MATHEMATICA AS A REWRITE LANGUAGE ~

BRUNO BUCHBERGER
Research Institute for Symbolic Computation, University of Linz
Linz, A 4040, Austria

E-mail: buchberger@risc.uni-linz.ac.at

ABSTRACT

The kernel of the Mathematica language is a higher-order conditional rewrite
language with sequence variables. This fact is little known. We derive some
conclusions from this for the use of Mathematica as a research tool in the area
of rewriting and related areas.

1. The Objective of this Paper

This paper contains a simple message which is almost trivial but little known:

The innermost kernel of the Mathematica language is essentially noth-
ing else than a higher-order, conditional rewrite language, efficiently and

professionally implemented.

This message may be interesting and useful for two communities which, at present,
are nearly disjoint but whose future interaction, in my view, is desirable:

o The community of Mathematica developers and users: Knowing that what they
are basically doing is implementing and using conditional rewriting may moti-
vate them to look at the results of the field of rewriting, which over the past
twenty years has matured into a solid and rich science, see for example [2].

o The community of researchers in the field of rewriting. Knowing that (a part
of) Mathematica is an efficient implementation of conditional rewriting with
many practically useful extras in the front end may provide them with an easily

accessible and powerful research tool.

2. What is Mathematica?

Mathematica is a “mathematical software system”. In fact, it is one of the most
advanced and comprehensive systems in this category. In addition, it is one of the
few mathematical software systems that are professionally produced and marketed by
a company. This is a feature that may have disadvantages for a research community

*Tnvited paper at “The Second Fuji International Workshop on Functional and Logic Program-
ming”, November 1-4, 1996, Shonan Village, Japan, Sponsored by Japan Society for Software Science
and Technology. To appear in the Proceedings (T. Tda ed.).

because the code of the kernel of professional systems is normally not open for the
user. On the other hand, it also provides some definite advantages as, for example,
professional maintenance, high performance, professional software production tools,
and - in the case of Mathematica - a fantastic front end.

The present version of Mathematica was designed and implemented about ten
years ago by Stephen Wolfram with the essential idea of basing computing on “pattern
matching”. A new version, 3.0., is just to be released, see [3]. Mathematica 3.0 has
a number of important new features some of which are also relevant for the practical
part of this paper. The innermost part of the language, however, has been retained
and proved to be quite stable over the years. T think that this fact can be explained
by the very reason that Wolfram’s pattern matching is essentially the natural concept
of conditional rewriting,

In a view that is motivated by the objectives of this paper, the structure of
Mathematica can be described in the following layers:

e An evaluator for higher-order conditional rewriting of terms modulo equalities

which forms the innermost part of the Mathematica language.

e An interpreter for (a big arsenal of) other langnage constructs in Mathematica
including all common constructs of procedural programming langnages.

o A huge library of numerical, algebraic, and symbolic “built-in” algorithms writ-
ten in C and implementing the presently best mathematical methods in the
various fields. This algorithms are called from within Mathematica programs
by appropriate function calls.

o A front-end that supports wordprocessing, graphics, animation, sound, index-
ing, outlining, hyper-links, interactive buttons, mathematical typesetting, and
also extensible syntax.

Mathematica is comprehensive both as a modern programming language and as
a. mathematical algorithms library and this is the reason for the majority of the
Mathematica users (engineers, physicists, applied mathematicians, math researchers,
math teachers) for working with this system. However, the distinguishing feature that
may make Mathematica interesting as a research tool for people working in rewriting,
unification, narrowing, constraint solving and related areas is its design based on
(conditional) rewriting. In addition, the following features may be attractive for
researchers in these areas:

e The availability of an arsenal of built-in algorithms for manipulating symbolic
expressions and, in particular, rewrite rules, which makes it possible to write
one’s own evaluators for rewrite rule systems and other logical systems.

e The possibility for defining one’s own notation.

3. The Rewrite Language Constructs of Mathematica

3.1. Overview

The innermost language constructs of Mathematica, which constitute a universal
programming language based on the concept of conditional rewriting, are the follow-

ng:

e constants,

e ordinary variables,
e sequence variables,
® expressions,

e conditional equalities (rewrite rules).

Let us call the version of Mathematica that is restricted to these language con-
structs “Mathematica/R” (i.e. “Mathematica restricted to Rewriting”). We give the
syntax and (operational) semantics of these constructs informally, mostly by exam-
ples, in the subsequent subsections.

The only one of the above concepts that may be uncommon is the concept of
“sequence variables”. 1In principle, the usage of these variables could be avoided.
However, they constitute an elegant and natural programming facility to which Math-
ematica owes some of its attractiveness. We think that they deserve to be used and
studied in more depth by the rewrite research community.

3.2. Constants

We start from an infinite supply of constants. In the concrete syntax of Mathemat-
ica, identifiers (certain sequences of characters) as, for example, “223”, “Sin”, etec.
are used as constants. (In Mathematica, certain constants as, for example, the nu-
merals “0”, “17,2” ... and many standard function names like “7 f”,“And”, “Sin”,
etc. have built-in “meaning”. However, this is of no relevance in the context of this
paper, i.e. we can consider a “pure” version of Mathematica in which only constants
are used whose meaning is defined by the user by explicit conditional rewrite rules of
the form described below.)

3.3. Ordinary Variables

Identifiers (with the exception of certain special ones like the numerals) can also be

3

used as variables. For indicating that an identifier is used as a variable, an underscore

7 and “object3_” are

is written immediately after the identifier. For example, “x_
variables. Note that Mathematica does not “declare” the usage of an identifier as a
variable for some global scope but declares this usage right at the place where the

variable appears.

3.4. Sequence Variables

Identifiers can also be used as “sequence variables”. For indicating that an iden-
tifier is used as a seqeunce variable, three underscores are written immediately after

7 and “object3__ " are sequence variables.

the identifier. For example, “z___

We prefer to declare sequence variables by decorating identifiers with an overbar
and one underscore because this separates more clearly the declaration of using an
identifier for sequences (declared by the overbar) and as a variable (declared by the

underscore). In our notation, the above sequence variables look like this: “z.” and

“object3”.

In fact, in the new version 3.0 of Mathematica, there is a wide range of possibilities
for introducing one’s own notation. Thus, if the reader is not happy with the above
notation, he may choose a different way of distinguishing the usage of identifiers as
constants, variables, and sequence variables, respectively.

Anticipating the description of the evaluation process, sequence variables can be
replaced by any finite sequence (including the empty sequence) of expressions whereas

ordinary variables can by replaced by only one expression.

3.5. Krpressions

Any constant and any ordinary variable is a Mathematica expression.
If F'is an expression that is not a variable and Ty, ---, T, are expressions or
sequence variables then

F[TT7"'7T"7‘]

is also an expression. (Such an expression is called a “compound expression” or
“application expression”.)

For example, “23”, “Sin[Plus[2,2]]” and “Map|f List[a,b,objects]]” are com-
pound expressions.

Note that any expression F' can be combined with any number n of expressions Ty,
-+, T, for forming a compound expression. Thus, for example, all of the following are
syntactically correct expressions: “List[|”,“List[3]”, “List[a,b]”, “List[2,1,4,2,1]".
(Tn fact, these expressions are used for representing lists of arbitrary length.)

Also “Currying” is possible. For example, “P[D][Plus][z,y]” is also a syntactically

correct compound expression.

3.6. Special Notation

In the new version 3.0 of Mathematica, there are many ways of defining and
using nice notation for expressions, e.g. special mathematical symbols, Greek and
other special alphabets, infix operators, subscripts, superscripts, symbol decorations,
various types of braces etc.

For example, we may decide to use “SNT” and “z,” instead of “Intersection|S,T]”
and “Subscript[z,i]”, respectively. If we use such notation then, of course, the use of
parentheses may become necessary.

Special notation is quite relevant for enhancing readability. Note, however, that
expressions containing special notation are considered just as abbreviations for the
corresponding expressions in the above standard notation, which in Mathematica
jargon is called the “full form” notation. Thus, the language is not really extended
by special notation. Rather, when an expression is entered and before it is processed
by the evaluation procedure to be described below, it is first translated into full form.

3.7. Conditional Fqualities (Rewrite Rules)

Rewrite rules and conditional rewrite rules (ca.”ed “function definitions” in Math-
ema.tica,) have the structure

IhsFExpression := rhsFrpression
and
IhsExpression := rhsFEzpression [; condition,

respectively. Here, [hs FExpression is an arbitrary expression (but not a variable) and
rhsExpression and condition are arbitrary expressions. For saving writing effort,
the underscores and overlines in the notation of ordinary and sequence variables can
be (in fact, must be) omitted in rhsFxzpression and condition.

Mathematica programs are just finite sequences of such (conditional) rewrite rules
separated by semicolons. Here is a first example of a Mathematica program consisting

of only two (unconditional) rewrite rules:

sumlm_, 0] := m;

sum[m_, s[n]] := s[sum[m,n]].

Tt is clear that what these two rewrite rules define is addition over the natural numbers

represented by the expressions “07, “s[0]”, “s[s[0]]”,- - -.

5

Here is an example of a Mathematica program containing a sequence variable:

mapl[f_, List]]] := List[];
map[f_, Listlobject ,objects || := prepended]flobject],
map|f, List[objects]]].
Note that the overbars and underscores are omitted on the right-hand side of the

rewrite rules. Also, note that, semantically, “f_” is a function variable here.
The following example demonstrates Currying:

Nplus)[z_,y] = plusl|z,y];
Tlplus|[z_,y] := plus2[z,y].

The following example uses conditions:

substituted[v_,v_ term_| :=term [; isSymbol[v];
substitutedfw_jv_term_ | :=w [; isSymbol[w] A isSymbol|v].

Here are notational variants of all the definitions above. Note that, after adding

appropriate notational definitions, these variants are executable code in Mathematica

3.0:
m_+0:—= m:

fO() == ();
f-Olobject_objects) := flobject] - (fO(objects)).

T 4xy = plusliz,yl;
T 47y = plus2[z,y].
Vo sterm. = term [i;v € V;
W_y yterm. = w [iweVAveEV.

3.8. The Fvaluator of Mathematica

After “entering” a finite sequence of conditional rewrite rules R and an expression
e, the runtime evaluator of Mathematica starts to rewrite e with respect to the rewrite
rules in R, in the traditional sense of rewriting, until no more rewriting is possible.
The particular strategy of rewriting is described informally on pp. 991 of [3]. An
important peculiarity of this strategy is that rules in R are taken in the order in
which they are given in R. (However, automatic re-ordering may take place in such a
way that “more special” rules are arranged in front of “more general” rules. This is
most times quite reasonable. Sometimes, however, the user might want to have more
individual control over the arrangement of rules.) Knowledge about the specific order
in which rewrite rules are arranged in E may safe some programming effort because,
for example,

fle]:= gllz] /; ellz];
flz-]:= g2[z] /; not cl[z] A d2[x]

has the same effect as

fle] = gl[z] /5 cllz];
fle]:= g2[x] /; d2[z].

Also, it should be mentioned that Mathematica does provide a couple of possi-
bilities for the user to influence the basic evaluation mechanism in order to improve
efficiency and the structuredness of programs. For example, some of the arguments
in function definitions can be specified to by “held”, i.e. not evaluated immediately
at call-time. This facility can be used for defining quantifiers with bound variables,
see below. As another example, the user may decide “at which identifier” a particular

rule is stored. For example, one may decide whether a rule of the form

is stored as a “rule for f7 or a “rule for g”. We do not go into these technical details
here. However, it should be clear that these mechanisms are of utmost importance
for making (conditional) rewriting a practically attractive programming paradigm.
For example, the mechanism for associating rules with identifiers opens an immediate
possibility for realizing “object oriented programming” in Mathematica, see Section

2.4.13 of [3).

The only point that needs some explanation here is the use of the sequence vari-
ables in this evaluation process. For example, if R is the above pair of rewrite rules
that defines “map”, the first step in rewriting the expression

9<0(2,1,3,2)

matches the ordinary variable “object.” with the constant “2”7 and the sequence
variable “objects” with the finite sequence “17,3”7,“2” (and not with the tuple
“(1,3,2)"!). Thus, after the first rewriting step the expression becomes

.(1[2] : (.(]<><] , 3, 2))

3.9. Lambda Frpressions in Mathematica

Although, in practical programming, lambda expressions are rarely used it may
be interesting to note that Mathematica provides them also. In Mathematica full
form, “Function|[z,expression]” is the notation for “Mz.expression”. Again, the
user may define another notation for lambda expressions according to his personal
preference. The evaluation process for lambda expressions works correctly (with the
necessary renaming of bound variables) also in the subtle cases in which free variables
in expressions substituted for a lambda-quantified variable happen to get into the
scope of another lambda-quantifier. For example,

Function[x, Function[y, = + y]|[f[y]]

o Le.

is correctly evaluated to

Function[y$, fly]” + y$]

with “y” renamed to the new variable “y$”.
Thus, summarizing, Mathematica implements - as part of its basic language in-
terpreter - an evaluator for higher order conditional rewriting.

4. Manipulating Symbolic Objects and Rewrite Rules in Mathematica

Mathematica, however, provides rewriting not only as its basic langnage evalua-
tor but also on a “second level”. Tt makes the evaluator available to the user in the
form of the built-in functions “Replace All” and “Replace Repeated”, respectively:
“ReplaceAllle, R]” (or, in the usnal Mathematica syntax, “e /. R”) yields the ex-
pression that results from applying one rewrite step to e using the rules in R and
“Replace Repeatedl]e, R]” (or, in the usual Mathematica syntax, “e //. R”) produces

the normal form of e w.r.t. R. Also, since rewrite rules themselves are stored as

compound expressions, one can use all the (built-in) functions for decomposing and
re-composing rewrite rules and similar objects. Thus, we can, for example, easily
write our own evaluator or trace functions that show the essential information on
evaluation processes. (One particular trace function is also built in.)

For example, after entering

Ri=(m +0:>mm +nt:>(m+n)")
and

0+++ _|_0++ // R

one obtains

o+t

(Note that, here, “:>" instead of “:=” must be used as the separator in rewrite rules.)

5. A Programming Example in Mathematica/R: Functors

Functors are an important means for building up towers of domains in a generic
way. However, functors are available only in very few general programming languages
as, for example, in ML, but not in any of the mathematical software systems. In
this section we illustrate how functors can be implemented easily (and efficiently) in
Mathematica/R. For this, Currying is essential.

We adopt the common view that functors are functions that map domains into
domains. Hence, for implementing functors, we must first agree on a representation
of domains. We view a domain D) to be a function that defines functions for certain

“operators”. For example, the following object Z is a simple domain:

Z[A]:= Plus,
Z[1]:= 0,

where “Plus” and “0” are the “built-in” addition and the built-in integer zero of
Mathematica. We introduce the notation “op” for “Dfo]” etc., which can also be
implemented by the syntax extension facilities in Mathematica. Thus, we can write,
for example,

2 Az3

which, with the above definitions, evaluates to

5.

Also we will extend the meaning of “€”, with the common “abuse of notation”,
in such a way that “xz € Z7 yields “T'rue” for exactly those objects x that we want
to be in the “carrier” of Z. For example, we could define

z_ € Z := IntegerQ|z]

where “Imteger@” is the built-in decision algorithm for integers. We may also wish
to add a special notation for the “signature” of a domain but we don’t do this here
in order not to overload this introductory presentation.

With this representation of domains, a functor is now an object F' that takes any
domain D as an argument and produces F[D] such that F[D] can then be applied
to any operation symbol o (in the signature of F[D]) yielding an operation in the
domain F[D]. Also, “z € F[D]” must be appropriately defined. Normally, one will
think of any operation F'[D][o] to be applied reasonably only to objects in the carrier
of F[D], i.e. objects = for which “z € F[D]” yields “True”.

We can only give a trivial example here which should, however, be sufficient for
illustrating the functor programming style that is possible in Mathematica: We define
a functor F' that, for any given domain D with any operations o, defines the Cartesian
product. Using Currying, this functor could be defined as follows:

F[D]:= the N such that
Vdl,d2 (d1,d2) € N:= dl € DAd2 € D;
Yo,dl,d2,el,e2 (d1,d2) on (el,€2) := (dl op el,d2 op €2).

Now, the “such that” quantifier with exactly the above semantics is available in
Mathematica in the form of the “Module” construct that binds N and also the other
quantified variables that appear in the above definition so that the following definition
can be seen as just an abbreviation of the above definition:

F[D]:= Module[(N,o,dl,d2,el,e2),

(d1_,d2_) € N := dle DANd2 e D;
(d1_,d2_) o_n (el_,e2.) := (d1 op el,d2 op €2);

Nl

Note that “_0” is a variable in this definition. Thus, the definition applies to any
operator o in the “signature” of F[D] (which reasonably should be identical with the

10

signature of D). The above definition is executable code in Mathematica 3.0 and,

thus, the functor can now be applied, for example, to Z:
C .= F[Z].
After having evaluated this,
(2,3) Ac (5,7)
vields

(7,10).

6. A Programming Example in Mathematica/R: A Simple Inductive
Prover

We now display the basic structure of a simple Mathematica/R program for au-
tomatically proving multivariate equalities over the natural numbers in the represen-
tation “0”,“0%”,“0**”, ..., using a knowledge base of multivariate equalities in the
form of rewrite rules (for example, the inductive definition of addition given above).
This example shows the possibility of manipulating rewrite rules and related symbolic
expressions from within Mathematica. The subroutine “Simpli fication Proof” is ba-
sically a call to the evaluator of Mathematica. “Rewrite Rule” turns a universally
quantified equality into a Mathematica rewrite rule. “Arbitrary But Fized” generates
new constants for universally quantified variables and “In formation” is supposed to
pretty-print information on a proof. With these explanations, the meaning of the

program below should be evident.

Induction Proof[\v’mﬂﬁi)lhs, = rhs_, (rules.)] :=

Block[(-- -},

simpli fication Proof = Simpli fication Proof]
Arbitrary But Fized[(v1,v2),lhs = rhs|, (rules)];

I f1Success full[simpli fication Proof],

Return|In formation|[simpli fication Proof]]];
induction BaseProof = Induction Proof[V ,lhs = rhs/.v1 — 0, (rules)];
I f[notSuccess full[induction BaseProof],

Return[In formation[simpli fication Proof,induction Base Proof]]];

inductionVariable = Arbitrary But Fized[v1];

11

induction Hypothesis =
Rewrite Rule[(v2),lhs = rhs/.vl — inductionVariablel;
inductionStepProof = Induction Proof|
Viwaylhs = rhs/.wl — inductionVariable™,
Append|(rules), induction Hypothesis||;
Return[In formation]|

simpli fication Proof,induction Base Proof,inductionStepProof]];

7. A Programming Example in Mathematica/R: Quantifiers

It is clear how expressions involving various quantifiers with bounded ranges can
be conceived as abbreviations for certain terms involving the lambda quantifier. How-
ever, it is normally not possible to consider the definitions of these abbreviations as
rewrite rules in the rewrite rule language itself. Mathematica provides the possibility
to “hold” all or some of the arguments in a function definition, i.e. to prevent them
from being evaluated at call-time. With this facility it is possible to define arbi-
trary quantifiers by rewrite rules within Mathematica/R. Together with the facilities
for user-defined notation this gives a versatile and practically attractive potential for
providing all the quantifiers one would want to see in a truely mathematical language.
In particular, one can also define quantifiers that range over the carrier sets of arbi-
trary (algorithmically enumerable) domains. We illustrate quantifier introduction in
the case of a simple variant of the universal quantifier over bounded integer ranges:

Attributes[For All] = (Hold All);

vlmuerBo'u,nd,Sbmm,dVa,ria,ble,SH,pperBml,ndfempresszonf =
I fllower Bound > upper Bound, True,

(X boundV ariable. expression)|lower Bound]

A \V/lmuer Bound+1<boundV ariable<upper Bound CTPT €S .97,077,]

“Attributes|For All] = (Hold All)” defines the arguments of “ForAll” (which is the
full form name of “¥”) to be “held” unevaluated at call-time. Here is an example of
an expression involving this quantifier:

V1S7’S10 0< ']'2 <]0],
which evaluates to “True”.
8. Conclusion: Research Topics and the Theorema Project

We hope that we were able to demonstrate in this paper that Mathematica is
a theoretically and practically attractive implementation of the higher-order condi-

tional rewriting programming paradigm. Addressing the two research communities

12

mentioned in the introduction, we believe that the following two research lines should
be pursued:

e The evaluation semantics and the denotational semantics of Mathematica should
be defined and studied in more detail so that programming in Mathematica
and verifying properties of Mathematica programs can be based on a more pro-
found basis. This will be particularly important if Mathematica is extended to
incorporate the unbounded quantifiers of pure mathematics. So far, only the
evaluation semantics of Mathematica is defined and, in fact, it is only defined
by the informal description given on pp. 991 of [3].

e Mathematica should and can profitably be used as a test environment for re-
search in conditional rewriting and related subjects like narrowing, unification
in specific theories, constraint solving, inductive proving efc.

These goals are also two of the goals in the author’s Theorema project, see [1]. The
overall goal of the Theorema project is the definition and implementation of a common
language environment (starting from and based on Mathematica) for both the non-
algorithmic and the algorithmic part of mathematics with the functor construct as
the main structuring concept and special provers and solvers associated with each
functor.

9. Acknowledgements and references

This paper was written while the anthor stayed as a visiting research fellow at
the University of Tsukuba, Chair of Professor Tetsuo Ida, in the frame of the TARA
(Tsukuba Advanced Research Alliance) Project. The work was also supported by the
Advanced Information Technology Program (AITP) of the Japanese Information-
Technology Promotion Agency (TPA) in the frame of the project “Coordination Pro-
gramming in Open Computing Environments”.

References

[1] B. Buchberger. Proving, Solving, Computing. In: Proceedings of the Workshop on
Multiparadigm Logic Programming, GMT) Bonn, September 5-6, 1996, (ed. T. Tda
and Y. Guo), to appear.

[2] N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In: Handbook of Theoretical
Computer Science, Vol. B (ed.J. van Leeuwen), (North Holland,1990), pp. 243-320.

[3] S. Wolfram. The Mathematica Book (Wolfram Media, Champaign, TIllinois,
USA,1996), Preliminary edition for beta testers.

13

