluster deployment. Perceus is the main component that

CAOS-NSA integrates. It installs all nodes together with cluster middleware and prepares the

environment for running parallel jobs. It includes OpenMPI for message passing support, Warewolf

for monitoring, Slurm and Torque for scheduling [CAOSHome, 2009]. Additionally, it can install a

parallel file system like PVFSv2 or Hadoop and support of fast communication links like

InfiniBand, which are commonly used in modern HPC clusters [CAOSWiki, 2009].

2.3.3.5 ROCKS

 ROCKS is a cluster deployment tool designed and implemented by the Rocks Cluster Group

at the San Diego Supercomputer Center at the University of California [ROCKS, 2009]. It is a

complete software bundle that installs everything that one might need to turn a network of

computers into a production parallel environment. It can be referred to as a “cluster out of a DVD”.

18

The installation package of ROCKS includes even the operating system – CentOS. ROCKS is

tightly integrated into the operating system and not only installs it automatically but also configures

it together with all necessary low-level tools in order to achieve a single-system image from the

computers in a cluster.

 Additional tools for parallel computations, scheduling and mapping, monitoring,

virtualization, etc. are also included in the “bundle”. They can be installed and configured at initial

set up or later, when there is need for them. ROCKS implements a separation strategy for its

components – different packages are available in the form of rolls. The rolls are defined by their

purpose and can include a whole set of different tools in them. Thus, a single installation adds to the

cluster a new feature instead of a new tool. An example is the HPC roll that includes OpenMPI,

MPICH, MPICH2, PVM and additional benchmarks for testing their functionality. Other rolls that

come with the installation of ROCKS 5.1 are Area51, Bio, Ganglia, Java, SGE and Xen. The Area

51 roll takes care of system security, the Bio roll installs bioinformatics utilities, Ganglia is a cluster

monitoring tool, Java installs Sun Java SDK and JVM, SGE is the Sun Grid Engine job queuing

system, and Xen installs tools for virtualization. In addition, there are also available for installation

the Condor roll which adds to the system the high-throughput computing tool Condor, the pvfs2

roll, which installs the parallel virtual file system v2, and, finally, the Torque/Maui roll which

includes the job queuing system Torque and the scheduler Maui (packaged by HPC Group at

University of Tromso, Norway). All these tools are installed and configured automatically, so that

users have a fully-functioning cluster environment at the end of the installation process.

Furthermore, third-party rolls can add different functionality to the cluster like support of high-

speed cluster networks like Myrinet and Infiniband, or for parallel programming on graphical

processors with CUDA.

2.3.4 Grid Middleware

2.3.4.1 Condor

The following section is based on the description of Condor on its home page

Condor is the product of the Condor Research Project at the University of Wisconsin-Madison

[Condor, 2009]. It is a scalable software system that creates a High-Throughput Computing (HTC)

environment. It usually utilizes large collections computing resources that are of distributed

ownership. In contrast to High Performance Computing (HPC), which delivers a tremendous

amount of compute power over a short period of time, HTC focuses on the need of large amounts of

computational power over a long period of time. Problems computed are of a much larger scale.

Interest is on how many jobs can be completed over a long period of time instead of how fast an

individual job can complete.

Condor is a full-featured batch system that distributes the workload of compute-intensive jobs

[Condor, 2009]. It was the scheduler software used to distribute jobs for the first draft assembly of

the Human Genome. Condor implements different scheduling techniques that include job queuing,

different priority schemes and scheduling policies as well as mechanisms for resource monitoring

and resource management. Jobs are submitted to the system, which places them in a queue and then

according to certain policies decides when and where to run them. Distribution of jobs works on the

basis of issuing resource requests and resource offers by the individual nodes. The ClassAd

19

mechanism provides a flexible framework for matchmaking resource requests with resource offers.

In addition, users can influence the process of mapping by describing and prioritizing jobs.

While providing functionality similar to that of a more traditional batch queuing system, Condor

can be used to manage a cluster of dedicated compute nodes (such as a "Beowulf" cluster) [Condor,

2009]. It is suitable for cluster resource management as well as for efficient job distribution. The

idea is to install it on every machine that is part of the cluster. A Condor cluster is referred to as

pool. Jobs can be launched from any machine, which gives certain flexibility to architecture design.

After a job is submitted, Condor searches for a currently idle machine with resources that match the

requirements of the job. When such a machine is found, Condor transfers the job, executes it and

gathers the results back on the initial machine. In addition Condor has been ported to most primary

flavors of Unix as well as Windows. A single pool can contain multiple platforms which gives

possibility to utilize a heterogeneous environment.

One of the features of Condor is that it does not require programs to be modified to run on the

cluster [Condor, 2009]. But code can be associated with the Condor libraries gaining the ability to

produce job checkpoints and perform remote system calls. A checkpoint contains the thorough

information about the state of a job allowing it to be resumed on every other machine at any time.

This is both a failover mechanism and a mechanism that returns the resources of a machine to its

owner in the case of a non-dedicated cluster environment. For long-running computations, the

ability to produce and use checkpoints can save days, or even weeks of accumulated computation

time. Condor uses remote system calls to preserve the local execution environment and hide that

jobs are executed on remote machines. To users a program feels like being executed on the local

machine. Condor determines the remote node or set of nodes to execute the program’s tasks and

also takes care of logging-in and transferring the data needed for the computations.

Condor can be used to build Grid-style computing environments that cross administrative

boundaries. A "flocking" technology allows multiple Condor compute installations to work together.

Additionally, Condor incorporates many of the emerging Grid-based computing methodologies and

protocols. For instance, Condor-G is fully interoperable with resources managed by Globus.

Condor-G allows Condor jobs to be forwarded to foreign job schedulers. Currently, Torque/PBS

and LSF are supported. Support for Sun Grid Engine is also under development.

2.3.4.2 Globus ToolKit

Globus ToolKit (GT) is an open-source software “toolkit” used to bring together computing

resources, databases and other tools across geographically distributed networks [Foster, 2005].

People can share resources securely without sacrificing local autonomy. The toolkit supports

resource monitoring, discovery, and management, as well as file management, all carried out upon

secure channels.

Globus relies mostly on Web Services to define its interfaces and structure its components

[Foster, 2005]. For example, web services use XML-based mechanisms to describe, discover or

invoke network services. What is more, these document-oriented protocols are very well suited for

loosely coupled computations, which are preferred in distributed systems. GT uses Web services for

most of its major components. The Grid Resource Allocation and Management service (GRAM)

implements interfaces for management of computational elements, Reliable File Transfer service

(RFT) manages data transfers. The GridFTP provides libraries and tools for secure, reliable, high-

20

performance data movement but it still does not implement web services.

Mechanisms for monitoring and discovery of resources are very important in a distributed

environment [Foster, 2005]. Globus implements them in its MDS system. Monitoring of resources

allows administrators to find and diagnose problems early. Discovery mechanisms identify

resources and find services which meet desired properties. Both, collect information from multiple

and perhaps distributed sources. GT implements data exchange using XML-based resource

properties and accesses them via either pull mode (query) or push mode (subscription). These

mechanisms are built into every GT service and container, and can also be incorporated easily into

any user-developed service. Globus also provides three aggregator services that collect recent state

information from registered information sources.

Security in distributed environments is another important issue considering that multiple users

from different locations can access a grid network [Foster, 2005]. At the lowest level GT

implements protocols that support message protection, authentication, delegation, and authorization.

GT relies on X.509 public key credentials. When communication takes place entities can validate

each other’s credentials, or use them to create a secure channel for message exchange. Furthermore,

delegated credentials can be created, transported and used in a way that allows a remote component

to act on a user’s behalf for a limited period of time.

21

Chapter 3

Installation Report

This chapter focuses on high level cluster middleware and its installation process. It shows the

process of installing and configuring a cluster using three different tools for cluster deployment –

OSCAR v6.0.2, CAOS-NSA v1.0, and ROCKS v5.1. For this, eight machines were used in total for

building two separate testing clusters. All used computers have commodity hardware installed on

them. What is more, all machines are completely different, meaning that they use different

processors, have different physical memory capacity and storage capacity. Table 1 shows the

utilized hardware configuration. Computers 1 to 4 are used for creating the first testing cluster and

computers 4 to 8 were used for the other. Additionally, the testing environments use entirely

commodity means of networking - Ethernet. Machines in the both clusters are connected into two

separate 100Mbit switched networks using small (5 ports), 100Mbit switches Netgear.

 Comp. 1 Comp. 2 Comp. 3 Comp. 4 Comp. 5 Comp. 6 Comp. 7 Comp. 8

CPU Intel

Pentium4

@

2,40Ghz

Intel

Pentium4

@

2,40Ghz

Intel

Celeron

@

2.60Ghz

Intel Core

2 6300 @

1.86Ghz

AMD

Athlon 64

3000+ @

2Ghz

AMD

Athlon 64

3000+ @

2Ghz

Intel

Pentium3

@

866Mhz

AMD

Athlon 64

4200+

Core2

@2.2Ghz

RAM 0.99 GB 1.98 GB 1.48 GB 2 GB 1 GB 1 GB 1 GB 2 GB

Table 1 Testing hardware environment

In particular the chapter focuses on three different tools for cluster deployment – OSCAR,

CAOS-NSA, and ROCKS. Section 3.1 describes OSCAR cluster suite. Section 3.2 gives an

overview of CAOS NSA and Perceus together with a detailed description of installation of PVFS

v2. Then, Section 3.3 describes ROCKS and installation of PVFS v2.

3.1 OSCAR 6.0.2

3.1.1 Why OSCAR?

OSCAR is a tool designed to ease cluster installation. What is more, according to its home page

[OSCAR, 2009], OSCAR suite includes “everything needed to install, build, maintain, and use a

Linux cluster”. Installation uses a graphical interface that guides users through a process that is

usually considered to be very difficult. Building a Beowulf-type of cluster consists of a lot more

work than just connecting computing nodes into a network. One should focus on details that might

be starting from hardware and choosing a proper operating system that not only supports that

hardware but also utilizes it in the best way. Then comes the installation of all different nodes

together with the configuration of services like secure remote login (ssh), time synchronization

using NTP (Network Time Protocol), network addressing and name resolution, the maintenance of a

database with node information, the management of local repositories. This is just a small example

22

of tools and services that might be necessary to bring a network of computers to work as one

computer. In addition, low level middleware like a parallel file system or an MPI implementation

needs to be installed and configured to make the cluster able to perform parallel computations. If all

this is taken to the scale of several hundred computing nodes, one could imagine the amount of

work necessary for building a cluster and the chance for error that is introduced in such process.

The Beowulf type of clusters only suggests that commodity low-cost hardware is used together with

open-source operating system and tools in order to reduce the price to power ratio [Buyya vol.1,

1999]. Achieving a production environment of this kind could be a demanding task even for experts

in the field.

OSCAR is an effort to automate the whole building process creating an all-in-one suite that

takes care of installing and configuring all necessary components [OSCAR, 2009]. The cluster

installation process comes down to installing OSCAR on one computer or head-node and then all

other nodes connected to it get installed automatically. In this way, one builds a fully-functioning

and fully-configured cluster with one installation which is of the primary reasons to start our cluster

set-up with OSCAR. The suite itself contains some of the most widely used low level middleware

in the area of high performance computing. It includes OpenMPI, PVM, MPICH and LAM (Local

Area Multicomputer is an MPI programming environment and development system for

heterogeneous computers on a network) [OSCAR, 2009]. Compared to other high level middleware

like ROCKS or CAOS NSA, OSCAR builds a complex environment with a wide range of tools and

thus provides a broader opportunity for experimenting and testing. For scheduling OSCAR relies

on the Torque Resource manager and the MAUI Scheduler. The Cluster Command Control (C3)

tools comprise a set of cluster tools that take care of global command execution, remote shutdown

and restart, file retrieval and distribution, and process termination. All these are stand-alone

components and OSCAR mechanism allows using their newest releases, thus building a computing

environment that is up-to-date with latest achievements in the area of HPC.

Furthermore, OSCAR is an out-of-the box cluster installation. It is a package that installs on top

of an existing Linux distribution. Similar to the way Windows users are installing software, OSCAR

uses an installation manager that installs it on the existing operating system. In comparison,

ROCKS first formats the hard-drive, installs CentOS and then integrates itself on it. CAOS NSA is

a stand-alone Linux distribution that is optimized for cluster computing. OpenMosix is a Linux

patch. This independence of the underlying operating system makes OSCAR very flexible. Users

have the possibility to utilize any hardware in hand as long as the operating system supports it. This

gives the opportunity to take full advantage of heterogeneous environments and use them for high

performance cluster computing. OSCAR was designed with the idea of being very portable.

However, achieving full platform and hardware independence is still far from possible. Currently

OSCAR supports different Linux distributions by developing packages especially for each of them.

What is more, the installation differs between distributions for different hardware architectures like

x86_64, i386 or ppc (power PC).

Among other reasons for testing OSCAR before other middleware lies the fact that it really can

be installed on low-cost commodity hardware. System requirements specify a CPU no older than

i586 and storage space of at least 8GB (4GB for / and 4GB for /var) for the head-node. In

comparison, ROCKS requires at least 1GB of memory and at least 30 GB of storage space per node.

Even though such hardware is not that hard to find today, the possibility to use older computers is

essential for our project and hence this could be considered as a big advantage of OSCAR.

23

3.1.2 Two Versions of OSCAR

Currently OSCAR exists in two versions [OSCAR, 2009]. Developers maintain version 5.1

which was released in 2008 and is still considered to be the latest production version. At the time of

writing version 6.0.2 is the latest release which dates from April 2009. The reason for the

maintaining two separate versions lies in the effort of reaching the state of independence from the

operating system. While version 5.1 comes as a complete software bundle with everything included

in it, version 6.0.x implements a completely new installation strategy using binary packages.

To understand this better one should become familiar with the architecture of OSCAR. At the

lowest level OSCAR is a set of tools aimed at deploying and configuring sets of machines. These

components for basic functionality form the OSCAR core. The core depends on other software

components. Together with 3rd party software they form OSCAR base. What is remarkable about

this approach is the separation of elements into independent binary packages. In this case the

version of OSCAR is actually the version of the core. According to the design, the core should be

independent of all 3rd party software and other “external” tools that are installed through RPM/deb

dependencies. That way packages can change and update without affecting the core or an already

working cluster set-up. The OSCAR infrastructure can use regular RPM/deb packages to install

tools for parallel computation. The services and interfaces that connect these “external” tools to the

OSCAR core are called OSCAR packages (Opkg). This separation of roles allows changing only

opkg packages to tune a system for using a new implementation of a tool. An installation approach

like this one provides more flexibility and scalability. In contrast to the all-in-one version 5.1, where

particular versions of tools are tightly integrated into the package, the new version 6.0.x implements

dependencies of the type “greater than” and “less than”. This allows changing one tool with a newer

version without breaking any functionality. For example when Oscar-core is installed and it

depends on system-imager 4.1.3. If for a particular Linux distribution system-imager 4.1.6 is

available, then it will be installed. Current work, however, still shows OSCAR to be rather limited.

Undergoing work has managed to port OSCAR core and base to the newly supported Linux

distributions. Third party binaries for parallel computation are not yet fully supported.

Introducing this new approach to installation is actually a solution to supporting a broader range

of Linux distributions. While an all-in-one installation package has to be ported for each platform

and Linux distribution, tuning the new installation requires changing only certain packages. That

way, developers of OSCAR can tune the suite faster and with less chance of error. Initially OSCAR

was developed especially for Red Hat Linux. Today the suite aims to support the most popular

distributions both of the Red-Hat and Debian family. Table 2 shows the distributions that version

5.0 supports [OSCAR, 2009]. People familiar with evolution of the Linux operating system can

easily see that the listed distributions are with rather limited variety and are also rather outdated.

Although developers surely do their best to keep up with the changes in the operating systems,

OSCAR is still far from being independent from them and thus provides rather limited choice for

parallel research. Work is underway for version 5.2 beta that provides broader support to new

distributions including YellowDog Linux that can be installed on Sony Play Station 3. On the

contrary, the new approach to the installation of OSCAR shows that this goal can be achieved.

Table 3 shows the distributions supported already in version 6.0.2. These distributions are both

relatively new and update packages could still be found for them. According to the OSCAR home

page [OSCAR, 2009] the new approach introduces fast improvement as already Debian 4 Etch is

supported together with partial support of the new Debian 5 Lenny and their relatives Ubuntu 8.4

24

and Ubuntu 8.10. These operating systems are already “today’s” technology and are broadly

supported with update packages and security patches. An installation of a cluster could now be done

without worries of having security vulnerabilities with the nodes connected to internet. The cluster

can be secured using the built-in functionality of the operating system like better firewalls or relying

on the fact that “known” security “holes” are fixed.

Distribution and

Release

Architecture Tarball Name

part

/tftpboot/distro/ path

Fedora Core 4 i386 fc-4-i386 fedora-4-i386

Fedora Core 4 x86_64 fc-4-x86_64 fedora-4-x86_64

Fedora Core 5 i386 fc-5-i386 fedora-5-i386

Fedora Core 5 x86_64 fc-5-x86_64 fedora-5-x86_64

Mandriva 2006 i386 mdv-2006-i386 mandriva-20060i386

SuSE Linux 10.0
(openSUSE)

i386 suse-10.0-i386 suse-10.0-i386

Redhat Enterprise Linux

4 AS

i386 rhel-4-i386 redhat-el-as-4-i386

Redhat Enterprise Linux

4 WS

i386 rhel-4-i386 redhat-el-ws-4-i386

Redhat Enterprise Linux
4 AS

x86_64 rhel-4-x86_64 redhat-el-as-4-x86_64

Redhat Enterprise Linux
4 WS

x86_64 rhel-4-x86_64 redhat-el-ws-4-x86_64

Scientific Linux 4 i386 rhel-4-i386 scientificlinux-4-i386

Scientific Linux 4 x86_64 rhel-4-x86_64 scientificlinux-4-x86_64

CentOS 4 i386 rhel-4-i386 centos-4-i386

CentOS 4 x86_64 rhel-4-x86_64 centos-4-x86_64

Table 2 – Supported distributions by OSCAR 5.0.

Source: OSCAR home page [OSCAR, 2009]

Distribution and Release Architecture Status Known Issues

Red Hat Enterprise Linux 5

/ CentOS 5

x86 Fully supported None

Red Hat Enterprise Linux 5
/ CentOS 5

x86_64 Fully supported None

Debian 4 x86 Fully supported Not all OSCAR packages are
supported

Debian 4 x86_64 Fully supported Not all OSCAR packages are

supported

Ubuntu 8.04 x86 Fully supported Not all OSCAR packages are

supported

Ubuntu 8.04 x86_64 Fully supported Not all OSCAR packages are

supported

Debian 5 x86_64 Experimental Testing still needed

Fedora Core 9 x86 Experimental Testing still needed

Open Suse 10 x86 Experimental Testing still needed

Table 3 – Supported distributions by OSCAR 6.0.2.

Source: OSCAR home page [OSCAR, 2009]

 Another goal of the new installation approach is to provide support for the Debian family of

Linux distributions. Currently, the Linux world is divided between the Red-Hat’s and Debian’s

installation packages and systems that manage them. Binary packages of the two systems are

incompatible with each other and thus a software installation must be ported separately for both of

them. Red-Hat defines its software package format as RPM (Red-Hat Package Manager) while

Debian packages just use the file format “.deb”. The RPM family includes Fedora Core, CentOS,

25

Scientific Linux, Mandriva, Suse, etc. While OSCAR was initially developed to support only RPM

based systems, the latest version focuses on supporting Debian too. Currently only OSCAR core is

ported for Debian and none of the tools for parallel computation could be installed yet.

OSCAR stores all packages in online repositories. The differences between the two Linux

families suggest different organization of the repositories for them [OSCAR, 2009]. The Debian

world assumes that the repository is driven by the version of the distribution and thus OSCAR

version cannot be included in the name of the repository. What is more, packages for different

architecture and distribution can be stored together (e.g. Debian 4 and Ubuntu 8.04). In this case, an

installation tool like apt-get relies on proper metadata description to determine which the needed

packages to install are. In contrast, in the RPM world the repository name specifies distribution,

version and architecture. A common solution that OSCAR is using is a name including only

distribution and architecture. For example the online repository for OSCAR 6.0.2 is

http://bear.csm.ornl.gov/repos/debian-4-x86_64/ etch /.

The installation of the suite itself is straightforward. The user specifies a repository address

like the one already mentioned. Depending on which family the hosting operating system belongs

to, the address is specified either in the /etc/apt/sources.list for Debian systems, or by placing a file

with the address in it in /etc/yum.repos.d for RPM-based ones (See Table 4). Then the OSCAR

packages are automatically downloaded and installed using a package management tool like yum

for RPM systems or apt-get for Debian. To complete the installation one should follow the

described steps in Table 3 logged in as root user.

 Debian Based Systems RPM Based Systems

Installation on the head node

1 Define online

repository (e.g.

for a x86_64
architecture)

Copy

http://bear.csm.ornl.gov/repos/debian-

4-x86_64/ etch / in
/etc/apt/sources.list

Add the following file: CentOS-

x86_64-OSCAR.repo to

/etc/yum.repos.d

2 Update the

system (Do not
upgrade)

apt-get update yum update

3 Installation of

OSCAR

apt-get install oscar yum install oscar yume

packman orm perl-AppConfig

4 Specifying the

current

distribution

oscar-config –setup-distro <distro>-

<version>-<arch>

oscar-config –setup-distro

<distro>-<version>-<arch>

5 Install

prerequisite

packages and
OSCAR server

packages. Start

services

oscar-config --bootstrap oscar-config --bootstrap

6 Check if system

is properly

configured

system-sanity system-sanity

Cluster Installation

7 Start OSCAR

cluster
installation GUI

oscar_wizard install oscar_wizard install

Table 4 – Installation process of OSCAR

26

3.1.3 Installation

The whole installation process is well described in the documentation of OSCAR provided

online [OSCAR, 2009]. That is why this section focuses on some points that determine the

installation process as well as it describes experience gained from installing OSCAR 6.0.2 on

different Linux distributions.

3.1.3.1 Environment Considerations

 OSCAR is designed to implement a typical Beowulf cluster architecture. The installation

process first installs OSCAR on the head-node (server, frontend, master node) and then it uses this

installation to distribute itself and install on the client nodes (computing nodes). The head-node is

usually a computer more powerful than the rest of the nodes in terms of memory capacity and

processing power. It serves the requests of the clients, maintains a database with client information,

distributes jobs among the clients, etc. In the case of OSCAR the only actual requirement for the

head-node is to have two network interfaces. One is required to connect the head-node to the

Internet and the other to connect it to the cluster network. OSCAR builds a cluster having only the

head node connected to the “outside” world. The rest of the computing nodes utilize a local

switched network. The head-node is the only one accessible on the internet and thus serves as a

firewall for the rest of the cluster. That way installation does not have to take care of configuring

security on the computing nodes. The head-node can be configured to use a firewall or port

forwarding. It even can implement routing policies to provide access to the internet for the

computing nodes. This, however, has to be configured manually as it is not part of the OSCAR

installation. OSCAR only gives addresses to the nodes from a specified range and takes care of

name resolution by modifying the /etc/hosts file.

 According to the OSCAR installation guide provided on its home page [OSCAR, 2009],

OSCAR can be installed on a pre-existing server nodes but it is highly recommendable to use a

fresh installation for building a new cluster. What is more, one should be very careful when

choosing a distribution and should first consult with the documentation whether a distribution is

supported and to what extent (see to Table 2 and Table 3). Although work is underway the current

version is reported to work thoroughly only on Red Hat Linux. However, obtaining update packages

for this distribution requires a license and it is not free. Thus, free distributions like Debian are

preferred. However, at the time of testing installation supports only OSCAR core and base packages

without support of any additional tools for parallel computing. They have to be installed separately

after building the cluster.

Having a fresh installation one should not hurry and upgrade it because OSCAR still might

depend on older versions of some tools. One should consider upgrading only security packages and

installing security patches. Upgrades can install new versions of tools like the scripting language

python, visualization libraries that the OSCAR GUI depends on, and many others. OSCAR makes

heavy use of Perl and Python script for its installation and configuration and changing their versions

might result in loss of functionality. Furthermore, often, even the kernel itself gets renewed and this

means that the current version of OSCAR will no longer work because it is not supported. In this

case the node has to be reinstalled and configured again.

27

 What should be initially considered when configuring the head node is networking. The

head-node needs to have Internet connectivity especially if a version 6.0.x is being installed as it

uses online repositories to download the packages from. The configuration can be done using either

the Command line interface (CLI) or a graphical network management tool. One might stumble

upon problems of any sort. For instance, Ubuntu 8.10 has a bug with the Gnome Network Manager

included with the release. It resets any static IP address settings when system is rebooted and sets

the system to use dynamically obtained addressing via DHCP. This could cause troubles with an

OSCAR cluster because it usually uses static addressing for the local network interconnecting the

nodes and the head-node. The solution is to remove the Gnome Network Manager and manually

configuring the interfaces by modifying the /etc/network/interfaces file. Tutorials for configuring it

can be easily found on the Web. Another thing that could cause trouble is the naming which the

operating system uses for the network interfaces. By default OSCAR is configured to use eth1 as

the interface connected to the public network and eth0 as the one that connects the frontend to the

cluster network. In a case when the head-node operates in a corporate network it might get its

addressing configuration via DHCP. Then, in order to have internet connectivity an interface’s

hardware address may be registered in the network. If the case is such that eth0 is registered and

eth1 is not, one might want to use them the other way around. OSCAR defines which interface to

use for the internal network in its configuration file. It can be changed in the first line of

/etc/oscar.conf. Furthermore, configuration of a firewall has to be carefully done for the local

network in order not to restrict access to and from the computing nodes.

3.1.3.2 Installing OSCAR on the Head-node

Installing an OSCAR cluster starts with the installation of an appropriate operating system

in accordance with the list of supported Linux distributions (see Table 2 and Table 3). Then one

should think about configuration especially of networking. Only then, after the head node is

prepared OSCAR can be installed on it (see Table 4). If the operating system is supported

installation goes straightforward without any errors. Our experience showed that this is rarely the

case with OSCAR 6.0.2. Bootstraping the system on step 5 (see Table 4) prepares the head-node for

being a server for OSCAR services. At this stage it downloads and installs prerequisite 3rd-party

packages needed for OSCAR installation and operation. It also starts and restarts services. Often,

during this step errors are generated about missing packages and dependencies. OSCAR was

implemented to try finding the missing packages and installing them on its own. However, one

might need to install some dependencies manually. Some distributions, like Ubuntu 8.x, are rather

light in terms of included tools and packages. Installation on Ubuntu 8.10 required manual

installation of 16 packages including openssh, apache2, mysql-server, nfs-kernel-server. At the time

of testing only Ubuntu 8.04 was reported to be supported. It managed to find these packages on its

own and install them. In this case one could observe how important it is to install a supported

distribution. However, OSCAR did not install on Ubuntu 8.04, too. The bootstrapping stage did not

find a package system-imager-initrd-template-<arch>, where <arch> specifies some different

architectures like ppc, ppc64, ppc64-ps3, etc. A search showed that such package exists only for

i386 and x86_64 architectures, and not for the ones reported missing. These two packages could not

be installed as they depend on opkg-sis-server which turned out not to support them.

When the bootstrapping stage succeeds, the software environment on the head-node is

prepared for OSCAR installation and deployment of the cluster. One should check this by executing

system-sanity check. It runs a series of scripts that check configuration. Usually it returns a warning

28

or error message about network configuration. This can be fixed by configuring the /etc/hosts file

because the scripts check configuration in this file.

At this point the installation can continue by using the graphical user interface of OSCAR

(see Table 4, step 7). Bringing up this interface of course requires the Linux distribution to support

either of the two Linux graphical environments – KDE and GNOME. The oscar-wizard install

command launches the interface. Oscar documentation gives a detailed description of the interface

and how one can use it [OSCAR, 2009]. Here it is worth mentioning that the interface uses perl-Qt

libraries for drawing on the screen and thus might not run if it does not find some components. At

the time of testing OSCAR 6.0.2 on Fedora Core 9 had this problem. Although, according to

OSCAR documentation this problem is only with OpenSUSE, it turned out that FC 9 also needs to

manually install the Qt packages (qt, qt3-devel, libsmokeqt, libqt3). Proceeding with the

installation, one should be aware that step 3 of the graphical interface installs OSCAR core, servers

and components onto the head-node. The installation can also fail on this step. Fedora Core 8 is

missing a package python-elementtree. This package is reported to be obsolete with Fedora Core

and has been dropped out as being too old. OSCAR 6.0.3 is reported to have fixed problems like

this and that now it supports FC 8 and 9.

The installation of OSCAR 6.0.2 was fully successful only on Debian 4 Etch. Even though

the head-node in hand was of 64-bit CPU architecture a decision was made to install Debian 4 for

32-bit architecture. One should pay attention to what hardware is available for the cluster. The

operating system, installed on the head-node, gets included in the client image and thus is

distributed among the computing nodes during cluster set-up. If there are nodes of 32-bit

architecture in the heterogeneous environment a possibility arises of having serious difficulties

when trying to install the OSCAR image on those nodes. What is more, most 64bit commodity

computers can operate simulating 32bit mode exactly because of compatibility issues with the

operating systems. On the other hand, OSCAR provides a possibility to tune the image and build

different images for different sets of nodes according to their architecture. This, however, increases

the chance of having a serious problem with cluster deployment and was not a preferred option at

the time of testing.

The installation process is without any errors only when relying on some tricks that take

advantage of the development work on OSCAR 6.0.3. Starting with a “clean” installation one

should keep in mind to remove the word testing from all mirrors listed in /etc/apt/sources.list.

Because this file defines the http and ftp addresses the system uses for downloading updates, it is

crucial not to allow downloading of new testing versions of tools. Then the system should be

updated but not upgraded. This means that only lists of available updates are downloaded without

the files themselves. The difference is more obvious when considering the two separate commands

apt-get update and apt-get upgrade. One should follow the steps of the installation process

described on OSCAR’s home page (see Table 4). According to the architecture of the Linux

distribution a choice has to be made whether to use the online repository for x86_64 and i386

architecture. On step 7, when trying to run the installation GUI, OSCAR issues an error message for

not finding a Selector.pl file. For fixing this, one should configure OSCAR to use the unstable

online repository by changing the /etc/apt/sources.list file and/or /tftpboot/ distros/debian-4-i386.url

file. Initially the /tftpboot/distros folder and the file do not exist. They are created only when

distribution is defined on step 4 of the installation process (see Table 4). After this adjustment

OSCAR needs to be bootstrapped once again. When dependencies are resolved one should change

29

back to the original repository. It is important to change back the file before installing the server

packages at step 3 of the GUI interface. It is not recommended to specify the unstable repository at

initial set-up because that will lead to downloading and installing the next testing version of

OSCAR and related packages. Specifying the stable repository downloads and installs packages

from the current release. In this matter one should be very careful when changing the

/etc/apt/sources.list file and then issuing an update (or upgrade) of the system with apt-get update

(upgrade). Still, fixing some problems regarding dependencies and missing packages might require

switching to the address of the unstable repository. Currently there are two online repositories that

can be used. One starts with: “http://bear.csm.ornl.gov/ repos/” and the other starts with

“http://bison.csm.ornl.gov /repos/”. Both can be configures in /tftpboot/distros/debian-4-i386.url

file. Changing between the unstable repositories on these two servers showed to be helpful and

eliminated some errors at step 3 of the GUI installation. When the dependencies are resolved one

should remember to change back to the original repository address.

3.1.3.3 Installing the Cluster

OSCAR gets installed and configured by following the process described in Table 4 and the

steps of the GUI installation manager. The installation process guides users through deploying the

cluster as well. The cluster deployment starts at step 4 (“Build OSCAR Client Image…”) of the

GUI installer. At this step OSCAR builds an image of the existing operating system and its

configuration. The image is approximately 2GB of size and is stored in

/var/lib/systemimager/images directory. Interface prompts users to specify CPU architecture and

Linux distribution for the image as well as hard drive type. These options provide opportunity for

creating several different images in case of utilizing heterogeneous hardware. Even though, the

purpose of this thesis is to study the behavior of heterogeneous environments, a decision was made

to use a unified image for all computing nodes. The image is of Debian 4 Etch, i386, which is

actually an image of the head-node.

OSCAR installs the nodes of the cluster using the System Installation Suite (SIS) [OSCAR,

2009]. SIS is a set of tools for automated massive Linux installations for both Red-Hat and Debian

systems [Dague, 2002]. It has three major components: SystemImager, SystemInstaller, and

SystremConfigurator. All of them are stand-alone components but are designed to integrate well

with each other. SystemInstaller is the tool used to build a Linux image and place it on a server.

SystemImager actually propagates, installs and manages the images on the clients. Finally the

SystemConfigurator provides a single API for Linux configuration like tuning the network setup,

boot loader setup, and ramdisk creation. It takes care of adjusting the images after they were

installed by the SystemImager in order to tune them according to the underlying hardware.

Central to the whole process is the notion of an image. An image is a “clone”, a replica of

the operating system and its configuration on a certain node. This node is referred to as “golden

client”. Images are captured from running machines and are full live file systems. Then they are

stored on an image server where the other nodes (clients) can download them from. In the case of

OSCAR the golden client and the image server are one and the same – the head-node. The clients

are the computing nodes to be installed.

According to the guideline of the OSCAR GUI installer, the installation process continues

with step 5 (“Define OSCAR Clients…”) which allows users to define a number of hosts that will

be installed, name pattern for them (for example: oscarnode-0-x) and most importantly a network

30

address range. The address range determines the IP addresses the nodes will use for the local cluster

network. At the next step (“Setup Networking…”) client installation is initiated. The process starts

with registering clients MAC addresses and mapping them to IP addresses in the order they get

discovered. During this stage OSCAR is already running an image server and listens for client

requests on the internal network. Client nodes have to be configured to use network boot from their

BIOS (Basic Input/ Output System) configuration. OSCAR counts that the client nodes use PXE

(Preboot eXecution Environment) to establish initial connection to the server. PXE is a popular

method for booting a system using the network. Clients obtain a temporary network addressing and

search for Preboot server to download a boot kernel via TFTP (Trivial File Transfer Protocol). In the

case of OSCAR, and SystemImager in particular, after booting, the clients download to their RAM

memory a small kernel of Embedded Linux called BOEL (Brian’s Own Embedded Linux). It helps

the systems to initiate a proper BOOTP/DHCP request for obtaining an IP addressing configuration.

When BOEL has brought the client machine to the network, it starts looking for an auto-install shell

script. The script is named <nodename>.sh and is usually located in the

/var/lib/systemimager/scripts/ directory on the server. The auto-install script determines the rest of

the installation process. It defines how the hard-drive will be partitioned, mounts the newly created

partitions on /a, invokes the System Configurator to tune the image to the particularities of the

client’s hardware [OSCAR, 2009]. Following this configuration the actual image starts

downloading and installing. The file transfer uses rsync, which is a mechanism for remote file

synchronization that provides a possibility to use a secured ssh connection. OSCAR can also use

bittorrent or multicast (flamethrower) mechanisms for file transfer. Step 6 (“Stup Networking…”)

also gives users the possibility to burn a SystemImager boot CD that can be used in the case nodes

do not support PXE-boot mode. The installation process remains the same with the only difference

that the nodes need to be configured to use the CDROM for initial boot device instead of the

network controller.

The installation of the cluster should be as easy as booting the computing nodes and wait for

them to install. Our experience showed that problems may occur here, as well. When images were

being installed an error occurred regarding the component grub-install. GRUB (Grand Unified

Bootloader) is a small piece of software responsible for loading and initial loading configuration of

the operating system. GRUB is a boot loader similar LILO (Linux Loader) but only more flexible

and tunable. As it turned out, the image of the system did not include GRUB’s home directory to the

directory tree. Thus nodes were missing this directory and that is what caused error messages to be

generated during the installation process. Adding a directory ~/boot/grub to the image hierarchy tree

on the head-node fixed the problem.

3.1.3.4 Local Repository Setup

At this stage OSCAR 6.0.2 has built a working cluster environment on top of Debian Etch

Linux. OSCAR core and base packages together with OSCAR database are configured and running

in a way that makes the testing installation on four old desktop computers work as a cluster.

However, at this stage the OSCAR cluster is far from being a working Beowulf-type parallel

environment. Manual installation of numerous tools is the only way to get this set-up to the level of

a parallel environment. OSCAR 6.0.2 does not install any of the stand-alone tools for parallel

computation like OpenMPI, LAM, MPICH, Torque/Maui, Ganglia. What is more, it does not even

install a time synchronization mechanism between the compute nodes and the head-node. This is

something that tools for parallel computation may rely on. Also, most tools need to be able to access

31

the computing nodes without using a password. Remote login is supported to the extent that open-

ssh is installed but configuration is still required to remove the need for password on remote

command execution. This situation demands for a solution to how to provide installation packages

to the nodes of the cluster. One has to consider the fact that the nodes usually have no internet

connectivity and are “hidden” behind the head-node from the rest of the world. Several approaches

were tried in this situation. One is to define a proxy server on the head node and thus provide each

node with internet connectivity. Another is to define a local repository on the head-node, fill it with

all necessary packages and provide access to them either via HTTP or FTP. That way initial cluster

architecture is preserved and again, all nodes can have unified images of the software installed on

them.

A single package installation is all needed to install a proxy server on the head-node. Then it

has to be properly configured to provide access only to certain sites. In the configuration file (e.g.

/etc/apt-proxy/apt-proxy-v2.conf) on the head-node one can specify the addresses of the allowed

sites. Under the tag [debian] one can add

backends= http://ftp.us.debian.org/debian

 http://ftp.de.debian.org/debian

 http://ftp2.de.debian.org/debian

 ftp://ftp.uk.debian.org/debian

 http://bear.csm.ornl.gov/repos/debian-4-i386

Then, on each node the file /etc/apt/sources.list has to be modified with the address and the port of

the proxy server. An example is

deb http://oscar_server:9999/ftp.de.debian.org/debian etch main

deb http://oscar_server:9999/bear.csm.ornl.gov/repos/debian-4-i386

etch /

where oscar_server defines the address of the head-node in the local cluster network and 9999 is the

port defined by the proxy server. With this configuration the compute nodes should have access to

the sites, where they can download update packages and installation packages using the native

installation tool of the operating system. In the case of Debian this is apt-get. Furthermore, OSCAR

helps in this case as it installs a tool for parallel command execution, file retrieval and distribution.

The Cluster Command Control (C3) tool provides a way of issuing commands on all nodes at the

same time. Using cexec (cluster execute) command, one can easily issue an update of the nodes

from the head-node and even install packages. For example NTP packages can be installed by

issuing

cexec apt-get update

cexec apt-get install --force-yes ntp –allow-unauthenticated

cexec does not support interactive mode, meaning that if a command requires a user response at

some point, cexec will crash. It cannot return the question to the head-node and distribute the

answer again. One has to make sure that any possible questions that might appear during the

command execution are answered in advance (for instance, specifying –force-yes in apt-get

options).

32

 On the other hand, this approach to providing installation packages for the clients may

introduce a number of difficulties and was not used on the testing environment. To start with, it

introduces a conflict with the initial architecture design of the cluster. The head-node provides a

single point of access to the outside world and thus it protects the cluster. Giving internet access to

all nodes in the cluster introduces numerous security breaches and exposes the cluster to danger of

external attacks. Nodes need to be configured additionally in order to improve security. Security

patches have to be installed and even network configuration has to be changed. Even more, giving

the nodes possibility to download their own packages makes administration of the whole cluster

more difficult. There is no longer a single point of administration as, most certainly, nodes have to

be configured separately. In general, all nodes should have the same software with the same

versions installed on all of them in order to simplify control over the cluster. Any differences may

result in having services that are not working. A slight overlook in installation of new packages

could lead in having different versions of a tool running on the cluster. For example, if two versions

of OpenMPI are running on the cluster, a parallel program might not utilize the nodes running the

newer version. The result is loss of performance.

 There is a second solution to providing installation packages to the computing nodes – a

local repository on the head-node. It aims at eliminating both the problem of administration and the

problem of security. This follows the initial design of the cluster, where the head-node is a central

point of administration and access to the cluster. It can host necessary installation and update

packages and provide access to them ether via HTTP or FTP. The computing nodes will need

minimum configuration after they are installed. Additional packages can be installed on all of them

using cexec and Debian’s native package management tool. The advantage in this case is that all

nodes will surely install the same packages. Monitoring and control of the updates and upgrades in

this case become easier as cluster administrators only need to make sure that the local repository is

properly managed. What is more, security is no longer an issue because the internal cluster network

does not need to implement security policies except secure remote login (ssh). Security of the

cluster comes down to defining security on the head-node and its connection to the outside world.

 A local package repository for the cluster is not more than a file server running on the head-

node. Probably, the only thing that distinguishes this file server from others is that clients will only

download from it but will not store files on it. This can be achieved in two ways according to the

way files are transmitted. One solution is to rely on the File Transmit Protocol (FTP). This means

launching an FTP server on the head-node. With operating system like Debian, an ftp server is

installed by installing a single package which in our case is vsftpd. Configuration (if needed) is also

straightforward. The installation that we tested required placing all files in a single directory (e.g.

/home/ftp/). Then the server uses this directory to share the files in it. Similar is the approach using

an HTTP server for sharing the files over the cluster network. An advantage to using an ftp server is

that an instance of an HTTP server is already installed and configured with OSCAR. OSCAR needs

such server running because it maintains an oscar-database with node information like MAC

addresses and names. Version 6.0.2 requires installing Apache2 server on the head-node. At this

point administrators of the cluster can take advantage of the already running apache server and

create the repository by placing binary packages in the right directory. By default the directory

apache uses is /var/www/, meaning that when a client connects to the server requesting a WEB page

or a file the server will start looking for them in this directory.

33

Let us assume that the directory of the local repository is /home/cluster/distro/debian-4-

i386/. Then the address that the nodes have to use to connect to the server will look like

http://gateway/repo/home/cluster/distro/debian-4-i386 etch /. This is rather long address and that is

why one can use a simple Linux trick to make it shorter and more intuitive. What we did is adding a

symbolic link file to the default directory of the HTTP server (/var/www/). The file /var/www/repo

points to the actual directory of the repository /home/cluster/distro. This way nodes can use only an

address like http://gateway/repo/debian-4-i386 etch / to connect to the server.

 In order to download installation packages, the compute nodes can rely only on Debian’s

native package management tool apt-get. When an update is issued it tries to connect to FTP and/or

HTTP servers defined in the file /etc/atp/sources.list. Hence, each node in the cluster has to have

this file modified with an address of the kind deb http://gateway/repo/debian-4-i386 etch /.

However, an update downloads only a list of all available binary packages in the repository (e.g.

Packages.gz). After that, when installation of a package is requested, the manager checks the list

whether there is an appropriate package of this kind on the server. This specific functionality of the

manager requires the repository to have this “description” file. What is more, it has to be a

compressed file (with gzip or bzip2) and also has to be renewed each time a package is changed or

removed. At this point, it is worth mentioning that creation of a repository is often related to

building and maintaining a special file hierarchy. Meaning, that in general binary packages and their

description file can share the same directory but this is often not the case. The package management

tool apt requires the description file to be separated from the rest of the package files. In our test

environment three different tools were tried with different success for creating this file and the file

hierarchy around it.

The directory of the repository can contain a controlled set of packages or just all packages

that the head-node has already downloaded. Debian stores all “.deb” packages in

/var/cache/apt/archives/. One can place files in the repository just by copying them from this

directory. After all needed packages are present a description file has to be created. Dpkg (Debian

package) is a low level tool for managing .deb packages. It can install, remove and manage

packages just like apt and aptitude but in a more basic manner. The tool dpkg-scanpackages can be

used to create a compressed list of all packages in the repository. According to its man page “dpkg-

scanpackages sorts through a tree of Debian binary packages and creates a Packages file”. In the

command line one can specify

dpkg-scanpackages debian-4-i386 . /dev/null | gzip -9c debian-4-

i386/Packages.gz

where debian-4-i386 is the directory that contains all binary packages. This command has to be

issued from the directory “above” it. Then, a description file (Packages.gz) is created in the same

directory.

 To manage repository hierarchy one should rely on more complicated tools that actually

make use of dpkg-scanpackages in a controlled way. One such tool is debarchiver [Liedert, 2005].

It is a tool to sort files into the file structure used by the Debian package management tools like apt-

get, dselect, etc. All the user has to do is place files in a predefined input directory and debarchiver

produces a sorted hierarchy into a predefined destination directory. Input and output directories can

be changed in the configuration file /etc/debarchiver.conf. Debarchiver is implemented to be called

repeatedly over a certain time period. By default this period is 5 minutes but this can be configured

34

by tuning the file /etc/cron.d/debarchiver.

 The last tool tried on the OSCAR head-node in order to make a repository out of a set of

files, is rapt. Rapt is a tool that comes with OSCAR installation. It is a wrapper for apt-get that aims

at managing cluster repositories. More specifically, according to its man page “Rapt is a tool for

setting up, exporting apt repositories and executing apt-get commands for only those repositories”.

[OSCAR, 2009] explains that the tool is designed to support repositories for different distributions

and architectures. That is why it creates the file hierarchy specific for OSCAR repositories. As it is

described in the section “Two versions of OSCAR” the repository hierarchy of OSCAR includes a

distribution name and architecture (e.g. debian-4-i386). Then, according to this hierarchy the

Packages.gz file is placed in the directory ~ /debian-4-i386/dists/etch/binary-i386/. The following

command builds the metadata cache (Packages file) for all binary packages issuing a call to dpkg-

scanpackages. It takes care of creating the file hierarchy on its own

rapt --repo /home/cluster/distro/debian-4-i386/ --prepare

Then a similar command is used to export the local repository via http utilizing the installed Apache

server for this.

rapt --repo /home/cluster/distro/debian-4-i386/ --export

 At this point all nodes should be able to download the packages list file and install files from

the local repository on the head-node. However, building this local repository is only an effort to fix

the functionality of OSCAR 6.0.2. This production version is still far from being complete and

introduces more difficulties in the process of building a Beowulf-type cluster than it eases it.

OSCAR implements a strong feature set that will surely prove to be productive only when problems

with support of the underlying distributions are resolved. Our testing environment showed that a

working cluster can be achieved with Debian Etch as a foundation. However, it also showed that the

cluster is not suitable for production. Even with a local repository running, installation and

integration of tools for parallel computation turned out to require a lot more effort and time. An

attempt to install OpenMPI returned many dependency errors and finally led to irresolvable

situation as core libraries for C/C++ required upgrading of the core. And changing the core of the

operating system to a newer one results in OSCAR not functioning anymore because compatibility

issues.

3.2 CAOS-NSA

CAOS-NSA (Node, Sever, Appliance) is open-source RPM-based Linux distribution. Originally

it was developed as a freely distributed descendant of Red-Hat Linux known as only CAOS

(Community Assembled Operating System). However, the lifecycle of CAOS ends with version 2

giving birth to the project CAOS-NSA. It aims at providing production and scientific computing

environments with an operating system that is both stable and lightweight. In contrast to other

Linux distributions installation is rather small and consists of a single CD image of 608MB. After

the system is installed it automatically updates itself with the latest packages. Only after that, the

clean and simple operating system can be tuned to carry out a specific task. Additional tools and

packages are downloaded, installed and integrated into it in order to make the operating system

most suitable for performing this particular task. CAOS-NSA can be tuned to optimize system

resources for creating a dedicated server environment, a cluster, or a development environment. For

this CAOS-NSA uses Sidekick. Sidekick is a text-based tool for post-installation administration and

35

configuration [CAOSWiki, 2009]. It is automatically launched during initial system installation

process and guides users through configuration starting from language and keyboard-layout

selection. Sidekick makes the installation a controlled process by letting the operating system

automatically take care of configuration. It is also used to pre-configure the system for carrying out

a particular role such as Graphical environment, Email server, Web server (LAMP), File-Server,

Database administration, Support of virtual machines, Clustering. Once a profile is selected, the

system starts downloading prerequisite packages and configuring itself. After all packages are

installed some additional configuring may be necessary in order to tune the tools to the particular

application in hand. Nevertheless, CAOS-NSA takes care on its own to integrate the new tools into

the system and configure them. This way it minimizes the chance of error by minimizing user

interaction. If another system profile is needed at some later point, it can be added to the running

system again by using Sidekick. It installs all new tools without uninstalling the old ones. However,

it deletes all meta-packages for the old profile preventing it from being able to update furthermore.

This way the system focuses only on one particular role and dedicates to it.

The installation process of CAOS-NSA is described in detail on the wiki page [CAOSwiki,

2009]. It is straightforward, simple and fast (takes around 10 minutes). The clustering profile of

CAOS-NSA prepares the initial system to be a master node for a HPC (High Performance

Computing) cluster. According to the CAOS home page [CAOSHome, 2009] the operating system

is designed and implemented to eliminate performance regressions at the lowest level of the single

system so that when this system is brought to a large scale it does not create an aggregating

performance drop. Installation of the clustering profile starts with installing the Perceus

management tool, which is actually responsible for deploying the cluster. There is detailed

information about installation and configuration techniques in the user guide of Perceus [Perceus,

2009]. CAOS-NSA, however, imports it and takes care of its complete configuration. Our

experience shows that installation is simple and straightforward. Perceus then installs a number of

other tools. In contrast to other high level middleware like ROCKS and OSCAR, it installs only

OpenMPI as a tool for parallel computations. This provides rather limited range of MPI

implementations to choose from considering the fact that both OSCAR and ROCKS include also

MPICH, MPICH2 and PVM. On the other hand, Perceus adds the mechanism of environment

modules that allows users to add different libraries and compilers for parallel computing.

Environment modules allow users to change the execution environment by maintaining a set of

module files, which hold the necessary information to configure the shell for an application.

Furthermore, CAOS-NSA also downloads the Slurm job scheduler and the parallel file system

Gluster2 and makes them available to be instantly included in the cluster configuration.

After Perceus is installed on CAOS-NSA it has to be configured with number of nodes to be

added to the cluster and IP address range of the internal network. Like OSCAR and ROCKS,

Perceus assumes that the master node has at least two network interfaces - one to be used for the

internal cluster network and the other to be used for connecting the master node to the Internet. In

contrast to ROCKS, Perceus can use dynamic address configuration for the interface connected to

the Internet. Like in the case of OSCAR and ROCKS, Perceus also implements a cluster

architecture where there is only one master node and all other nodes are connected to it via switched

network. This way the master node acts as a central point for service provision to the rest of the

nodes. According to the Perceus documentation [Perceus, 2009], such implementation is only

applicable to small to medium sizes clusters. Clusters with more than 500 nodes may need another

36

server in the network. Our test environment includes only four nodes, which requires installation of

a single master node. All four nodes are desktop computers and have commodity hardware installed

on them. It is crucial to note that Perceus runs on systems with CPUs of x86 architecture (e.g. ia32,

x86_64). Hardware, like ia64 and PPC64 are still not supported. Although the supported

architectures are rather popular and widely used, Perceus puts certain limits on the hardware that

can be used for building a production cluster.

Nevertheless, CAOS-NSA together with Perceus manage to implement a fast and robust way to

cluster deployment. According to [Layton, 2009] installation of the master node takes not more than

10 minutes and deploying a cluster with two nodes (master and slave) takes around 23 minutes.

What is more, the documentation of Perceus [Perceus, 2009] states that a single master node can

install simultaneously 32 computing nodes. So, one can have a cluster of 32 nodes running in 25

minutes, which according to [Layton, 2009] is faster than any other tool for cluster deployment.

To understand how this is possible one needs to become familiar with the installation technique

Perceus employs. Similarly to OSCAR, nodes are installed with an image of the operating system

provided by an image server that resides on the master node. A major difference is that Perceus

installs all nodes in a cluster with a stateless operating system - nodes do not install the image on

their local media but they load it into their random access memory (RAM). This is a fast and

efficient way of installing as all operations takes place in the RAM and they do not involve any

read/write operations of the hard drive. What is more, nodes can have no hard drives at all. Often in

a high performance environment where nodes are dedicated only to performing fast calculations

there is no need for have hard drives. In this way one can build an HPC environment that minimizes

costs. Furthermore, a stateless operating system is easy to upgrade and modify. All that is necessary

is to change the image on the master node and reboot all other nodes. Then all of them will boot

with the new image. This solution provides great flexibility for the cluster and saves the time of

administrators as nodes’ hard drives need not be reinstalled. In comparison, ROCKS requires all

nodes to be reinstalled after a new roll is installed and the golden image changes. On the other hand

this approach of installing the operating system in the RAM has a major drawback – every reboot of

a node requires an image to be provisioned. An image server has to be running in the cluster all the

time. Usually this is the master node. Considering the fact that it also takes care of several other

services like job distribution and scheduling and remote access to the cluster, it can happen that the

master node crashes. Having a single point of failure is always a bad idea especially in a production

environment when calculations are carried out upon sensitive data. The cluster administrators have

to back up the image server and provide redundancy. Another point is that the whole cluster is rather

susceptible to loss of power. Additional power supply is needed for a production cluster where

nodes keep all the data they operate on in the RAM memory. Ram memory is erased when power is

lost. Perceus supports a stateful installation, too. If nodes have a local hard drive installed and it is

configured to use an active swap partition then the operating system can be swapped to the disk

[Perceus, 2009].

Another feature of stateless systems that Perceus also implement is file system hybridization.

This is a technique that aims at conserving memory space. Images distributed amongst the nodes in

the cluster need to be as small as possible because of the limitations of both the network bandwidth

and the local memory capacity. Also, images have to provide the functionality of a fully installed

system. A solution is to install only those parts of the operating system that are actually used and all

the other ones that are not that frequently accessed can reside on a remote location. Programs,

37

libraries and data can be installed as non-local parts of the system image and can be hosted by

another node using the NFS (Network File System) to achieve this.

 Perceus installs all nodes in a cluster using a VNFS (Virtual Network File System) image.

The image distributed amongst the nodes of the cluster is created by utilizing a VNFS capsule. It is

a software bundle that contains all files needed to create a diskless boot image starting from a Linux

distribution, hardware configuration and applications stacks. Perceus has a capsule that installs with

it but one can always download a new one. An example of a capsule name is ~/CaosNSA-node-0.9-

301.stateless.x86_64.vnfs. Images are provisioned in two stages [Perceus, 2009]. Our experience

shows that the whole process is straight forward and very quick. (It takes not more than a minute).

Nodes must be configured to use the PXE (Preboot Execution Environment) to be able to boot from

the local network. The master node runs a pxe server that waits for initial requests. Once a node

boots and sends one, the server replies with proper addressing configuration and then it transfers the

pxelinux and Perceus Operating System via TFTP. The Perceus OS is then booted and it starts a

Perceus client daemon which issues a DHCP request to the Perceus image server (also running on

the master node). At this point the master node registers that a new node is found and notes down its

network hardware address (MAC) address. Perceus uses the MAC address to identify the nodes in

the cluster. The master node assembles command sequence and sends it to the node. It helps the

node receive the VNFS image. Once the image is transferred and prepared Perceus will execute the

runtime kernel contained in the VNFS and load it into the RAM. Only then the initial Perceus OS is

purged out of the memory.

3.2.1 Installing PVFSv2

 The wiki page of CAOS-NSA [CAOSwiki, 2009] describes how one can install and

configure PVFSv2. According to it, installation is rather simple with only a single make install

command issued from the directory /usr/src/cports/packages/pvfs2/2.6.1/. PVFSv2 is prepackaged

with the configuration of the parallel environment. Source files are provided and installation comes

down to compiling them. Our experience showed that this installation process also requires some

tuning. The configuration on our test environment showed that three different source versions were

present. Currently, the latest version of PVFSv2 is 2.8.1 [PVFS2, 2009]. This section describes its

installation.

 Installation process starts with making a new directory under the directory where sources are

stored (/usr/src/cports/packages/pvfs2/). Then all files from one of the other versions have to be

copied to that same directory in order to be updated to the new version.

cd /usr/src/cports/packages/pvfs2/

mkdir 2.8.1

cp –R <directory-with-older-source> 2.8.1/

At this point, the Makefile has to be adjusted by editing the following fields:

 MATER_SITES=http://localhost

 VERSION=2.8.1

 The homepage of PVFSv2 [PVFS2, 2009] contains links for downloading a compressed release of

the latest version. Nevertheless, an update of the already existing files in the 2.8.1-directory is

required. For this, we use the online repository for source code (via cvs – Code Versioning System).

38

The following commands create a folder pvfs2 under the directory they are issued from and copy

the source files of the latest development version there. It is crucial to note that these source files

are still under development and might not produce a correctly working environment. Logging in the

cvs server asks for a password. Users can use any password as the server grants public access.

#cvs -d :pserver:anonymous@cvs.parl.clemson.edu:/anoncvs login

#cvs -d :pserver:anonymous@cvs.parl.clemson.edu:/anoncvs co pvfs2

#cvs -d :pserver:anonymous@cvs.parl.clemson.edu:/anoncvs logout

After all files are downloaded (around 5MB) one has to rename the source directory.

mv pvfs2 pvfs2-2.8.1

After that a compressed package has to be created from the source files of the new version.

tar czfv pvfs-2.8.1.tar.gz pvfs-2.8.1

This package is going to be used to install the new version. Because the Makefile of the old one

already states that the main site for downloading is localhost, all that one needs to do to make the

installation available is to copy this package into the home directory of http://localhost. This

directory can be changed by modifying the file /etc/http/conf/http.conf. A line DocumentRoot can

be configured to, for instance, DocumentRoot=/svr/www/html.

cp pvfs-2.8.1.tar.gz /svr/www/html

Finally, before installing PVFSv2, the system needs to be upgraded with an additional package that

contains development libraries and tools for database management.

smart query db*

smart install db4-devel

To install PVFSv2 it is necessary to execute make install from the directory of the source files

(~/2.8.1). With the modified Makefile, installation has to download the compressed package from

http://localhost, uncompress it and install it.

export PATH=/sbin:$PATH

cd /usr/src/cports/packages/pvfs2/2.8.1

make install

After installation one can check whether the pvfs2 module is loaded by issuing:

module avail

If the module does not appear to be loaded a small trick solves the problem:

#cp -R /usr/cports/modulefiles/nsa-1.i386/pvfs2 /etc/modulefiles

module load pvfs2

At this point the module pvfs2 should be loaded and one can continue with configuration of

PVFSv2 according to the documentation on the home page [PVFS2, 2009].

39

3.3 ROCKS

 ROCKS is tool designed to simplify cluster installation and cluster deployment. It is a

complete software bundle that installs everything that one might need to turn a network of

computers into a production parallel environment. It can be referred to as a “cluster out of a DVD”.

In contrast to OSCAR, it does not install on top of an existing operating system and what is more, it

does not assume that any software configuration took place before installation. The installation

process starts with formatting the hard drive and installing the operating system on it. ROCKS is

tightly integrated into the distribution. This means that it is installed and also configured together

with the operating system. Thus, a state of interaction is achieved that strives to maximize

performance and eliminate chance of errors. The installation creates a controlled environment

where the main source of errors - the user, is left out. User input is required only at certain points

and consists of choosing packages to be installed and configuring the network addressing. This way,

ROCKS takes complete control over of the process of building a cluster. Users do not need to start

or stop services, configure tools or install prerequisite packages as in the case of OSCAR.

 Additional tools for parallel computations, scheduling and mapping, monitoring,

virtualization, etc. are also included in the “bundle”. They can be installed and configured at initial

set up or later, when there is need for them. Like OSCAR, ROCKS also implements a separation

strategy for its installation components. It uses rolls. They are not that fine grained as the binary

package in the case of OSCAR - a single roll is a collection of several packages. This solution

eliminates problems with dependencies and prerequisite packages as it includes all packages needed

to make a certain tool or service work. Adding tools to the cluster in this way focuses on reducing

the chance of errors regarding dependencies or incompatibility between installed components.

Again, users are left out as they do not need to install and configure additional components. What is

more, rolls are defined by their purpose and include a whole set of different tools that have the same

purpose. Thus, a single installation adds to the cluster a new feature instead of a new tool. An

example is the HPC roll that includes OpenMPI, MPICH, MPICH2, PVM and additional

benchmarks for testing their functionality. The Torque roll includes the Torque and Maui job-

scheduling systems. These two rolls together with Area51, Bio, Ganglia, Java, SGE and Xen are

optional but come together with the installation DVD. The basic installation of ROCKS requires

only the Kernel/Boot Roll, the Core Roll, OS Roll Disk 1 and OS Roll Disk 2 [ROCKS, 2009].

Additionally, third party rolls are developed that add support for utilization of high-speed cluster

networks like Myrinet (1G, 2G) and Infiniband, or for parallel programming on graphical

processors with CUDA. ROCKS has a management system that takes care of adding new

components and integrating them within the configuration so no previous functionality is lost or

broken.

3.3.1 Installation
 At the time of writing the latest version of ROCKS is 5.1. This is the version used on our

testbed to build a heterogeneous parallel environment. Installation process is well described by the

user guide on the home page of ROCKS [ROCKS, 2009]. That is why in this section the description

of the installation will focus on certain points that define it or may cause problems if being

neglected as well as it will describe installation of PVFS on the cluster.

40

3.3.1.1 Environment Considerations

 ROCKS is a tool that aims at building a Beowulf-type high performance cluster. Such type

of cluster is defined as one which utilizes low-cost hardware together with open-source software.

The goal is to achieve maximum performance at lowest price. Our experience shows that the newer

the version of ROCKS is the more hardware resources it requires to work. According to the user

guide [ROCKS, 2009] of the latest version 5.1 both the frontend and the computing nodes need at

minimum 1GB of RAM memory and a storage space of at least 30 GB. In comparison to other high

level middleware this requirements are rather costly. Today such hardware requirements cannot be

considered expensive but for the purpose and our project they are rather limiting. Our experience

showed that ROCKS can be installed on nodes that have less memory - in our case it was a node

with 764 MB. However, after installation was complete, and when the node tried to boot up, it

displayed an error message for not having enough memory. That is why one should consider which

version of ROCKS to install according to the hardware in hand. In comparison ROCKS 4.3

(released in 2007) requires only 640MB of memory and 20GB of storage space, while ROCKS 4.1

(released in 2006) requires 512MB of memory and 16GB of storage space. On the other hand, one

should bear in mind that ROCKS is a complete software bundle that includes the operating system,

too. Initially, ROCKS was integrated into Red-Hat. Starting from version 4.0 (released in 2005)

ROCKS installs and integrates into CenOS, which the open-source descendent of Red-Hat.

Currently, the latest version of ROCKS uses CentOS 5.0. This distribution is relatively new (the

latest at the time of writing is 5.3) and is still well supported with update and installation packages.

In case, an older version of ROCKS is installed it will come with CentOS 4 and different set of

updates. And installing an older distribution is not always a good idea as tools become obsolete with

it and also updates are not that easy to find. On the other hand, new versions do not always provide

proper support for new hardware. CentOS 5 is still being developed to support a wider range of

processor architectures, while the older version 4 supports s390/s390x (IBM zSeries and IBM

S/390) together with ppc/ppc64 (IBM Power, Mac), SPARC (Sun SPARC processors) and Alpha

(DEC Alpha processors) [CentOS, 2009].

 Another requirement for the frontend is to have two network interfaces. ROCKS implements

a traditional cluster architecture according to which all computing nodes together with the frontend

are connected to an internal switched network. The frontend is the only one that has a connection to

the Internet and to the outside world. Hence, one network interface connects the frontend to the

cluster network and the other connects it to the public one. This way, the frontend “hides” the

cluster and protects it from external security threats. What is more, this setup minimizes

configuration and maintenance efforts as security needs to be enhanced only on the frontend.

 One should be aware that during the installation process the ROCKS asks users to fill in the

initial configuration for networking. Addresses for the external and internal networks are required.

It is crucial to note that the initial configuration is saved and then it is populated amongst the nodes.

All host-name resolution and routing tables are configured in accordance with it. ROCKS is

implemented to use only fixed static addresses for both of its network interfaces. Cluster-wide

services require the frontend to always have a constant address and fully qualified domain name

(FQDN). ROCKS does not work well when dynamically obtained addressing is used for any of its

network interfaces. A dynamic addressing server runs on the frontend and it is configured to give

always the same IP addresses to the same nodes. Functionally may be lost if users change the dhcpd

configuration on the frontend and it starts giving different addresses to the nodes. What is more, the

41

frontend itself looses internet connectivity if it receives its network configuration dynamically via

DHCP. In this case networking configuration has to be manually adjusted every time a new address

is obtained. The frontend will not be affected only if it receives the same configuration every time.

This is why, one should make sure that if the frontend operates in a managed network it has one of

its network interfaces registered with it so it can always receive the same address. When ROCKS

starts installing it determines which interface is connected to the public network and suggests its

settings as default settings so users need not remember them.

3.3.1.2 Installation on the Frontend

 Installation of ROCKS 5.1 is straightforward and simple. The home page [ROCKS, 2009]

provides a detailed user guide that describes the process thoroughly. Users can choose to download

an installation “jumbo” DVD that includes the Kernel/Boot Roll, the Core Roll, OS Rolls and the

rolls that install tools for parallelism Area51, Bio, Ganglia, Java, SGE, HPC, Web-Server and Xen.

The installation process first detects the network interfaces so that later when the graphical user

interface of the installer starts the user can choose whether to use the DVD or the network for

source of rolls to install. Network installation takes much longer as all rolls have to be downloaded

and this means downloading around 4GB. On the other hand, choosing the web as a source provides

a broader range of rolls - with the current release it adds to the list also Condor and PVFSv2. At the

time of writing PVFSv2 roll was recently completed and released for version 5.1. If the purpose of

the cluster is determined at this point and one is certain about which rolls it will use, it is

recommended that installation of additional tools takes place at this time. It is better to let the

system configure itself and integrate the tools on its own. Adding them later, onto a working

environment, can break working functionality as described in the section “Installing PVFSv2”,

where installation of PVFSv2 breaks the functionality of adding new nodes to the cluster.

 Installation process on the frontend takes around 20 minutes when the installation DVD is

used. After it completes the system reboots and CentOS 5 loads. The system has only a single user –

the root user. After first login, when a terminal window is opened, the user is asked to create a

security key (rsa key) to be used for ssh. It is recommended that one accepts all default values

suggested and does not define a passphrase. This is important because ROCKS distributes the

public key of the frontend to the nodes in order to enable secure remote login via ssh. If the key is

encrypted with a passphrase, the user will be prompted to enter it every time a remote login is

required. This can cause some tools for parallel computations to stop working as they do not have

direct access to the nodes. What is more, one should also create a new user account different from

root at this point. Tools for parallel computation require that executables are run from a non-root

user account. For example OpenMPI has this requirement.

3.3.1.3 Installing the Cluster

 Installation of the cluster nodes is also straightforward and follows the user guide [ROCKS,

2009]. Our testbed includes four machines of heterogeneous commodity hardware. All of them are

desktop computers that have different processors, memory capacity and storage capacity. The

frontend uses Intel dual core processor, while the others have processors of older architecture. In

total, there are 5 processors, 6GB of dynamic memory and 470GB of storage space. All nodes are

connected via a switch into a 100Mb Ethernet network. Thus, the testing environment aims at

building a heterogeneous Beowulf-type cluster. ROCKS supports all the different hardware as long

42

as the operating system, it is integrated into, supports it. In the case CentOS 5 is developed to

support most of the available on the market commodity hardware (32-bit and 64-bit Pentium,

AMD).

 Nodes are added to the cluster in a similar fashion as with OSCAR. On the frontend one has

to start the application that discovers and registers the nodes by typing in the command line: insert-

ethers. The difference is that nodes are installed according to their functional role. Initially nodes

can be “Compute” nodes but if PVFSv2 is installed, for example, nodes can be also “Compute +

PVFS I/O Node”, “PVFS I/O Node”, and “PVFS Metadata Node”. Tuning the installation

according to the specifics of the individual nodes is done in a completely different manner from

OSCAR. There is no “golden image” of the operating system of the frontend. The installation

process uses Kickstart, which is a method for automated Red-Hat installations [Papadopoulos,

2002]. It enables administrators to specify in advance the exact software package and software

configuration of a system. The kickstart method suggests that a single textual file is created

containing the answers of all questions that are asked during normal interactive installation. In the

common case, when the same nodes are installed over the network, a single static kickstart file can

be distributed to all of them. But if nodes differ in some way they require an own specific copy of

that file in order to be able to build their own image. A downside is that there is no scripting

language for kickstart files and thus a single file has to be created for every node that is to be

installed. ROCKS solves the situation by first distributing a script (CGI) amongst the nodes, which

creates the kickstart file locally according to their specifics. Only then installation of the operating

system can start and it is able to determine which packages are needed for the installation.

 To download the script and start installation the nodes need to boot using the network (PXE

boot) or using local media (CD, DVD). One has to configure the BIOS boot order in advance. Our

testing environment showed that none of the nodes is able to utilize the network to boot. All of them

had to be booted from the installation DVD. In this case, there is a difference to the installation

process compared to the frontend. One should not type anything at initial prompt mode or should

just press “Enter”. A vmlinux.img and initrd.img are loaded together with drivers for the hardware.

Only then, the system installer sends a DHCP request to the frontend. The server marks their

request and replies with a static address, which is usually the last available address in the specified

at installation range (for example the first given address from the range 192.168.1.0/255.255.255.0

is 192.168.1.254). At this point the screen of insert-ethers on the frontend must change with

information about the node. The /etc/dhcpd.conf file also registers the new node by noting its MAC

address. A star at the end of the line on the screen of insert-ethers on the frontend marks when the

kickstart script was transferred successfully. Then installation begins by downloading the operating

system from the frontend.

 Installation is different according to the functional role of the nodes. Using the DVD to

install the frontend gives the possibility to install only Compute nodes after that. If PVFSv2 is

installed nodes can be of different type. Then their installation and configuration differs from the

rest. In this way one could make a cluster especially for high speed computations or make one for

fast parallel data storage and management. A combination of the two is also possible by making the

nodes of type “Compute + PVFS I/O Node”. This, however, is discouraged according to the user

manual of ROCKS [ROCKS, 2009]. Compute nodes that have scheduled jobs on them often crash

and if a node crashes it brings down the whole PVFS system. What is more, the PVFSv2 roll

installed on our testbed showed to crash the node-insertion process by making insert-ethers hang

43

with nonsense displayed on the screen. Nevertheless, one should bear in mind, when installing

different type of nodes that restarting the insert-ethers application might not be enough to start over.

In the case when PVFS was tested, restarting insert-ethers showed that even installation of compute

nodes fails after that. The solution is to reboot the frontend. That way compute nodes could be

installed again.

 After installation of the cluster is complete, one can inspect the overall state of the
environment by launching the Web interface of Ganglia. It shows the hardware configuration of all
nodes together with statistics for the load of each node. The information is presented in the form of
various graphs. Ganglia gets configured and starts running from the beginning without further
adjustments. In case the cluster installation process requires some manual network configuration
one should be aware that Ganglia can lose connectivity to the nodes in the cluster. It reports that the
nodes are down even though they are not. This is often the case when a ping commands are issued
from the nodes. To fix this, one has to restart the ganglia daemon on all of the nodes by issuing on

all of them /etc/init.d/gmond restart. Furthermore, network analysis done in our test
environment show that the frontend generates constant UDP traffic on the cluster network. It acts as
heartbeat signal that checks whether there is connectivity to the nodes and also collects information
about their current load. This extra traffic might introduce certain level of network latency in an
intense production environment. Nevertheless, the Ganglia monitoring tool is useful for debugging
and troubleshooting on a large-scale cluster.

 ROCKS 5.1 introduces another problem with Ganglia. A configuration conflict causes the
monitoring tool to lose connectivity to all nodes in the cluster. What is more, after the cluster is
restarted it no longer has records for any of the nodes. The frontend is the only node listed by the
system and it is reported to be in a down state. In this case the first thing that one can do is to restart
the main components of Ganglia – the daemons gmond and gmetad, on both the frontend and the
compute nodes. However, this leads to an error being generated when the Ganglia Web interface is
launched. Instead of displaying the proper page, the browser alredy shows an error message:
“Cannot find any metrics for selected cluster <cluster_name>”. According to the ROCKS support
mail list this is a known issue of version 5.1 and it will be fixed in the next release. Philip
Papadopoulos, who is a member of the development team of ROCKS, believes that “there is a bug
in the way Xen is building their bridges in that not all routes are properly maintained”. Xen is a tool
that is included in the Jumbo installation DVD of ROCKS. It supports creation and maintaining of
virtual machines over the cluster nodes. For this Xen installs several virtual network interfaces on
the frontend causing at the same time a configuration problem - no multicast route is set on the
fronted. The frontend transmits constant UDP traffic to the nodes of the cluster in order to
determine their state. This heartbeat traffic is exchanged using a multicast address in the range
224.0.0.0 and port 8946. Xen bridge scripts break this functionality when they build the virtual
network devices and rename them. Device specific routes (like the multicast route) turn out not to
be automatically handled causing all data that is sent to gmond to be lost. To restore the correct
functionality of Ganglia one has to add manually the multicast route every time the cluster starts.
Then the Ganglia daemons have to be restarted on both the frontend and the compute nodes. As root
user one has to issue from the command line

route add –net 224.0.0.0/4 dev eth0

service network restart

service gmond restart

tentakel “service gmond restart”

44

3.3.1.4 Installing PVFSv2

 Installation of the PVFSv2 roll can take place during the process of initial installation and

configuration of ROCKS or it can be added after that. Both ways of installation were tried on the

test environment but none of them showed any satisfactory results. Nevertheless, it is recommended

to include the roll during the initial installation process. That way ROCKS will take care of

configuring and integrating it into the system. Adding it onto a working cluster requires either the

whole cluster to be reinstalled or a new set of nodes to be added and installed with the new

configuration. Existing nodes cannot be tuned to use the new functionality in a dynamic way. They

have to be reinstalled with a new set of packages and configuration. ROCKS defines the type of a

node at the time when it is added to the cluster. According to its functional role it can be either a

“Compute” node or one of the following: “Compute + PVFS I/O Node”, “PVFS I/O Node”, and

“PVFS Metadata Node”. In order to preserve the capability to perform parallel computations, the

nodes in the test environment had to be turned into “Compute + PVFS I/O Node”.

 The installation process starts with downloading the PVFSv2 roll. It is an ISO image file of

size 5MB. Then in order to install it on the frontend one should execute a series of commands as

root user. First, from the directory where the ISO file is located, one should issue the following

command that unpacks the files of the image and places them in a proper directory hierarchy

rocks add roll pvfs2*iso

After that the roll has to be enabled by issuing:

rocks enable roll pvfs2

At this point one can check whether the roll is enabled by issuing # rocks list rolls.

Only then the ROCKS distribution can be rebuilt. The distribution includes all installation packages

of the operating system and the additional tools that are transferred to the nodes during their

installation. The following command should be executed from the directory /export/rocks/install. It

is worth not note that this could take a while to complete

cd /export/rocks/install

rocks create distro

PVFS is now ready to be installed on the frontend. It is a 2 step process as the cluster database

needs to be completed with an additional table. This step has to be executed manually as it requires

a root password.

kroll pvfs2 | bash

mysql -u root -p cluster < /tmp/pvfs2.sql

kroll pvfs2 | bash

Installation process on the frontend completes with rebooting the system. At this stage the system

enables swap space on the hard drive and thus a substantial delay takes place.

init 6

 While the system is rebooting and after the swap space is enabled one can observe an error

message indicating that the PVFS server cannot start. The message is “Configuration file error. No

host ID specified for alias gateway”. It is generated because the configuration file does not get

45

created. Normally, the PVFS configuration file is located in /opt/pvfs2/etc/pvfs2-fs.conf. When

PVFS is installed during the initial ROCKS installation it creates this file but a message for

unknown configuration options is displayed the first time the system reboots. One can try to

generate a configuration file manually by issuing #/opt/pvfs2/bin/pvfs-genconfig,

which starts an interactive-mode console application that requests the user to define a number of

parameters. Generating the configuration file in this way is difficult for a non-experienced user.

This is why a conclusion was reached that the configuration file must get generated when “I/O”

nodes are installed and configured. At this point issuing insert-ethers with “Compute + PVFS I/O

Node” or “PVFS I/O Node” option selected leads the application to crash with nonsense displayed

on the screen. Network monitoring showed that the application crashes exactly at the moment it

receives a DHCP request from a node. The node then is unable to download the kickstart script file

and goes into manual configuration mode. It starts searching for a location to download the image

file from. The HTTP server on the frontend hosts this file and a node can be tricked to start

downloading it by specifying the location: /install/rocks-dist/i386/. The ROCKS system installer

Anaconda starts and downloads the image file. However, the node hangs just before bringing the

graphical interface to the screen. After a while it reports “Cannot allocate requested partitions”,

“Not enough space left to create partition /boot”. As a result PVFSv2 cannot be installed used on

the testing environment running ROCKS.

3.3.1.5 Running an MPI Test

In order to test OpenMPI functionality one can use at first the tests that come with the

implementation. ROCKS installs also MPICH and MPICH2, too. There are two separate tests

present both as binaries and source codes in the directory /opt/mpitests/. One test makes each node

report the process running on it and the other makes processes send 1KB of data and then each

process replies upon receipt of that data. These two tests are useful as they determine whether basic

MPI functionality is running correctly. To be able to execute them, OpenMPI requires the frontend

to have an extra user defined besides the root user. Adding a new user account to the frontend can

be done by issuing from the command line adduser <newuser> and then passwd

<newuser> to set a password for the new account. If the account is added after the nodes are

installed the new account configuration needs to be populated by issuing in the command line

#rocks sync users. Then, one should login as the new user - for example, by issuing the

command # su - <newuser>. At this point the new user will be asked to create a security key

for secure remote login via ssh. Again, as with initial configuration, it is recommended to accept all

default values. One should make sure that the new user is able to login in the nodes without

password being required for that. If this is not the case the new-user’s public key has to be copied to

the authorized_keys file on the remote machines. This can be done by issuing from the command-

line

scp /home/<newuser>/.ssh/id_rsa.pub <newuser>@compute-0 \

-2:.ssh/authorized_keys

where scp is an application for secure copying of files over the network and <newuser>@compute-

0-2 specifies that the file should be copied in the directory /home/<newuser> on the node with

address compute-0-2. Before issuing the command one should make sure that ROCKS

synchronized correctly with the nodes and created the new user and its home directory. Otherwise,

the above command will return a message that such directory does not exist.

46

 Finally, ssh has to be configured and then a test can be run using the new user account.

ssh-agent $SHELL

ssh-add

/opt/openmpi/bin/mpirun –np 4 –machinefile /home/<newuser>/ \

machines /opt/mpitests/bin/mpiring

where –np defines the number of processes that will be started on the machines. The machines file

is a text file in the home directory of <newuser> that contains a list of the names of the nodes

included in the computation process. For example, it can contain gateway compute-0-2

compute-0-4 compute-0-5 where each of the names has to be in a new line. The

/opt/mpitests/bin/mpiring file is the executable that makes all processes exchange 1

MB of data.

3.4 Summary

 This chapter describes how one can turn a collection of desktop computers into a parallel

environment for high-performance computing. It shows the process of installing and configuring a

cluster using three different tools for cluster deployment – OSCAR v6.0.2, CAOS-NSA v1.0, and

ROCKS v5.1. A detailed description of the installation process on our testing environment aims at

revealing both the strong and the weak sides of these tools. Without going into detail, the

installation process follows a similar way for all of them. First, a single computer is installed, which

is intended to be the head node of the cluster. Only after being fully configured, the head node can

install the nodes of the cluster by spawning an image of the operating system through the local

network. All of the three tools use different techniques for creating the images. OSCAR

dynamically creates an image of the current operating system and its configuration, while CAOS-

NSA and ROCKS use predefined images that come with the installation. Upon installation the

image is tuned in accordance to the hardware by means of configurations scripts. What is more, all

three tools are designed to implement a simple cluster architecture, where there is only one Master

node controlling the whole cluster and accepting jobs from users. All other nodes are dedicated to

computing and, independently of the underlying hardware, have the same software installation and

configuration. Thus, the head node becomes a single point of administration and, what is more, is

the single point of access to the cluster – usually it is the only one that has connectivity to the

Internet and the outside world. In our testing environment all computing nodes are connected with

the head-node using a switched network.

 Installation tests start with OSCAR v6.0.2, which at the time of testing was going through a

process of renovation and migration to a completely new approach to the installation process. The

software suite installs on top of an existing Linux distribution and uses its current configuration to

create images for installing the nodes. Previous versions of OSCAR consist of one single

installation bundle that needs to be ported and tuned for each Linux distribution while the new

approach proves to be more flexible by dividing the installation into small pieces. This way,

developers try to achieve broader and faster support of both RPM-based and Debian-based

distributions. OSCAR allows users to choose a Linux distribution in accordance to their preferences

and the requirements of hardware in hand. However, together with giving liberty to users, OSCAR

requires them to have some experience in the field of clustering. Users are responsible for choosing

an appropriate operating system that supports both their hardware and the OSCAR software. Also,

they have to manually configure the system before and during the installation process. What is

47

more, the current version is a development version and it is still being tested. Our testing

environment showed that a working cluster can be achieved with Debian Etch as a foundation but it

does not provide an installation of any tools for clustering. An approach for installing additional

tools on the cluster was tested - a local repository was build. However, even with it, installation and

integration of tools for parallel computation turned out to require a lot of effort and time. The

production version OSCAR 6.0.2 is still far from being complete and introduces more difficulties in

the process of building a Beowulf-type cluster than it eases it. OSCAR implements a strong feature

set that will surely prove to be productive only when problems with support of the underlying

distributions are resolved.

 On the other hand, CAOS-NSA proves to be useful and easy to use when deploying a high-

performance cluster. Using it, a test cluster of four computers with commodity hardware was

deployed (see Table 1, Comp. 5-8). CAOS-NSA is a Linux distribution that is modified in order to

provide a production environment with an operating system that is stable, reliable, lightweight, and

fast. Upon installation users choose a profile for the system and it installs and configures itself for

performing the tasks specific for that profile. In our testing environment CAOS-NSA is installed

with tools for clustering. A major drawback in comparison to OSCAR and ROCKS, is that the

installation includes only a basic set of tools for clustering. For example, MPI is supported only

through OpenMPI. Additional tools have to be manually installed. Furthermore, CAOS-NSA

implements a different approach to installing the nodes of the cluster. They are installed with a

stateless image, which does not reside on the hard drive but is loaded into the physical memory.

This way, using a small image, a cluster deployment can be achieved in a matter of minutes. What

is more, this approach allows new tools to be installed on the cluster very fast as nodes need only to

be rebooted and to load the new upgraded image. However, this is also the major disadvantage of

using CAOS-NSA. The whole cluster is highly dependent on the head-node as it provides remote

access to files and services. Additionally, should loss of power occur, the cluster has to be deployed

once again. These reasons make CAOS-NSA unsuitable for fulfilling the needs of a production

environment.

 The cluster deployment tool ROCKS showed to be most usable of all three. A cluster of four

machines of heterogeneous type was deployed and tested for the purpose of this research (see Table

1, Comp. 1-4). ROCKS incorporates an installation process that handles system configuration

automatically. It installs the operating system and all tools for clustering by itself achieving at the

end a fully-functioning cluster environment. After the head node is installed, cluster deployment

comes down to booting the rest of the nodes. Compared to the other two tools, ROCKS turns out to

be rather demanding when it comes to hardware requirements as it demands at least 1Gb of RAM

and 30 Gb of storage space per node. Nevertheless, it integrates in the software environment of the

cluster numerous useful tools like Ganglia, Condor, the Sun Grid Engine, MPI, etc. Our experience

showed that other tools like PVFS v2 are difficult to be added to the system and do not work with

this version of ROCKS.

48

Chapter 4

Product Evaluation

 While the previous chapter describes how a cluster can be deployed using the tools OSCAR,

ROCKS, CAOS-NSA, this chapter focuses on some tools that make the cluster environment useful.

For this, the cluster environment created by ROCKS is studied in detail. A basic overview of the

integrated tools, which facilitate job handling, submission and monitoring, is presented. The chapter

discusses how they can be used and what can be achieved with them. A description of features and

examples aim at revealing how these tools can be used for increasing the performance of a

heterogeneous cluster environment.

 The chapter is divided into four main sections dedicated to each of the tools that facilitate

the utilization of the cluster. Section 4.1 describes the cluster monitoring tool Ganglia. Section 4.2

focuses on parallelism by presenting an example of a MPI application. The test application is

presented first in its sequential form and then it is compared to a parallel implementation. Section

4.3 describes the batch system Condor. Section 4.4 shows examples for job submission under the

resource managers Sun Grid Engine and Torque/Maui.

4.1 Ganglia

 The ROCKS suite installs and configures the real-time cluster monitoring tool Ganglia. It is

implemented to provide vast amount of statistical data in a simple form using a Web-based

interface. Data is gathered using a multicast listen/announce technique which allows the tool to be

used for monitoring clusters of up to 2000 nodes [Massie, 2004]. Resource utilization data is stored

in a database and can be used for long-term analysis. In ROCKS, Ganglia v3.0.7 is integrated into

the cluster software environment upon cluster deployment. Section 3.1.3 of the Installation Report

(see Chapter 3) describes the process of building a small cluster of 4 nodes using ROCKS 5.1. This

small testing environment is used to show how Ganglia operates and how one can use it to monitor

cluster resources. Section 3.1.3 also describes why Ganglia may not be working correctly

immediately after installation and gives a simple solution to this problem.

 A common approach to building a cluster environment is to have a centralized point of

administration and control over the cluster. The frontend node is usually used for monitoring and

reconfiguring all other nodes. This, however, turns into a tedious task for administrators even in the

case when the cluster is not that big, like the one in our testing environment. What is more, one can

consider a case when a hardware failure has to be pointed out in a cluster of 1000 nodes. A tool that

provides an overview of the hardware resources of the whole cluster proves to be more than useful.

Ganglia aims at providing a simple graphical representation of all machines in a cluster or cluster of

clusters. In this way, troubleshooting in large-scale clusters becomes rather achievable. An example

of finding a problem would be if jobs are queued for execution in a cluster but they are not started

even though nodes are available [Hoffman-Ganglia, 2003]. Furthermore, Ganglia reports on the

average load of each machine with respect to its CPU, memory, network, etc. This resource

utilization information is more than valuable in a heterogeneous HPC environment where tasks

49

have to be mapped to proper machines for execution. Ganglia provides users with a fast way of

determining which machines are in use and to what extent. Jobs can be scheduled based on this

information to achieve better performance.

 Ganglia operates using mainly two daemon programs – the ganglia monitoring daemon

(gmond) that runs on every node of a cluster and the ganglia meta daemon (gmetad) which runs

only on the frontend [Massie, 2004]. Additionally, it incorporates a gmetric tool that defines new

metrics for the monitoring tool to track. It can be used to add for monitoring some application

specific metrics. Also, Ganglia includes a command-line tool for executing simple distributed jobs

over the cluster, named gexec. The gmond daemon is a multi-threaded program that carries out

monitoring of a single cluster. It runs on every machine and implements the multicast

listen/announce protocol. gmond collects local metrics information, sends it to the other nodes in

the form of XDR (eXternal Data Representation) messages and gathers messages from others. A

collect and publish thread in gmond is responsible for collecting local node information and

transferring it to all nodes using a multicast address (of the range 224.0.0.0) and port 8946. The

listening threads take care of receiving data from the multicast channel and updating the gmond’s

local database. Each node in the cluster maintains in-memory storage in the form of a hierarchical

hash table of monitoring metrics. That way, each node has an image of the state of the whole cluster

and can distribute it in case of a crash. Entries in that storage are tagged with a time of reception. If

certain period of time passes information is considered to be outdated and gets deleted. Finally, a

thread pool of XML report threads are dedicated to handling client requests for monitoring data.

Additionally, the gmond multicasts only the metrics that are defined for monitoring and only when

they exceed a certain change threshold or the time since the last transmission passes a certain time

threshold. All this configuration data can be modified in the configuration file of gmond

/etc/gmond.conf. These policies are implemented to reduce network traffic. “For example, the

number of CPUs is multicast only once per hour, but the 1-minute load average might be sent as

often as every 15 seconds” [Hoffman-Ganglia, 2003]. Nevertheless, network is occupied by

constant traffic of heartbeat message between the nodes. This way gmond implements a

membership protocol that aims at determining whether new nodes are added or existing nodes have

failed. Heartbeat messages are exchanged periodically over a random period of time, so no

synchronization takes place between the nodes.

 Ganglia implements a hierarchical design allowing users to monitor clusters of clusters (see

Fig.1). On the frontend of each Ganglia cluster runs another program gmetad which reports the state

of the local cluster in the form of XML and over unicast channel [Massie, 2004]. It replies to

requests from other gmetad programs. gmetad is responsible, also, for storing all collected statistical

data in a Round Robin database (using the RRDTool). It can be used later on for analysis of cluster

load and performance. What is more, the web front-end uses this information to present data and

graphics to the web browser.

50

Fig.1 Ganglia architecture
Source: [Massie, 2004]

 In a cluster environment created using ROCKS 5.1 the web front-end of Ganglia loads as

soon as a Web browser is started. The web front-end of Ganglia provides real-time visualization of

all collected data. The RRDTool is used for both storing the monitoring data in a Round Robin

database and visualizing it. It generates various graphs which present how metrics change over

time. They are posted on the web front-end which is implemented in PHP scripting language. Pages

are dynamically generated by parsing the complete Ganglia XML tree which is obtained by

contacting the local gmetad on port 8951 [Hoffman-Ganglia, 2003]. Fig.2 shows the contents of the

starting monitoring page for our ROCKS cluster. In the center of the page four graphs always show

the load for the last hour of the cluster as a whole together with the involved CPUs, the memory and

the network. In the bottom of the page all nodes are depicted in a color according to their current

load level (in our case there are four nodes). On the left users can find statistical data for the average

load of the cluster for the last minutes (15, 5, 1) in percentage. At the upper part of the page, under

the tag Metric users can choose a certain metric from a drop-down menu that causes the page to

reload displaying statistical data for that metric per node. Data can be queried according to the past

hour, day, week, month by choosing an option from the Last menu.

51

Fig.2 Screenshot of Ganglia web frontend on the testing ROCKS cluster

 The Web front-end allows users to see data about the monitored environment on different
levels that start from a general view of all monitored clusters – the multi-cluster view (Fig.2), and
go through the physical view that shows only one cluster (Fig.3) until finally the node view shows
detailed information about a certain node (Fig.4, Fig 5). The Physical view shows a list of all nodes
with basic information about their CPU speed, total memory size and average load. It also contains
summarized hardware information about the whole cluster like total memory (6.3GB in our case)
and total disc space (470.7GB in our case) along with the name of the node which has most full
disk.

52

Fig.3 Ganglia Physical view

Fig.4 Ganglia Node view

 Finally, Fig. 4, Fig.5 show how Ganglia presents node information. The page on Fig.4 shows
only an overview with most important information together with system average load and CPU
average load while Fig. 5 shows similar information only expanded with numerous graphs that
show how all monitored metrics change over time for this particular node.

53

Fig.5 Ganglia Node View

4.2 MPI

 The installation of ROCKS 5.1 creates a parallel environment out of a collection of

interconnected machines. Upon cluster deployment OpenMPI, MPICH and MPICH2 are installed

and configured to make the cluster ready for executing MPI applications. While many of the tools

included into the software environment are necessary to make all machines work as a single

computer, an installation of an MPI implementation is crucial for a High Performance production

environment. Distributing the workload of an application among the computing nodes defines the

purpose of creating a cluster. Section 3.3.1.5 of the Installation Report (see Chapter 3) describes

how one can use the parallel environment. Namely, MPI code is compiled using the command

mpicc/mpiCC and ran using mpirun. The example in Section 3.3.1.5 and all examples in this section

utilize the installed OpenMPI 1.2.7 (/opt/openmpi/). This section, however, aims to describe a

concrete example of a parallel application that shows how a parallel environment can be used to

speed up an, otherwise, slow sequential application.

 Our testing application solves the mathematical problem of calculating the value of a

definite integral of a function. In the simplest form, a definite integral calculates the signed area

enclosed between the graph of a function, the x-axis and the points within which the integral is

defined. A solution can be found using Numerical Integration. Without going into detail, numerical

integration is the approximate calculation of a definite integral and it incorporates several different

techniques. For describing the one used, assume that the interval, over which the integral is defined,

is partitioned into multiple subintervals of equal size. Then the method calculates the sum of the

area of all trapezes defined by the subintervals and the values of the function in the end points of

each subinterval (Fig.6)

Fig.6 Trapezoidal rule
of a definite integral

 Our testing application calculates the value of the following function using the
rule for numeric integration.

The interval [0, 1] is divided into multiple subintervals of equal size. Then

area of the corresponding trapeze is calculated and added to the total area. The accuracy of the

calculation can be scaled arbitrary by increasing the number of subintervals. In fact, the sequential

implementation relies on this to achieve as much computational time as possible. The result of the

calculation is an approximation of Pi.

 Paralyzing the solution to this problem is not a difficult task as the problem area provides an

obvious way of dividing the work among the computing n

calculating the area of each trapeze and then adding all areas into a single result. Hence, each

computing node can be handled a portion of trapezes to compute. It is important to note here that all

trapezes are defined by a subinterval of [0, 1], which are all of the same size, and the same function.

This makes all of them equal for computing in the sense that the area of each trapeze can be

computed independently of all others. Thus, there is no importance to the order tha

computed in. Having this in mind, parallelizing the solution can be done in two ways. The first

solution suits best a parallel environment where all nodes (processors) are of the same type and

have the same speed. It does not take into considera

another but relies more on the fact that computations on all machines will take equal amount of time

because of their equal performance capabilities. A second solution utilizes the possible

heterogeneity of an environment as it distributes more workload to faster machines and less to

slower ones. It leaves no machine idle until computations are finished.

 The first solution suggests that the problem area is divided into equal

match the number of processors in hand. Each processor is handed a portion to work on. Then the

results are collected onto one machine which adds them into a single, final result. This is the

solution that our testing application uses as it is simple and fast to implement.

major advantage – it minimizes communication between the computing nodes. In an environment,

where computations are carried out by separate machines connected together by means of

networking, traffic between nodes can introduce signi

techniques. For describing the one used, assume that the interval, over which the integral is defined,

is partitioned into multiple subintervals of equal size. Then the method calculates the sum of the

zes defined by the subintervals and the values of the function in the end points of

Trapezoidal rule for calculating the Numerical Integration

f a definite integral. Source: Wikipedia

Our testing application calculates the value of the following function using the

The interval [0, 1] is divided into multiple subintervals of equal size. Then, for each interval the

area of the corresponding trapeze is calculated and added to the total area. The accuracy of the

calculation can be scaled arbitrary by increasing the number of subintervals. In fact, the sequential

chieve as much computational time as possible. The result of the

calculation is an approximation of Pi.

Paralyzing the solution to this problem is not a difficult task as the problem area provides an

obvious way of dividing the work among the computing nodes. The solution comes down to

calculating the area of each trapeze and then adding all areas into a single result. Hence, each

computing node can be handled a portion of trapezes to compute. It is important to note here that all

a subinterval of [0, 1], which are all of the same size, and the same function.

This makes all of them equal for computing in the sense that the area of each trapeze can be

computed independently of all others. Thus, there is no importance to the order tha

computed in. Having this in mind, parallelizing the solution can be done in two ways. The first

solution suits best a parallel environment where all nodes (processors) are of the same type and

have the same speed. It does not take into consideration that one processor might be faster than

another but relies more on the fact that computations on all machines will take equal amount of time

because of their equal performance capabilities. A second solution utilizes the possible

nvironment as it distributes more workload to faster machines and less to

slower ones. It leaves no machine idle until computations are finished.

The first solution suggests that the problem area is divided into equal-size portions that

f processors in hand. Each processor is handed a portion to work on. Then the

results are collected onto one machine which adds them into a single, final result. This is the

solution that our testing application uses as it is simple and fast to implement. What is more, it has a

it minimizes communication between the computing nodes. In an environment,

where computations are carried out by separate machines connected together by means of

networking, traffic between nodes can introduce significant latency to the computational time.

54

techniques. For describing the one used, assume that the interval, over which the integral is defined,

is partitioned into multiple subintervals of equal size. Then the method calculates the sum of the

zes defined by the subintervals and the values of the function in the end points of

Our testing application calculates the value of the following function using the Trapezoidal

for each interval the

area of the corresponding trapeze is calculated and added to the total area. The accuracy of the

calculation can be scaled arbitrary by increasing the number of subintervals. In fact, the sequential

chieve as much computational time as possible. The result of the

Paralyzing the solution to this problem is not a difficult task as the problem area provides an

olution comes down to

calculating the area of each trapeze and then adding all areas into a single result. Hence, each

computing node can be handled a portion of trapezes to compute. It is important to note here that all

a subinterval of [0, 1], which are all of the same size, and the same function.

This makes all of them equal for computing in the sense that the area of each trapeze can be

computed independently of all others. Thus, there is no importance to the order that they are

computed in. Having this in mind, parallelizing the solution can be done in two ways. The first

solution suits best a parallel environment where all nodes (processors) are of the same type and

tion that one processor might be faster than

another but relies more on the fact that computations on all machines will take equal amount of time

because of their equal performance capabilities. A second solution utilizes the possible

nvironment as it distributes more workload to faster machines and less to

size portions that

f processors in hand. Each processor is handed a portion to work on. Then the

results are collected onto one machine which adds them into a single, final result. This is the

What is more, it has a

it minimizes communication between the computing nodes. In an environment,

where computations are carried out by separate machines connected together by means of

ficant latency to the computational time.

Considering the case when a cluster of computers utilizes a switched, 100Mbit Ethernet network,

latency of constant inter-process communication can lead to great performance loss. This first

solution proposes that messages are exchanged only twice during the whole computational process.

What is more, traffic does not affect computations as it takes place just before actual work starts and

just aster it is done. Messages need to be exchanged at the beginning to speci

every node has to work on and at the end to collect the results.

solution, which distributes work dynamically, allowing each process to fetch the next available

piece of work (trapeze) as soon as it is done computing its current one.

 The solution used to test the functionality of the installed OpenMPI relies on the first

approach. Each processor is handed a portion of all trapezes to compute. In fact, each processor

computes the area of the trapeze, whose sequential number equals the number of the last computed

one plus the number of processors. Fig.7

between them. The area of the equally colored trapezes is computed by the same processor.

way of handling all pieces of work is much simpler than dividing the problem area into equal parts

and then dealing with the remaining trapezes. Namely, if

there will always be n-1 remaining trapezes after divi

number of processors. These n-1 trapezes have to be assigned to processors once more. When each

processor calculates the area of a trapeze after skipping

Upon completion intermediate results are combined using the function

applies a reduction operation on all processors in a group and places the result in one of them.

function takes care of automatically collecting all intermediate results from the involve

and adding them. Furthermore the application calculates its exact execution time using the function

MPI_Wtime(). It returns on the calling processor the elapsed wall

application calls this function two times

more time, at the end of execution to calculate the difference in seconds.

Fig.7 Dividing work among four processors

 A key feature of the application is that it aims at dividing the problem area into as

pieces as possible. For this a variable NUM_PIECES is defined to hold the static value

2’147’483’647 (231). This is the maximum value that 32

long int as defined by the macros

testing, larger integer numbers can be used, too. However, in a heterogeneous environment where

processors are of different architecture (e.g. both 32bit and 64bit) using the MAX values for

numerical types can lead to erroneous results.

shows to take rather long time to compute. It makes the computing nodes utilize all their processing

power - Ganglia indicates CPU utilization of 100% on the computing nodes. Table

measured wall-clock timings for the sequential implementation executed on the frontend and all the

compute nodes. As result, the code below takes an average of

Intel Pentium4 2.6Ghz processors and

Considering the case when a cluster of computers utilizes a switched, 100Mbit Ethernet network,

process communication can lead to great performance loss. This first

messages are exchanged only twice during the whole computational process.

What is more, traffic does not affect computations as it takes place just before actual work starts and

just aster it is done. Messages need to be exchanged at the beginning to specify the portion which

every node has to work on and at the end to collect the results. On the other hand, there is a second

distributes work dynamically, allowing each process to fetch the next available

t is done computing its current one.

The solution used to test the functionality of the installed OpenMPI relies on the first

approach. Each processor is handed a portion of all trapezes to compute. In fact, each processor

e, whose sequential number equals the number of the last computed

Fig.7 shows a situation when 4 processors have to split the work

between them. The area of the equally colored trapezes is computed by the same processor.

way of handling all pieces of work is much simpler than dividing the problem area into equal parts

and then dealing with the remaining trapezes. Namely, if n processors are dedicated to computing

remaining trapezes after dividing the total number of trapezes to the

trapezes have to be assigned to processors once more. When each

processor calculates the area of a trapeze after skipping n trapezes no remainder is introduced.

mediate results are combined using the function MPI_Reduce(

applies a reduction operation on all processors in a group and places the result in one of them.

function takes care of automatically collecting all intermediate results from the involve

and adding them. Furthermore the application calculates its exact execution time using the function

It returns on the calling processor the elapsed wall-clock time in seconds. The

application calls this function two times – once at the beginning to mark the starting time and one

more time, at the end of execution to calculate the difference in seconds.

Dividing work among four processors

A key feature of the application is that it aims at dividing the problem area into as

pieces as possible. For this a variable NUM_PIECES is defined to hold the static value

). This is the maximum value that 32-bit machines have for the type

macros LONG_MAX in the header file limits.h. For the sake of

testing, larger integer numbers can be used, too. However, in a heterogeneous environment where

processors are of different architecture (e.g. both 32bit and 64bit) using the MAX values for

numerical types can lead to erroneous results. The sequential implementation (see code below)

shows to take rather long time to compute. It makes the computing nodes utilize all their processing

Ganglia indicates CPU utilization of 100% on the computing nodes. Table

timings for the sequential implementation executed on the frontend and all the

the code below takes an average of 4:44 minutes to be computed on the

Intel Pentium4 2.6Ghz processors and 2:60 minutes on Intel Core 2 1.86 Ghz.

55

Considering the case when a cluster of computers utilizes a switched, 100Mbit Ethernet network,

process communication can lead to great performance loss. This first

messages are exchanged only twice during the whole computational process.

What is more, traffic does not affect computations as it takes place just before actual work starts and

fy the portion which

On the other hand, there is a second

distributes work dynamically, allowing each process to fetch the next available

The solution used to test the functionality of the installed OpenMPI relies on the first

approach. Each processor is handed a portion of all trapezes to compute. In fact, each processor

e, whose sequential number equals the number of the last computed

shows a situation when 4 processors have to split the work

between them. The area of the equally colored trapezes is computed by the same processor. This

way of handling all pieces of work is much simpler than dividing the problem area into equal parts

processors are dedicated to computing

ding the total number of trapezes to the

trapezes have to be assigned to processors once more. When each

trapezes no remainder is introduced.

MPI_Reduce(). It

applies a reduction operation on all processors in a group and places the result in one of them. This

function takes care of automatically collecting all intermediate results from the involved machines

and adding them. Furthermore the application calculates its exact execution time using the function

clock time in seconds. The

the beginning to mark the starting time and one

A key feature of the application is that it aims at dividing the problem area into as much

pieces as possible. For this a variable NUM_PIECES is defined to hold the static value

bit machines have for the type signed

. For the sake of

testing, larger integer numbers can be used, too. However, in a heterogeneous environment where

processors are of different architecture (e.g. both 32bit and 64bit) using the MAX values for

he sequential implementation (see code below)

shows to take rather long time to compute. It makes the computing nodes utilize all their processing

Ganglia indicates CPU utilization of 100% on the computing nodes. Table 5 shows the

timings for the sequential implementation executed on the frontend and all the

to be computed on the

56

for(i = 0; i < NUM_PIECES; ++i){

 x_new = (long double)(i+1) * a_step;

 x_old = i * a_step;

 area = ((((long double)4/(1+(x_new*x_new))) + ((long

double)4/(1+(x_old*x_old))))* a_step) / 2;

 sum+=area;

}

 compute-0-2

Intel P4

2.4Ghz

compute-0-4

Intel P4

2.4Ghz

compute-0-5

Intel Celeron

2.6Ghz

gateway

Intel Core 2 6300

1.86Ghz

1 284 284 252 170.76

2 279 283 256 170.17

3 274 281 258 170.52

4 288 285 260 170.62

5 289 285 264 170.83

6 288 285 264 170.54

AVG 283 284 258 170.58

Table 5 Execution wall-clock timings (in seconds) for the sequential
implementation of the Numerical Integration Test application

 Paralyzing the sequential code of the test application according to the described approach

and techniques requires little change (see Appendix A for the full code). The code below shows the

main part of the MPI implementation, which actually is responsible for handling the computations.

MPI initialization and timing measurements are deliberately omitted.

step = 1.0 / NUM_PIECES;

for(i = myid; i < NUM_PIECES; i+=numprocs){

 x_new = (long double)(i+1) * step;

 x_old = i * step;

 area = ((((long double)4/(1+(x_new*x_new))) + ((long

double)4/(1+(x_old*x_old)))) * step) / 2;

 mysum+=area;

 }

MPI_Reduce(&mysum, &sum, 1, MPI_LONG_DOUBLE, MPI_SUM, 0,

MPI_COMM_WORLD);

 Then the testing application has to be compiled using the OpenMpi compiler program

mpicc. Running the program requires using the command mpirun. The example below is executed

from the home directory of <newuser>, which can be essentially any user different from root.

export PATH=/opt/openmpi/bin/:$PATH

mpicc TestSources/NumIntegrationTest.c –o\

NumIntegrationTest.exe

ssh-agent $SHELL

ssh-add

57

mpirun –np 4 –machinefile machines /export/home/<newuser>/

where –np defines the number of processes that will be started on the machines. The machines file

is a text file in the home directory of <newuser> that contains a list of the names of the nodes

included in the computation process. For example, it can contain gateway compute-0-2

compute-0-4 compute-0-5 where each of the names has to be in a new line.

 Table 6 shows the execution timings in seconds for five separate runs. The application is

implemented in the way that it measures its execution time in each process separately and then, just

before exiting, reports on the total execution time. The different runs, described in Table 6, prove

that the parallel implementation of our testing application is faster than the original sequential one.

The average execution time from five runs shows that the application executes for 73.84 seconds.

Compared to the timings of sequential one this reaches a speed-up of 3.9 times which is almost the

perfect speed-up an application can achieve when distributed over 4 processors. The perfect speed-

up of a parallel application equals the number of processors it is distributed to.

 Run 1 Run 2 Run 3 Run 4 Run 5

gateway

Intel Core 2 6300 1.86Ghz

42.94 42.94 42.93 42.93 42.93

compute-0-5

Intel Celeron 2.6Ghz

68.41 68.39 68.39 68.47 68.40

compute-0-2

Intel P4 2.4Ghz

73.07 73.08 73.06 73.07 73.08

compute-0-4

Intel P4 2.4Ghz

73.74 73.74 73.82 73.81 73.81

Total execution time 73.799 73.7979 73.8572 73.8826 73.85

Table 6 Execution wall-clock timings (in seconds) for the parallel implementation
of the Numerical Integration Test application

4.3 Condor

 The software bundle of ROCKS 5.1 can include an installation of the Condor roll. Users

have the possibility to add it when they choose to install ROCKS using an online repository. Then,

Condor v7.0.5 is installed, configured and fully integrated into the software environment of the

cluster. The user manual of Condor [Condor-Manual, 2009] defines it as being “a specialized batch

system for managing compute-intensive jobs”. In other words, Condor is a tool that takes care of

finding computing resources for executing a job in a distributed environment. Once a cluster starts

having multiple users who submit jobs to it, a need arises for a tool that handles distribution of these

jobs to the available machines. What is more, it is often the case that users have preferences

regarding the machines that execute their jobs. For example, a certain job may require a fast

processing unit while another one requires more available memory, and a third one requires a Linux

operating system. In this case, the users of the cluster can start competing for available computing

resources especially in a heterogeneous computing environment which incorporates computers with

58

different characteristics. A solution is a common batch system that distributes jobs to the nodes of

the cluster taking into consideration both, the requirements of the job and the characteristics of the

single machines. Condor is such system that can be used in a Beowulf-type cluster environment

where all computing nodes are dedicated to executing tasks and fall under centralized management.

However, Condor was designed to suit the needs of large-scale distributed environments like

Networks of Workstations (NoWs) or the Grid. These resources no longer fall into the

characteristics of a cluster as they are usually of non-dedicated type, meaning that the single

machines are normally used for other purposes (e.g. desktop computers in a company). What is

more, the resources can be distributed geographically and thus belong to different networks with

different management policies. Condor implements a mechanism of job migration if the current

machine becomes unavailable. That way, when the owner of certain computing resources claims

them back, Condor reschedules the job to another machine and continues executing it there. Before

all, however, Condor is a queuing system. It maintains a common job queue for all nodes. Jobs can

be submitted by any node and they are defined by their owner (the user who submitted them), their

requirements and their priority. Based on those characteristics Condor decides when and where to

place the jobs for execution. The order in which jobs get executed is based either on their priority or

simply on the FIFO property of the queue.

 The concept of ClassAds [Condor-Manual, 2009] is central to understanding how the

Condor’s scheduling mechanism works. The name comes from classified advertisements in a

newspaper and aims to define the process of matching jobs to machines. Similarly to advertisements

in a newspaper, where sellers advertise what they have to sell and buyers advertise specifics about

what they want to purchase, the scheduling algorithm implemented by Condor works by matching

resource advertisements issued by the machines (sellers) with job requirements issued by the users

(buyers). This process involves constant exchanging of ClassAds between machines in the Condor

pool of resources and its central point of administration – the Central Manager node. A pool of

resources is formed by all machines that fall under the management of a Central Manager node.

Each machine in the pool “advertises” its own ClassAds (machine ClassAds) by sending

periodically a list of attributes to the Central Manager describing its own hardware and software

profile. Attributes include CPU architecture and speed, available RAM memory, disk size, virtual

memory size, current load average, name of the machine, operating system, etc. What is more,

machine ClassAds are designed to facilitate scheduling of jobs on non-dedicated nodes by

providing a possibility for the owners of the nodes to define under what conditions the resources

can be used and what type of job can run on them. For example, machine ClassAds can be tuned to

advertise that a machine is available only at night time or when there is no keyboard activity.

Furthermore, it can specify the type of jobs a machine accepts like a user who submits them or a

rank of a job. On the other hand, upon job submission, users can define a number of requirements

and preferences for where the job should be executed. For example job ClassAds can include a

requirement for a machine that has at least 1Gb of RAM memory or one that uses certain CPU

architecture. The Central Manager collects all the machine ClassAds and according to the job

ClassAds of the first non-running job in the job queue computes its best match. One can see a

simple summary of the machine ClassAds by issuing condor_status from the command-line

interface on the Central Manager node. Fig. 8 shows the output in our testing environment that has

only 3 computing nodes. The command “condor_status –l <node_name>” gives a detailed list of

the machine ClassAds advertised by a node. And the command “condor_q –l <jobID>” returns all

ClassAds specific for a job.

59

Fig. 8 Output of condor_status command

 Condor operates by maintaining a number of daemon programs running on the machines in

a pool [Hoffman-Condor, 2003]. The condor_schedd is the daemon that allows jobs to be submitted

from a machine. It sends job ClassAds to the Central Manager and usually runs on all computers in

the pool. The condor_startd is the daemon that makes a node an execute machine as it allows jobs

to be started on it. It sends periodically machine ClassAds to the Central Manager and

communicates with the scheduler program running on it. Any node in the pool can be an execute

machine, even the Central Manager. Furthermore, the Central Manager is responsible for collecting

all job and machine ClassAds and for matching them in the proper way. For this several daemons

run only on it. The condor_collector is part of the Central Manager and is responsible for collecting

all advertisements from both submit and execute machines while the condor_negotiator performs

all match-making between jobs and resources. The last communicates with both the condor_schedd

and the condor_startd sending requests to them for ClassAds. For every job submitted from a

machine a condor_shadow daemon is started locally. It watches over the job providing it with

access to the local resources (e.g. files) and handling system calls. All daemons running in a Condor

pool are controlled by a single top-level program – the condor_master. It runs constantly and

ensures that all other daemons are running correctly. If they hang or crash, it restarts them.

4.3.1 Jobs and Condor

 Condor is designed to ease job management in a distributed environment by giving users the

freedom to submit jobs of various sorts. In most cases executables do not need to be changed as

long as the local software environment is able to run them. Code written in C, C++, FORTRAN,

JAVA, or using MPI does not need further recompilation and can be submitted directly to the

system. For this Condor implements a mechanism of supporting numerous run-time environments

referred to as universes. Each universe aims at tuning the environment for executing specific code.

For instance, JAVA needs a virtual machine to be started and MPI might require some environment

variables to be adjusted. Condor v7.0.5 supports several universes for user jobs: Standard, Vanilla,

MPI, Grid, Java, Scheduler, Local, Parallel, VM. Of course, each universe is used according to the

specifics of a job but the most commonly used ones are the Standard and Vanilla. In our testing

environment the Parallel universe was also tested. Although Condor provides certain freedom to the

kind of jobs that it can schedule, it also introduces some restrictions to how jobs should operate.

Jobs must be able to run in background. After scheduling a job to a certain machine Condor leaves

it unattended and running in the background. This way jobs that require interactive input and output

cannot be executed correctly. Hence, it is recommended that jobs are implemented in a way that

60

they read all their input from a file. In a case where only a few simple arguments are needed Condor

provides a way of redirecting the standard input (stdin) to a file where all necessary keystrokes can

be coded. It also takes care automatically of redirecting the console output (stdout and stderr) to

files on the submission machine.

 The Standard and Vanilla universes are the two most commonly used execution

environments. However, they can be used for submitting sequential programs only. While the

Standard universe provides mechanisms for job migration and remote system calls, the Vanilla

universe is used for more simple applications that do not require much I/O operations [Condor-

Manual, 2009]. It is particularly useful for execution of shell scripts. Test runs in our testing

environment showed these universes to be equivalent when used in a cluster environment where all

nodes are dedicated to execution. Furthermore, the Grid universe provides an interface for

submitting jobs intended for remote management systems. The Java universe can run a job on any

machine that has a JVM running, regardless of its location or owner. Additionally, the Scheduler

and Local universes schedule jobs to be executed directly on the submitting node. And, the Parallel

universe takes care of executing parallel code written in MPI. Finally, the VM universe facilitates

the execution of jobs that are not a single executable but are a disk image and require a virtual

machine to be executed (e.g. VMware and Xen).

 In more detail the Standard universe is intended to provide support of execution of

sequential programs in a non-dedicated environment where each machine has its owner and is used

for performing a specific task. Compared to the Vanilla universe, it supports the mechanism of job

migration which ensures that a job reaches its completion point even if the initial machine, which it

started executing on, fails. Condor implements this by a technique called check-pointing. A

checkpoint image saves the current state of a program by saving its Program Counter (PC) and the

memory block it occupies. This way a job can be moved around the different available machines

until it finally completes. Check-pointing takes place automatically at regular intervals but it can be

also forced by the commands condor_checkpoint and condor_vacate. Checkpoint images get

transferred back to the Central Manager. Depending on the particular application they can be rather

big in size. That is why it is often the case that in a large-scale environment a checkpoint server

stores all checkpoints for the pool. Additionally, the Standard universe also implements a

mechanism of remote-system calls. This mechanism provides uniform access to the resources of the

submitting machine from any other node in the pool. The job perceives that it is being executed on

its home machine because remote system calls transfer each request for local resources to the

condor_shadow running for that job on the submit machine. The daemon program executes the

request and sends back the result to the execute machine. For instance a job requires a file stored on

the submitting machine to be opened and read. Then the condor_shadow program will find this file,

read it and will send the contents to the computer executing the job. In this way the Standard

universe handles file I/O operations easily and without the need of additional file system like for

example the NSF. In contrast, the Vanilla universe does not support remote system calls and thus

needs to use either a shared file system or to transfer the input and the output files between the

submitting and the executing machine. For this Condor implements a mechanism for transferring

files on behalf of a user.

 On the other hand the Standard universe has some major drawbacks [Condor-Manual,

2009]. First of all, an executable can be run under this environment only after it is re-linked to use

the Condor libraries. This is the only way that support for check-pointing and remote system calls

61

can be added to the application. Nevertheless, re-linking is rather simple using the condor_compile

command. Furthermore, standard jobs are quite limited at certain system level as no multi-process

jobs are allowed (system calls such as fork(), exec(), and system()) together with no inter-process

communication, no sending and receiving of thr signals SIGUSR2 and SIGTSTP, no alarms, timers,

and sleeping, etc. [Condor-Manual, 2009]. In comparison, the Vanilla universe has no restrictions

and what is more, does not require any changes to an executable.

4.3.2 Submitting a Job

 This section describes how one can submit jobs to Condor. The examples and all tests are

run under our ROCKS cluster environment. ROCKS installs and configures Condor in the way that

the frontend node is the Central Manager and also is the only entry point for job submission in the

cluster. All computing nodes (in our case compute-0-2, compute-0-4, compute-0-5) form the pool of

resources. In addition, ROCKS installs a user account named condor with a home directory

/export/home/condor. One can either use this account or any other to submit jobs.

 Jobs are submitted to the system with the command condor_submit [Condor-Manual, 2009].

It is a complex command but in the most common case it takes only one parameter – a submit-

description file. This file is a simple text file that describes the characteristics of a job. Usually it

consists of several lines that control the details of job submission like what executable to run, the

name of the files used for input and output, simple list of arguments, job requirements. It is crucial

to be noted here that job ClassAds are specified in the submit-description file. The following

examples show how our sequential test application NumIntegrationTest is submitted to the system

starting with the Vanilla universe. A very simple submission file has the following contents:

#Example 1

Executable = NumIntegrationTest.exe

Universe = vanilla

Output = NumIntegrationTest.out

Error = NumIntegrationTest.err

Log = NumIntegrationTest.log

Queue

 The above contents are saved in a file ~/NumIntegrationTest.submit. They specify the name

of the binary (NumIntegrationTest.exe), the type of the runtime environment (vanilla) and the

names of the files that will hold the contents of the standard output. If the universe command is

omitted then Condor will use the Standard universe by default. Condor automatically redirects the

stdin, stdout, and stderr of any job to files. These files are usually stored in the home directory of

the submitting user. If no names are defined for any of the commands input, output, or

error (like in this example there is no name for the input) the stdin, stdout, and stderr will refer

to /dev/null. A log file is also generated that holds the information about what happened to the job

during its lifecycle inside Condor. It is very useful for debugging and troubleshooting. Furthermore,

this simple example does not define any requirements for the platform the job should be executed

on. In this case, Condor assumes that the job has to be executed on a machine with the same

architecture and operating system as the submitting machine.

62

 The next example shows a slightly modified subscription file that is used for instantiating 10

different jobs that execute the same binary NumIntegrationTest.exe.

#Example 2

Executable = NumIntegrationTest.exe

Universe = vanilla

Output = out.$(Process).NumIntegrationTest

Error = err.$(Process).NumIntegrationTest

Log = NumIntegrationTest.log

Initialdir = tests

Queue 10

 This example aims at demonstrating how flexible the syntax of the submit-description file

can be. First of all, starting from the last line, it places 10 jobs in the queue, all of them executing

the same task. To differentiate between output of the different jobs the files are named using the

sequential number of each job ($(Process) is replaced with a number) resulting in creating 10

out files (out.0.NumIntegrationTest, out.1.NumIntegrationTest,…) and 10 err files. This time,

however files are placed in a separate directory /export/home/<user>/test defined by the command

Initialdir. One can notice that the log output remains directed to a single file. This way

monitoring of job status is eased because the information about all jobs is printed in one place.

What is more, troubleshooting is also eased in this way. Finally, the job is submitted using the

condor_submit command

condor_submit NumIntegrationTest.submit

Submitting job(s)...

Logging submit evet(s)...

10 job(s) submitted to cluster 35.

 Once a job is submitted to the system, there are several ways to monitor its execution

lifecycle. The command condor_q is the starting point of every monitoring process over a job

[Condor-Manual, 2009]. It displays information about jobs in the Condor job queue. Issued without

any options or arguments, it lists all jobs that are currently in the queue together with their status,

current runtime, priority, owner, and ID. An “R” in the status column means the job is currently

running. An “I” stands for idle - the job is not running right now, because it is waiting for a machine

to become available. The status “H” is the hold state. In the hold state, the job will not be scheduled

to run until it is released. condor_q is useful as a starting point when performing troubleshooting

on a job. One can immediately notice when a job remains in the idle state even when there are

available resources in the cluster. Fig.9 shows a screen shot taken on our testing environment after

submitting the job in the above example.

63

Fig. 9 Output of condor_q command

 Another very useful approach to monitoring a job’s status is through the user log file. If the

submit description script of the job contains the command “log”, a log file is generated for a job or

a set of jobs. It contains a detailed list of all events that take place during the execution lifecycle of

a job. What is more it can be used for real time monitoring through the command “tail -f” as the file

is generated as soon as the job is submitted. The file contents follow a certain formatting model

when describing the events [Condor-Manual, 2009]. Four fields are always present in the

description. The first one is a 3-digit numeric value that describes the event type. Condor defines 28

values that describe different types of events. The most basic ones that are present in every log file

are 000 indicating that a job was submitted; 001 - a job started executing; and 005 - job terminated.

The second field identifies the job uniquely by specifying in parenthesis the ClassAd job attributes

of ClusterId value, ProcId value, and the MPI-specific rank (if executed in the MPI universe,

otherwise zeros). The third field marks the time the event took place and the fourth field contains a

brief description of the event. The log file is particularly useful for determining immediately on

which node a job gets executed. This can be achieved using the condor_status command as well.

One can list the names of all machines that run a job submitted from a certain user by issuing

condor_status -constraint 'RemoteUser="<name_of_user>"

What is more, upon job completion the description of the termination event contains exit code and

status together with statistical data like total time of execution, bytes send and received.

Furthermore, the contents of the log-file indicate when a job is suspended or resumed, when the

check-point image is captured or updated and when errors occur because of a bad executable.

 When a job is submitted to the system but it remains in the idle state even though resources

are available for executing it, Condor provides a mechanism of defining automatically what the

cause might be. The command condor_q issued with the options –analyze and –better_analyze tries

to determine why a job is not running by performing analysis of all machines in the pool. The “-

analyze” option tries to determine how many resources are available for executing the job. “The

reasons may vary among failed constraints, insufficient priority, resource owner preferences and

prevention of preemption by the PREEMPTION_REQUIREMENTS expression” [Condor-Manual,

2009]. The option “-better_analyze” performs a more time consuming analysis, which is also more

extensive and finds how many resources are available for a job. When it comes to analyzing jobs in

large-scale networks of machines, the Condor manual recommends issuing “-better_analyze” for

64

only one job as it consumes significantly more resources. The screenshot in Fig. 10 shows the

output of “condor_q -better_analyze” in a moment when the job queue has six jobs (37.000 –

37.005) and the first three are running while the rest are in idle state waiting for available resources

(our testing environment consists of only three machines).

Fig.10 Output of conor_q –better_analyze

 A final option of tracking the progress of a job is to use the built-in mechanism of sending

notifications to users upon job completion. One can set notifications to be send to the submitting

users in the form of an e-mail message. The command “notification = < Always | Complete | Error |

Never >” can be added to the submit-description file. It sets the system to notify users when certain

events take place. If the argument is “Always” e-mail messages will be send whenever the job

produces a checkpoint, as well as when the job completes. If defined by “Error” users are notified

only when a job exits abnormally. The default e-mail address used is job-owner@submit-

machine-name. It can be configured using the command “notify_user = <email-

address>” that has to be defined also in the description file. The message itself contains the job’s

exit status together with a lot of statistical data like timings of running, check-point status, I/O

statistics.

 A job can be submitted to the Standard universe using the same submit-description file as in

the case of using the Vanilla universe. The only difference is that the key word “standard” has to be

specified. However, the binary file used to initiate a job must be re-linked with the libraries of

Condor. This can be done using the command condor_compile [Condor-Manual, 2009]. It is

used in a similar way to compiling source code files using a conventional compiler. If the program

is fully-installed on the system it allows users to enter any command or program, including make or

shell-script programs. Otherwise, users are restricted to use only one of the following programs -

cc (the system C compiler), acc (ANSI C compiler, on Sun systems), c89 (POSIX compliant C

compiler, on some systems), CC (the system C++ compiler), f77 (the system FORTRAN

compiler), gcc (the GNU C compiler), g++ (the GNU C++ compiler), g77 (the GNU FORTRAN

compiler), ld (the system linker), f90 (the system FORTRAN 90 compiler). Because our testing

application uses the programming language C it is compiled like

gcc –c NumIntegrationTest.c –o NumIntegrationTest.obj

condor_compile gcc NumIntegrationTest.obj –o \

NumIntegrationTest.exe

65

 Condor facilitates utilization of heterogeneous parallel environments with the

condor_submit commands requirements and rank. They can be specified in the submit-

description file and are a powerful tool for defining job ClassAds. Users can set numerous

preferences regarding the platform that is going to run their applications. The requirements

command defines the job requirements. Using these, Condor filters the list of available resources

and creates a set of machines that match these requirements. A job can be run on any one of them.

The list can be sorted additionally using the ranking criteria defined by the rank command. That

way, a perfect match can be found for a job. In the case when a heterogeneous environment is used

to execute jobs, users can help the system to place their executable on the most appropriate

machine. The requirements command can resolve expressions that evaluate to being true or

false (boolean expressions), which are written in a similar way to how they would be written using

the programming language C. These expressions can define the processor architecture, available

physical memory, operating system, etc. An example is

Requirements = Memory>=1000 && ARCH==”INTEL”

which defines a requirement for machines to have at least 1Gb of physical memory and their

processors to be of x86 architecture. The tags “Memory” and “ARCH” are classID tags. They are

case insensitive, while the values are case sensitive. All available classID tags can be displayed

using the “condor_status –l” command issued from the command-line interface. What is

more, before constructing a requirement, one can check its validity by displaying all machines in

the pool which fulfill it. This can be achieved by issuing “condor_status – constraint

<Boolean expression>”. Furthermore, when users specify ranking scheme in the submit-

description file, Condor asserts each machine according to that rank value. The one with the highest

value is matched to the job. For instance,

Rank = memory

causes a job to be matched to the machine with the highest amount of physical memory available.

Another example is

Rank = kflops

which causes the machines with most powerful floating point processor to be chosen [Condor-

Manual, 2009]. This example shows how ranking can lead to scheduling a job to the wrong

machine. While all commodity machines today have a processing unit that is dedicated to managing

floating-point operations, not all of them have the kflops attribute defined. In a case, when there are

machines in the pool that do not have this attribute set, the ranking mechanism will only assert the

ones that have it defined. That way a machine with the fastest floating-point capabilities could be

left out. To prevent this from happening, users have to check the list of machines against the

criteria. This can be done using the command “condor_status –constraint <boolean

expression>”.

4.3.3 Modifying a Job

 Condor is a system which makes sure that heavy computational tasks get completed.

Sometimes, however, a running job may start producing erroneous results or it may take too long

time to complete. In these cases (and many others) administrators of the parallel environment may

have to alter a job’s behavior in order to free resources for other applications. Condor provides

some commands that can be used to cancel a job, pause it, resume it or reschedule it.

66

 A submitted job can be cancelled and removed from the queue using the command

condor_rm [Condor-Manual, 2009]. It takes as an argument a job Id to stop a certain job; a

username to stop all jobs started from this user. A very useful option of the command is the “-

constraint”, which removes all jobs that match the job ClassAd expression constraint. For example,

the following line removes all jobs of the user named sgeorgiev that are not currently running.

condor_rm sgeorgiev -constraint Activity!=\"Busy\"

 Jobs can be made to free the occupied computing resources and return in the queue. Condor

provides users with the command condor_hold that puts a job in the hold state [Condor-Manual,

2009]. Jobs remain in the queue waiting to be resumed by a condor_relese command. When

one puts a job in the hold state, this causes a hard kill signal to be sent to the machine executing the

job. For a Standard universe job, this means that the job is stopped without allowing it to update its

check-point image. When resumed it continues from the last checkpoint image. In the case when the

job was running under the Vanilla universe, it starts simply starts over. Both commands take as an

argument a job Id or a name of a user. If no user name is specified both commands assume, by

default, that they have to manipulate only the jobs of the user that issued the command. In the

following example all jobs of the user sgeorgiev are put on hold together with the ones that are not

currently running.

condor_hold sgeorgiev -constraint "JobStatus!=2"

4.4 Sun Grid Engine and Torque/Maui

 This section provides a basic overview of how one can use resource managers in the

production environment created with the installation of ROCKS. Series of examples aim at

providing a basic understanding of how pieces of work (jobs) can be submitted to the cluster, how

they can be monitored and how they can be modified.

 Upon installation ROCKS 5.1 includes into the software environment of the cluster a

resource management tool - the Sun Grid Engine (SGE) v6.1u5. It gets fully configured and after

cluster deployment it is ready to be used without further configuration. ROCKS provides a

possibility for installing a second popular tool for resource management. The roll with Torque/Maui

is available for download on the main page of ROCKS [ROCKS, 2009]. It needs to be manually

installed (instructions are available on [ROCKS, 2009]) and adds to the environment the resource

manager Torque v2.3.6 together with the scheduler Maui v3.2.6. The two resource managers

operate in a way similar to the way the batch system Condor operates as they both implement a

mechanism of matching pending workload to the available resources of the cluster environment. It

is worth mentioning here that a resource manager is different from a scheduler although they both

manage and distribute jobs. Resource managers usually have a scheduler integrated with them. In

the case of Torque it has a simple built-in scheduler pbs_sched, but its design aims at providing a

common interface that facilitates utilization of different schedulers (like Maui in our case). The

SGE also has a scheduler included in its implementation, which allows jobs to be scheduled over

time (when to start and how long to run). A scheduler program implements a way of finding a

proper order for executing jobs that corresponds to their priority and timing preferences and is in

accordance with the availabe resources. On the other hand a resource manager focuses on providing

a low-level functionality of managing job queues, starting and stopping jobs, monitoring their

status. A scheduler alone cannot control jobs. Furthermore, another similarity between the two

67

resource management tools is that they both inherit from the outdated resource manager and

scheduler OpenPBS (Portable Batch system). Torque is a direct derivative of OpenPBS and still

implements an architecture that consists of a Master Node and Compute Nodes via the daemon

programs pbs_server and pbs_mom. The SGE, on the other hand, builds a different environment

using a Qmaster daemon program that resides on one node and a Qmaster shadow daemon that

handles overhead load and resides on some of the execution nodes. What is important, in this case

is that both Torque and SGE use the same technique of job submission (using a shell script) and

utilize the set of same commands for job handling (there are small differences).

 The Torque/Maui roll needs to be manually added to the software environment created by

ROCKS 5.1. Installation is simple and includes several commands [ROCKS, 2009]. It starts with

installing the roll on the frontend and then the image of the other nodes in the cluster needs to be

updated. This requires all nodes to be reinstalled. Our experience showed that all this takes around

30 min. After downloading the installation roll (10MB) on the frontend the following commands

install it and then renew the image of all compute nodes. Finally, installation can be verified by the

command “pbsnodes –a”, which lists all known to the system nodes together with their

attributes (state and hardware configuration).

rocks add roll /path/to/torque/roll

rocks enable roll torque

cd /export/home/install

rocks create distro

kroll torque | bash

reboot

tentakel /boot/kickstart/cluster-kickstart

 Both SGE and Torque manage submitted jobs by using a queue. A queue determines where

and how jobs are executed. Different scheduling policies (e.g. job priority, user priority, job

requirements, etc.) determine which of all submitted jobs will be matched to available resources

first. Torque implements a mechanism of supporting different queues with different properties.

Usually there is a single queue that spans on all hosts and all submitted jobs are placed in it. Using

the command qmgr [Torque-Manual, 2009] users can create additional queues that for example

allow only certain users to submit jobs to them, or match jobs only to a subset of the execution

hosts. SGE, on the other hand, implements a different mechanism for achieving this [SGE-Guide,

2008]. A queue is as an abstraction that aggregates a set of job slots on one or more execution hosts.

Job slots are defined as the capacity of a node for executing a job. Normally, the system assigns a

slot to each available processor or core on an execution node. That way a queue determines the

distribution of jobs to available slots. The SGE supports creation of different queues that can be

configured to utilize, for instance, only certain job slots or to be used only by certain users (Fig. 11).

The dnetc.q is configured to use only one slot per execution host. After installation of SGE, a

default queue is automatically defined (called all.q) that spans on all hosts in the cluster and can

use all available job slots. By default, all jobs, submitted by all users get assigned to it. Being an

abstraction, a queue in SGE operates by managing the queue instances that it consists of. A queue

instance is defined by the execution host it is associated with. It manages its free slots. The name of

a queue instance is formed by the name of the queue it belongs to and the name of the host it

describes. In Fig.11 there are seven queue instances: all.q@paikea, dnetc.q@paikea,

beagle.q@paikea, all.q@exec1, dnetc.q@exec1, all.q@exec2, dnetc.q@exec2. Queue instances

inherit the properties of the queue they be

node they belong to. For example, the default queue

which offers one job slot for every node in the queue. The queue instance all.q@paikea overrides

this value with the correct number of CPUs available in the host (4 in this case). When users submit

jobs to a certain queue, the scheduling mechanism of SGE starts sorting all queue instances in the

queue until a match is found for executing the job. If job is

queue, then it is matched to the first available slot in the queue that the user has rights to submit to.

The examples described in this section make use only of the default queues of both SGE and

Torque.

Fig.11 An e

4.4.1 Submitting a Serial Job

 Jobs are submitted to SGE and Torque using the command

command has many options that, for instance, define the name of a job, its input and output files,

execution environment, resource requests, etc. Some of them will be discussed in detail in the

following examples. The argument

necessary options for executing a job. It can take an executable as an argument but the option “

needs to be explicitly specified. Similarly to the submit

contains the name of the executable together with possible environment adjustments. Each line in

the script that starts with special sequence of characters (“#$” for SGE and “#PBS” for Torque) is

meant for qsub to interpret. These lines describe all op

submission. Below is an example of a script file that submits to SGE the sequential implementation

of our testing application NumIntegrationTest.exe (see the section on MPI).

beagle.q@paikea, all.q@exec1, dnetc.q@exec1, all.q@exec2, dnetc.q@exec2. Queue instances

inherit the properties of the queue they belong to but also override them with the specifics of the

node they belong to. For example, the default queue all.q can have the attribute slots set to 1,

which offers one job slot for every node in the queue. The queue instance all.q@paikea overrides

value with the correct number of CPUs available in the host (4 in this case). When users submit

jobs to a certain queue, the scheduling mechanism of SGE starts sorting all queue instances in the

queue until a match is found for executing the job. If job is submitted without specification of a

queue, then it is matched to the first available slot in the queue that the user has rights to submit to.

The examples described in this section make use only of the default queues of both SGE and

1 An example of different SGE queues

Submitting a Serial Job

Jobs are submitted to SGE and Torque using the command qsub. This complicated

command has many options that, for instance, define the name of a job, its input and output files,

execution environment, resource requests, etc. Some of them will be discussed in detail in the

following examples. The argument qsub accepts is a shell-script file that includes a list of all

necessary options for executing a job. It can take an executable as an argument but the option “

needs to be explicitly specified. Similarly to the submit-description file of Condor, the shell scr

contains the name of the executable together with possible environment adjustments. Each line in

the script that starts with special sequence of characters (“#$” for SGE and “#PBS” for Torque) is

to interpret. These lines describe all options of the command that tune the job

submission. Below is an example of a script file that submits to SGE the sequential implementation

of our testing application NumIntegrationTest.exe (see the section on MPI).

68

beagle.q@paikea, all.q@exec1, dnetc.q@exec1, all.q@exec2, dnetc.q@exec2. Queue instances

long to but also override them with the specifics of the

can have the attribute slots set to 1,

which offers one job slot for every node in the queue. The queue instance all.q@paikea overrides

value with the correct number of CPUs available in the host (4 in this case). When users submit

jobs to a certain queue, the scheduling mechanism of SGE starts sorting all queue instances in the

submitted without specification of a

queue, then it is matched to the first available slot in the queue that the user has rights to submit to.

The examples described in this section make use only of the default queues of both SGE and

. This complicated

command has many options that, for instance, define the name of a job, its input and output files,

execution environment, resource requests, etc. Some of them will be discussed in detail in the

script file that includes a list of all

necessary options for executing a job. It can take an executable as an argument but the option “-b y”

description file of Condor, the shell script

contains the name of the executable together with possible environment adjustments. Each line in

the script that starts with special sequence of characters (“#$” for SGE and “#PBS” for Torque) is

tions of the command that tune the job

submission. Below is an example of a script file that submits to SGE the sequential implementation

69

#!/bin/sh

#$ -S /bin/sh

#$ -cwd

#$ -V

#$ -N NumInt

$HOME/NumIntegrationTest.exe

 This script file contains only options for the qsub command together with the name of the

executable that is going to initiate a new job. The SGE ignores the first line of the script and it uses

the queue’s default shell csh for executing jobs. That is why users can specify the preferred shell

using the “-S” option. In the example it defines usage of the sh shell. Following the options list, the

“-cwd” defines that the job is executed in the current working directory it was submitted from. If

this option is not specified the job will be executed in the home directory of the submitting user.

Specifying a separate working directory is important if several runs of the same job are instantiated

and all of them require different input files. As with Condor, SGE and Torque automatically

redirects input and output (stdin, stdout, stderr) to files. The names of these files can be specified

additionally by using the options “-i” for an input file, “-o” for output file, and “-e” for a file that

contains error messages. If these options are not defined, like in the example above, input is

redirected to /dev/null and output creates two files. In our example they will be placed in the

submitting directory because “-cwd” is specified. The names of the output files are formed like

<job_name>.o<jobID> and <job_name>.e<jobID> (e.g. NumInt.o3, NumInt.e.3). Additionally SGE

provides another option “-j y” for manipulation of the stdout and stderr. It causes the output of

the two streams to be merged into a single file for easier manipulation and readability. The next

option “-V” passes all environment variables of the submitting shell to the executing shell (“-v”,

lower case, passes only a certain environment variable). Finally, “-N” defines the name of the job.

 SGE provides the possibility to define job requirements upon job submission. The

requirements about the platform of the execution host can determine the speed at which an

application is executed in a heterogeneous environment. Users have a notion of how much

processing power their application needs or how much memory it consumes. That is why it is

recommended that hardware requirements are specified when a job is submitted as the built-in

scheduler has no other way of finding which the best match for a job is. An extra option “-l” to the

qsub command defines a subset of machines which can execute a particular job. It can be used to

specify resource requirements for the remote host like free physical memory (mem_free), CPU

architecture (arch), or a hostname. The example below shows two requests – one for nodes that

have 1Gb of free physical memory and CPUs of x86 architecture and another specifying a concrete

host. Users can check the available options for resource requirements using the qhost command.

Issued no arguments, it shows the hardware configuration of all nodes in the cluster (Fig. 12). It lists

all nodes together with their CPU architecture, number of CPUs, memory capacity, current load,

and used memory. Issued with the option “-l attr=val” it generates a filleted list of all nodes that

match the requirement.

#$ –l mem_free=1G, arch= lx26_x86

#$ –l hostname=compute-0-2

70

Fig.12 qhost output

After the script file is created the test job NumInt can be submitted using qsub.

qsub SubmitScript.sh

 SGE allows users to manipulate the system using an X-Windowing environment. It is an

aggregation of the command-line tools, which make up the SGE, into one graphical environment.

The interface can be started by issuing the command qmon. A small window appears on the screen

at start-up (Fig.13) that contains a number of icon buttons, each of which initiates a dialogue

window for fulfilling one of the major administrative and user tasks on the environment. These

dialogues are Job Control, Queue Control, Job Submit, Complex Config, Host Config, Cluster

Config, Scheduler Config, Calendar Config, User Config, PE Config, Checkpoint Config, Ticket

Conf, Project Conf, Browser, and Exit. The first button (top, left) starts a Job Control dialog

window which has three tabs each containing a table with a list of pending jobs, running jobs, and

finished jobs. Here users can suspend and resume jobs, reschedule, delete them or change their

priority. The second button starts a job submission dialog window (Fig.14). One can easily notice

that all fields match the options that can be specified in a subscription file. Executables, still, have

to be specified inside a script file. The name of the job can be specified together with a list of

arguments, working directory, shell to be used and name of I/O files.

Fig. 13 SGE’s graphical interface Main Control

71

Fig. 14 Graphical interface for job submission

 Once a job is submitted to the system, it is placed into a queue. In our testing environment

the SGE uses its default configuration. Hence, no additional queues are defined in the system and it

uses the global one (all.q). Users can check the status of the submitted jobs using the command

qstat. Torque uses the same command. Fig.15 shows a screenshot taken from our testing

environment after submitting the job in the above example. Without specifying any options the

command returns a list of all jobs in the default queue. Jobs are described by their ID, priority,

name, state, submission time, allocated queue instance and number of occupied slots. From the

output one can determine what state the job is in (waiting, running, suspended, error). If it is in

state Rr (running), like in Fig.4, one can also determine on which node it has been assigned to for

execution (in this case node compute-0-5). If the job does not appear in the queue statistics

immediately after submission one must to check the contents of the automatically generated error-

report file.

Fig.15 Output of qstat for a serial job

 Furthermore, the qstat command proves to be quite useful for monitoring the queues in

the system and the jobs submitted to them.

• qstat –j <jobname_or_ID> prints various information about a job. If the job is in

the error state, the error reason is displayed andif it is in the running state it shows

information on resource utilization.

72

• qstat –f specifies a “full” format display of information. Summary information of all

available queues in the system is displayed.

• qstat –u <Username> displays information about all jobs and queues the specified

user has access to. It is useful for troubleshooting as it lists the contents of some

environment variables, specific for SGE. They contain paths to binaries and libraries.

4.4.2 Modifying a Job

 Jobs submitted to a cluster environment might be such that they require lots of time to

complete or they do not schedule the way they are expected to. In cases like this, cluster

administrators might have to suspend a slow job or even stop it permanently. A job can be canceled

using the command qdel (qdel <jobname_or_ID> | -u <username>). If the job is

already in the running the system will refuse to stop it with a warning message. To force stopping

the job one can use the option “-f”. If a user is specified as an argument, then all jobs submitted by

him will be cancelled. Torque uses qdel to cancel jobs, too.

 Jobs can also be put into a suspended mode. In this state they free the occupied resources

and return to the queue waiting to be resumed. Modifying a job is achieved using the qmod

command. It can be used to suspend/resume jobs, to disable/enable them, reschedule them, or clear

their error states. When a job restarts after being in suspended mode or is rescheduled its status is

already “Rr”.

• qmod –sj <jobname_or_ID> suspends a job.

• qmod –usj <jobname_or_ID> resumes a job.

• qmod –rj <jobname_or_ID> reschedules a job.

• qmod –f –rj <jobname_or_ID> force reschedules a job.

4.4.3 Troubleshooting

 After a job completes its execution, all output is contained in the automatically-generated

output files (NumInt.e.63 and NumInt.o.63). If an error occurs at some point during execution it is

listed in the error output file. That is why this should be the first thing to be checked when a job

finishes executing. Additionally, users can see statistics about the execution process by issuing from

the command-line qacct –j <jobID>. The command provides an access to statistical data

regarding all executed jobs. It produces summary information for wall-clock time, CPU-time, and

system time together with exit status, and node that handled execution. Its options allow users to

search the data for entries that match a specific time period, user, job, hostname, etc. When a job is

rescheduled to use another machine or it simply occupies several machines during execution time,

summary is printed for each machine involved. In the case of Torque, the command tracejob

<jobID|name> provides summary information of the execution process. Example output is

shown in Fig. 16. The command pints a job’s exit status, execution time on the CPU, wall time,

used physical memory.

Fig.16 Output of tracejob

73

 Finally, if a job does not run at all or generates errors, SGE provides a way of answering

why this might be happening. The command qstat –explain c –j <jobID> provides a

reasonable message. An example is “queue instance all.q@compute-0-4.local dropped because it is

temporary unavailable”, which indicates that compute-0-4 might be offline.

4.4.4 Submitting an MPI Job

 The SGE introduces a way of submitting parallel jobs to the cluster as well. What is more,

OpenMPI also implements support for the grid engine starting from version 1.2.0. This means that

when an mpirun command is executed in an SGE job, it will automatically use the SGE

mechanisms to launch and kill processes [OpenMPI, 2009]. In addition, it uses the SGE

configuration of the environment and its knowledge about the nodes in it. An mpirun command no

longer needs specifying a machine file containig a list of nodes to which workload must be

distributed. SGE allocation is done at a higher level and it generates its own machine-file which is

usually placed in $TMPDIR/machines.

 SGE provides two different ways of submitting parallel jobs to the cluster. The first way is

more suitable for executing small tasks on all nodes in the cluster. It uses the SGE command qrsh,

which operates in a similar way to the normal rsh command with the difference that no hostname

is passed as an argument. Instead, an executable or a shell script is run on every node of the cluster

at the same time. The results are directed back to the submitter’s terminal. qrsh operates

differently from qsub as it does not place the job into the queue. If the job cannot be run

immediately, it is dropped. Additionally, the input and output streams are not redirected

automatically to files but users have to specify this explicitly using the shell redirect operators.

Nevertheless, the following example runs our MPI test application on the cluster.

qrsh –V –pe orte 3 mpirun –np 3 \

$HOME/MpiNumIntegrationTest.exe

 The second option for running an MPI parallel application is using the command qsub and

a shell script. The script used to run our test application is the following

#!/bin/sh

#$ -S /bin/sh

#$ -cwd

#$ -j y

#$ -V

#$ -N MpiTest

#$ -pe orte 3

MPI_DIR = /opt/openmpi/bin

$MPI_DIR/mpirun –np $NSLOTS --mca pls_gridengine_verbose 1

$HOME/MpiNumIntegrationTest.exe

where the difference to the example submitting a serial job, is in the options “-j y” and “-pe orte 3”.

The first one causes the output of the error stream to be merged with the output of the standard

output stream into one file. The second option holds, actually, the main difference to the first

example. This option specifies a parallel programming environment that handles the execution of an

MPI application with a number of processes in it. The current configuration has three predefined

parallel environments (PEs): mpi, mpich and orte. A list of the available PEs can be displayed using

the command “qconf -spl”. What is more, details about what parameters each parallel

74

environment contains can be displayed by issuing “qconf –sp <orte|mpi|mpich>” (see

Fig. 17). All of them have defined 9999 slots and differ in the configuration of the parameters

start_proc_args and stop_proc_args. For orte they both contain /bin/true/ and for mpi

they contain /opt/gridengine/mpi/startmpi.sh $pe_hostfile and ~/stopmpi.sh. One can add a new

parallel environment using the command qconf –ap <pe-name>. However, for doing this and

modifying the SGE environment in general one must be a manager of the environment. Upon initial

configuration ROCKS sets the root user to be the manager. SGE usually does not grant

administrator privileges over the system even to the root user – a different user is normally defined

to be an SGE manager. Nevertheless, in the ROCKS environment the command works by opening a

“Vi” text editor which is intended to create a help environment for configuring a new PE. All

options are already defined and filled in with default values. Users have to save the file when they

are done with the configuration. Finally, a newly created PE can be removed with the command

qconf –dp <pe-name> and modified with the qconf –mp <pe-name>.

Fig. 17 Parallel environment configuration using the SGE GUI

 After the script file is created the test job MpiTest can be submitted using qsub. The job

is immediately put into the queue and then it is executed occupying 3 slots (all available compute

nodes). Fig. 18 shows the contents of the queue all.q.

qsub SubmitScript.sh

Fig. 18 Output of qstat for a parallel job

75

 Our experience showed that using the SGE’s mechanisms for submitting parallel jobs puts

certain constraints to the execution process compared to using the conventional OpenMPI interface.

The grid engine operates in a way that on each execution host an execution daemon is installed, that

takes care of handling the particularities around a local job execution process. It is also responsible

for determining the capacity of the machine to run jobs by defining available slots for it. The SGE

does not limit the number of job slots that the daemon can offer, but normally it associates a job slot

to each processor or core available on the machine. This way, the resource pool consists of available

slots that can be matched to a job. When an MPI job is submitted to the system the SGE tries to

create an optimal execution environment by initiating a number of processes that matches the

currently available slots in the system. If there are machines with quad core (8 cores) processors, the

SGE will create 8 different processes on each of those machines. In our case, however, all machines

in the cluster consist of single core processors. That is why, when an MPI job is submitted to the

cluster it can use only a number of processes that matches the number of processors (3 in our case).

When a larger number of processes are specified the SGE replies with an error message that slots

are not available and refuses to run the job. The job remains in the queue in an idle state. Thus, in an

environment of four machines, like the one used for testing, the SGE allows only 3 of them to be

used effectively. The frontend is recognized as manager-submit node and does not contribute to the

number of available slots with its processor(s). In contrast, the conventional OpenMPI interface has

no such restriction. It allows users to create any number of processes as long as the hardware is able

to support them. What is more, the machines used for executions are defined only by an installation

the OpenMPI and the frontend can be also included. For instance, the same application can be

submitted for execution using 200 processes through the OpenMPI interface. This, of course, does

not lead to any improvement of performance as the hardware capabilities of the testing cluster are

rather limited. When using it, however, one has to keep track manually of the available processors

in the resource pool and only then to specify the optimal number of processes to be created.

4.5 Summary

 ROCKS 5.1 provides a set of tools that help users to manage the hardware and software

resources of a cluster and properly distribute the workload in a way that best matches them. These

tools are reviewed in the form of examples that aim to describe what can be achieved with them and

how they can be used. A basic overview of the main features and the ideas behind their functionality

show that the tools Ganglia, OpenMPI, Condor, Sun Grid Engine, Torque/Maui are more than

useful in a parallel production environment.

 The chapter starts with a section dedicated on the real-time monitoring tool Ganglia. It is a

simple but powerful tool for monitoring the resources of high-performance clusters or federation of

clusters (clusters of clusters). The tool produces a vast amount of statistical data regarding resource

utilization at any point in time. What is more, it saves this information in a database so that analysis

can be performed on the performance of the cluster upon execution of a certain application. Cluster

administrators can benefit greatly from using Ganglia as it provides a general overview of the whole

environment in the form of easy-to-read images. This makes Ganglia usable for both

troubleshooting and monitoring the available resources.

 Furthermore, the chapter continues with presenting an example of a parallel application that

aims to show how useful MPI still is for achieving parallelism in applications. MPI provides a

strong programming interface for low-level control of processes spawned on different machines but

working all together on a single application. It also provides an irreplaceable mechanism for

76

implementing different parallel algorithms and techniques in order to increase the performance of

an application. Utilizing it, however, requires users to manually analyze the available hardware

resources and the interconnection method in order to create an implementation that best suits them.

 The tools described in the following sections aim at solving this problem automatically.

They implement mechanisms of keeping track of the available resources and matching the cluster

workload to them. The main difference is that their design focuses mostly on finding the most

appropriate machine to execute a single application (a job). While they also allow users to submit

parallel applications (e.g. MPI binaries), these are executed under some restrictions compared to the

conventional MPI mechanism.

 The first tool, Condor, is a batch system that creates an environment for assigning jobs to

available computing resources. In contrast to others, its main purpose is not only to find the best

machine for executing a job but also to ensure that long-time-running jobs complete eventually. For

this, Condor relies on a mechanism of job migration (using checkpoints) that allows a job to

continue executing on a different machine in case the initial one fails. Thus, it is designed to serve

large-scale networks of machines of distributed ownership like Networks of Workstations or the

Grid. In this way the created ROCKS cluster can be easily included into a larger scale distributed

environment.

 Two other tools that work similarly to Condor are the resource managers Sun Grid Engine

(SGE) and Torque/Maui. Compared to Condor both tools are more cluster oriented. SGE

implements a wide variety of policies to facilitate matching of jobs to machines. What is more, it

provides a convenient GUI for manipulating the system. Similarly to Condor it also supports the

mechanism of check-pointing through its API called DRMAA. It also supports submission of

parallel jobs to the system by providing a wide variety of parallel programming environments.

However, jobs are executed with some differences to the conventional MPI mechanism because of

the specifics around handling the resources in the SGE system. Nevertheless, users are relieved

from manually analyzing the available resources as the SGE automatically occupies those machines

that respond to the user-specified requirements of the application. SGE includes a scheduler in its

implementation that decides which jobs are going to be run next. In comparison, Torque uses an

external scheduling module – Maui. Still, SGE proves to be more than useful in a ROCKS cluster

environment.

77

Chapter 5

Test Application

 This chapter aims to describe the behavior of the achieved testing environments when

confronted to the challenges of running a real-life production application. Developed by RISC

Software GmbH, this application solves compute-intensive tasks by utilizing optimized algorithms,

complex data structures and the message passing interface. It is designed and implemented to run

on a distributed environment in order to achieve faster execution time. The two testing clusters built

with ROCKS and CAOS-NSA, were used to run the application. Results, in the form of wall-clock

timings, network load and memory load, are analyzed and compared.

 Section 5.1 provides an overview of the application and the techniques it incorporates.

Section 5.2 shows the results obtained during testing. Here, a comparison is made between the two

clusters used. Section 5.3 summarizes the gained experience and provides conclusions.

5.1 Application Description

 A real-life production application is used for testing the functionality of the ROCKS and

CAOS-NSA clusters. This application is a product of the joint effort of the parallel-programming

team at RISC Software GmbH and the University of Applied Science, both located in Hagenberg,

Austria. It is developed by Andreas Scheibenpflug under the supervision of Michael Krieger.

 The application itself is designed to serve the needs for other more complicated pieces of

software that deal with problems in the area of route optimization. It provides a core component for

industrial logistics applications which often need to solve the problem of how transportation and

delivery of goods can be organized so that travelling expenses are minimized. This problem is

known as the Travelling Salesman Problem (TSP). While there is no known algorithm that solves

the TSP in the general case, many optimizations and limitations can lead to finding a satisfactory

solution. The application used for testing provides a basic module for computing the TSP – it

calculates the shortest paths between numerous of sites. It does not deal with computing the TSP

itself but it creates a graph data structure based on map data that contains customer locations and

the shortest paths between them. All values for a predefined set of customer sites are saved in a

matrix (often referred to as a distance matrix) which is then used for creating the graph.

 Unlike TSP, finding the shortest paths between vertices in a graph is a problem which there

are numerous solutions to. However, it proves to be a compute intensive task when the problem area

becomes too big. In our case, the test application works on a data structure that represents the street

network of Austria. This data structure is a graph that consists of about 900’000 nodes and 1.1

million edges. It is generated based on real map data that contains information about streets (type,

direction, length), intersections, addresses, etc. This data is simplified in order to remove all

unnecessary details resulting in a graph representation where all intersections are introduced as

nodes and all streets between these intersections as edges. The optimized data structure holds the

information about the complete street network of Austria in a file that is of size 110 MB. During

78

execution time, this file is loaded in the physical memory and, thus, makes the application free from

interacting with the hard-drive. Another optimization is that the test application only computes the

shortest paths between a small subset of nodes which represent the client sites. Furthermore, the

core component of the application is the algorithm which, actually, is responsible for how optimal

the distance matrix computation is. Dijkstra’s algorithm was chosen for several reasons. First, it

shows to be faster compared to others when computing the single-source shortest path problem

even when executed on a conventional desktop computer. In fact, this is why the application does

not parallelize the algorithm itself but runs multiple instances of it on different machines that work

on different sets of input data. More importantly, the algorithm relies of the fact that the shortest

path to a node in a graph structure consists of all shortest paths to all preceding nodes in that path.

This means that shortest path between two nodes can be computed independently from the one

between other two nodes and then results can be combined into a single path that is also the

shortest. The parallel implementation benefits from this by being able to dividing the workload.

Hence, when utilizing a parallel environment, input data can be easily divided between computing

nodes so that computations are carried out independently and results are combined at the end. The

application itself is implemented using MPI. It incorporates a client/server approach, where the

master process is responsible for providing work to the slaves and then collecting the results which

form the distance matrix. Communication between processes is kept to minimum but

synchronization still takes place between the server and the clients.

5.2 Testing and Comparison

 This section describes the results obtained from running the distance-matrix calculation on

our testing cluster environments. Upon development, the application was tested using different

technologies and approaches in order to compare them and determine which one results in

achieving lowest execution time. In addition to MPI, an alternative implementation was also created

using OpenMP. What is more, the application was tested also using the middleware BOINC and

several desktop computers. However, previous to testing it on the two cluster environments it had

not been executed on another HPC parallel computer. Hence, the obtained results only determine

the behavior of the ROCKS cluster in comparison to the CAOS-NSA one.

 There exists an alternative implementation of distance-matrix calculation using OpenMP.

OpenMP is a programming approach that is used for paralyzing computations in shared-memory

environments. Instead of creating different processes, like MPI, it creates multiple threads that work

concurrently on a single machine. This way, the Dijkstra’s algorithm could be tested using one and

two threads on a multi-core desktop computer. Using an input of 100 nodes, the OpenMP

implementation executes for an average of 86.6 sec when utilizing a single thread on a dial core

machine (see Table 1, comp. 4). Five different runs were performed for obtaining this value.

Another five runs reveal that the application executes for an average of 93.67 sec. when 2 threads

are used on the same dual-core machine. Comparison of these values clearly shows that the

implemented algorithm is not parallelized effectively. Not only, it achieves no speed up when using

more processors, but it shows performance degradation.

79

 As described in Chapter 3, two cluster environments were built using the cluster deployment

tools ROCKS and CAOS-NSA. Table 1 (see Chapter 3) provides a list of the machines included in

each of them together with their hardware configuration. Both clusters consist of four machines,

three of which have single core processors and one (the head node) has a dual core processor.

Hence, there are 5 processors in total available on each cluster.

 The application is tested first on the ROCKS cluster using different sets of input data against

different number of processors. Testing data includes different files containing IDs of nodes from

the graph representation of street network in Austria. Four different test files were used containing

10, 35, 50, and 100 IDs in them. The application computes the shortest path between each pair of

nodes using the street graph. However, for the purpose of presenting the behavior of the parallel

environment in terms of execution time, this section focuses mainly on the most compute-intensive

example of calculating the shortest paths between 100 nodes.

 Using input data of 100 nodes the MPI implementation of the distance-matrix calculation is

executed on the ROCKS cluster. Table 7 shows a detailed overview of the execution behavior by

describing the wall-clock runtime of each process together with the total execution time for five

separate runs. The average total execution time on the five processors is 70.13 sec. In order to pass

a basic notion of how the speed-up improves when multiple processors are involved a comparison is

made to the execution time of the OpenMP implementation. The current design of the MPI

application does not allow it to be executed on a single process because it implements a

server/client architecture and at least two processes need to be started. Thus, there is no other

alternative for comparison to a sequential implementation that the OpenMP one. Of course, the

obtained results from the two techniques cannot be compared fairly as the OpenMP implementation

operates completely differently on both the hardware and software level. One has to consider that

threads are faster than processes and they use shared memory to communicate. Nevertheless, a

comparison reveals that utilizing 5 processors instead of 2 in the computation process results in

achieving a relative speed-up of 1,34. This result is far from being satisfactory as little absolute

speed-up is achieved but it still shows that the parallel environment introduces better speed-up than

using a single dual-core machine.

 Run 1 Run 2 Run 3 Run 4 Run 5

Server Process (gateway) 10.66 13.13 11.27 13.31 13.29

compute-0-2 68.82 68.30 68.41 69.33 68.68

compute-0-5 63.58 62.57 63.20 63.19 63.33

compute-0-4 65.77 69.44 69.59 70.27 70.94

gateway 54.04 51.50 52.18 52.03 52.55

Total execution time 69.1883 69.8349 70.9970 70.6682 71.3777

Table 7 Execution timings (in seconds) for each process executing
 the distance-matrix calculation on the ROCKS cluster

80

 When the distance-matrix calculation is executed numerous times using different number of

processes (processors) it reveals an important characteristic of every parallel application –

increasing the number of processors increases the execution speed. This shows how scalable

parallel implementations are in means of achieving speed-up. Fig 19 shows the execution wall-

clock timings measured on the ROCKS cluster with an input of 100 nodes. One can see how

increasing the number of processors improves the execution timing drastically but only up to the

point of reaching the optimal value of 70.13 sec. However, the chart also shows how the

environment is limited by its hardware profile. The ROCKS cluster contains in total 5 processors

(See Table 1, Comp1-4). Thus, speed-up is only achievable up to the point that the number of

processes meets the number of available processors. Starting more processes introduces significant

degradation in performance. Similar results can be observed on the CAOS-NSA cluster.

Fig. 19 Execution timings (in seconds)
on the ROCKS cluster for different number of processes

 Introducing more processes to a system that cannot support them with its available hardware

results in loss of performance for a parallel application. The reason is that more processes require

additional memory and CPU clock cycles. If none are available, processes have to wait for others to

finish or what is even worse they start executing, by stealing clock cycles from an already running

process causing synchronization and context-change overhead. What is more, in the case of MPI

applications, more processes results in more communication demands and synchronization for

networking resources. Table 8 shows how network traffic increases with the number of processes

started in the system. These results are obtained using the Ganglia monitoring tool. They clearly

show that network traffic increases with the number of processes as, in the case of our application,

processes receive work from the master process and have to synchronize with it. More processes

result in more data traffic which indicates that a production HPC environment which contains even

several hundred processors requires fast communication links. Otherwise network throughput will

surely not be able to cope with the speed of the processors and network latency will result in

processes being idle waiting for a message.

155.1363

90.3378

91.8233

70.1273

93.5133

127

40

60

80

100

120

140

160

Number of

processes

2 3 4 5 7 10

E
x

e
cu

ti
o

n
 T

im
e

 (
se

c.
)

81

Number of

processes

Data Transfer

2 4-6 MB

3 4-6 MB

4 7-8 MB

5 11-12 MB

7 16 MB

10 22-23 MB

Table 8 Network traffic for different number of processes
measured on the ROCKS cluster

 On the other hand, increasing the number of processes in a parallel system does not always
result in achieving speed-up even in the case when the underlying hardware infrastructure supports
multiple processors. Our experience shows that execution time of an MPI application is also tightly
dependent on the problem size. For large input data sets, which obviously require lots of
computational time, more processors compute faster. But, when input is small in size, then the
application suffers from inter-process communication rather than it benefits from it. The larger the
number of processes is, the bigger the communication overhead becomes. In cases like this,
network latency takes over parallelism resulting in performance difference. Table 9 shows a
comparison between execution wall-clock timings for 4 and 5 processes measured on the ROCKS
cluster with input data 10. Table 10 shows a similar result comparing execution wall-clock timings
for 3 and 4 processes measured on the CAOS-NSA cluster. In both cases, adding one more process
introduces a delay of roughly 2 seconds.

Number of

processes

Run 1 Run 2 Run 3 Run 4 Run 5 AVG

4 32.7486 32.8408 34.1129 32.9065 32.7829 33.1781

5 34.4617 35.1585 35.4698 34.8707 37.5924 35.5106

Table 9 Execution timings (in seconds) for 4 and 5 processes
on the ROCKS cluster for input of 10 nodes

Number of

processes

Run 1 Run 2 Run 3 Run 4 Run 5 AVG

3 34.1212 34.3120 34.0535 34.4155 34.3218 34.2448

4 36.3170 36.4842 36.0285 36.0721 36.0940 36.1991

Table 10 Execution timings (in seconds) for 4 and 5 processes
on the CAOS-NSA cluster for input of 10 nodes

 In this last example one can notice that for the CAOS-NSA cluster (see Table 1, comp.5-8)

the comparison is made between 3 and 4 processes even though the environment supports 5. The

reason is that the CAOS-NSA cluster revealed a major downside to utilizing heterogeneous

environments. It showed that the whole system is as slow as its slowest part. In contrast to the

ROCKS cluster, this one contains a node that has rather old architecture (PIII 866Mhz). When the

distance-matrix calculation is executed this node shows significant slow-down making all the other

nodes wait after they finish. This proves that a heterogeneous cluster environment can benefit in

82

achieving faster computations only when it utilizes similar processors. Once a node introduces a

processor that is significantly different from the others, it will cause synchronization problems.

Even in the case the processor is much faster than the other ones it will not perform at its best

because it will either remain idle till the others are done or it will be stuck in waiting states while

trying to synchronize. These difficulties can be overcome only at programming level. Applications

have to be designed to implement a different kind of parallelism that takes into account the

heterogeneous nature of the execution environment. This way slower nodes can be given less

workload and thus finish in time with the others.

 In the following examples the slow node was excluded from the CAOS-NSA cluster. The

tables below aim to show the behavior of both the ROCKS and CAOS-NSA clusters when

executing the distance-matrix calculation with different input data and different number of

processors. All described results are obtained as an average of five different runs. Table 11 describes

average wall-clock timings using different input data on the ROCKS cluster. The example contains

measurements of runtime using 3 and 4 processors so that comparison can be made to the CAOS-

NSA environment. Table 12 shows the results for the CAOS-NSA cluster. It does not contain a third

line with timings for 5 processes because the slowest node was eliminated previous to performing

the tests.

Number of

Processors

Input Data 10 Input Data 50 Input Data 100

3 35.1203 58.9195 90.3378

4 33.1781 53.74345 91.8233

5 35.5106 47.6663 70.1273

Table 11 Execution timings in seconds for different number
of processors and different input measured on the ROCKS cluster

Number of

Processors

Input Data 10 Input Data 50 Input Data 100

3 34.2448 58.1279 87.4807

4 36.1991 52.7227 75.2497

Table 12 Execution timings in seconds for different number
of processors and different input measured on the CAOS-NSA cluster

 While the average execution timings for using 3 processes show that the CAOS-NSA cluster

performs, more or less, equally to the ROCKS one, the timings for 4 processes reveal a significant

difference especially when input data reaches the maximum value of 100. Then the CAOS-NSA

cluster performs rather faster than the ROCKS one beating its time with roughly 15 seconds.

Nevertheless, this result cannot be explained with the software advantages of one environment over

the other. Both utilize OpenMPI and in this case it operates independently from the underlying

clustering software. Thus, at this point no reasonable explanation can be provided regarding the

utilized tools for parallelism. The matter requires further analysis and investigation. One

explanation can be that the CAOS-NSA set of machines performs better under these circumstances

as the utilized hardware happens to be more suitable for solving this particular problem.

83

5.3 Summary

 This chapter analyzes the behavior of the ROCKS and CAOS-NSA cluster environments

when executing a real-life application. The application, developed by RISC Software GmbH, was

chosen to be tested on the clusters as it was designed to operate in a distributed parallel

environment. Both, the application and the performance of the cluster were assessed with the

described test runs. This way the development team received valuable data about execution timings.

The application itself computes the shortest paths between a set of points taken from the road-map

of Austria. It is intended to be integrated into industrial logistics applications in order to help route

optimization in the area of transportation and delivery of goods. The application creates a distance-

matrix carrying out computations in parallel.

 The application was tested against different sets of input data and different number of

processes on both the ROCKS and CAOS-NSA clusters. Results do not reveal any advantage or

disadvantage of using either software environment but prove that the used hardware plays

significant role in how fast computations are performed. What is more, results undoubtedly show

how speed-up of a parallel application increases with increasing the number of processors involved

in the computations. Again, hardware puts certain limits and determines a maximum value for this

speed-up. Results describe how communication and synchronization overhead take over after a

certain point resulting in loss of performance. On the other hand, the test runs on different input

data confirm that speed-up is also tightly dependent on the size of the problem area. When size is

too small, the performance decreases as it suffers from all the process creation, handling, and

communication. Finally, monitoring execution behavior upon different test cases proves that one

can determine which machines in the heterogeneous environment are more suitable for performing

calculations and adjust the environment every time a subset of computers is needed. In addition,

certain machines can show significant slow-down when confronted to an application and thus

degrade the performance of the whole system.

84

Chapter 6

Conclusions and Future Work

 This thesis describes thoroughly the process of building a Beowulf-type cluster for high-
performance computing. The presented evaluation focuses on techniques and approaches for
creating a parallel production environment that uses heterogeneous commodity hardware platforms
instead of specialized high-performance ones. What is more, the study reveals the possibilities of
reaching maximum performance at the lowest price by using common desktop computers. This is
an important result for companies that already use or create software that requires a parallel
environment in order to run faster and more effectively.

 Creation of a fully-functioning parallel environment for high-performance computing
requires installation and configuration of cluster middleware. This is the gluing component that
makes a collection of interconnected machines work like a single more powerful computer. That is
why, the thesis starts with an overview of different middleware. Further, cluster middleware is
systematically analyzed by following a process of creating a real heterogeneous cluster
environment. For this high level middleware is assessed in detail by comparison of the cluster
deployment tools OSCAR v6.0.2, ROCKSv5.1, CAOS-NSA v1.0. An elaborate description of the
installation process of each of the tools aims to reveal both its strong and weak sides. The latest
version of OSCAR (and the one used for testing) shows to be quite limited as it is still under
development. In general OSCAR is a tool that brings a strong feature set and has proven its
effectiveness towards building HPC parallel environments. However, at the time of testing a
renovation process was taking place that aimed to improve the installation process and make the
tool more flexible and independent from the underlying Linux distribution. Our testing environment
showed that a working cluster can be achieved with Debian Etch as a foundation but it does not
provide an installation of any tools for clustering. An approach for installing additional tools on the
cluster was tested - a local repository was build. However, even with it, installation and integration
of tools for parallel computation turned out to require a lot of effort and time. Thus, our experience
showed that the current version of OSCAR does not provide the required functionality and, what is
more, it introduces lots of difficulties to the installation process. CAOS-NSA, on the other hand,
implements a quite fast way of cluster deployment. A cluster of four computers was deployed
within 25 minutes. The reason why this is possible is that CAOS-NSA installs stateless images on
all nodes in the cluster. These do not reside on the local hard drives but occupy only the physical
memory of the machines. Because of this, CAOS-NSA proves to be quite effective for building a
parallel cluster environment for testing MPI. However, compared to ROCKS and OSCAR, it
incorporates a quite poor list of tools for clustering. Taking this into account together with the fact
that the whole cluster is highly dependent on the head-node for remote access to files and services
makes CAOS-NSA not that reliable to be used in a production environment. Further, using the
cluster deployment tool ROCKS we created a fully-functional cluster with four heterogeneous
computers. ROCKS showed to be easy to install on all machines. What is more, it has reached a
state of full automation of the installation process where there is very little interaction with the user.
This is a major advantage of the tool making it the preferred tool.

 Because of this the assessment of the functionality of the built environments focuses
basically on the tools provided by ROCKS. It installs a rich variety of tools for resource
management, resource monitoring, and submission of sequential and parallel jobs. Series of
examples, executed on the cluster, reveal both the strong and weak features of the tools. The batch
system Condor is compared to the resource mangers Sun Grid Engine (SGE) and Torque/Maui.

85

Examples, of submitting serial and parallel jobs to the cluster provide guidelines for users how to
utilize the cluster environment for professional purposes. While Condor implements features that
make it more suitable to be used in large-scale distributed environments, the Sun Grid Engine
together with Torque/Maui show to be more suitable to be used on a cluster. What is more, the SGE
implements more advanced feature set than Condor and definitely beats its competitors by
providing users with a GUI, which, on top of that, supports the full functionality of the system.

 Finally, the functionality of MPI is tested using a simple test application which proves that
absolute speed-up can be achieved on the cluster. On the other hand, test runs of a real production
application show that achieving absolute speed-up depends mainly on the implementation and the
utilized methods for parallelization. Examples reveal that in certain cases communication overhead
can take over and result in decreasing the performance of the whole system. What is more, this
application proved that a cluster is as fast as its weakest element. This result suggests that
heterogeneous environments can demonstrate better performance only when hardware is combined
in a proper way. Utilization of processors drastically different in speed leads to loss of performance.

 Using heterogeneous environments for high-performance computing is a relatively new
approach for achieving better performance with a Beowulf-type cluster. The examples and
achievements described in this thesis prove that such an environment can be created and, more
importantly, it can be used for implementing better parallel algorithms. The two small testing
clusters created using ROCKS and CAOS-NSA can be further improved, so that, RISC Software
GmbH can benefit from having a real production parallel environment instead of the testing set-ups.
What is more, such a production environment can be built by combining the two test clusters into a
single large cluster that consists of 8 machines, 10 processors, and 10 GB RAM. This cluster can
already provide a broader range of opportunities for testing and research. As discussed in chapter 5,
with larger number of processors incorporated in the cluster, network traffic increases. Hence,
testing the capabilities of such an environment requires considering faster means of networking.
Gigabit Ethernet or even faster technologies can be further studied and evaluated in order to
determine their impact on the performance of the parallel computations. Once the larger cluster
proves to be productive, it can be used for conducting further research in the area of high
performance computing. Even more, existing parallel algorithms can be tuned to take advantage of
the heterogeneity of the machines. Heterogeneous computing is still relatively new area and there is
plenty of room for testing and improving. Thus, it requires research and development of new
techniques. Job schedulers and resource managers can be further improved to make better use of the
heterogeneous resources. Additionally, new scheduling techniques need to be studied so that job
distribution is handled automatically depending on current machine load, machine speeds, and
current network load. Resource managers can be tuned, for instance, to make processes migrate as
soon as faster hardware becomes available in the cluster. This idea, together with many others can
be implemented and tested on the larger cluster.

 Another opportunity to improve performance in a heterogeneous environment is using
graphical processors for performing computations. This idea is relatively new to the field of HPC
and has become recently popular with the release of the 8-core Cell Processor on Play Station 3.
The popularity of this gaming console makes the computing resources included in it available for
testing in a heterogeneous computing environment. While ongoing research proves that this 8-core
processor is quite powerful, research is still needed to determine whether it can be used in an
environment that consists of conventional commodity CPUs (e.g. typical Beowulf cluster).
Interaction between machines has to be controlled by advanced programming techniques that divide
workload among the computers in a way that the 8-core processor receives more tasks. Also, a
parallel implementation has to arrange computations so that they match the specifics around the
way graphical processors operate. Furthermore, when using conventional desktop computers (like
in our testing environment) one has to consider the fact that every desktop computer has a graphical
processing unit installed on it, because each machine must support displaying of graphical user

86

interfaces. Having this in mind, a reasonable idea is using these processors for performing
computations as well. This is a challenging task due to the difference in the architecture of these
processors and the fact that they are optimized for performing a single operation over and over
again on different input data sets (e.g. addition of vectors). However, in the case of a cluster (like
the one built upon testing) using the available GPUs doubles the number of available processors. Of
course, making use of such processors requires different programming tools and techniques (e.g.
CUDA). These require further studying, so that eventually an application can be executed in parallel
on all types of available processors.

 Finally, having an HPC cluster does not always provide the best resources for testing and

development. This is why, the achieved cluster can be included into a large-scale network like, for

example, the Austrian Grid. The grid is an innovative undertaking that aims to combine computing

resources distributed geographically. It incorporates techniques for distributing workload among

machines which fall under different administrative control and follow different security policies. In

fact, the project is relatively young and still requires research. This is why, including the cluster in

such a network can provide further opportunity for testing. Grid-oriented parallel applications can

be executed and analyzed. Parallel algorithms can be tuned to run faster in such an environment.

What is more, ROCKS already supports grid job submission with Condor.

87

References

[Barley, 2009] Blaise Barney, Lawrence Livermore National Laboratory, Message Passing

Interface (MPI), https://computing.llnl.gov/tutorials/mpi/#MPI2, Last Modified: 01/26/2009, Last

accessed in April 2009

[Buytaert, 2004] Kris Buytaert, Introducing openMosix, 2004, O'Reilly Media, Inc, SysAdmin, Last

accessed in April 2009, http://www.linuxdevcenter.com/pub/a/linux/2004/02/19/openmosix.html

[Buyya vol.1, 1999] Rajkumar Buyya (editor). High Performance Cluster Computing: Architectures

and Systems, Vol. 1. ISBN 0-13-013784-7, Prentice Hall PTR, NJ, USA, 1999.

[Buyya vol.2, 1999] Rajkumar Buyya (editor) High Performance Cluster Computing: Programming

and Applications Vol.2. ISBN 0-13-013785-5, Prentice Hall PTR, NJ, USA, 1999.

[CAOSHome, 2009] Home page of CAOS http://www.caoslinux.org/, last accessed in May 2009

[CAOSWiki, 2009] Wiki page of CAOS: http://wiki.caoslinux.org/Main_Page, last accessed in May

2009

[CentOS, 2009] CentOS home page: http://www.centos.org/, last accessed in June 2009

[Condor, 2009] Condor Home Page: http://www.cs.wisc.edu/condor/ , last accessed in April 2009

[Condor-Manual, 2009] Ross Moore, Nikos Drakos, Condor Version 7.0.5 Manual:
http://www.cs.wisc.edu/condor/manual/v7.0/, last accessed in July 2009

[Dague, 2002] Sean Dague, System Installation Suite, Massive Installation for Linux. Proceedings

of the Ottawa Linux Symposium 2002, June 26th–29th, 2002 Ottawa, Ontario, Canada. , Pages 93-

106. Online copy: http://www.kernel.org/doc/ols/2002/ols2002-pages-93-106.pdf

[Dongarra, 2004] Jack Dongarra and Alexey Lastovetsky, An Overview of Heterogeneous High

Performance and Grid Computing, in Engineering the Grid, Edited by Beniamino Di Martino, Jack

Dongarra, Adolfy Hoisie, Laurence Yang, and Hans Zima, Nova Science Publishers, Inc., 2004

[Foster, 2005] Ian Foster, A Globus Primer. Or, Everything You Wanted to Know about Globus, but

Were Afraid To Ask. Describing Globus Toolkit 4, An Early and Incomplete draft, 5/8/2005,

www.globus.org/primer

[Geist, 1994] Geist A., Beguelin A., Dongarra J., Jiang W. , Manchek R., Sunderam V., PVM:

Parallel Virtual Machine: A Users' Guide and Tutorial for Networked Parallel Computing. MIT

Press, 1994. Online copy at: http://www.netlib.org/pvm3/book/pvm-book.html

[Gropp, 1999] William Gropp, Ewing Lusk, Anthony Skjellum, Using MPI – Portable Parallel

Programming with the Message Passing Interface, 2nd edition, MIT Press, Nov. 1999, ISBN-10: 0-

262-57132-3 ISBN 13: 978-0-262-57132-6

88

[Hadoop, 2009] Hadoop Home Page, last updated on 02/24/2009, last accessed in April 2009

[Hadoop HDFS, 2009] HDFS Architecture last accessed in April 2009:

http://hadoop.apache.org/core/docs/current/hdfs_design.html

[Hadoop M/R, 2009] Map/Reduce Tutorial, last accessed in April 2009:

http://hadoop.apache.org/core/docs/r0.19.1/mapred_tutorial.html

[Hoffman-Condor, 2003] Forrest Hoffman, Cluster Management with Condor, Part I, article in
Linux Magazine October 15th, 2003, online copy: http://www.linux-mag.com/id/1483, © Linux
Magazine 1999-2009. LinuxMagazine.com v4.0, last accessed in July 2009.

[Hoffman-Ganglia, 2003] Forrest Hoffman, Cluster Monitoring with Ganglia, article in Linux

Magazine August 15th, 2003, online copy: http://www.linux-mag.com/id/1433, © Linux Magazine

1999-2009. LinuxMagazine.com v4.0, last accessed in July 2009.

[Layton, 2009] Jeffrey B. Layton, CAOS NSA and Perceus: All-in-one Cluster Software Stack,

Linux Magazine, February 5th 2009, online article at: http://www.linux-mag.com/id/7239, last

accessed in May, 2009

[Layton, 2008] Jeffrey B. Layton, Perceus/Warewolf: Tres Cool Cluster Tool, Linux Magazine, July

7th 2008, online article at: http://www.linux-mag.com/id/6386, last accessed in May, 2009

[Liedert, 2005] Daniel Liedert, Debian Repository mit debarchiver HOWTO. Ein eigenes und

komfortables APT(-GET-bares)-Repository mit debarchiver aufsetzen. Version 0.96, Online

Tutorial: http://debian.wgdd.de/howto/howto-aptrep, last updated on 2005-12-03, last accessed in

June 2009

[Massie, 2004] Matthew L. Massie, Brent N. Chun, David E. Culler, The Ganglia Distributed

Monitoring System: Design, Implementation, and Experience, Available online since 15 June 2004:

http://ganglia.info/papers/science.pdf, Parallel Computing, vol. 30, Issue 7, July 2004, 817–840

 [MAUI, 2009] MAUI Scheduker Home Page, last accessed in April 2009,

http://www.clusterresources.com/products/maui/docs/mauiusers.shtml

[Meglicki, 2004] Zdzislaw Meglicki, High Performance Data Management and Processing,

Document version Id: I590.tex, v. 1.197 2004/04/29, Section 7462, Course notes, University of

Indiana, USA, http://beige.ucs.indiana.edu/I590/

[Moche, 2002] Moche Bar, S. Cozzini, M. Davini, A. Marmodoro, openMosix vs. Beowulf: A Case

Study, paper presented at HPC, the linux cluster Revolution 2002 (St. Petersburg, Florida, USA,

october 2002)

[MPI-IO, 2003] Maui High Performance Computing Center – SP Parallel Programming Workshop:

MPI-IO, 2003, http://www.mhpcc.edu/training/workshop2/mpi_io/MAIN.html, Last Modified on

09/06/2003, last accessed in April 2009.

89

[Open MPI, 2009] Open MPI Home Page: http://www.open-mpi.org, Page last modified: 19-Mar-

2009, last accessed in April 2009

[OSCAR, 2009] Oscar Administration Guide-

http://svn.oscar.openclustergroup.org/trac/oscar/wiki/AdminGuide, last accessed in April 2009

[Papadopoulos, 2002] Philip M. Papadopoulos, Caroline A. Papadopoulos, Mason J. Katz, William

J. Link and Greg Bruno, Configuring Large High-Performance Clusters at Lightspeed: A Case

Study, December 2002 , Clusters and Computational Grids for Scientific Computing 2002,

Faverges, France, last edited: May 7, 2004, online copy: http://www.rocksclusters.org/rocks-

doc/papers/workshop-clusters-lyon/paper.pdf

[Perceus, 2009] Perceus User Guide: http://www.perceus.org/docs/perceus-userguide-1.5.0.pdf,

February 10th 2009, published by www.infiscale.com, last accessed in May 2009

[PVFS2, 2009] Parallel Virtual File System Ver. 2 home page: http://www.pvfs.org/ , last accessed

in April 2009

[PVFS, 2009] The Parallel Virtual File System Project: www.parl.clemson.edu/pvfs/ , last accessed

in April 2009

[ROCKS, 2009] ROCKS home page: http://www.rocksclusters.org/, last accessed in June 2009

[Sector-Sphere, 2009] Sector-Sphere Home Page: http://sector.sourceforge.net/ , and User Manual:

http://sector.sourceforge.net/doc/index.htm, Last modified: 19-Feb-2009. Both last accessed in April

2009

[Sloan, 2004] Joseph D. Sloan, High Performance Linux Clusters With Oscar, Rocks, OpenMosix &

Mpi, O’Reilly, Nov.2004, ISBN 10: 0-596-00570-9 / ISBN 13: 9780596005702

[Torque-Manual, 2009] Torque Admin Manual, ©2001-2009 Cluster Resources, Incorporated,
http://www.clusterresources.com/products/torque/docs/, last accessed in July 2009.

[Yunhong, 2008] Gu Yunhong, Robert Grossman, Exploring Data Parallelism and Locality in Wide

Area Networks, Workshop on Many-task Computing on Grids and Supercomputers (MTAGS), co-

located with SC08, Austin, TX. Nov. 2008.

90

Appendix A
Parallel implementation of Numerical Integration of a function, Chapter 4 “Tool Evaluation”,

Section 4.2 MPI

#include <stdio.h>

#include <stdlib.h>

#include <limits.h>

#include <time.h>

#include "mpi.h"

#define NUM_PIECES 2147483647

long double calculateArea(long double a_step, int a_myid, int a_numprocs, char*

a_processor_name)

{

 unsigned long int i = 0;

 long double sum = 0.0;

 long double area;

 long double x_old, x_new;

 clock_t start = clock();

 double end;

 for(i = a_myid; i < NUM_PIECES; i+=a_numprocs)

 {

 x_new = (long double)(i+1) * a_step;

 x_old = i * a_step;

 area = ((((long double)4/(1+(x_new*x_new))) + ((long

double)4/(1+(x_old*x_old)))) * a_step) / 2;

 sum+=area;

 }

 end = ((double)clock() - start) / CLOCKS_PER_SEC;

 printf ("Calculation Time on %s: %lf sec.\n", a_processor_name, end);

 return sum;

}

int main(int argc, char* argv[])

{

 int myid;

 int numprocs;

 int namelen;

 char processor_name[MPI_MAX_PROCESSOR_NAME];

 double wtime;

 clock_t start_time = clock();

 double end;

 long double step;

 long double sum = -1.0;

 long double mysum = -1.0;

 MPI_Init(&argc, &argv);

 MPI_Comm_size(MPI_COMM_WORLD, &numprocs);

 MPI_Comm_rank(MPI_COMM_WORLD, &myid);

 MPI_Get_processor_name(processor_name, &namelen);

 //Start Measuring Total Computation Time

 MPI_Barrier(MPI_COMM_WORLD);

 if(myid == 0){

 wtime = MPI_Wtime();

 puts("Parallel Numerical Integration of 4/(1+sqr(x)) in C");

 }

91

 //DOWORK

 step = 1.0 / NUM_PIECES;

 mysum = calculateArea(step, myid, numprocs, &processor_name);

 MPI_Reduce(&mysum, &sum, 1, MPI_LONG_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);

 //END OF DOWORK

 MPI_Barrier(MPI_COMM_WORLD);

 if(myid == 0){

 printf("Elapsed Wall Clock time is %.10lf sec.\n", MPI_Wtime()-

wtime);

 printf("Area is %.56Lf\n", sum);

 }

 MPI_Finalize();

 return 0;

}

92

Curriculum Vitae

PERSONAL INFORMATION

Name Georgiev, Stefan Georgiev

Date of birth 17 February 1985

Birth place Varna 9000, Bulgaria

Telephone Number (+359) 89 831 20 57

E-mail stefan.georgiev.bg@gmail.com

Nationality Bulgarian

Marital Status Single

WORK EXPERIENCE

July 2007 – September 2007 Internship at IBM Bulgaria

/Software Tester on IBM Rational Functional Tester/

(Address: World Trade Center, 36 “Dragan Cankov” blv., 9th fl.)

www.ibm.com/bg

July 2006 – April 2007 Service Technician/remote technical support/at

 Siemens Enterprise Communications EOOD Bulgaria

 (Address: Kukush 2 str., 1309 Sofia, Bulgaria)

 www.siemens.bg

October 2004 – January 2005 Internship at Haemimont AD Bulgaria

 /juniour web developer/

 www.haemimont.com

EDUCATION AND TRAINING

September 2008 – Current MSc/Master of Science/ in Informatics,

 International School of Informatics (ISI) Hagenberg,

 Johannes Kepler University Linz,

 Upper Austria, Austria

October 2004 – July 2008 BSc/Bachelor of Science/ in Computer Science,

Sofia University “St. Kliment Ohridski”,

Faculty of Mathematics and Informatics,

Sofia, Bulgaria, http://www.fmi.uni-sofia.bg

1999 – 2004 High School of Mathematics “Dr. Petar Beron”,

Varna, Bulgaria,

major: Informatics, Mathematics, English

SIEMENS training courses:

July 2006 HiPath 4000 – Basic course for Service

July 2006 – August 2006 HiPath 4000 - Basic Networking for Service

August 2006 Introduction to Cisco Networking technologies

93

August 2006 ICND – Interconnecting Cisco Network Devices

August 2006 QoS – Quality of Service training

August 2006 VoIP – Voice over IP Workshop

September 2006 CISCO Certified Network Associate Certificate /CCNA/

September 2006 – October 2006 HiPath IP Technology

PERSONAL SKILLS AND COMPETENCES

• Easily adaptive

• Communicative

• Fast-learning

• Responsible

• Devoted

 LANGUAGES

Bulgarian Native

English

• Reading skills Advanced

• Writing skills Advanced

• Verbal skills Advanced

TECHNICAL SKILLS AND COMPETENCES

• Operating Systems – Windows, DOS, Linux

• Programming Languages

C very good

C++ basic

C# basic

SQL basic

• Database management – basics in MS SQL 2005

• Network Management Skills

theoretical knowledge of routed protocols (TCP/IP) and routing protocols(RIP, OSPF);

building and managing small office/home office LAN networks;

basic configuration of CISCO routers and managable switches.

OTHER SKILLS AND COMPETENCES

August 2003 Driving License, category „В” and „М”

/for driving cars and small motorcycles/

HOBBIES AND PERSONAL INTERESTS

Sports, Music, Cinema

94

Erklärung

 Ich erkläre an Eides statt, das ich die vorliegende Masterarbeit selbstständig und ohne

fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt bzw. Die

wörtlich oder sinngemäß entnommenen Stellen als solche kenntlich gemacht habe

Hagenberg am 17 Juli 2009 .……………………….

 Stefan Georgiev

