
Grid-aware Database Support for Medical Software

Master's Thesis

for obtaining the academic title

Master of Science

in

INTERNATIONALER UNIVERSITÄTSLEHRGANG

INFORMATICS: ENGINEERING & MANAGEMENT

composed at ISI-Hagenberg

Handed in by:
Imre Zoltán Matkó

Finished on:
July 2, 2008

Scientific Management:
A.Univ.-Prof. Dipl.-Ing. Dr. Wolfgang Schreiner

Grade:

Name of the Grader:
A.Univ.-Prof. Dipl.-Ing. Dr. Wolfgang Schreiner

Hagenberg, July, 2008

Johannes Kepler Universität Linz, Altenberger Straße 69, 4040 Linz, Österreich, www.jku.at, DVR 0093696

http://www.jku.at/

© Copyright 2008 Imre Zoltán Matkó
All rights reserved

Acknowledgements

I deeply thank all the people who, during the several months of this master's study, have

contributed in various ways to my work.

First I'd like to express my gratitude for Bruno Buchberger for founding the International

School for Informatics and helping me to develop not just as a computer scientist but also as a

person. I'd like to thank all those who were actively involved in setting up and coordinating the

activities of ISI, specially Betina Curtis, making possible in this way for me to become one of the

“pioneers” of this special master's program.

I would like to thank Judit Robu, my former diploma work adviser, who recommended the

ISI master's program and was also actively involved in guiding my way to continue my studies in

Hagenberg, “the best place for research” as she said.

I am very grateful to my adviser, Wolfgang Schreiner, for coordinating my work, for helping

me to adapt in every difficult situation and for carefully guiding the composition of this thesis

document.

I would like to thank the Austrian Grid Development Center (AGEZ) for offering me the

chance to contribute to the SEE-GRID project and for supporting my studies and stay in Austria.

As the work was carried out in a close collaboration with the Research Unit for Medical

Informatics from RISC Software GmbH, I've spent most of my work time in their offices.

I would like to thank all their support and helpful attitude what I've experienced on a daily basis.

I need to thank the members of the SEE-KID team, specially Thomas Kaltofen, for helping me to

understand all the details I needed about SEE++, as well as the developers from the SEE-GRID

team, specially Károly Bósa from the RISC Institute, for all the valuable discussions and advices.

I say “thank you” to all my colleagues from the International School for Informatics as well

as to other students from Hagenberg, who were good buddies in our everyday life and also

contributed to my work in different ways.

I gratefully thank and appreciate very much the efforts of my Parents, who always supported

me in my choices making it possible for me to follow my own way. I need to remember this

every day.

Imre

iii

Abstract

SEE-GRID is a research project based on the SEE++ software system for the biomechanical

simulation of the human eye. The project aims to develop a Grid-enabled version of

SEE++ to support ophthalmologists in the treatment of common eye motility disorders.

Currently there exist Grid-based implementations of computation and calculation services

required by SEE++ and a prototype of a metamodel based medical database. The current

database implementation has some restrictions, performance problems and its Grid integration is

unfinished. The goal of this thesis is to analyze the software and find performance bottlenecks

and to extend the design with a Grid interface and provide a prototype implementation.

Based on the benchmarking and profiling of the SEE-GRID database components we

realized that the current metamodel is too complex, causing to spend most of the runtime with

database queries and data transformations. Some feasible solutions we proposed are the

simplification of the metamodel or the usage of fast, XML based back-ends.

We have evaluated state of the art Grid data-resource management tools and found OGSA-

DAI and AMGA two promising solutions for our project. We have extended the design of the

SEE-GRID database with a Globus “Web Service Resource Framework” based interface and with

the services of OGSA-DAI. To prove the applicability of the design we prototyped the Grid

interface and evaluated in practice OGSA-DAI with respect to the needs of SEE-GRID.

iv

Contents
 1. Introduction...1

 2. State of The Art..4

 2.1. Grid Computing..4

 2.2. The Austrian Grid..6

 2.3. Grid Data Management...6

 2.4. Grid Database Resources..7

 3. Problem Statement..11

 3.1. The Treatment of Strabismus..11

 3.2. Existing Solutions...12

 3.3. The SEE-KID Project..13

 3.4. The SEE-GRID Project...14

 3.5. The Persistence Component..15

 3.6. Grid-Aware Persistence...15

 3.7. Limitations of The Current Implementation...15

 4. Performance Analysis of The Current Database System.......................................17

 4.1. Persistence Component Architecture..17

 4.2. Benchmark and Profiling Design..19

 4.3. Benchmark Technicalities...22

 4.4. Benchmark Results...22

 4.5. A Benchmark Scenario in Details...25

 4.6. Results Evaluation...27

 5. Data Resource Access Middleware for SEE-GRID...28

 5.1. Evaluation of OGSA-DAI...28

 5.1.1. Overview...28

 5.1.2. Installation...28

 5.1.3. Security..29

 5.1.4. Client Support..29

 5.1.5. Back-end Data Source Support...29

 5.1.6. Known Problems and Limitations...30

 5.1.7. Other Projects' Experiences...30

 5.1.8. Future Outlook..31

v

 5.2. Evaluation of AMGA..31

 5.2.1. Overview...31

 5.2.2. Installation...32

 5.2.3. Security..32

 5.2.4. Client Support..33

 5.2.5. Back-end Data Source Support...34

 5.2.6. Known Problems and Limitations...34

 5.2.7. Other Projects' Experiences...35

 5.2.8. Future Outlook..35

 5.3. Evaluation Conclusions...35

 6. Extended SEE-GRID Architecture...38

 6.1. Globus web service Interface for the SEE-GRID Database..38

 6.2. Experiences with OGSA-DAI...38

 6.3. Design Overview...40

 7. Conclusions...43

 7.1. Achieved Goals...43

 7.2. Future Outlook..44

Appendix A - Execution Time Analysis Data...I

Appendix B - Basic Memory Analysis Data...II

Appendix C - MySQL Operations Statistics...III

Bibliography...VI

vi

List of Figures
Figure 1: Sketch of the SEE-GRID architecture for calculation requests (from [Bosa2005])......14

Figure 2: SEE++ Database Access Layer (from [Bosa2005])...17

Figure 3: SEE-GRID Modules Dependency Chart (from D. Mitterdorfer)...................................18

Figure 4: SEE++ Client Dialog..20

Figure 5: SEE++ Java Applet Client..20

Figure 6: SEE-GRID benchmark results for save, load, update and delete operations (average of

10 runs)..23

Figure 7: The number of the most important operations performed on the MySQL database for

the SEE-GRID benchmark...23

Figure 8: Profiling session summary, provided by TPTP, with the execution time data for

 the sample data set with 2 scenarios...25

Figure 9: Profiling memory analysis statistics, provided by TPTP, for the test case with

 the sample data set with 2 scenarios...26

Figure 10: Extended SEE-GRID Architecture...40

vii

 1. Introduction 1

 1. Introduction
„Modice fidei quare dubitasti?”

The new term of Grid-computing was coined in the mid-late '90s by Ian Foster and Carl

Kesselman [FosterKesselman1997]. They suggested that a new, efficient and secure solution

would be needed to share computing resources, as easy for the users as the usage of the power-

grid is. Since then many Grid projects have evolved and had a remarkable effect on science,

offering a secure service to access resources which until now could be offered only by

supercomputers. Nowadays in Europe nuclear physics experiments are the biggest Grid-resource

consumers [LHC2008] immediately followed by applications from life sciences and biomedical

research teams [EGEE2008].

A medical application which aims to exploit Grid technology is SEE++, a software system

for the biomechanical simulation of the human eye and common eye surgery techniques. SEE++

is being developed in the frame of the SEE-KID project at the Research Unit for Medical

Informatics of RISC Software GmbH [SEE-KID2008]. The software provides medical decision

support for surgeons, focusing on the treatment of strabismus, a common eye-motility disorder.

The main features of SEE++ are the following: the interactive 3D simulation of the human eye

and its muscles; the simulation of common eye surgery operations; the simulation of the Hess-

Lancaster test, a consacrated method in the diagnosis of strabismus; automatic pathology fitting

to estimate the pathology of a patient based on measured or simulated medical data [Bosa2007].

SEE++ stores all the medical data in binary files, what was satisfactory in the beginning.

However the current needs of the software could make use of a distributed database. This could

collect data from many sources and offer an efficient way for their access and management. We

also have to note that some calculations and simulation processes in SEE++ can be very time

consuming. For efficiency and good performance these may even require the doctors to adapt

some parameters manually [Mitterdorfer2005] thus are not fully automatic.

The SEE-GRID research project provides solutions for the above mentioned problems with

the development of faster and fully automated algorithms and with a distributed database for

SEE++. At the moment there exist Grid-based implementations for the parallel computation of

simulation predictions and the distributed calculation of simulation parameters as well as a

prototype implementation of a metamodel-based medical database [SEE-KID2008]. The

database stores both real and simulated pathological cases and patient data. It is planned to

gradually develop a distributed Grid database. This should support evidence based medicine, so

 1. Introduction 2

doctors could consult medical evidence data from a large database instead of books. Security is

also an important aspect and the Grid offers the necessary technology to ensure the privacy of

patients. The prototype database implementation now already uses a web service interface and

offers basic store, load and search operations for SEE++ clients.

The current database implementation has some restrictions, performance problems and its

Grid integration is not finished. The goal of this thesis is to investigate the main performance

bottlenecks and formulate some recommendations for improvement as well as to extend the

design of the Grid interface and provide a prototype implementation.

We did a benchmarking of the database operations performed by the SEE++ client. We also

profiled the modules of the persistence component to obtain details about the instantiated

objects, memory usage and the runtime spent in each module. Finally the gathered informations

were completed with data extracted from the database management back-end (MySQL) about

the network traffic, the number and type of queries and other details. The results made clear that

the current metamodel is too complex, being the main cause of the poor performance of the

persistence component. This overengineered metamodel causes to spend more than 54% of the

average runtime of operations with database back-end operations and 10% of the runtime with

data transformations. Some feasible solutions can be the simplification of the metamodel or the

usage of fast, XML based back-ends.

To analyze the possibilities for the integration of the persistence component into the Grid, we

have provided an overview on state of the art Grid data-resource management solutions. Two of

these solutions which could be applied in the SEE-GRID project are OGSA-DAI for the Globus

Toolkit and AMGA for the gLite Grid middleware. We have made a detailed evaluation of these

latter two solutions and a short comparison of their features.

We extended the design of the SEE-GRID database with a web service interface based on the

Globus “Web Service Resource Framework” and we also provided a prototype implementation to

prove the designs applicability. We also included in the design the high-level services provided

by OGSA-DAI. Our practical experience by prototyping the Grid interface and experimenting

with OGSA-DAI showed that it is possible to further develop SEE-GRID based on these high-

level Grid services. The further development in this way could complete the integration of the

medical database into distributed Grid environments.

The structure of the thesis is as follows: in Chapter 2 we give an introduction to the field of

Grid computing and an overview with special consideration to database management solutions.

In Chapter 3 we offer an introduction to the medical background of the work, we describe the

status of the projects involved, respectively the SEE-KID and SEE-GRID projects, and finally

 1. Introduction 3

we give a description about the limitations of the current database implementation. Chapter 4

presents our work on the performance evaluation of the SEE-GRID database. We present some

important aspects about the architecture of the persistence component, the design of our

benchmarking and profiling work and finally the results and conclusions are provided about the

performance analysis. The evaluation of the two Grid data-resource management solutions,

OGSA-DAI and AMGA, which are promising for the future development of SEE-GRID, is

provided in Chapter 5 as well as a short comparison of them. In Chapter 6 we present an

extended design of the persistence component with a new Globus Java web service interface and

the OGSA-DAI Grid data-resource management system; in this chapter we also present our

results about the implementation of a prototype of the mentioned interface and about our

experiences with OGSA-DAI and give a detailed overview of the design. Chapter 7 includes the

presentation of results and conclusions of this thesis work and an outline of the future

development of the SEE-GRID database system.

 2. State of The Art 4

 2. State of The Art
Our work on Grid-aware database support deals mainly with the new but already quite

elaborate technology of Grid computing and with its support for databases and meta-data

handling. There are many Grid projects around the world but there are just a few software

packages which are being used in production environments and just a couple of tools dealing

with Grid-based database support. In this chapter we present the basics about today's Grid and

the current state and capabilities of some data management software tools.

 2.1. Grid Computing
A definition of the Grid is the following: “the Grid is a service for sharing computer power

and data storage capacity over the Internet. The Grid goes well beyond simple communication

between computers, and aims ultimately to turn the global network of computers into one vast

computational resource” [GridCafe2008].

Its history dates back to the 80's, but it was mentioned under different names, such as meta

computing, distributed resource management, resource co-allocation [FosterKesselman1999,

Foster1999] or virtual computing [Grimshaw1994].

The origin of the term “Grid” is known to be the work of Ian Foster and Carl Kesselman's:

"The Grid: Blueprint for a new computing infrastructure", where it is metaphorically compared

to the power grid suggesting that it should be as easily accessible as the electronic power grid

[FosterKesselman1997].

The most common approach to develop grid software is based on the middleware which lies

between the OS and the applications. The middleware runs on each component of a distributed

computer system (www.objectweb.org).

The Grid aims to offer a solution for solving problems with high computational and storage

requirements. Up to now a possible solution was the usage of supercomputers, but their high

purchase, operation and maintenance costs significantly reduce their applicability range. The

Grid approach tries to overcome this with the integration of a large number of geographically

distributed, heterogeneous resources into a virtual computer architecture. In many applications

this can not replace the use of expensive supercomputers but it still offers a plausible solution for

many other problems of science and business [Kesselman1998]. Actually Grid computing is seen

rather to increase the need for supercomputers, because users from remote locations will require

access to resources with low latencies and high communication bandwidths. Such top

performance currently can be achieved only by supercomputers [Foster2001].

 2. State of The Art 5

The Grid architecture, in a very general view, is built up on four layers. The lowest is the

network layer which is responsible for the interconnection of the Grid resources. Next is the

resource layer which can be represented by the computational resources, storage and database

resources as well as by other types of resources. The middleware layer is composed of the

software laying between the operating system of the actual Grid nodes and the high level Grid

applications. This layer is essentially the software what enables the elements of the Grid to

cooperate. On the top of the architecture is the application layer. This layer is composed of

various applications for science, engineering, business or support systems for different

applications. The actual users normally have to interact only with this layer. To this layer a so-

called serviceware is bound which performs general management functions such as monitoring,

logging and controlling the activities of the users [GridCafe2008].

The basic structural requirements of a Grid can be found mostly in the works of Foster,

Kesselman and Tuecke [Foster2001, Foster2005, Banks2005, Tuecke2003, Andrieux2007]. They

have contributed much to the standardization efforts in this domain of the Open Grid Forum,

formerly known as the Global Grid Forum (www.ogf.org). Their multi-layered grid system, The

Globus Toolkit, developed in the frame of the Globus project [Kesselman1998,

FosterKesselman1999], became a de facto standard in the industry. Globus itself have also been

influenced by other projects and have collaborated with other organizations and initiatives in

areas as web services, virtual machines and peer-to-peer architectures [Foster2006].

In today's Grid systems the users are members of entities called Virtual Organizations (VO).

A VO can correspond to a physical organization, workgroup or other group of people who can be

in geographically remote places but are somehow related. One user can be the member of

multiple VOs in the same time [Foster2001]. Generally VOs contribute to the Grid by sharing

some resources and have access to other VOs' resources. This is a regulated process, each VO

can define its own policy of access to its own resources and VOs can negotiate among them

different levels of access to different resources.

The authentication of actual users on the Grid is handled by a certificate based public key

security infrastructure [Foster2001]. This infrastructure provides a single sign on feature, so the

users have to authenticate themselves just once and they get a uniform access and authorization

to Grid resources corresponding to the rights of their VO.

There are hundreds of Grid projects around the globe, one of the largest projects is the

European EGEE (Enabling Grids for E-sciencE – www.eu-egee.org). This project is formed by a

cooperation of more then 240 institutions from 45 countries from all around the world. It

provides an advanced Grid infrastructure for the scientists, based on a next generation

 2. State of The Art 6

middleware called gLite (http://glite.web.cern.ch/glite/), which was developed in the frame of the

EGEE project. The infrastructure of this Grid consists of more than 41.000 CPUs, provides

around 5 Petabytes of storage and maintains 100.000 concurrent jobs. With the help of such

resources the scientists can perform large scale calculations, simulations and modeling and are

also able to share their results in a controlled and secure way.

 2.2. The Austrian Grid
Austrian Grid [Agrid2008] is a project funded by the Federal Ministry for Education, Science

and Culture (BMB:WK) after recommendation by the Austrian Council for Research and

Technology Development. In its first phase (2004-2007) the project has strengthened the role of

Grid computing in Austria and by time set up the necessary infrastructure for a prototype-testbed.

The project has promoted grid computing among scientists and researchers and also contributed

to international projects, such as EGEE.

The main hardware resources of the Austrian Grid currently are formed of several sites with

Altix 350 Multiprocessor Systems as well as of various types of clusters. The software

architecture is based on the Globus Toolkit 4, it offers the possibility to use several custom

services as well as to submit MPI or OpenMP based jobs.

In its second phase (2007-2009) the project aims to continue the expansion of expertise of

scientists, move to a sustainable service-oriented Grid architecture and to extend and develop

various Grid applications. For a long-term sustainable and efficient development the Austrian

Grid seeks to involve more and more the business and industrial sectors.

 2.3. Grid Data Management
As much the Grid is about sharing and accessing computing power it is also about the

handling of data. The results of different calculations or simulations may require to access some

data during their operation and also they might produce large amounts of output. For an example

the LHC Computing Grid [LHC2008] handles huge amounts of data and it has over two

hundreds of nodes, geographically distributed all around the world. In full capacity operation it

will have to distribute, process and store roughly 15 Petabytes of data annually, having thousands

of concurrent jobs processing it [LHC2008]. If we think about other production Grids, such as

the Austrian Grid (www.austriangrid.at), the int.eu.grid (www.interactive-grid.eu), etc., these

also have to realize the efficient management of data. This requires scalability, performance and

fault tolerance. It is clear that centralized services can't fulfill such requirements.

To fulfill the requirements for data handling on a Grid, technologies have to be provided for

 2. State of The Art 7

the storage, movement and replication of data and the access and integration of data for

applications and services [Antonioletti2007]. Nowadays we have quite elaborate Grid solutions

for the handling of file-based data. A widely known solution is the GridFTP protocol [GFD.47]

developed and implemented by the Globus Alliance.

A web service based solution is the Reliable File Transfer (RFT) Service [RFT2008],

providing a “job scheduler”-like functionality. It enables the clients to transfer files or directories

and to monitor the transfer status or to subscribe to receive notifications if the transfer status

changes.

Higher level services of a Grid should realize data replication and the management of the

different copies or replicas. We can find such type of data management in the Globus Toolkit,

implemented by the Data Replication Service (DRS) [DRS2008]. This high-level data

management service ensures the management of files distributed and replicated over storage sites

by locating them via a Replica Location Service and executing transfers by RFT.

 2.4. Grid Database Resources
Many applications, now also on the Grid, require the integration of database technologies and

many projects, such as the AstroGrid or DGEMap, utilize large databases of astronomical and

biological data [Antonioletti2007]. The Grid-enabled version of SEE++ (see Section 3.3) already

uses databases for managing user information and medical data. However this aspect is not yet

fully integrated with Grid middleware [Mitterdorfer2005].

There are a couple of solutions which deal with distributed data and database handling. Some

of them were developed specifically for Grid middleware while others can be deployed in a

standalone manner but have support for the integration in Grid environments. Here we present a

few products and give a brief overview on their current state and capabilities.

● The OGSA-DAI Project

The OGSA-DAI Project [OGSA-DAI2008] provides middleware software to support

heterogeneous Grid database resources. The project has started in 2002 and by now it has

undergone three main phases. It is developing two main software products, the OGSA-DAI and

the OGSA-DQP.

OGSA-DAI is a product which is able to expose for querying and updating a large variety of

data sources through a web service based presentation layer. Its web services are WSRF

compliant [OGSA-DAI2008, WSRF2008] so it can be deployed in different environments

supporting this framework definition. The requests to the web services are uniform regardless of

the data sources which can be relational, XML or even file-based. The clients can define and use

 2. State of The Art 8

the different data sources in a grouped or federated manner so there is no need to create separate

new connections to access multiple data sources from the same client [OGSA-DAI2008].

The OGSA-DQP framework is a service based Distributed Query Processing system. It is an

extension of OGSA-DAI for processing distributed queries over potentially remote collections of

relational data services. The framework basically consists of a coordinator and an evaluator

service. The coordinator is the Grid Distributed Query Service which keeps track of and manages

the metadata and computational resource information. The Query Evaluation Service is used by

the coordinator to execute different query plans. The execution is partitioned by the coordinator,

so actually a set of evaluators are performing the actions, which are organized in a tree structure

[OGSA-DQP2008].

There is already a large number of projects using OGSA-DAI and OGSA-DQP, many of

them being from the field of biomedical sciences, such as the Biogrid, BRIDGES, ViroLab, etc.

A wider list of projects using this software is maintained on the official website [OGSA-

DAI2008].

We have to note that in the last times the OGSA-DAI system has suffered major changes, the

latest release, version 3.0, is a complete redesign and reimplementation of the product. This was

necessary in order to increase performance and reliability and to put the basis of a sustainable

development for the future, taking into account new standards and user requirements

[Antonioletti2007]. The latest version of OGSA-DQP, version 3.1, is still in a prototype phase

and can be used only with the older OGSA-DAI 2.2. A new release is planned for the future

which will support the new architecture of OGSA-DAI 3.0 [OGSA-DAI2008].

● WebSphere Information Integrator

An enterprise solution from IBM for the management of distributed data sources is the

WebSphere Information Integrator (WSII) [WSII2008]. It is a fully J2EE compliant, web

services compatible implementation. It allows to access in a uniform way the data stored in

different repositories which can be integrated via a library of pre-built connectors. The system

supports NTFS filesystem based resources, FileNet services, Lotus and DB2 repositories but it

has only a read-only access support for DB2, Oracle or other relational database systems

accessed through the WSII federated data server. By data federation the WSII can offer

combined content views, federated search capabilities and automatic notifications for events. It

supports a large variety of clients thanks to its SOAP based web services interface architecture, it

has a built in internationalization support, data distribution management and load balancing

[WSII2008].

 2. State of The Art 9

Drawbacks of the software from the point of view of Grid computing are that it is a

commercial product that was not designed specifically for Grid environments. However, thanks

to its web services support and OGSA-DAI wrapper, it can be integrated into grids

[Sinnott2005].

● The AMGA Metadata Catalog

AMGA is a software package developed by the ARDA Metadata Catalogue Project

[AMGA2008]. The projects aims to study the needs on metadata catalogues in Grid

environments and to provide an interface for metadata access on the Grid. The project was

started by the ARDA group and has evolved hand in hand with the gLite Data Management team.

It has become the official EGEE metadata interface, being included in the latest gLite releases

[Santos2005].

Metadata Catalogs are such services on the Grid which allow clients to search, locate, query

and eventually update data among multiple data storage resources [Santos2006]. This offers an

abstraction layer which separates the actual data resources from the way of interacting with those

providing in this way support for various data resources.

The implementation by default provides a streaming and an alternative, SOAP based, front-

end for client-server communication. The AMGA server has support for interactive (command

line) clients for the streaming front-end and provides client APIs for C++, Java, Python, Perl,

PHP and even for Web based streaming clients. There is also an option to group the different data

sources in data federations [AMGA2008].

One of its important features is the database independent replication built into AMGA,

supporting partial replication and federation of catalogs also.

● Storage Resource Broker

The Storage Resource Broker (SRB) [SRB2008] is a software developed at San Diego

Supercomputer Center. It supports distributed shared data collections on various storage systems.

The primary motivation of the project was to develop a software infrastructure for distributed file

systems, distributed logical file systems and digital libraries. It can be also applied as a Data Grid

Management System and it offers support for the security infrastructure of Globus. Its metadata

catalog service (MCAT) supports federations of data sources and replication [Rajasekar2004]. It

is a quite elaborate and robust product but its services are not OGSA compliant, its structure does

not allow a modular reuse of parts and currently it isn't open source [SRB2008].

The project is planned to be stopped and replaced by the new iRods system, developed by the

 2. State of The Art 10

same team, however it will still have support in the future [SRB2008].

● iRods

The SDSC Storage Resource Broker team has recently started the development of a new

open source data grid software system called iRods (Rule-Oriented Data management System)

[iRods2008]. On a long term the project aims to replace SRB with iRods and to support the

transition between the two systems.

The software is based upon the experiences with SRB providing similar functionality

extended with a “Rule Engine” in the iRods core which has to interpret the requests based on

rules and actual conditions. This feature enables the use of a simple mechanism for application

specific processing by custom defined rules and workflows [Hedges2007].

For the future, it is planned to implement a complex preservation mechanism of digital

content, however this is more related to binary, file-based data. Preservation implies the storage

of digital data in some standard format corresponding to its type. This implies that the abstraction

layer of the data resource manager shall provide for the clients data converted into the specific

formats requested by the clients [Hedges2007].

The project is active and iRods has reached version 1.0 to be released in 2008. It is designed

to be used with Unix and Linux systems but its full integration to Grid middleware is still

missing.

● Mobius

The Mobius project [Mobius2008] of the Biomedical Informatics Department of Ohio State

University aims to develop tools and middleware components to share and manage data and

metadata in Grid systems or other distributed environments. Its approach is based on XML,

every data source has to be described by an XML schema. These schemes are then managed with

the DNS-like Global Model Exchange service and are exposed using XPath. Its module for data

instance management, called Mako, implements the actual query, update and delete operations

on different data sources which can be relational databases, XML databases, file systems or of

any other type having appropriate connectivity interfaces. It supports the federated management

of different data sources. Another feature is the Data Translation Service (DTS) for translation

between data models having similar content but a different structure [Langella2004].

The project web page [Mobius2008] describes various plans for future development but there

was no new release of the product since version 1.0, appeared in December 2004, and no major

change since 2005.

 3. Problem Statement 11

 3. Problem Statement
In conventional medicine all the processes of a treatment are carried out directly on the

patient. This is especially valid in treatments where surgeries have to be performed. In such cases

the doctors have to rely on the advices of the most experimented surgeons and to follow strict

guidelines. In ophthalmology, for an example, in the case of complicated pathologies even these

specialists have to rely on documented empirical values and have to perform multiple surgeries

for satisfying results [Buchberger2008]. For such cases new computerized medical decision

support systems could offer major help, which can offer accurate bio-mechanical modeling and

simulate surgery results. However these systems require adequate technical background and the

development of new technologies. A project to develop such a system for eye-motility disorders

is the SEE-KID (see section 3.3).

Technological development always had a beneficial influence on medicine and medical

sciences. It has opened new perspectives for doctors from research to everyday health care.

Nowadays almost every complex medical examination is computer based or computer assisted.

The tendency in developed countries is to move towards an IT-supported health care system with

the electronic administration of patient data, examination results and medical-decision support

[LenzReichert2007].

Nowadays supercomputers make possible to perform several simulations for the research on

fundamental problems of biomedicine, biomechanics and molecular biology. This involves

problems such as the analysis of DNA sequences, genome annotation, evolutionary population

simulations, protein structure prediction, biomedical image analysis etc. [Nair2007].

In medical diagnosis and decision-support todays high performance computers can provide a

reasonable support in the analysis of examinations data, image processing and 3D visualization.

This requires not only high performance but also reliability, authentic representation and secure

data handling taking into account the patients privacy [Buchberger2004].

We can see that the keys of the problem are high performance and reliability in the

calculations and efficient and secure handling of the medical data, respecting the corresponding

laws.

 3.1. The Treatment of Strabismus
A field of medicine which could use effectively medical-decision support provided by

modern computer based technologies is ophthalmology. Here we briefly present a common eye-

motility disease called strabismus and some aspects of its surgical treatment.

 3. Problem Statement 12

Strabismus, also known as squinting, is an eye alignment disorder when one or both eyes of

the patient are deviated out of alignment. Nowadays about 6% of the population suffer of

strabismus. These persons can suffer of double vision or in other cases of severe weakening of

the eye which fails to accurately fixate on objects because of its misalignment. The limited

binocular vision caused by this type of disease also affects the three-dimensional spatial vision

[Buchberger2004]. This type of disorder very often can be sufficiently corrected with eye muscle

surgeries. This surgery deals with six extraocular muscles which form a closed system. This

makes the surgery complicated because changes to a muscle affect all the others so it is hard to

predict the exact outcome [Kaltofen2002]. In this field of ophthalmology doctors still have very

little computer-based support. They have to follow guidelines based on assumptions and have to

lean on their experience in the surgical treatment of strabismus [Buchberger2004].

In the traditional surgical treatment of strabismus experience shows that in many cases more

than one intervention is required because the estimation of the outcome is not precise enough.

With detailed graphical visualization, simulation of the disease and interactive “virtual surgery”

plan and check, an ophthalmologist doctor can correct the process of a surgical procedure to

achieve the best result [Buchberger2004].

 3.2. Existing Solutions
The first simple geometrical eye models have been created in the 19th century. These formed

the basis of the so-called “string model” of Krewson, from 1950, and the more sophisticated

“tape model” of Robinson [Mitterdorfer2005]. These models can describe the geometry of the

human eye but lack the simulation of muscle forces and statics and thus are considered “historic”

modeling approaches.

Based on the research work of Miller and Robinson, from the 80's [Haslwanter2005], a more

sophisticated modeling became possible, which could take into account the effects of changes to

the oblique eye muscles. Later, in 1995, as a result of the research made by Miller and Demer,

the “active pulley model” was presented [Miller1999a], being still one of the most accurate and

sophisticated approach.

The most notable computer based solution of the 90's was the Orbit™ Gaze Mechanics

Simulation software system (www.eidactics.com). It was designed for educational and research

needs being able to simulate strabismus syndromes by a sophisticated bio-mechanical model

[Miller1999].

According to Eidactics (www.eidactics.com) the latest version of the software, Orbit™ 1.8,

appeared in 1999 and since then there was no update. Orbit™ fully supports only the Macintosh

 3. Problem Statement 13

OS9, its usage is limited due to the Classic mode of OS-X under newer versions, the “Parameter

Fitting” function does not work in this case, and the program can not be run at all on Intel Macs.

There also exist some virtual eye surgery systems which are able to model the mechanics of

the human eye, such as the Eye Surgery Simulator of the William H. Havener Eye Institute of

Ohio State University (www.eye.osu.edu). These are serving just for training purposes and do

not include pathology fitting or medical decision-support features.

Regarding to the diagnostics of squinting, the Hess-Lancaster test is a well known and

accepted method [Buchberger2004]. This test results in two diagrams which represent the state

of the two eyes of the patient. The diagrams contain the so-called “intended gaze pattern”,

representing what the patient should see, and the “measured gaze pattern”, showing what the

patient actually sees.

To appropriately handle this type of medical data, both the client's personal data and the

examination results, we need special data models because we have to handle very complex

structures and store them in an organized way. There are several general and special metamodels.

These kind of models were developed in the frame of the Healthcare Modeling Programme of

the British National Health Service at the beginning of the 90's. As a result of this effort the

Cosmos Clinical Process Model of Martin Fowler appeared [Fowler2004]. An adaptation of this

model for ophthalmology was applied in the SEE-KID project for the web service and the Grid-

based data base support [Mitterdorfer2005].

 3.3. The SEE-KID Project
The SEE-KID Project (www.see-kid.at) was originally pursued at the Department for

Medical-Informatics (UAR/MI) of the company Upper Austrian Research GmbH (UAR –

www.uar.at), which is a non-profit institution, focusing on fundamental and applied research and

the knowledge transfer between science and business. Recently the department has moved to

RISC Software GmbH. SEE-KID currently is in an advanced phase, focusing on the

development and research for new features and upgrades of the SEE++ software system. For the

simulation of eye surgery, SEE++ is able to provide similar functionality as the Orbit™.

However compared to that it has many extensions and new features and it exploits newer

techniques of software and hardware environments. It also takes into account newer medical

research results about eye model types in implementing its own SEE-KID model and Active

Pulley model [Kaltofen2002] of the human oculomotor system.

The system is designed to run on Microsoft Windows operating systems. In 2004 the

development of a client/server approach was started which moves the calculations to a

 3. Problem Statement 14

Calculation Server. This implies the possibility to set up a separate SEE++ calculation server and

use it with different clients. This by now works well on different Windows, Linux and Mac OS X

platforms. The connection between the clients and the server is done via a web service interface

which allows the implementation of a large variety of clients which can use a LAN connection or

even an Internet network access. There are many different client implementations, such as the

original C++ version for Windows, the Java based interface, or the Matlab interface. The server

can accept requests via its webservice interface while there also exists a RMI to SOAP bridge for

Java-RMI applications.

A new exciting feature, which is currently under development, is the VOG or Video-

Oculography mode. This technology enables the recording of eye movements which can support

a clinically applicable, automated binocular strabismus-test.

 3.4. The SEE-GRID Project
The SEE-GRID project (www.see-kid.at) aims to provide near real-time performance for the

simulation and pathology-fitting calculations by developing a Grid-enabled variant of the SEE++

system. The development takes places in close collaboration between the Austrian Grid

Development Center (AGEZ), the RISC Institute and RISC Software. The use of Grid

environments can be the solution for the high computational needs of SEE++, but currently the

implementation and adaptation of the software is in an alpha stage. SEE++ currently is using

binary files to store patient data. This is sufficient and fast in a standalone or a simple client-

server deployment. However with new requirements it appears the need for the application to

support various database systems to provide the portability, efficient search, version control and

Figure 1: Sketch of the SEE-GRID architecture for calculation
requests (from [Bosa2005])

SEE++
Clients

SEE++ Server

GRID (Globus)

.

.

.SEE++ To GRID
Bridge

SEE++ Server

SEE++ Server

SEE++ Server

 3. Problem Statement 15

sharing of patient data and the management of user data. For these reasons a prototype of a Grid-

aware database for SEE++ has been developed.

 3.5. The Persistence Component
The database system of SEE++ is currently a metamodel-based [Fowler2004, NHS2005]

implementation which uses web service technology for communication [Mitterdorfer2005]. This

implies the development of a so-called “persistence component” which realizes the Transport

Model – Metamodel Mapping. This is a quite complex task and in the same time a key factor for

the integration of the database system in Grid environments. Currently the SEE-GRID project is

working with the Globus [FosterKesselman1999] and gLite [gLite2006] Grid middleware

solutions.

 3.6. Grid-Aware Persistence
The Grid-aware persistence component realizes the integration of the database system into

Grid environments. Because its design is essentially web service based, its integration into grid

environments such as Globus or gLite is not very complicated. It requires the extension of the

authentication and authorization provider in such a way to support the proxy-certificate based

Grid security infrastructure. This is realized by the Security Base module of the Persistence

component. In this way the current implementation deals with two authentication procedures

because the users of the client and the grid user handling form two separate security layers.

The latest version of grid middlewares also contain higher level database support. The

Globus toolkit supports the OGSA-DAI implementation (www.ogsdai.org.uk) which is a purely

Java based WSRF compliant web service being able to use as database resources a large variety

of relational, non-relational databases or even filesystem based persistence [OGSA-DAI-

DevGuide]. For the gLite middleware the AMGA Metadata service was developed which has a

promising fast streaming communication protocol, supports mysql, Oracle, Postgress and SQLite

backends and can realize basic master-slave replication [Koblitz2008].

 3.7. Limitations of The Current Implementation
The persistence component implementation at the moment is quite limited so it requires

serious optimization and extension work. This limited functionality consists in: a poor

performance while we would require real-time or near-real-time operations; it supports only one

data source thus the data can be stored only on a single node; it is over-engineered, has a too

general structure for the metamodel.

The current implementation uses JDBC drivers for the database connection, thus it uses a

 3. Problem Statement 16

direct, point-to-point connection, not taking into account the Grid infrastructure and limiting its

usage to a single database server node.

The development team also encountered some limitations from the side of the Globus Toolkit

middleware while extending the software to use the “Web Service Resource Framework”

architecture which makes impossible the full integration with this middleware [Bosa2007,

Woess2006]. Now there exists another approach for the development using the gLite Grid

middleware [gLite2008] and there is an intention to further extend the software on the basis of

higher services of gLite [Bosa2007]. In the next phase for the development regarding the

database system we need to evaluate the capabilities and database support of the Globus and

gLite middleware as well as to improve and extend the current implementation.

 4. Performance Analysis of The Current Database System 17

 4. Performance Analysis of The Current Database System
As we have presented in the previous chapter, the performance of the current SEE-GRID

database implementation is not adequate for “real-world” deployment thus it requires

optimization. In order to complete this, we need an analysis of the persistence component and the

identification of possible performance bottlenecks. This requires a benchmarking of the relevant

features of the software and then a detailed profiling of the most performance-critical parts.

Based on these results, we will evaluate the current status and plan the optimization work.

 4.1. Persistence Component Architecture

The SEE-GRID project aims to gradually extend SEE++ to develop a grid-based medical

decision support system. For the persistence component, in a first stage, a database system was

designed and prototyped as a web service application (see Figure 2.) [Mitterdorfer2005,

Bosa2005].

The SEE++ clients require from the persistence component to create, save, update, load and

delete medical and patient data. These data consist of patients' information, data about measured

and simulated gaze patterns, results of medical experiments, etc. The communication between

the clients and persistence component is realized via SOAP messages. The web service interface

is provided by Apache Axis with which it is loosely coupled; it acts as a facade to the underlying

components. The server side stubs, a remote Proxy class and a corresponding interface, as a

facade, are generated during build time with the help of the FacadeGenerator module (see

Figure 3); more information is provided in chapter 5.4.1. of [Mitterdorfer2005]. In the future this

web service interface is planned to be substituted by a grid-enabled component [Bosa2005a].

Security is very important since the application is operating on confidential medical records

Figure 2: SEE++ Database Access Layer (from [Bosa2005])

 4. Performance Analysis of The Current Database System 18

and patient information. The SecurityBase module implements different techniques to ensure

security; it is connected only to the web service module as presented in Figure 3. It intercepts

every web service method call and performs authorization based on user name and a password

encrypted with a SHA-512 salted hash. For grid deployment it is also possible to extend the

security module with certificate-based authorization support. The design ensures that users can

not use any operation unless access is granted based on their credentials. The users can be

members of one or more different groups. Access rights can be granted only to these groups but

not to individual users. The network communication also has to be secured, which can be

realized by Stunnel [stunnel] via encrypted HTTPS or SSL. The network transfer encryption is

eliminated during development to enable easier network traffic debugging.

The core component is represented as the PersistenceComponent in Figures 2 and 3. It is

based on the Spring framework [Spring] component manager. Spring allows configuration

support via XML files, facilitates unit testing and fosters the implementation against interfaces.

The SEE++ application uses object-oriented data structures which are mapped to a transport

object model. This model was developed for the client-server architecture SEE++ and was re-

used for the persistence component to keep the clients simpler. The persistence component has a

generic metamodel based design supporting general medical databases. This metamodel is

instantiated into a concrete model when it is applied for a specific data model. When the data

model of an application changes or we want to apply the persistence component for a different

application, it is not needed to change the persistence component or the metamodel at all. In such

Figure 3: SEE-GRID Modules Dependency Chart (from D. Mitterdorfer)

 4. Performance Analysis of The Current Database System 19

cases, only the instantiation of the metamodel has to be changed.

In SEE++ the actual transport object model does not match the metamodel, because the latter

is more sophisticated, thus marshaling and unmarshaling require more time for such complex

object graphs. The persistence component has to communicate with all the clients via the

transport object model but internally it operates only with the metamodel. Because of this, an

additional transport model – metamodel mapping layer was introduced. This layer is based on

transformation rules for both ways between the two different representations. There are also

operations implemented to perform the comparison of two object-graphs, regardless of their

actual representation; furthermore two such graphs can also be made equal.

The medical data finally can be stored in any relational database supported by the JDBC

drivers. This is done with the help of the Spring framework which has predefined

Object/Relational (O/R) mapping functionality implemented by an open source tool called

Hibernate [hibernate]. This tool ensures a transparent conversion from the object-oriented model

to the relational data structures and vice-versa. Transparency means that the tool can be applied

to arbitrary objects, because those don't need to implement any interfaces or to extend specific

classes. The database access layer is automatically generated by Hibernate from the existing

database tables. This feature enables the independence of the underlying database system. More

details are presented in Chapters 4 and 5 of [Mitterdorfer2005].

 4.2. Benchmark and Profiling Design
For the evaluation of the current state of the persistence component we need to analyze the

performance of the product. We need to identify the possible performance bottlenecks and

analyze their causes. Such a task can be carried out by the help of different runtime analysis

operations. In the following we present our approach.

Benchmarking is designed in such a way that it will measure the performance of the different

operations provided by the SEE++ clients. By performance measurement, we mean the overall

runtime and maybe memory usage monitoring. The monitoring should not affect the software's

performance, therefore the tools or techniques selected should not introduce overhead to the

operations, at most they may introduce monitoring actions with a minimal overhead. It is also an

important aspect to choose an appropriate test data-set as it influences the processing time of the

operations.

By profiling we aim to identify and analyze in detail those modules of the persistence

component which are causing the main performance bottlenecks. This involves an evaluation of

execution times on package, class and method level and memory usage information of modules

 4. Performance Analysis of The Current Database System 20

and individual objects. For this task the benchmarking can give some additional hints on which

functionality of the software we should concentrate and what kind of sample data should be

used.

The benchmarking and profiling scenarios are designed to take into account our experience

with the usage of the SEE++ clients. In Figure 4, we can see that the SEE++ rich client can

perform different operations on the database with the medical data. These operations can be

categorized in the following groups:

● Create – New patient and medical data records are created in the database with the “Save

Patient in Database” function of the client if the corresponding patient has no previous

records; if new medical data is introduced for an already saved patient, new medical

scenarios are created (examination, simulation results etc.).

● Update – An update operation is performed in the database if the actual patient and its

medical data were already saved and just some information, values were changed and

those are updated with the “Save Patient in Database” function.

● Retrieve – The “Search” functionality is able to search for patients, based on various

constraints (see Figure 4). This involves the retrieval of the personal data for one or more

patients if the search is successful but no medical data is retrieved. Based on the search

results, the “Load Patient” function retrieves all the medical data of a selected patient.

● Delete – The “Delete Patient” function deletes from the database all the personal and

medical information of a selected patient, however this is just a “logical” delete.

For the usage of the persistence component the user name and password of a SEE-GRID user

Figure 5: SEE++ Java Applet ClientFigure 4: SEE++ Client Dialog

 4. Performance Analysis of The Current Database System 21

has to be introduced. There is no login/logout functionality since the communication is stateless

and each call is secured separately.

In Figure 5 we can observe that the SEE++ thin client, a Java Applet based client, has a

limited functionality compared to the rich client. The thin client is only capable to perform read-

only operations and it has no advanced search functionality because it was intended to be used

only for demonstration purposes on a sample database. Because of its demo purpose it does not

require user information, it automatically connects to the persistence component with a limited

guest user authentication.

The test cases for benchmarking are based on the above enumerated groups of functionality.

Each of the test scenarios will be performed on a dataset of different types of sample data: where

patients have a minimal amount, average and large amount of medical data stored in the

database, respectively written to the database for save/update operations.

To set up a test environment we have several choices. Benchmarking directly with the usage

of the SEE++ client by human intervention is not a good option because it can be very error

prone and the individual scenarios can not be reproduced, repeated. A possible solution is to

implement a modified version of the client software which can perform automatically certain

predefined operations for benchmarking and profiling. This requires an additional extension of

the existing code and eventually to hard-code some sample data which can not be loaded simply

from files. An alternative, yet plausible solution, is to automate the behavior of the client GUIs

by the simulation of user intervention. For such purposes there are available different tools based

on simple script languages. We have chosen the freeware AutoIT [autoit] software tool. AutoIT

has an advanced scripting language for Windows GUI automation by simulated keystrokes,

mouse movement and window/control manipulation. Scripts can be compiled into standalone

executables so each scenario can be repeated whenever it is necessary and they are even portable

between different computers. It is also possible to create complex GUIs and interactive scripts so

individual runs can even be parameterized.

For profiling the most simple, but powerful solution is the JavaTM Virtual Machine Tool

Interface (JVM TI) [jvmti]. JVM TI provides low level support for time and memory usage

profiling and monitoring however the application of such tools in such a complex environment

as the SEE-GRID would require serious efforts. Thus we've considered to use an automated

profiler tool which can perform Java application profiling by instrumenting the byte-code during

runtime, so the source code does not need to be modified at all. An appropriate profiler for such

purposes is the Test & Performance Tools Platform (TPTP) open platform [tptp]. It is an

advanced framework for application monitoring, testing, tracing, profiling and log analysis. We

 4. Performance Analysis of The Current Database System 22

have chosen this tool because it has support for web application profiling so we can do the

performance evaluation of web-services deployed in a container. TPTP profiling offers on

package, class and method levels analysis for execution time, memory usage, method code

coverage and probe insertion.

 4.3. Benchmark Technicalities
All the benchmarking and profiling was realized on a 64 bit AMD Dual Opteron 1.6GHz

system with 1GB RAM, running Windows XP Professional, x64 edition, Version 2003, SP1

operating system. For the deployment and testing of the persistence component, the following

tools were used:

● Java Runtime Environment 1.5.0.15

● Eclipse Version: 3.3.2, Build M20080221-1800

● Test & Performance Tools Platform (TPTP) 4.4.1

● AutoIt Version 3.2.10.0

● MySQL 5.0.45, database management system, community version

● Apache Tomcat 5.5.26 web server

● SEE++ 7.3

 4.4. Benchmark Results
By the automation of the SEE++ client we have performed the time measurement benchmark

of save, load, update and delete operations. The sample data set is composed of patient data and

corresponding medical scenario data with 2, 5 and 13 scenarios. These samples reflect scenarios

with minimal, normal and large data sets. One benchmark scenario, for such a sample data,

realizes the following operations on the persistence component: two search operations, one save,

one update (save the data after it is already stored), load and delete operations. A complete

iteration performs these steps once for each of the three sample data sets. The time measurements

are based on the average of 10 such iterations. The AutoIT scripts implement both the automated

test cases for the SEE++ client and the time measurement of the individual operations. The time

measurement on the client side is also meaningful for the persistence component, because all the

software components, server and client both, were running on the same system for the

benchmark. The SEE++ client's, the persistence component's and the database manager's

(MySQL) interconnection is realized via the local host's loopback network adapter, thus the

network overhead is constant and not significant.

 4. Performance Analysis of The Current Database System 23

2 scenarios 5 scenarios 13 scenarios
Traffic Received (KB) 3025 12288 35840
Traffic Sent (KB) 9633 36864 107520
Total Traffic (KB) 12658 49152 143360
Connections (number of) 61 61 61
XML test data size (KB) 364 915 2396

Table 1: Sizes of sample data and the network traffic, between the persistence
 component and the database system, for the three test scenarios

Figure 6: SEE-GRID benchmark results for save, load, update and delete operations
(average of 10 runs)

Figure 7: The number of the most important operations performed on the MySQL
database for the SEE-GRID benchmark

 4. Performance Analysis of The Current Database System 24

The SEE++ client loads all the sample data from XML files. The sizes of the data sets can be

seen and compared in Table 1, as well as the amount of network traffic between the persistence

component and the database manager. These data are transferred to the persistence component in

XML format, in SOAP messages. In Table 1 we can observe that the data sizes show an exact

linear growth: 5 and 13 scenarios meaning an increase of 2.5 and respectively 6.5 times,

compared to the first case, having 2 scenarios. These growth factors exactly correspond to the

growth of the data size for the XML data as the data of individual scenarios has a fixed size. The

persistence component's network traffic with the database manager increases with a factor of

3.88, respectively with 11.33 for the larger data sets (see Table 1). This indicates that we need to

take special attention for the evaluation of the modules in charge for processing the medical data.

The number of total connections (see Table 1) is the same for all cases, it is not influenced by the

properties of the data we operate on, but only by the executed operations.

The results, presented in Figure 6, clearly show a non-linear increase in the runtime as the

test data's size is raised. The non-linear increase of network traffic presented before is also

reflected and seems to have some relation with the runtime of the different operations. For these

test scenarios we also gathered informations about the operations performed on the database

manager. We accessed and saved information of MySQL 5 offered by its phpMyAdmin platform.

A detailed list of profiling data with relevant MySQL operations can be found in Appendix C.

These are information about the network traffic, number of retrieve, write, update and delete

operations on the data tables, information about the database manager's cache and much more.

The results are presented on Figure 6, 7 and Table 1. These MySQL runtime information reflect

the data gathered for one iteration with each sample data.

The most important operations, with the highest execution numbers, for the three sample data

sets are presented in Figure 7. Beside the known update, insert and delete operations we can find

the so called stmt operations. The stmt operations are related to statement handles. A statement

handle is a pointer to a data structure that contains information about a single SQL statement

[MySQL2008]. Statement handles can be associated with queries. Typical statements can be also

update, delete or insert commands. The values on Figure 7, just like the network traffic, also

show a growth of factors around 4 and 12. The total number of queries for the three scenarios

are: 15979, 61432, 182640. These also reflect the above mentioned growth ratios. From these

data we can see that the database system itself does not raise the complexity but the persistence

component's modules do.

 4. Performance Analysis of The Current Database System 25

 4.5. A Benchmark Scenario in Details
With the TPTP profiler tool deployed we had to make separate runs as the tool introduces

major overhead by its monitoring operations. However with the profiling we can get detailed

information about the behavior, performance and memory usage of the modules of the

persistence component. We have chosen to monitor the persistence component in details for the

most simple test case. We have performed again an automated test with the SEE++ client,

however at this time the persistence component was deployed into a web service container

(Tomcat) having the TPTP tool attached to it.

During the test, the execution flow is the following:

1. The requests are first processed by the web service facade.

2. For read-only, query operations go to step 5.

3. Map data from the XML structures of the transport model into binary representation.

4. The transport model is transformed into the internal metamodel based representation.

5. The necessary operations are performed by Hibernate on the actual database manager.

All these steps are performed by the modules in the package at.uarmi.seegrid, however these

might use third party packages, such as the jdbc driver (com.mysql.jdbc) or the ones specific to

the spring framework (net.sf). Detailed profiling data on which we based our conclusions are

presented in Appendix A for the execution time and in Appendix B for the memory analysis.

In Figure 8 we can see the time profiling data of the persistence component and other

auxiliary modules integrated into it. The above mentioned packages are presented on the figure.

The different columns of Figure 8 have the following meaning [tptp]:

● Base time – The time spent executing a particular method. Base time does not include

time spent in other Java methods that methods of the respective package are calling.

● Average base time – the average base time per call.

Figure 8: Profiling session summary, provided by TPTP, with the execution time data for
 the sample data set with 2 scenarios

 4. Performance Analysis of The Current Database System 26

● Cumulative Time – The amount of execution time, including the execution time of any

other methods called from methods in the respective package.

● Calls – the number of calls for methods of the classes from the corresponding packages.

 In this case not the time values themselves are interesting, but the proportions between them.

The highest number of calls and the highest base time belongs to the jdbc module, it consumes

more than 54% of the total execution time (calculated from the statistics of the data of all

packages, not the just the ones present in Figure 8). The database driver can receive direct calls

only from the hibernate module, thus the main performance bottleneck of the software are the

object/relational mapping operations performed by this component. The second most time and

resource consuming operation is the transport model representation – internal data representation

transformation (performed by the at.uarmi.seegrid.transformations package), with around 10%

of the base times of all packages.

In the next phase of the profiling we have collected memory usage information for the same

scenario as in the execution time analysis. A package level view of the results is presented in

Figure 9.

The data in the different columns have the following meanings [tptp]:

● Total instances – the total number of objects instantiated from the respective package.

● Live Instances – the number of objects in memory, when the monitoring has finished.

● Collected – the number of objects collected by the garbage collector.

● Total size – the total size of all instantiated objects.

● Active size – the size of live instances.

As we could have expected, the jdbc operations require the most memory, having a 45%

share of the active objects and a 96% of the total instances. The difference between these two

values is the result of the garbage collection. This high percentage is not reached because of the

inefficiency of the jdbc driver but because of the large number of calls which imply that more

than 92% (295904 instances) of the overall objects instantiated belong to the jdbc package.

Figure 9: Profiling memory analysis statistics, provided by TPTP, for the test case with
 the sample data set with 2 scenarios

 4. Performance Analysis of The Current Database System 27

Moving further on we analyzed the work of the MySQL database manager, where finally all

the above mentioned JDBC calls will trigger some activities. Some of these data can be already

found in the previous section, here we highlight some additional details. This test case has

produced a total number of 15 979 SQL queries, generating 12 MB of network traffic. Most of

the operations were insert (1398), select (3339) and update (1003) commands, the rest of them

being various stmt commands (close, execute and prepare) which overlap with the previous

commands as they cover all the operations completed via statement handles.

 4.6. Results Evaluation
Based on the above analysis we can conclude that our application has two main bottlenecks:

the database operations requested by the object-relational mapping and the object graph

transformation to and from the transport model. These two major tasks use up more than two

thirds of the resources. The web service facade and the security module's operations are quite

fast. The remote delegate classes, related to the web service facade's connection to the actual

persistence component, use 1,83% of the total base time. This is around 10 seconds, for 13 calls,

in the case of the test scenario with the smallest data set, having an acceptable average of 0,8

seconds per call (with profiling overhead). Via these calls the client can access all the features of

the persistence component, which are the search, read, write, update and delete operations for

patient and medical data. The execution time (base time) spent by the security module's packages

is less then 0,5% of the total base time.

The operations of the O/R mapping represent around 60% of the runtime of a test. The object

graph transformations need more than 10% of the runtime. These two tasks also have the highest

memory usage. The rest of the execution time is spread among other smaller tasks. Taking into

account that both the transport model and the metamodel based representations are quite

complex with a 3-4 level tree based organization, we deduce that this complexity should be the

main cause of the poor performance. Because the software internally does not operate with the

transport model at all, we can see that the performance of the object-relational mapping is

influenced the most by the internal representation.

Possible improvement could be reached by the usage of a simpler metamodel. A more

optimized database access could also improve the performance. The usage of an object oriented

database would completely eliminate the object-relational mapping so in this way the

performance would depend mostly on the database manager system.

 5. Data Resource Access Middleware for SEE-GRID 28

 5. Data Resource Access Middleware for SEE-GRID
We need to integrate the SEE-GRID persistence component in a Grid environment. For this

we need to design an access interface for data resources, which will eventually use higher level

Grid services. These Grid services can be provided by special middleware solutions, such as the

ones mentioned in Section 2.4. The appropriate middleware solution for the integration of Grid

database resources should fit in the scope of the SEE-KID project by offering various features.

Our most important requirements are related to client APIs, back-end database support and Grid

middleware support. With respect to these conditions, we have considered to evaluate the

OGSA-DAI and AMGA solutions in the following sections. Based on this evaluation we

formulate recommendations for the design of a Grid-aware persistence component in this

chapter.

 5.1. Evaluation of OGSA-DAI
The main goal of the OGSA-DAI project [OGSA-DAI2008] is to develop a free middleware

tool to support the access to various databases through web services, in particular in Grid

environments. These services are intended to provide data integration services to clients. In this

section we evaluate some important features and capabilities of this software, taking into account

the needs of the SEE-GRID project regarding to support for clients, back-end databases, security

and possible limitations.

 5.1.1. Overview
The OGSA-DAI project works in collaboration with the Globus project. Also thanks to this,

the OGSA-DAI web services are compliant with the Web Services Resource Framework

(WSRF) but there also exists an OGSI compliant version for older Globus Toolkit releases and a

WS-I version based on Apache Axis. These different versions were not designed to interoperate.

The access to data is independent from these versions and the actual resources, however the

clients can also make resource specific operations [OGSA-DAI-DevGuide2008].

 5.1.2. Installation
OGSA-DAI can be deployed and used easily with the Globus Toolkit. The installation

process is not very complicated and there is good support provided in the chapter “System

Administrator's Guide” of [OGSA-DAI-DevGuide2008]. Standard deployment can be performed

by building and using a WAR file, in the case of Tomcat, or a GAR file for the Globus Java WS.

It is also possible to deploy OGSA-DAI in a non-standard way, by copying its files in the web

 5. Data Resource Access Middleware for SEE-GRID 29

service container's appropriate folders. OGSA-DAI is not installed as part of the standard Globus

Toolkit installation, however it can be found as a bundle in the installation directories.

 5.1.3. Security
As OGSA-DAI was primarily designed to work with Globus Toolkit, it does not provide any

additional Grid security features. However to access various database systems, usually a

username/password based authentication is required. In OGSA-DAI this is solved by the so

called role handlers. Role handlers can map the Grid credentials to database authentication

information. This can be done with the usage of a simple text file or there is also an advanced

solution, where the mapping information is encrypted. It is also possible to develop custom role

mappers by implementing a specific interface.

 5.1.4. Client Support
Clients can access the data resources through the OGSA-DAI data services which can expose

0, 1 or more data service resources. The requests to web services have a uniform format,

regardless of the type of data resources. The services can be accessed by any OGSI-, WSRF or

WS-I-compliant client. It is also possible to have a higher level interaction through the Client

Toolkit, which offers a Java API for the easy development of more sophisticated clients. It is

important to note that this is not yet provided for the latest WSRF OGSA-DAI version [OGSA-

DAI-DevGuide2008]. The requests and responses, regardless of the types of the client or the

server, are SOAP messages over HTTP.

 5.1.5. Back-end Data Source Support
OGSA-DAI offers support for various solutions to be used as data sources, which can be

relational, XML or file based. The documentation [OGSA-DAI2008] mentions a few data

resource types which have been successfully tested with the current release and are officially

supported. These are: MySQL 5.0.15 and above, PostgreSQL 8.1.4, IBM DB2 8.1, Oracle 10g,

MS SQLServer 2000, Derby, Xindice 1.0, eXist 1.1.1, Unix, Linux and Windows file systems.

HSQL 1.7.1 and Apache Xindice 1.1 are also known to work with OGSA-DAI as well as other

solutions which have appropriate JDBC or XMLDB drivers, but these are not officially

supported. There also exist so called OGSA-DAI resource groups which represent data resource

federations. They can be used in a similar way as other resources. These federations or resource

groups can be formed of multiple heterogeneous data resources but logically can be accessed as

single data resources.

The interaction with data resources is realized via three main building blocks [OGSA-DAI-

 5. Data Resource Access Middleware for SEE-GRID 30

DevGuide2008]: activities, perform documents and response documents. Activities are basic

operations for data manipulation, transformation and delivery both on client and server sides.

There are predefined activities but it is also possible to develop application specific ones.

Predefined activities can be categorized as query activities, transformation activities and delivery

activities. It is interesting to note that transformation activities can convert data between different

formats such as Row Sets, XML format or simple tuples. Activities can be collected together and

they form in this way the so called “perform documents”, so they can be executed in a single

workflow. Perform documents can be produced on the client side and then submitted as requests.

Response documents are the responses returned by the OGSA-DAI services to the clients. These

can contain information about the execution status of the current operations as well as the return

data for the requests. Multiple requests can share states which are implemented as named

contexts [Antonioletti2007].

 5.1.6. Known Problems and Limitations
Known problems and limitations are published in Appendix D of the documentation [OGSA-

DAI-DevGuide2008]. Some of the database related limitations are the following: OGSA-DAI

does not support the creation or deletion of databases within DB2 and Oracle; OGSA-DAI does

not currently support the addition of BLOBs (BLock Of Bytes) to tables in Oracle databases.

Another issue with persisting larger amounts of binary data, BLOBs or CLOBs (Character Large

Object), is that they are held only in memory by the OGSA-DAI modules what can risk out of

memory errors in the container. Meta-data can be case-sensitive for data returned by different

database back-ends. In certain scenarios the container can run out of memory with some third-

party services deployed in the same container (when using tomcat) and for the synchronous

transfer of very large data sets. It is not specified the threshold for the size of data sets as it might

depend on the underlying systems, but the problem can be overcome by returning large datasets

via FTP, GridFTP or asynchronous streaming. An additional source of problems can be that there

is no full backwards compatibility of the new OGSA-DAI versions and there are also some

deprecated features. Some modules and features are not yet available for the latest release and

their usage might not be possible just with the older releases, with the recommendation to

migrate to the new versions once it becomes possible.

 5.1.7. Other Projects' Experiences
There is a list maintained on the OGSA-DAI home page [OGSA-DAI2008] presenting a

large number of projects (over 40) which are using or have used their product. Most of these are

 5. Data Resource Access Middleware for SEE-GRID 31

medical, biological, astronomical or geographical Grid projects. The needs of these projects are

generally related to query, bridge and process large, possibly heterogeneous data sets, distributed

over several data storage sites. Main reasons of choosing OGSA-DAI are its support for the

widespread Globus Toolkit and the integration and federation of heterogeneous data sources by

the abstraction of these as OGSA-DAI data services.

 5.1.8. Future Outlook
The development of OGSA-DAI is continuous, so far there were regular releases

approximatively every 6 months, except for version 3, which required 12 months as it was a full

top-to-bottom re-design. For the future it is planned to increase the system's scalability,

implement new standards, such as the Web Services Data Access and Integration standards of the

Global Grid Forum, overcome current limitations and to port OGSA-DAI to other Grid

middleware platforms, like the Unicore/GS and gLite.

 5.2. Evaluation of AMGA
The AMGA metadata catalog is developed in the frame of the ARDA project studying the

requirements for such technologies in a Grid environment [AMGA2008]. Initially it was a

prototype implementation for the specifications resulting from the previously mentioned project.

Later it has evolved jointly with gLite and has become the official EGEE metadata interface

[Santos2005].

 5.2.1. Overview
The main goal of the ARDA metadata project was to define the requirements for a Grid

metadata catalog interface. Metadata information is seen as data modeled by (key, value) pairs

with type information [Santos2005]. These data has to be structured and described by dynamic

schemes so applications can define easily the structure of their own data collections and

eventually change it dynamically. AMGA can be run as an add on to file catalogs, and manage

file related metadata or to simply manage and replicate arbitrary structured data [AMGA2008].

AMGA uses a hierarchical file-system model to represent the structure of data. Because of this

model, data schemes are also referred as directories although the storage is normally a relational

database [Santos2005]. Another important requirement was scalability, because many Grid

projects have to handle large data sets with several millions of entries. The solution for

scalability in AMGA is based on master-slave replication mechanisms and enforced by support

for asynchronous data transfer [Santos2006]. In the next sections we analyze also other

important aspects such as the support and ways of interaction with clients, support for back-end

 5. Data Resource Access Middleware for SEE-GRID 32

databases, security and possible limitations of the software.

All these tools and modules of the software are free and available for download, together

with the appropriate documentation, from the main web page of AMGA [AMGA2008].

 5.2.2. Installation
The installation of AMGA can be done using an RPM package or it is also possible to install

by building it from its source. The first option however is officially supported just for CERN

Scientific Linux and RedHat Enterprise Linux. This is valid both for the server and client parts of

the software but there are also platform-independent Java clients which does not require source

installation on other systems. The server also needs a database system to be previously installed

and it requires ODBC drivers for that, because it is implemented in C++. Descriptions of the

installation process can be found in the documentation section on the project's web page

[AMGA2008].

Installation should be followed by the configuration of the server and the replication daemon.

By default the server configuration is done via a single configuration file having different

sections. Detailed description about the configuration options can be found in the documentation

[AMGA2008].

 5.2.3. Security
AMGA is shipped with a user management system which controls the authorization to access

database entries and metadata. Users can be grouped and every user is allowed to create new

groups. Permissions are maintained in POSIX-like permission schemes. When AMGA is used on

a file catalog access control is overwritten by the controls of the respective file catalog

[AMGA2008].

Each client must be authorized to use the role of an AMGA user. Authentication can happen

either on a certificate based or a password based way, depending on the actual configuration, but

each option must be explicitly enabled. Certificate based authentication requires to use SSL both

on the client and server side. Other connections can also be secured using SSL. Furthermore

once a user has performed authentication, depending on the current configuration, it may use any

role he wishes or additional authorization can be enabled on the server side. Authorization

options are defined in a configuration file (mdserver.config). The only password based option is

to setup a user database on a database back-end; the other options are based on using a VOMS or

VOMS certificates. Certificate subjects optionally can be mapped based on the grid-map file.

All the database entries have attributes inherited from their corresponding schemas. It is not

 5. Data Resource Access Middleware for SEE-GRID 33

possible to directly set attributes for individual entries but different schemas can be defined for

different logical groups of attributes. Schemas can be defined dynamically but each entry must

be associated to at least one schema [Santos2005].

 5.2.4. Client Support
Clients can interact with the AMGA server via a command line or applications can use client

APIs and there is also a special AMGA client-server protocol, based on ASCII stream

communication. The server has two front-ends, a SOAP based one and a TCP streaming based

one.

C++, Java and Python clients and the C++ API can be installed with RPM packages. The

server package depends on the client package but the different client versions can also be

installed independently. There is also a configuration file for clients (mdclient.config), which is

present in each work directory. In this way we can provide custom configuration for the different

users. The installed command line tool comes in two versions. There is a command line tool

which can be used as a utility for an application to submit a single command to the server and

there is also an interactive command line shell.

There are also additional Perl, Ruby and PHP API client modules and there is also available a

Web Frontend, developed separately by INFN Catania (http://grid.ct.infn.it/).

For the clients there are available several commands to search, query, write and update

databases. Transactions are supported and they can be eventually committed or aborted. The

AMGA interface does not define any specific language for querying because different

implementations might have different needs and features. Queries are submitted with two

parameters, a string, representing the query itself, and second, the name of the language. There

are also file operations available, more useful when AMGA extends file catalogs. The different

attributes of directories can be manipulated by the clients, both from command line or through

the API. Index and key operations are supported. Views are also supported but their

representation depends on the actual database back-end. There is a feature present to create

unique IDs with the so called sequences. Back-end independent backups can be created by a

feature which is capable to dump the stored data into AMGA command sequences, so they can

be restored later. There are also a few commands to manage and maintain a list of replicated

databases. These databases are called simply sites. Script execution is also allowed under the

credentials of a predefined user-id, offering in this way a CGI-like functionality.

AMGA tests show that the TCP-streaming based communication compared to the SOAP

based frontend is performing much better. Benchmarks have shown that bulk reading can be up

 5. Data Resource Access Middleware for SEE-GRID 34

to ten times faster while arbitrary queries can be two to five times faster by using TCP-streams

[Santos2005].

Speed and efficiency is further increased by asynchronous data delivery to clients. AMGA

uses cursors on relational databases to access the results. Data is read in chunks into a local

buffer and transmitted to clients on request. The connection with the clients is stateful and

database connections are kept open during one session with certain restrictions on the maximum

number of sessions and idle time [Santos2005].

 5.2.5. Back-end Data Source Support
Back-end databases can be connected to AMGA via ODBC drivers. Currently the system

supports PostgreSQL, MySQL, Oracle and SQLite. The default is PostgreSQL and this one is

required to be set-up when installing from RPM. For other databases one has to follow special

installation instructions [AMGA2008]. The setup of replica and/or master nodes is easy, it is just

required to enable/disable master, respectively slave modes for the actual node, setup an open

port for the replication daemon and provide a node name in the configuration file. It is the

responsibility of the administrator to define unique node names among the nodes of a system

[AMGA2008].

There is also a standalone AMGA implementation that uses as database back-end directly the

file-system [Santos2005].

 5.2.6. Known Problems and Limitations
In the standard documentation there is no chapter dedicated to describe known problems and

limitations. These can be figured out by investigating, based on the documentation, the

possibility of implementation for specific needs.

Some known limitations are shown in the presentation of replication mechanisms

[Santos2006]. The reliability depends on the failure of master nodes, and distributed updates are

difficult to perform. The installation guide [AMGA2008] mentions that if AMGA is using the

grid-map, the configuration becomes static, and the authentication configuration can be updated

just by restarting the application. The documentation and benchmarks state that the SOAP based

communication is generally slower, especially for the work with large datasets, the use of the

TCP streaming communication is suggested [Santos2006].

Already fixed bugs and new features are described in the changelog published on the AMGA

web site [AMGA2008].

 5. Data Resource Access Middleware for SEE-GRID 35

 5.2.7. Other Projects' Experiences
The most important partner in the early development and evaluation of AMGA was the

LHCb [LHCb2008], the Large Hadron Collider beauty experiment. The experiment requires to

persist bookkeeping information of more than 20 million entries in data catalogs, representing

around 15GB of data. These information come from jobs executed on the Grid and are static

metadata of large amount.

A different project using AMGA is the Ganga [Ganga2003]. Ganga is a user interface giving

access to the Grid and providing job-configuration and data-management functions. It stores

metadata about the status of jobs submitted to the Grid. Since the status of jobs changes very

often, in this case the stored data is of smaller amount but it experiences highly dynamic

changes.

These two projects were the early testers of AMGA and have experienced success with the

product. Since then it become known by other user communities. An example is Biomed, a

medical data manager, which works with medical images and sensitive patient data so encryption

and security are important aspects. It uses AMGA as a simple database access interface, being

deployed on the EGEE production Grid.

There is no official overview about the users of AMGA, but there are several other users not

just the above mentioned ones. These projects have good results and their requirements are

various indicating that AMGA is a versatile product. The number of users is expected to grow as

AMGA has become the official EGEE metadata interface implementation.

 5.2.8. Future Outlook
The development team plans to cope with the growing number of users and focus on the

scalability and fault-tolerance of AMGA. Fault-tolerance comes more important on the failure of

master-nodes, in which case the whole system might be able to operate only in read-only mode.

Further improvement can be expected in the performance of communication between the

different database nodes of a system as well as in the reliability of transmissions. In a next phase

it is planned to provide support for distributed updates by extending the current master-slave

model. [Santos2006]

 5.3. Evaluation Conclusions
Based on the above evaluation results we can see that both products can offer an alternative

for the further development of the SEE-GRID project, but there are also important differences

between them.

 5. Data Resource Access Middleware for SEE-GRID 36

Both products are free software and developers are allowed and encouraged to adapt or

extend them for their specific needs if required. OGSA-DAI has different versions based on

different standards, such as the OGSI-, WSRF or WS-I, but all of these are web service flavors.

We have to note that these versions can not inter-operate and different features and utilities (like

the Client Toolkit API) might not be compatible with all the latest releases of the core product.

AMGA does not have such problems however it has only two front-ends, incorporating both the

SOAP and TCP stream based solutions in the same time. As AMGA is not exclusively web

service-based it also offers a standalone version.

Comparing their security support we can see that AMGA has a more sophisticated solution,

offering a larger variety of features compared to the simple role mapping applied in OGSA-DAI.

It is also important to mention that with AMGA's user management system it is possible to

define different access levels even inside the structure of one data schema.

Regarding the client support we can state that AMGA has a larger variety of client APIs

while OGSA-DAI is more sticked to Java. Potentially any client can be used with both solutions

as long as it can handle SOAP messages or also TCP streams in the case of AMGA. In change

OGSA-DAI offers more sophisticated operations and features such as the perform documents

and the data transformation activities which are not offered by AMGA.

Analyzing the back-end data source support we can note that AMGA is exclusively operating

with solutions using well structured data, relational databases and optionally the filesystem based

persistence. OGSA-DAI is more dynamic from this point of view, it offers good support not only

for relational databases but also for XML databases and data handling and in the same time it

also covers the file-system based requirements. Both systems support the data resource

federations but AMGA applied a replication mechanism on the middleware layer. Both systems

have recognized the need for asynchronous data transfers, the only reliable way to handle large

data sets. In this view AMGA is more advanced by its TCP stream front-end and by applying

cursor based data retrieval from the relational databases, avoiding memory usage problems in

this way. In change OGSA-DAI has built-in support for FTP and GridFTP and in some cases it

might be possible to use asynchronous data streams to return large data sets to clients but this

latter feature is not yet present in all versions.

Both products are used by several Grid projects and can show convincing results which may

indicate that they have reached a certain level of maturity and are stable. OGSA-DAI is more

linked to the Globus Toolkit but in the future it might be ported to other environments also,

however this might happen just after a longer time period. The deployment of AMGA is linked to

gLite and has official support from EGEE. Both can be used outside the Grid, OGSA-DAI with

 5. Data Resource Access Middleware for SEE-GRID 37

Axis while AMGA offers a standalone version.

In the next step of development it is required to precisely define the future lines of conduct of

the SEE-GRID project. The definition of requirements shall take into account different aspects:

the type of the database systems which would be preferred to be used in the future; the Grid

middleware for the next version of the persistence component; evaluate the usage of TCP stream

and/or SOAP based communication; specify the authentication and authorization requirements;

evaluate the need for database replication and the level of scalability.

Taking into account the evaluation results, with the development team of SEE-GRID we

decided to extended the architecture of the database layer based on a Globus web service

interface and OGSA-DAI. The future integration into gLite is also desirable, however the

possible usage of XML databases and the already existing SEE-GRID components integrated

into Globus have motivated mainly our choice.

In the following chapter we present the extended design of SEE-GRID, our prototype of the

Globus web service interface and our experience with deploying the already existing medical

database with OGSA-DAI.

 6. Extended SEE-GRID Architecture 38

 6. Extended SEE-GRID Architecture
We present in this chapter the extended design of SEE-GRID. We have provided a Globus

web service interface for the database and we also present our experience about the possible

integration of OGSA-DAI with the persistence component.

The next two sections contain a description about prototyping the web service interface and

our first results with OGSA-DAI. In the last section we provide an overview of the whole design

and we describe the main ideas of the planned integration of the SEE-GRID medical database

into the Grid. Since this integration is already in progress, in the overview, beside the design

concepts, we also give some additional implementation details.

 6.1. Globus Web Service Interface for the SEE-GRID Database
Our prototype implementation is based on the Globus Java Web Service Resource

Framework (WSRF) as the persistence component itself is also implemented in Java. This

version acts as a facade to the persistence component, simply forwarding all the requests to the

main persistence implementation. We have not changed the original security concept of SEE-

GRID with its username/password based authentication. For the future the transport level

security and a certificate based authentication should be implemented. This is essentially a

simple task on the server side (see Part III of [Sotomayor2005]) but it also needs appropriate

support from the clients, respectively from the SEE++ to Grid bridge.

Section III-A of [Bosa2007] indicates that the WSRF-based extension of the SEE++ database

could not be completed because of some restrictions from the side of Globus while generating

ANSI C stubs for data structures containing the so called “SOAP Encoded Array” data type. We

have investigated the problem and concluded that this is a general restriction in the Globus

WSRF because it follows the WS-I Basic Profile standards from OASIS [OASIS_WS-I2008].

This standard has several restrictions on array types because of interoperability problems raised

by different interpretations of the WSDL (Web Service Description Language) recommendations.

By now the SEE-KID team has adapted SEE++ in such a way that its web service interface use

no more “SOAP Encoded Arrays” thus now it respects the corresponding standards of the

Globus Toolkit.

 6.2. Experiences with OGSA-DAI
The choice of making experiments with OGSA-DAI in our project had multiple reasons.

Since we wanted to further investigate in practice with the Globus Toolkit, OGSA-DAI was the

best choice based on our evaluations. As this Grid data-resource manager supports MySQL as a

 6. Extended SEE-GRID Architecture 39

back-end it makes possible to easily integrate the already existing medical database. Its XML

support also provides good outlook for the project's future plans to investigate the usage of this

technology.

Our experience shows that essentially it is easy to deploy OGSA-DAI with the Globus

Toolkit and the available documentation gives satisfying support for this. We used the latest

available stable releases of these software, namely Globus 4.0.7 and OGSA-DAI 3.0. OGSA-

DAI exposes its services through a WSRF based web service interface, completely implemented

in Java [OGSA-DAI-DevGuide2008]. Since we also implemented the Grid-interface of the

persistence component as a Java WSRF web service, this seems to be beneficial for the

performance. The interaction between services deployed in the same container can be carried out

locally, skipping the network, thus faster in this way.

In a first phase it is planned to integrate OGSA-DAI's services in the persistence component

in a simple way, by directly forwarding database queries. Because the internal architecture of the

persistence component is quite complex we have decided to investigate the applicability of this

design in an indirect way. As a first step we have implemented a standalone Java client, which

invokes the OGSA-DAI services in a similar way as the persistence component would, however

in this case working just with the MySQL database. This showed that it is possible to give a

satisfactory implementation and in the future the full integration can be completed.

Another possibility for the future development is the usage of XML database back-ends. A

possible approach to improve the performance of the interaction between clients and the

persistence component is to provide a two-level architecture. The first level would be a custom

solution using an XML back-end, as the SEE++ rich client can already handle patient data in this

format. This level would then replicate the stored data, perhaps in an anonymized form, to the

second level. The second level would keep the general metamodel based approach and its task

would be limited then to the non-time critical data mining operations. OGSA-DAI also provides

us good opportunities here by providing data management services for both the half-structured

XML back-end as well as for the already existing relational database.

 6. Extended SEE-GRID Architecture 40

 6.3. Design Overview

We present the extended SEE-GRID architecture in Figure 10, which is mainly based on the

design presented in [Bosa2007], however in this thesis we just focused on the database layer. The

figure also includes the planned Java web service interface for the pathology fitter (see Section

II-C of [Bosa2007]), while the dashed line denotes components which are already implemented

or are currently under development.

The Axis based web services represent the current database implementation which works

outside the Grid. These web services can be deployed in common containers such as the Apache

Tomcat. The SEE++ clients can communicate with these via SOAP messages with the help of a

WS API, as indicated in the figure. These clients can also connect to the SEE-KID calculation

server, which exposes its operations through a web service interface, providing in this way the

possibility to use many different client implementations [SEE-KID2008]. The SEE++2GRID

BRIDGE component makes use of this already existing feature of the clients and acts as a server

for them but in the same time it also acts as a client for the Grid, forwarding all the requests to

the corresponding Grid services [Bosa2007]. This approach implies that the clients doesn't have

Figure 10: Extended SEE-GRID Architecture

 6. Extended SEE-GRID Architecture 41

to be aware that they are using Grid services, they can continue to use the simple WS API for

communication and the bridge component implements the Grid calls through the WSRF API

provided by the Globus Toolkit. This does not introduce a too high overhead, because the format

of the WS API and WSRF API operations are similar, since WSRF can be rather seen as a

specific extension of the common web services.

Since the restrictions noticed in Section III-A of [Bosa2007] were overcome in SEE-KID by

the replacement of the so called “SOAP Encoded Arrays” with other custom data types which

comply with the standards applied by the WSRF [OASIS_WS-I2008], the development now can

be continued. Our prototype presented in Section 6.1 proves that the SEE++2GRID BRIDGE

component can be extended now to enable the forwarding of database requests from the clients

to the Grid services. In conformity with the design presented here, the database requests should

be then forwarded to the SEE-GRID Database's WSRF interface which can be deployed on the

Grid into web service containers supporting Globus' Java WSRF Core (see the section marked

Grid in Figure 10).

The already existing modules of the SEE-GRID persistence component can be easily

integrated into a Globus web service. These WSRF web services are normally included with all

their dependencies and necessary configuration files in a so called Grid ARchive or GAR file

[Sotomayor2005], similar to the WAR or Web ARchives. In order to be able to port the

persistence component to the Grid we have to include the persistence component and all its

specific dependencies, such as the Spring Framework or Hibernate, into this GAR file. In this

way the web service logic can easily invoke the methods of the persistence component which can

remain unchanged.

In order to use OGSA-DAI in an efficient way, in our design we show that it should be

deployed in the same container as the database's Grid interface to be able to use internal calls for

calls between the two services. Standard deployment of OGSA-DAI is easy, since it is available

as a GAR file for the Globus Java WS container or even a WAR file can be built for Apache

Tomcat [OGSA-DAI-DevGuide2008]. In this way the usage of OGSA-DAI services require only

to implement a special client module for it based on the WSRF API, which should be integrated

into the persistence component.

As a first step the existing MySQL medical database should be integrated into OGSA-DAI

and the queries of the persistence component, generated by Hibernate, could be then sent to the

OGSA-DAI data service. However this would limit for the moment the usage of back-ends to

MySQL but extensions can be made to any other back-end supported by Hibernate. The

advantage of this approach is that the persistence component needs no more to connect directly

 6. Extended SEE-GRID Architecture 42

to a single data-source. We can deploy multiple data sources which can be managed by OGSA-

DAI and furthermore data-resource-federations can be created and distributed queries applied on

those.

A second possible approach is to configure OGSA-DAI to use an XML database back-end

(such as Exist). This would require to simplify or re-implement the persistence component. The

database layer would extract the medical data from the SOAP messages directly in XML format

and persist them and also it could retrieve the data from the back-end in XML format. In this

case the existing relational database still could be used in a read-only manner because OGSA-

DAI is capable to transform the retrieved data into XML format. The SEE++ client can already

handle XML format data so it just has to be adapted to create and receive messages in a

corresponding format. The main advantage of this approach is that we obtain a light, perhaps

very fast service which is capable to interact with the clients in real-time, solving in this way the

performance issues of the current implementation. However the metamodel based

implementation could be still kept, as it is a general solution, not customized for SEE++. Thus,

as a long term goal, data mining operations designed for general medical applications could be

realized on it. In this case the customized SEE-GRID database should replicate impersonated

medical evidence into the metamodel based repository which may store then medical data from

heterogeneous medical applications.

The security features of the Globus Toolkit have to be considered in every component which

directly makes or receives web service calls. This means that both the client and server

components can be and should be implemented or adapted in such a way that they would apply

the transport level security and the certificate based authentication of Globus. As a first step this

can include just the bridge component and the actual Grid web services, which may apply secure

network level transport for the calls and use a Grid certificate dedicated for a specific instance of

a bridge component. Meanwhile the persistence component would still rely on its username and

password based authentication and authorization. Later this can be upgraded to either map the

already existing SEE-GRID users with certificates or also change the security infrastructure on

the client side and apply only the Grid certificate-based security on all levels of the software

system.

The other services present on Figure 10 are not directly connected to the database. There is a

pre-WS implementation of gaze pattern calculations (Hess-Lancaster test simulation) and the

planned parallel pathology fitter component. In the future this latter may also be extended in

such a way that it will need to query multiple SEE-GRID databases for specific pathologies to

improve the speed and accuracy of its computations (see Section 4.2 of [Bosa2005a]).

 7. Conclusions 43

 7. Conclusions
In this chapter we present the goals achieved by this work and its applicability and relation

with the possible ways for the future development of the SEE-GRID database system, based on

Grid technologies.

 7.1. Achieved Goals
The main goals of this thesis were the performance analysis of the current implementation

and the evaluation of state of the art Grid database solutions respect to their applicability for the

SEE-GRID database.

Performance is important for SEE-GRID as the current implementation can not be used in

“real-world scenarios” because of its limitations. We have performed an extended benchmarking

and profiling of the SEE-GRID database system. The design, results and conclusions of this

performance analysis are presented in Chapter 4. As the most important is the product's

interaction with the users, we have decided to do a benchmark by the automation of the user

interface of SEE++. We have also realized a profiling of the persistence component. We have

gathered information about the behavior of the different modules of the persistence component,

respect to memory usage, the number of instantiated and live objects, the share of runtime for

each. We also collected information from the underlying database manager, about the amount of

network traffic and number and types of operations requested by the persistence component. This

work has revealed many interesting aspects. Based on our results (Sections 4.4, 4.5) we have

concluded that the main performance bottleneck of the software is the over-engineered, very

complex metamodel which causes a non-linear decrease in performance as we increase the size

of the processed data. The optimization of the metamodel and of the data transformation process

would bring notable performance increase. The replacement of the metamodel based approach,

in the direct interaction with clients, with a fast, custom solution (such as an XML database

manager) could also provide very good performance. This latter approach can be interesting also

because SEE++ can already handle data in XML format.

In Section 2.4 we have briefly presented a few Grid data-resource management tools. We

have chosen to evaluate in detail the OGSA-DAI solution for the Globus environment, and the

AMGA solution for the gLite Grid middleware as these are the two Grid environments currently

used by the SEE-GRID project. A detailed evaluation and a brief comparison is described in

Chapter 5 of the thesis. We have decided to make an extended design of the SEE-GRID database

layer, this is presented in Chapter 6. The new Grid interface is based on high-level services of

 7. Conclusions 44

Globus, such as the WSRF compliant web interface for the persistence component and the data

management solution offered by OGSA-DAI. We have chosen the Globus Toolkit and OGSA-

DAI because they seem to fit better the current needs of the project. The applicability of our new

design is proven by our prototype implementation of the web service interface, described in

Section 6.1, as well as by our practical results with OGSA-DAI presented in Section 6.2.

However the future integration of the database into gLite should also be considered. In Section

6.3 we give a detailed overview of the extended design.

As the work carried out in the frame of this thesis is meant to be a contribution to an already

existing project with an ongoing development, we have to mention that the current status is

continuously changing. We currently work on the refinement of the prototype database Grid

interface and the integration of OGSA-DAI with the medical database and with the persistence

component is also ongoing.

 7.2. Future Outlook
Taking into account the results of the performance analysis, the future development of the

SEE-GRID database may split the system in two different parts. There might be a fast, custom

solution for the direct interaction with clients. The local database then may submit anonymized

medical data to the Grid. The actual Grid database could preserve a simplified metamodel based

approach to keep its generality.

The Grid-database can form the basis for complex data mining operations. These operations

could help, for an example, the automated pathology fitter algorithm to search for similar cases.

These cases can be then set as the starting point for the iterations of the algorithm which may

produce more accurate results in less time (see [Bosa2007]).

Another possible usage of data mining on the Grid could be a special service which should

be able to provide for the doctors the possibility to search for and consult the medical data and

evolution of patients with a similar pathology compared to a specific case selected by them.

Doctors often have to consult and make their decisions based on the available medical evidence,

so it is crucial to find the best available relevant evidence. Such a service, supporting evidence

based medicine, is being developed based on the BurnCase 3D software (www.burncase.at) at

the Medical Informatics Research Unit of RISC Software. Their first prototypes and results show

that it is possible to design such a system independent from the medical domain, so in the future

it would be interesting to collaborate and integrate such a service into the SEE-GRID database.

Security and privacy is also a very important aspect in the field of medical informatics. The

available Grid toolkits, such as Globus or gLite, provide good support for secure Grid-

 7. Conclusions 45

applications. The Grid based services of SEE-GRID may adapt in the future the transport level

security, as well as the certificate-based authentication and authorization of users. The existing

username and password based authentication of SEE-GRID can be replaced by a certificate

based one, which is possible thanks to the modular design of the product. As an intermediate

solution the mapping of SEE-GRID users to Grid users can also be considered.

Appendix A - Execution Time Analysis Data

Appendix A - Execution Time Analysis Data
Here we present the data collected by the execution time analysis of the Test & Performance

Tools Platform (TPTP) with the profiling described in Section 4.5. The table contains the

package level view of the results, including the packages of the persistence component as well as

the packages from its dependencies.

Package Base Time
(seconds)

Average Base
Time
(seconds)

Cumulative
Time (seconds)

Calls

com.mysql.jdbc 228,512141 0,000020 307,286947 11284396
com.mysql.jdbc.util 78,747862 0,000055 78,747862 1443849
at.uarmi.seegrid.transformations 55,858571 0,000547 312,860829 102111
at.uarmi.seegrid.dao.hibernate 14,716115 0,001850 91,935966 7953
at.uarmi.seegrid.hibernate 13,423752 0,000022 13,423752 597819
at.uarmi.seegrid.persistence 10,622481 0,000224 418,889351 47406
net.sf.cglib.core 7,200442 0,000007 8,307267 980238
at.uarmi.seegrid.domainmodel.dao
.implementation 4,271069 0,039547 369,017934 108

at.uarmi.seegrid.security.core 1,364043 0,003240 396,490188 421
net.sf.cglib.beans 1,304900 0,000020 13,946124 66877
net.sf.cglib.proxy 1,179723 0,000016 7,647682 73033
at.uarmi.seegrid.utils 0,444784 0,000095 1,847383 4670
net.sf.cglib.reflect 0,344702 0,000014 4,524946 23789
net.sf.ehcache 0,233823 0,000008 0,394537 31016
net.sf.ehcache.config 0,117236 0,000075 0,118054 1561
at.uarmi.seegrid.security.datamodel 0,097651 0,000115 0,097651 850
net.sf.ehcache.store 0,043477 0,000008 0,060918 5448
com.mysql.jdbc.log 0,026944 0,000090 0,026944 298
at.uarmi.seegrid.persistence
.implementation 0,019946 0,000322 369,025887 62

filters 0,000000 0,000000 0,000000 0
Notes:

● Base time – The time spent executing a particular method. Base time does not include

time spent in other Java methods that methods of the respective package are calling.

● Average base time – the average base time per call.

● Cumulative Time – The amount of execution time, including the execution time of any

other methods called from methods in the respective package.

● Calls – the number of calls for methods of the classes from the corresponding packages.

I

Appendix B - Basic Memory Analysis Data

Appendix B - Basic Memory Analysis Data
The following table contains data collected by the basic memory analysis of the Test &

Performance Tools Platform (TPTP) with the profiling described in Section 4.5. The table

contains the package level view of the results, including the packages of the persistence

component as well as the packages from its dependencies.

Package Total
Instances

Live
Instances

Collected Total Size
(bytes)

Active
Size
(bytes)

 com.mysql.jdbc 295904 1477 294427 23091408 114280
 at.uarmi.seegrid.transformations 8778 0 8778 200664 0
 at.uarmi.seegrid.hibernate 6707 1839 4868 207984 57128
 net.sf.ehcache 4327 104 4223 242312 5824
 at.uarmi.seegrid.persistence 2662 1046 1616 160536 62192
 net.sf.cglib.proxy 968 21 947 15488 336
 java.lang 110 110 0 10560 10560
 com.mysql.jdbc.log 90 15 75 1440 240
 com.mysql.jdbc.util 45 5 40 1440 160
 at.uarmi.seegrid.security.datamodel 45 5 40 1440 160
 at.uarmi.seegrid.security.core 9 1 8 144 16
 at.uarmi.seegrid.persistence.implementation 3 0 3 48 0
 at.uarmi.seegrid.utils 2 0 2 32 0

Notes:

● Total instances – the total number of objects instantiated from the respective package.

● Live Instances – the number of objects in memory, when the monitoring has finished.

● Collected – the number of objects collected by the garbage collector.

● Total size – the total size of all instantiated objects.

● Active size – the size of live instances.

II

Appendix C - MySQL Operations Statistics

Appendix C - MySQL Operations Statistics
The following table contains the relevant data for our evaluation related to MySQL

operations, extracted from the phpMyAdmin platform for all of our test scenarios. The data from

the Monitor column represents the overhead caused by the monitoring operations which we

measured to see that it does not influence significantly the results. The other columns present the

data corresponding to the benchmark cases with 2, 5 and 13 medical data scenarios.

Operation Monitor 2 scenarios 5 scenarios 13 scenarios
Traffic
Received 2,49 KB 3 025 KB 12288 KB 35840 KB
Sent 47 KB 9 633 KB 36864 KB 107520 KB
Connections (no) 9 61 61 61
Query stats
total querys 68 15979 61432 182640
change db 2 3 3 3
commit 0 9 9 9
insert 0 1398 5550 17 k
select 9 3339 13 k 39 k
set option 16 202 202 202
show charsets 4 7 7 7
show collations 4 53 53 53
show databases 4 7 7 7
show tables 10 15 3 15
stmt close 0 4909 19 k 57 k
stmt execute 0 5725 23 k 67 k
stmt prepare 0 4909 19 k 57 k
update 0 1003 3985 12 k
Flush_commands 1 1 1 1

InnoDB (transactions, row-level locking, and foreign keys engine)
buffer_pool_pages_data 38 495 586 852
buffer_pool_pages_dirty 0 0 0 0
buffer_pool_pages_flushed 0 192 360 610
buffer_pool_pages_free 922 461 366 89
buffer_pool_pages_latched 0 0 0 0
buffer_pool_pages_misc 0 4 8 19
buffer_pool_pages_total 960 960 960 960

III

Appendix C - MySQL Operations Statistics

Operation Monitor 2 scenarios 5 scenarios 13 scenarios
buffer_pool_read_ahead_rnd 1 4 5 6
buffer_pool_read_ahead_seq 0 0 0 0
buffer_pool_read_requests 209 200 k 724 k 2 076 k
buffer_pool_reads 15 302 325 422
buffer_pool_wait_free 0 0 0 0
buffer_pool_write_requests 0 19 k 64 k 164 k
data_fsyncs 3 48 62 98
data_pending_fsyncs 0 0 0 0
data_pending_reads 0 0 0 0
data_pending_writes 0 0 0 0
data_read 2 806 k 9 900 k 10 M 13 M
data_reads 48 481 515 644
data_writes 3 235 416 703
data_written 1536 6 830 k 14 M 26 M
dblwr_pages_written 0 192 360 610
dblwr_writes 0 6 8 13
log_waits 0 0 0 0
log_write_requests 0 1192 4392 13 k
log_writes 1 29 39 59
os_log_fsyncs 3 36 45 69
os_log_pending_fsyncs 0 0 0 0
os_log_pending_writes 0 0 0 0
os_log_written 512 535 k 2 000 k 5 956 k
page_size 16 k 16 k 16 k 16 k
pages_created 0 24 81 218
pages_read 38 471 505 634
pages_written 0 192 360 610
row_lock_current_waits 0 0 0 0
row_lock_time 0 0 0 0
row_lock_time_avg 0 0 0 0
row_lock_time_max 0 0 0 0
row_lock_waits 0 0 0 0
rows_deleted 0 0 0 0
rows_inserted 0 1398 5550 17 k
rows_read 0 214 k 844 k 2 526 k
rows_updated 0 955 3796 11 k

Query cache
Qcache_free_blocks 1 1 1 1

IV

Appendix C - MySQL Operations Statistics

Operation Monitor 2 scenarios 5 scenarios 13 scenarios
Qcache_free_memory 8 380 k 8 380 k 8 380 k 8 380 k
Qcache_hits 0 0 0 0
Qcache_inserts 0 0 0 0
Qcache_lowmem_prunes 0 0 0 0
Qcache_not_cached 42 3486 13 k 39 k
Qcache_queries_in_cache 0 0 0 0
Qcache_total_blocks 1 1 1 1

V

Bibliography

Bibliography

[AGrid2008] "Austrian Grid website -
 www.austriangrid.at", 2008.

[AMGA2008] "AMGA - The ARDA Metada Catalogue Project –
http://amga.web.cern.ch/amga/", 2008.

[Andrieux2007] Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H.,
Kakata, T., Pruyne, J., Rofrano, J., Tuecke, S. and Xu, M. "Web
Services Agreement Specification (WS-Agreement)",
http://www.ogf.org/documents/GFD.107.pdf, 2007.

[Antonioletti2007] Antonioletti, M., Hong, N. P. C., Hume, A. C., Jackson, M.,
Karasavvas, K., Krause, A., Schopf, J. M., Atkinson, M. P.,
Dobrzelecki, B., Illingworth, M., McDonnell, N., Parsons, M.
and Theocharopoulous, E. "OGSA-DAI 3.0 - The What's and
Whys", in 'Proceedings of the UK e-Science All Hands Meeting',
2007.

[autoit] "AutoIT web page -
http://www.autoitscript.com/autoit3/", 2008.

[Banks2005] Banks, T., Djaoui, A., Parastatids, S., Mani, A., Tuecke, S.,
Czajkowski, K., Foster, I., Frey, J., Graham, S., Kesselman, C.,
Maguire, T., Sandholm, T., Snelling, D. and Vanderbilt, P. "Open
Grid Service Infrastructure Primer",
http://www.ogf.org/documents/GFD.31.pdf, 2005.

[Bosa2005] Bosa, K., Schreiner, W., Buchberger, M. and Kaltofen, T. "A
Refined Design of the SEE-GRID Database and Pathology
Fitter", Austrian Grid Deliverable AG-DA1c-5-2005_v1,
Technical report, Research Institute for Symbolic Computation
(RISC), Johannes Kepler University, Linz, Austria, 2005.

[Bosa2005a] Bosa, K., Schreiner, W., Buchberger, M. and Kaltofen, T. "SEE-
GRID, A Grid-Based Medical Decision Support System for Eye
Muscle Surgery", in 'Proceedings of 1st Austrian Grid
Symposium 2005', ed. Volkert, J., et. al., Austrian Computer
Society (OCG), Hagenberg, Austria, 2005, pp. 61--74.

VI

Bibliography

[Bosa2007] Bosa, K., Schreiner, W., Buchberger, M. and Kaltofen, T. "A
Grid Software for Virtual Eye Surgery Based on Globus 4 and
gLite", in 'Proceedings of ISPDC 2007', ed. IEEE Computer
Society, 2007

[Buchberger2004] Buchberger, M. "Biomechanical Modelling of the Human Eye",
PhD Thesis, Johannes Kepler University Linz, Austria, 2004.

[Buchberger2008] Buchberger, M., Kaltofen, T. and Priglinger, S. "SEE++ User
Manual",
http://www.see-kid.at/download/SEEPP_Manual_ENG.pdf,
Upper Austrian Research GmbH, 2008.

[DRS2008] "GT 4.0: Data Replication Service documentation -
www.globus.org/toolkit/docs/4.0/techpreview/datarep/", 2008.

[Foster1999] Foster, I., Kesselman, C., Lee, C., Lindell, R., Nahrstedt, K. and
Roy, A. "A Distributed Resource Management Architecture that
Supports Advance Reservations and Co-Allocation",
'Proceedings of the International Workshop on Quality of
Service', 1999.

[Foster2001] Foster, I., Kesselman, C. and Tuecke, S. "The Anatomy of the
Grid: Enabling Scalable Virtual Organizations", Lecture Notes in
Computer Science (2150), 2001.

[Foster2005] Foster, I., Kishimoto, H., Savva, A., Berry, D., Djaoui, A.,
Grimshaw, A., Horn, B., Maciel, F., Siebenlist, F., Subramaniam,
R., Treadwell, J. and Reich, J. V. "The Open Grid Services
Architecture, Version 1.0",
http://www.gridforum.org/documents/GWD-I-E/GFD-I.030.pdf
2005.

[Foster2006] Foster, I. "Globus Toolkit Version 4: Software for Service-
Oriented Systems", 'IFIP International Conference on Network
and Parallel Computing', Springer-Verlag, LNCS 3779, 2006,
pp. 2--13.

VII

Bibliography

[FosterKesselman1997] Foster, I. and Kesselman, C. "Globus: A Metacomputing
Infrastructure Toolkit", The International Journal of
Supercomputer Applications and High Performance Computing
(11(2)), 1997, pp. 115--128.

[FosterKesselman1999] Foster, I. and Kesselman, C. "The Globus project: a status
report," Future Generation Computer Systems (15:5--6), 1999,
pp. 607--621.

[Fowler2004] Fowler, M. Analysis Patterns: Reusable Object Models,
Addison-Wesley, 2004.

[Ganga2003] Harrison, K., Lavrijsen, W. T. L. P., Mato, P., Soroko, A., Tan, C.
L., Tull, C. E., Brook, N. and Jones, R. W. L. "GANGA: a user-
Grid interface for Atlas and LHCb," CoRR (cs.SE/0306085),
2003.

[GFD.47] Mandrichenko, I., Allcock, W. and T.Perelmutov "GridFTP v2
Protocol Description",
http://www.ogf.org/documents/GFD.47.pdf, 2005.

[gLite2006] Burke, S., Campana, S., Peris, A. D., Donno, F., Lorenzo, P. M.,
Santinelli, R. and Sciaba, A. "gLite 3.0 users guide",
https://edms.cern.ch/file/722398/gLite-3-UserGuide.html
Enabling Grids for E-sciencE project, 2006.

[gLite2008] "gLite home page -
www.glite.org", 2008.

[GridCafe2008] "GridCafé website –
 http://gridcafe.web.cern.ch", 2008.

[Grimshaw1994] Grimshaw, A. S., Wulf, W. A., French, J. C., Weaver, A. C. and
Reynolds, P. F. Jr. "Legion: The Next Logical Step Toward a
Nationwide Virtual Computer (CS-94-21)", Technical report,
University of Virginia, 1994.

[Haslwanter2005] Haslwanter, T., Buchberger, M., Kaltofen, T., Hoerantner, R. and
Priglinger, S. "SEE++ - A Biomechanical Model of the
Oculomotor Plant", Annals of the New York Academy of Sciences
(1039 (1)), 2005, pp. 9--14.

VIII

Bibliography

[Hedges2007] Hedges, M., Hasan, A. and Blanke, T. "Curation and
Preservation of Research Data in an iRODS Data Grid", 'E-
SCIENCE '07: Proceedings of the Third IEEE International
Conference on e-Science and Grid Computing', IEEE Computer
Society, Washington, DC, USA, 2007, pp. 457--464.

[hibernate] "Hibernate homepage -
http://www.hibernate.org/ ", 2008.

[iRods2008] "iRods -
www.irods.org", 2008.

[jvmti] "JavaTM Virtual Machine Tool Interface (JVM TI) -
http://java.sun.com/javase/6/docs/technotes/guides/jvmti/index.html",
2008.

[Kaltofen2002] Kaltofen, T. "Design and Implementation of a Mathematical
Pulley Model for Biomechanical Eye Surgery", Diploma Thesis,
Fachhochschul OÖ, Hagenberg, Austria, 2002.

[Kesselman1998] Kesselman, C. and Foster, I. The Grid: Blueprint for a New
Computing Infrastructure, Morgan Kaufmann Publishers, 1998.

[Koblitz2008] Koblitz, B., Santos, N. and Pose, V. "The AMGA Metadata
Service", Journal of Grid Computing (Volume 6:Number 1),
2008, pp. 61--76.

[Langella2004] Langella, S., Hastings, S., Oster, S., Kurc, T., Catalyurek, U. and
Saltz, J. "A distributed data management middleware for data-
driven application systems", 'CLUSTER '04: Proceedings of the
2004 IEEE International Conference on Cluster Computing',
IEEE Computer Society, Washington, DC, USA, 2004, pp.
267--276.

[LenzReichert2007] Lenz, R. and Reichert, M. "IT support for healthcare processes -
premises, challenges, perspectives", Data & Knowledge
Engineering (61:1), 2007, pp. 39--58.

IX

Bibliography

[LHC2008] "LHC computing grid -
www.cern.ch/lcg", 2008.

[LHCb2008] "LHCb public website,
http://lhcb-public.web.cern.ch/lhcb-public", 2008.

[Miller1999] Miller, J. M. "Orbit™ 1.8 Gaze Mechanics Simulation",
Eidactics, Suite 4041450 Greenwich Street, San Francisco CA
94109-1466, 1999.

[Miller1999a] Miller, J. M. and Demer, J. L. "Clinical Applications of
Computer Models for Strabismus", 'Clinical Strabismus
Management', W. B. Saunders, 1999.

[Mitterdorfer2005] Mitterdorfer, D. "Grid Capable Persistence Based on a
Metamodel for Medical Decision Support", Diploma Work,
Fachhochschul OÖ, Hagenberg, Austria, 2005.

[Mobius2008] "The Mobius Project –
 http://projectmobius.osu.edu", 2008.

[MySQL2008] "MySQL 5.0 Reference Manual", MySQL AB,
http://dev.mysql.com/doc/refman/5.0/en/, 2008.

[Nair2007] Nair, A. S. "Computational Biology & Bioinformatics: A Gentle
Overview", Technical report, Computer Society of India,
Communications of the Computer Society of India, 2007.

[NHS2005] "NHS Healthcare Modelling Programme -
http://www.standards.nhsia.nhs.uk/hcm/index.htm", 2005.

[OASIS_WS-I2008] "Web Services Resource Framework -
www.oasis-open.org/committees/tc_home.phpwg_abbrev=wsrf",
2008

[OGSA-DAI-DevGuide2008] "GT 4.2.0 OGSA-DAI: Developer's Guide", Database Access &
Integration Services Workgroup, University of Edinburgh,
www.globus.org/toolkit/docs/4.0/techpreview/ogsadai/developer
-index.html 2008.

X

Bibliography

[OGSA-DAI2008] "The OGSA-DAI Project -
www.ogsadai.org.uk", 2008.

[OGSA-DQP2008] "The OGSA Distributed Query Processor (OGSA-DQP) -
www.ogsadai.org.uk/about/ogsa-dqp/", 2008.

[Rajasekar2004] Rajasekar, A., Wan, M., Moore, R. and Schroeder, W. "Data Grid
Federation", In proceedings of 'The International Conference on
Parallel and Distributed Processing Techniques and Applications
 - PDPTA', 2004, pp. 541--546.

[RFT2008] "GT 4.0 Reliable File Transfer (RFT) Service documentation -
www.globus.org/toolkit/docs/4.0/data/rft/", 2008.

[Santos2005] Santos, N. and Koblitz, B. "Metadata services on the grid",
'Advanced Computing and Analysis Techniques (ACAT'05)',
2005.

[Santos2006] Santos, N. and Koblitz, B. "Distributed Metadata with the
AMGA Metadata Catalog", CoRR (abs/cs/0604071), 2006.

[SEE-KID2008] "SEE-KID homepage -
www.see-kid.at", 2008.

[Sinnott2005] Sinnott, R.O.;Houghton, D. "Comparison of Data Access and
Integration Technologies in the Life Science Domain",
'Proceedings of UK e-Science All Hands Meeting, September
2005, Nottingham, England.', 2005.

[Sotomayor2005] Sotomayor, B. and Childers, L. Globus Toolkit 4: Programming
Java Services, Morgan Kaufmann, 2005

[spring] "Spring Framework -
http://www.springframework.org", 2008.

[SRB2008] "Storage Resource Broker (2008) -
www.sdsc.edu/srb", 2008.

XI

Bibliography

[stunnel] "Stunnel website – Universal SSL Wrapper.
http://www.stunnel.org/", 2008.

[tptp] "TPTP - Tracing and Profiling ProjecT -
http://www.eclipse.org/tptp/", 2008.

[Tuecke2003] Tuecke, S., Czajkowski, K., Foster, I., Frey, J., Graham, S.,
Kesselman, C., Maguire, T., Sandholm, T., Snelling, D. and
Vanderbilt, P. "Open Grid Services Infrastructure",
http://www.ogf.org/documents/GFD.15.pdf, 2003.

[Woess2006] Wöß, W., Schreiner, W. and Buchberger, M. "Status Update on
the Integration of SEE-GRID Into G-SDAM and Further
Implementation Specific Topics", Technical report, RISC and
Upper Austrian Research (UAR), Technical Report, Austrian
Grid, 2006.

[WSII2008] "WebSphere Information Integrator (WSII) -
http://ibm.com/software/data/integration", 2008.

[WSRF2008] "Web Services Resource Framework -
www.oasis-open.org/committees/tc_home.phpwg_abbrev=wsrf",
2008.

XII

Curriculum Vitae

Personal Information:

Last Name: Matkó

First Name: Imre-Zoltán

Citizenship: Romanian

Place of birth: Satu Mare, Romania

Date of birth: November 15, 1984.

Contact Information:

Telephone: +40(0)721765475; +40(0)261746040

E-mail: imre.matko@gmail.com

Home address: str. Astronauţilor bl. A4, ap. 10, Satu Mare, jud. Satu Mare, Romania, 440181

Education:

2007 – 2008 Master's studies at ISI-Hagenberg (International School for Informatics),

Specialization Informatics: Engineering & Management, Johannes Kepler University and University of

Applied Sciences, Hagenberg im Mühlkreis, Upper Austria, Austria. Master's Thesis work: Grid-aware

Database Support for Medical Software.

2003 - 2007 Bachelor of Science (4 year studies) at The Faculty of Mathematics and Computer

Science of “Babeş-Bolyai” University of Cluj-Napoca, Romania, Computer Science profile, Computer

Science specialization, with Diploma work: Routing of Broadcast Messages in Ad-hoc Wireless Networks.

During my BSc study I was fascinated the most by topics related to operating systems, computer

networks, concurrent and distributed programming in Java.

In my master's studies I was focusing on different aspects of Grid and high performance

computing, with special consideration to Grid web-services and Grid-database services.

Spoken Languages:

Hungarian (mother tongue)

Romanian (advanced)

English (fair)

Skills and Competencies:

● Programming skills:

■ Java, Distributed Programming in Java, web technologies

■ Web-services, Java services for the Globus Toolkit Grid middleware.

■ Basic education on object oriented programming.

■ Basic Knowledge of Visual Studio .Net, C# and C++ programming.

■ SQL data base programming (MS-SQL, MySQL)

■ TYPO3 CMS – web development (basics)

● Software Tools:

■ Eclipse, IntelliJ IDEA, Microsoft Visual Studio

■ Microsoft Office, Open Office

■ Gimp (basics)

● Some experience in commerce

Academic Experience :

Master's Thesis work carried out at the Medical Informatics Research Unit of RISC Software

GmbH, Hagenberg, Austria. In the frame of the SEE-GRID project, we dealt with the performance

evaluation of the database system of the SEE++ virtual eye-muscle surgery application and the

development of a Grid interface for this database component.

Fellowship from the “Farkas Gyula Association for Mathematics and Informatics”, for the research

work: The Application of Binomial Trees in Ad-hoc Wireless Networks, academic year 2006-2007.

3rd prize on the 10th Transylvanian Students' Scientific Conference, Computer Science Section,

with the talk: Broadcast in the Ad-hoc Wireless Networks, Cluj-Napoca, Romania, 2007 may 26-27.

Fellowship for scientific research and support for participation at scientific conferences, from the

foundation “Iskola Alapítvány” (Foundation for School), 2007.

I've participated in the one semester long “Uptime Project”, in the frame of a university course,

where the team managed to develop from scratch a web services and uptime monitoring system with a

web based user interface and MySQL powered and Java salted back-end for different monitoring and

checking functionalities.

Abilities :
Ability to work in team, dynamism, be productive. Be punctual, flexible, respect deadlines.

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Masterarbeit selbstständig und ohne

fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt bzw. die

wörtlich oder sinngemäß entnommenen Stellen als solche kenntlich gemacht habe.

...
Hagenberg, im Juli 2008 Imre Zoltán Matkó

	 1. Introduction
	 2. State of The Art
	 2.1. Grid Computing
	 2.2. The Austrian Grid
	 2.3. Grid Data Management
	 2.4. Grid Database Resources

	 3. Problem Statement
	 3.1. The Treatment of Strabismus
	 3.2. Existing Solutions
	 3.3. The SEE-KID Project
	 3.4. The SEE-GRID Project
	 3.5. The Persistence Component
	 3.6. Grid-Aware Persistence
	 3.7. Limitations of The Current Implementation

	 4. Performance Analysis of The Current Database System
	 4.1. Persistence Component Architecture
	 4.2. Benchmark and Profiling Design
	 4.3. Benchmark Technicalities
	 4.4. Benchmark Results
	 4.5. A Benchmark Scenario in Details
	 4.6. Results Evaluation

	 5. Data Resource Access Middleware for SEE-GRID
	 5.1. Evaluation of OGSA-DAI
	 5.1.1. Overview
	 5.1.2. Installation
	 5.1.3. Security
	 5.1.4. Client Support
	 5.1.5. Back-end Data Source Support
	 5.1.6. Known Problems and Limitations
	 5.1.7. Other Projects' Experiences
	 5.1.8. Future Outlook

	 5.2. Evaluation of AMGA
	 5.2.1. Overview
	 5.2.2. Installation
	 5.2.3. Security
	 5.2.4. Client Support
	 5.2.5. Back-end Data Source Support
	 5.2.6. Known Problems and Limitations
	 5.2.7. Other Projects' Experiences
	 5.2.8. Future Outlook

	 5.3. Evaluation Conclusions

	 6. Extended SEE-GRID Architecture
	 6.1. Globus Web Service Interface for the SEE-GRID Database
	 6.2. Experiences with OGSA-DAI
	 6.3. Design Overview

	 7. Conclusions
	 7.1. Achieved Goals
	 7.2. Future Outlook

	Appendix A - Execution Time Analysis Data
	Appendix B - Basic Memory Analysis Data
	Appendix C - MySQL Operations Statistics
	Bibliography

