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252 Chapter 8

intervals within which the coefficients of x(z, w) and y(z, w) can vary
whilst not destroying the property that xn + yd has no zeros in [, In
particular, we perturb the coefficients of x(z, w) and y{z, w}so that those
are rational.

This argument will hold in general and proves the existence of
¢(z, w)eQlz, w). Let the perturbed polynomials be,

iz, w) =1

Yz, w) = —{z + B)
where the parameter 8 will be determined so that
iz, win{z, w) + ¥(z, wid(z, w)
zw -+ Blw —z) = (1 +28)
A s
= gz, w)

has no zeros in [, Invoking the tests for absence of zeros of §(z, w)in 02,
ie. (i) g(z, w) # 0in 7%, (i) §(z, 1) # Oin ' and (iii) g(1, w) + Qin 1,
it is easy to infer that a suitable choice for Bis g = 1.

The problem posed here, with the polydomain of interest U7, could be
extended easily to the case of an arbitrary compact polydomain,

PROBLEM # 7

Grébner Bases, Polynomial Remainder Sequences and Decoding of
Multivariate Cocles

(B. Buchberger, E. V. Krishnamurthy, and F. Winkler)

Recently Krishnamurthy and Gregory {1], [2] have constructed codes
(called Hensel codes) for a finite subset of rationals called the Farey
rationals F, satisfying

Foy=A{afb = Q" ged(a, b) = Land( < |o| =N

and O = |b| =N}where N > 0is an integer.
If N = v/(p” — 1)/2 then the mapping of the class of rationals F,, to the
residue class of integers modulo m (= p” where p is a prime) then the
mapping

! ’ Em: [:N - Inz
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where
L, = {la/bl: a/beF,}

can be made one-to-one and onto.

These codes ¢ . b7t mod p” are called Hensel codes of Farey rationals
and are equivalent to their finite segment p-adic expansions. The arith-
metic with these codes turn out to be quite simple {similar to p-ary
arithmetic) and the forward and inverse mapping from rationals to these
codes turn out to be quite easy. Also, recently it has Leen shown {1] that
the inverse mapping of the Hensel code to the corresponding Farey
rational can be made using the extended Euclidean algorithm. This
permits us to have a practical rational arithmetic system based on the
Hensel codes.

Hensel’s lemma and the Hensel codes turn out to be very useful for
linear algebraic computations giving exact rational results | 1], {2].

It is well known that there is a striking similarity between the algebraic
structures of integers and the polynomials over a field. In fact these two
structures are treated alike under the common algebraic structure - called
the Euclidean or ged domains. In view of this similarity, it is but natural to
extend all the above concepts refating to the construction of Hensel codes
of rational numbers to the rational polynomials over a finite ficld. Here,
however, we need to deal with the more general class of Farcy rationals
called Padé rationals which are rational functions over a finite field (the
coefficients are from a field) and the numerator and denominator degrecs
do not respectively exceed (R — 1). Such a Padé rational is denoted by
PR~ 1/R —~ 1, F(x)) a subsct of F{x), the rational polynomial
functions over a finite field of characteristic p.

We then code

alx)/b(x)elP(R — /R = 1, F (x))
as
a{x)bY(x) mod x*# !
which is the Hensel code {3].
The Hensel codes for these rational polynomials can then be used in a
manner analogous to that for a rational number. This also provides us
with a very effective tool for the symbolic manipulation and arithmetic of

the rational polynomials over the integers by a suitable choice of p.
If P(R~ 1/R — 1, N, x} denotes the class of Padé rationals over
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integers where each coefticient is =|N], then the choice
p > 2RN* +

enables us to construct Hensel codes for the practical problems.

The inverse mapping of these single variable rational polynomials can
be obtained using the Euclidean atgorithm. Thus a very practical rational
polynomial arithmetic system can be devised and the use of Hensel’s
ternma again helps us to compute the solution for the linear algebraic
problems and matrix inversion.

The above concept can further be generalized to multivariable rational
polynomials [3] over a field and integers and the arithmetic can be
performed in a similar way, This is useful for inversion of matrices whose
entrics are multivariate rational polynomials. However, the inverse
mapping of the Hensel code to its equivalent rational polynomial cannot
be realized by the Conventional Extended Euclidean algorithm since the
multivariable polynomials are not Euclidean domains. The decoding has
to be then based on the solution of a large matrix equation involving a
Toeplitz matrix [4]: However, fortunately, it has been found recently that
Grdébner bases [5} can be a very effective toel to decode the multivariable
Hensel code. Naturally the algorithm for decoding the multivariable
Hensel code will have several other applications — in multivariable Padé
approximation [4}, in the construction and decoding of multivariable
Goppa Codes [6], and in the construction of matrix Padé approximants
[4].

The examples below indicate the decoding of the Hensel code of a
Farey rattonal, Padé rational and multivariable Padé rational. The proof
of the algorithm for the Farey rational and single variable Padé rational is
available in {1]. The proof of the multivariable decoding algorithm based
on Grébner bases has not been worked out in abl the details so far,

Examples

1. Rationals

Let p =35, r=4; Hensel code of i = 10. 137 mod 625 = 145 =
0401,
The extended Eudlidean algorithm:

6251 0
i g | 145 1
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} 4 45| —d
2 3 10| 13] Decoding of Hensel code gives 10/13,
3 4 5|-56
4 1 2 0] 125
2. Rational Polynomials over GF(p)
Let p =17, 2R — 1 =73, R—-—1=1,; Hensel code  of
(x + D/(2x + 1} = 1 + 16ox + 2"
x* ]
i q, P+ I6x + 2x° I
Tl Ov + 13| [4x + 4 & + 4] Decoding of
2] 9x + 12 4 134* = 4x + 4 Henselcode gives
3 x4+ 1 0 dx? dx+4=x+1
S8x +4 2y + |

3. Multivariable Hensel Code
Letp = 7,22 - (R — 1) = 4, Hensel code of

Sx + 5y + 1

5y + 3

= 3% + y + P+

+ 5x% 4+ bxy + y* o+ Ox + 4y + 3.

The algorithm [5] for constructing the Grobner base:

L p 4
1] x {
2| xty 0
3 [ xy* 0
4 xy* 0
59y 0}
6137 + ¥y + 297 4+ S
+ 6xy + ¥+ 6y + 4y + 3
7| 4xy + 2xy* + 5y 2x + 6
+ 2xy - 6y + 3y 4 4
82y + 4 2x + 2y + 0
915x + 4 daty 4+ 2xy? 4 53 4 607 +
+ 3xy 4y 4+ Ox + Oy + 6
1005 Sxy® by ok dxy + 5y A

+ 6x + 4y + 4
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The columin for the ¢’s was omitted here, because there is no single
guotient which can be associated with one step in the algorithim.
Decoding of Hensel code gives
2y +4 Sy 3
2v + 2y + 6 Sv 45y L
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PROBLEM # 8
Invariance of Stability Property under Coefficient Perwrbation

In system design, it s often necessary to preserve one or more character-
istics of the system when system element values fluctuate about their
respective rominal vatues. Investigations into the conditions for invari-
ance of the multivariate potynomial positivity property under coefficicut
perturbation were undertaken in [1}. An interesting recent result of
potential significance in the design of stable robust systems is due to
Kharitonov [2]. Let

f(5)y = ) as a, # 0
k=0
be a polynomial with real cocfficients. (Kharitonoy restricted f(s) to be
monic, i.e. @, = 1; however, his basic result is adaptable for non-monic
polynomials and also generalizable to polynomials with complex coeffi-



