
An Algorithm for Automated Generation of
Invariants for Loops with Conditionals

Laura Ildikó Kovács, Tudor Jebelean

Research Institute for Symbolic Computation
Johannes Kepler University, Linz

{kovacs, jebelean@risc.uni-linz.ac.at}

Institute e-Austria Timişoara, Romania

The Theorema System Program Verification Imperative Program Verification in Theorema Related Work Conclusion and Further work

Outline

The Theorema System

Program Verification

Imperative Program Verification in Theorema
Invariant Generation for Loops with Conditionals
Application to Program Verification

Related Work

Conclusion and Further work

The Theorema System Program Verification Imperative Program Verification in Theorema Related Work Conclusion and Further work

Outline

The Theorema System

Program Verification

Imperative Program Verification in Theorema
Invariant Generation for Loops with Conditionals
Application to Program Verification

Related Work

Conclusion and Further work

The Theorema System Program Verification Imperative Program Verification in Theorema Related Work Conclusion and Further work

The Theorema System

Theorema : A computer aided mathematical assistant

•

{ Proving
Computing
Solving

using: specified “knowledge bases”
applying: provers, simplifiers and solvers from the Theorema
library

•

{ Composing
Structuring
Manipulating

mathematical texts

• Advantages of Program Verification in Theorema :

1. proofs in natural language and using natural style inference
2. access to powerful computing and solving algorithms

(Mathematica)

The Theorema System Program Verification Imperative Program Verification in Theorema Related Work Conclusion and Further work

The Theorema System

Theorema : A computer aided mathematical assistant

•

{ Proving
Computing
Solving

using: specified “knowledge bases”
applying: provers, simplifiers and solvers from the Theorema
library

•

{ Composing
Structuring
Manipulating

mathematical texts

• Advantages of Program Verification in Theorema :

1. proofs in natural language and using natural style inference
2. access to powerful computing and solving algorithms

(Mathematica)

The Theorema System Program Verification Imperative Program Verification in Theorema Related Work Conclusion and Further work

The Theorema System

Theorema : A computer aided mathematical assistant

•

{ Proving
Computing
Solving

using: specified “knowledge bases”
applying: provers, simplifiers and solvers from the Theorema
library

•

{ Composing
Structuring
Manipulating

mathematical texts

• Advantages of Program Verification in Theorema :

1. proofs in natural language and using natural style inference
2. access to powerful computing and solving algorithms

(Mathematica)

The Theorema System Program Verification Imperative Program Verification in Theorema Related Work Conclusion and Further work

The Theorema System

Theorema : A computer aided mathematical assistant

•

{ Proving
Computing
Solving

using: specified “knowledge bases”
applying: provers, simplifiers and solvers from the Theorema
library

•

{ Composing
Structuring
Manipulating

mathematical texts

• Advantages of Program Verification in Theorema :

1. proofs in natural language and using natural style inference
2. access to powerful computing and solving algorithms

(Mathematica)

The Theorema System Program Verification Imperative Program Verification in Theorema Related Work Conclusion and Further work

The Theorema System

Theorema : A computer aided mathematical assistant

•

{ Proving
Computing
Solving

using: specified “knowledge bases”
applying: provers, simplifiers and solvers from the Theorema
library

•

{ Composing
Structuring
Manipulating

mathematical texts

• Advantages of Program Verification in Theorema :

1. proofs in natural language and using natural style inference
2. access to powerful computing and solving algorithms

(Mathematica)

The Theorema System Program Verification Imperative Program Verification in Theorema Related Work Conclusion and Further work

The Theorema System

Theorema : A computer aided mathematical assistant

•

{ Proving
Computing
Solving

using: specified “knowledge bases”
applying: provers, simplifiers and solvers from the Theorema
library

•

{ Composing
Structuring
Manipulating

mathematical texts

• Advantages of Program Verification in Theorema :

1. proofs in natural language and using natural style inference
2. access to powerful computing and solving algorithms

(Mathematica)

The Theorema System Program Verification Imperative Program Verification in Theorema Related Work Conclusion and Further work

The Theorema System

Theorema : A computer aided mathematical assistant

•

{ Proving
Computing
Solving

using: specified “knowledge bases”
applying: provers, simplifiers and solvers from the Theorema
library

•

{ Composing
Structuring
Manipulating

mathematical texts

• Advantages of Program Verification in Theorema :

1. proofs in natural language and using natural style inference
2. access to powerful computing and solving algorithms

(Mathematica)

The Theorema System Program Verification Imperative Program Verification in Theorema Related Work Conclusion and Further work

The Theorema System

Theorema : A computer aided mathematical assistant

•

{ Proving
Computing
Solving

using: specified “knowledge bases”
applying: provers, simplifiers and solvers from the Theorema
library

•

{ Composing
Structuring
Manipulating

mathematical texts

• Advantages of Program Verification in Theorema :

1. proofs in natural language and using natural style inference
2. access to powerful computing and solving algorithms

(Mathematica)

The Theorema System Program Verification Imperative Program Verification in Theorema Related Work Conclusion and Further work

Outline

The Theorema System

Program Verification

Imperative Program Verification in Theorema
Invariant Generation for Loops with Conditionals
Application to Program Verification

Related Work

Conclusion and Further work

The Theorema System Program Verification Imperative Program Verification in Theorema Related Work Conclusion and Further work

Program Verification

Rule–based Programming Theorema

Specifications, programs and verification can be viewed in a uniform
framework (higher–order predicate logic)

• (consequence) verification: proving specifications based on definitions
(both are logical formulae).

Imperative Programming Theorema

Additional assertions are needed (invariants, termination terms)

• Backward Reasoning: Predicate Transformer (weakest precondition)
[Dijkstra76, Gries81]

The Theorema System Program Verification Imperative Program Verification in Theorema Related Work Conclusion and Further work

Program Verification

Rule–based Programming Theorema

Specifications, programs and verification can be viewed in a uniform
framework (higher–order predicate logic)

• (consequence) verification: proving specifications based on definitions
(both are logical formulae).

Imperative Programming Theorema

Additional assertions are needed (invariants, termination terms)

• Backward Reasoning: Predicate Transformer (weakest precondition)
[Dijkstra76, Gries81]

The Theorema System Program Verification Imperative Program Verification in Theorema Related Work Conclusion and Further work

Program Verification

Rule–based Programming Theorema

Specifications, programs and verification can be viewed in a uniform
framework (higher–order predicate logic)

• (consequence) verification: proving specifications based on definitions
(both are logical formulae).

Imperative Programming Theorema

Additional assertions are needed (invariants, termination terms)

• Backward Reasoning: Predicate Transformer (weakest precondition)
[Dijkstra76, Gries81]

The Theorema System Program Verification Imperative Program Verification in Theorema Related Work Conclusion and Further work

Program Verification

Rule–based Programming Theorema → B.Buchberger, A.Cr ăciun,
N.Popov, T.Jebelean

Specifications, programs and verification can be viewed in a uniform
framework (higher–order predicate logic)

• (consequence) verification: proving specifications based on definitions
(both are logical formulae).

Imperative Programming Theorema→ L.Kov ács, T.Jebelean

Additional assertions are needed (invariants, termination terms)

• Backward Reasoning: Predicate Transformer (weakest precondition)
[Dijkstra76, Gries81]

The Theorema System Program Verification Imperative Program Verification in Theorema Related Work Conclusion and Further work

Imperative Program Verification in Theorema

Specification Program

Assertions Generation

Verification Conditions

Proving

The Theorema System Program Verification Imperative Program Verification in Theorema Related Work Conclusion and Further work

Imperative Program Verification in Theorema

Specification Program

Assertions Generation

Verification Conditions

Proving

Assertions Generation

Verification Conditions

The Theorema System Program Verification Imperative Program Verification in Theorema Related Work Conclusion and Further work

Outline

The Theorema System

Program Verification

Imperative Program Verification in Theorema
Invariant Generation for Loops with Conditionals
Application to Program Verification

Related Work

Conclusion and Further work

The Theorema System Program Verification Imperative Program Verification in Theorema Related Work Conclusion and Further work

Verification Environment for Imperative Programs
Example: Wensley’s Algorithm for Real Division

Specification

Program

Specification[“ReDiv”, ReDiv[↓ P, ↓ Q, ↓ Tol , ↑ r],

Pre → (Q > P) ∧ (P ≥ 0) ∧ (Tol ≥ 0),

Post → (P/Q < r + Tol) ∧ (r ≤ P/Q)]

The Theorema System Program Verification Imperative Program Verification in Theorema Related Work Conclusion and Further work

Verification Environment for Imperative Programs
Example: Wensley’s Algorithm for Real Division

Specification

Program

Specification[“ReDiv”, ReDiv[↓ P, ↓ Q, ↓ Tol , ↑ r],

Pre → (Q > P) ∧ (P ≥ 0) ∧ (Tol ≥ 0),

Post → (P/Q < r + Tol) ∧ (r ≤ P/Q)]

The Theorema System Program Verification Imperative Program Verification in Theorema Related Work Conclusion and Further work

Verification Environment for Imperative Programs
Example: Wensley’s Algorithm for Real Division

Specification

Program

Specification[“ReDiv”, ReDiv[↓ P, ↓ Q, ↓ Tol , ↑ r],

Pre → (Q > P) ∧ (P ≥ 0) ∧ (Tol ≥ 0),

Post → (P/Q < r + Tol) ∧ (r ≤ P/Q)]

The Theorema System Program Verification Imperative Program Verification in Theorema Related Work Conclusion and Further work

Verification Environment for Imperative Programs
Example: Wensley’s Algorithm for Real Division

Specification

Program

Specification[“ReDiv”, ReDiv[↓ P, ↓ Q, ↓ Tol , ↑ r],

Pre → (Q > P) ∧ (P ≥ 0) ∧ (Tol ≥ 0),

Post → (P/Q < r + Tol) ∧ (r ≤ P/Q)]

Program[“ReDiv”, ReDiv[↓ P, ↓ Q, ↓ Tol , ↑ r],

Module[{a, b, d , y},
a := 0; b := Q/2; d := 1; y := 0;

While[d ≥ Tol ,

If[P < a + b,

b := b/2; d := d/2,

a := a + b; y := y + d/2; b := b/2; d := d/2]];

r := y]]

The Theorema System Program Verification Imperative Program Verification in Theorema Related Work Conclusion and Further work

Verification Environment for Imperative Programs
Example: Wensley’s Algorithm for Real Division

Specification

Program

Specification[“ReDiv”, ReDiv[↓ P, ↓ Q, ↓ Tol , ↑ r],

Pre → (Q > P) ∧ (P ≥ 0) ∧ (Tol ≥ 0),

Post → (P/Q < r + Tol) ∧ (r ≤ P/Q)]

Program[“ReDiv”, ReDiv[↓ P, ↓ Q, ↓ Tol , ↑ r],

Module[{a, b, d , y},
a := 0; b := Q/2; d := 1; y := 0;

While[d ≥ Tol ,

If[P < a + b,

b := b/2; d := d/2,

a := a + b; y := y + d/2; b := b/2; d := d/2], ;

Invariant → I, TerminationTerm → T];

r := y]]

The Theorema System Program Verification Imperative Program Verification in Theorema Related Work Conclusion and Further work

Verification Environment for Imperative Programs
in Theorema

VCG VCG[Program[“ReDiv”], Specification[“ReDiv”]]

• Based on Hoare Logic;

• Using the Weakest Precondition Strategy;

• Output: verification conditions in a Theorema lemma
→ proving lemma

Execute Execute[ReDiv[7.1, 19.4, 0.01, r]]
r = 23

64

The Theorema System Program Verification Imperative Program Verification in Theorema Related Work Conclusion and Further work

Verification Environment for Imperative Programs
in Theorema

VCG VCG[Program[“ReDiv”], Specification[“ReDiv”]]

• Based on Hoare Logic;

• Using the Weakest Precondition Strategy;

• Output: verification conditions in a Theorema lemma
→ proving lemma

Execute Execute[ReDiv[7.1, 19.4, 0.01, r]]
r = 23

64

The Theorema System Program Verification Imperative Program Verification in Theorema Related Work Conclusion and Further work

Verification Environment for Imperative Programs
in Theorema

VCG VCG[Program[“ReDiv”], Specification[“ReDiv”]]

• Based on Hoare Logic;

• Using the Weakest Precondition Strategy;

• Output: verification conditions in a Theorema lemma
→ proving lemma

Execute Execute[ReDiv[7.1, 19.4, 0.01, r]]
r = 23

64

The Theorema System Program Verification Imperative Program Verification in Theorema Related Work Conclusion and Further work

Verification Environment for Imperative Programs
in Theorema

VCG VCG[Program[“ReDiv”], Specification[“ReDiv”]]

• Based on Hoare Logic;

• Using the Weakest Precondition Strategy;

• Output: verification conditions in a Theorema lemma
→ proving lemma

Execute Execute[ReDiv[7.1, 19.4, 0.01, r]]
r = 23

64

The Theorema System Program Verification Imperative Program Verification in Theorema Related Work Conclusion and Further work

Our Approach: Algebraic and Combinatorial
Methods

• Based on the difference equations method [ElspasGreen72]

1. First step: find explicit forms of the loop variables, as functions of
the loop counter

2. Second step: eliminate loop counter

• In Theorema : invariant generation using combinatorial and
algebraic techniques:

1. Loops with assignments only (Synasc03, Synasc04):
Gosper-summable, geometric series, generating functions;

2. Loops with conditionals: combinatorics alg., Gröbner basis →
algebraic invariants;

3. Nested Loops.

The Theorema System Program Verification Imperative Program Verification in Theorema Related Work Conclusion and Further work

Our Approach: Algebraic and Combinatorial
Methods

• Based on the difference equations method [ElspasGreen72]

1. First step: find explicit forms of the loop variables, as functions of
the loop counter

2. Second step: eliminate loop counter

• In Theorema : invariant generation using combinatorial and
algebraic techniques:

1. Loops with assignments only (Synasc03, Synasc04):
Gosper-summable, geometric series, generating functions;

2. Loops with conditionals: combinatorics alg., Gröbner basis →
algebraic invariants;

3. Nested Loops.

The Theorema System Program Verification Imperative Program Verification in Theorema Related Work Conclusion and Further work

Our Approach: Algebraic and Combinatorial
Methods

• Based on the difference equations method [ElspasGreen72]

1. First step: find explicit forms of the loop variables, as functions of
the loop counter

2. Second step: eliminate loop counter

• In Theorema : invariant generation using combinatorial and
algebraic techniques:

1. Loops with assignments only (Synasc03, Synasc04):
Gosper-summable, geometric series, generating functions;

2. Loops with conditionals: combinatorics alg., Gröbner basis →
algebraic invariants;

3. Nested Loops.

The Theorema System Program Verification Imperative Program Verification in Theorema Related Work Conclusion and Further work

Our Approach: Algebraic and Combinatorial
Methods

• Based on the difference equations method [ElspasGreen72]

1. First step: find explicit forms of the loop variables, as functions of
the loop counter

2. Second step: eliminate loop counter

• In Theorema : invariant generation using combinatorial and
algebraic techniques:

1. Loops with assignments only (Synasc03, Synasc04):
Gosper-summable, geometric series, generating functions;

2. Loops with conditionals: combinatorics alg., Gröbner basis →
algebraic invariants;

3. Nested Loops.

The Theorema System Program Verification Imperative Program Verification in Theorema Related Work Conclusion and Further work

Our Approach: Algebraic and Combinatorial
Methods

• Based on the difference equations method [ElspasGreen72]

1. First step: find explicit forms of the loop variables, as functions of
the loop counter

2. Second step: eliminate loop counter

• In Theorema : invariant generation using combinatorial and
algebraic techniques:

1. Loops with assignments only (Synasc03, Synasc04):
Gosper-summable, geometric series, generating functions;

2. Loops with conditionals: combinatorics alg., Gröbner basis →
algebraic invariants;

3. Nested Loops.

The Theorema System Program Verification Imperative Program Verification in Theorema Related Work Conclusion and Further work

The Algorithm

While[b, c1; If[b1, c2; c3]; c4]

While[b,

 While[b⁄b1’,

c1;c2;c4];

 While[b⁄Ÿb1’,

c1;c3;c4]]

While[b,

 While[b⁄Ÿb1’,

c1;c3;c4];

 While[b⁄b1’,

c1;c2;c4]]

While[b, c1; If[b1, c2; c3]; c4]

Invariant

Generation

The Theorema System Program Verification Imperative Program Verification in Theorema Related Work Conclusion and Further work

The Algorithm

• Program Transformation → Loop with only assignments

The Theorema System Program Verification Imperative Program Verification in Theorema Related Work Conclusion and Further work

The Algorithm

• Program Transformation → Loop with only assignments

{I ∧ b1′} {I ∧ ¬b1′}
While[b, While[b,

While[b ∧ b1′, c1; c2; c4]; While[b ∧ ¬b1′, c1; c3; c4];
While[b ∧ ¬b1′, c1; c3; c4]] While[b ∧ b1′, c1; c2; c4]]
{I ∧ ¬b} {I ∧ ¬b}

{I} While[b, c1; IF [b1, c2, c3]; c4] {I ∧ ¬b}

The Theorema System Program Verification Imperative Program Verification in Theorema Related Work Conclusion and Further work

The Algorithm

• Program Transformation → Loop with only assignments

While[d ≥ Tol , While[d ≥ Tol ,
While[d ≥ Tol ∧ P < a + b, While[d ≥ Tol ∧ P ≥ a + b,

b := b/2; a := a + b; y := y + d/2;
d := d/2]; b := b/2; d := d/2];

While[d ≥ Tol ∧ P ≥ a + b, While[d ≥ Tol ∧ P < a + b,
a := a + b; y := y + d/2; b := b/2;
b := b/2; d := d/2]]; d := d/2]];

The Theorema System Program Verification Imperative Program Verification in Theorema Related Work Conclusion and Further work

The Algorithm
• Program Transformation → Loop with only assignments
• Invariant generation for each system of nested loops by

combinatorics and algebra
For the first nested-loop system:

1. Recurrence solving for the inner loops
aj1 = aj

bj1 =
bj

2j1

dj1 =
dj

2j1

yj1 = yj

aj2 = aj1 + 2 ∗ bj1 −
bj1

2j2−1

bj2 =
bj1
2j2

dj2 =
dj1
2j2

yj2 = yj1 + dj1 −
dj1
2j2

2. Index and variable manipulation

aj2 = aj +
bj

2j1−1

(
1− 1

2j2

)
bj2 =

bj

2j1+j2

dj2 =
dj

2j1+j2

yj2 = yj +
dj

2j1

(
1− 1

2j2

)

The Theorema System Program Verification Imperative Program Verification in Theorema Related Work Conclusion and Further work

The Algorithm
• Program Transformation → Loop with only assignments
• Invariant generation for each system of nested loops by

combinatorics and algebra
For the first nested-loop system:

1. Recurrence solving for the inner loops
aj1 = aj

bj1 =
bj

2j1

dj1 =
dj

2j1

yj1 = yj

aj2 = aj1 + 2 ∗ bj1 −
bj1

2j2−1

bj2 =
bj1
2j2

dj2 =
dj1
2j2

yj2 = yj1 + dj1 −
dj1
2j2

2. Index and variable manipulation

aj2 = aj +
bj

2j1−1

(
1− 1

2j2

)
bj2 =

bj

2j1+j2

dj2 =
dj

2j1+j2

yj2 = yj +
dj

2j1

(
1− 1

2j2

)

The Theorema System Program Verification Imperative Program Verification in Theorema Related Work Conclusion and Further work

The Algorithm
• Program Transformation → Loop with only assignments
• Invariant generation for each system of nested loops by

combinatorics and algebra
For the first nested-loop system:

1. Recurrence solving for the inner loops
aj1 = aj

bj1 =
bj

2j1

dj1 =
dj

2j1

yj1 = yj

aj2 = aj1 + 2 ∗ bj1 −
bj1

2j2−1

bj2 =
bj1
2j2

dj2 =
dj1
2j2

yj2 = yj1 + dj1 −
dj1
2j2

2. Index and variable manipulation

aj2 = aj +
bj

2j1−1

(
1− 1

2j2

)
bj2 =

bj

2j1+j2

dj2 =
dj

2j1+j2

yj2 = yj +
dj

2j1

(
1− 1

2j2

)

The Theorema System Program Verification Imperative Program Verification in Theorema Related Work Conclusion and Further work

The Algorithm
• Program Transformation → Loop with only assignments
• Invariant generation for each system of nested loops by

combinatorics and algebra
For the first nested-loop system:

1. Recurrence solving for the inner loops
aj1 = aj

bj1 =
bj

2j1

dj1 =
dj

2j1

yj1 = yj

aj2 = aj1 + 2 ∗ bj1 −
bj1

2j2−1

bj2 =
bj1
2j2

dj2 =
dj1
2j2

yj2 = yj1 + dj1 −
dj1
2j2

2. Index and variable manipulation

aj2 = aj +
bj

2j1−1

(
1− 1

2j2

)
bj2 =

bj

2j1+j2

dj2 =
dj

2j1+j2

yj2 = yj +
dj

2j1

(
1− 1

2j2

)

The Theorema System Program Verification Imperative Program Verification in Theorema Related Work Conclusion and Further work

The Algorithm
• Program Transformation → Loop with only assignments
• Invariant generation for each system of nested loops by

combinatorics and algebra
For the first nested-loop system:

1. Recurrence solving for the inner loops
aj1 = aj

bj1 =
bj

2j1

dj1 =
dj

2j1

yj1 = yj

aj2 = aj1 + 2 ∗ bj1 −
bj1

2j2−1

bj2 =
bj1
2j2

dj2 =
dj1
2j2

yj2 = yj1 + dj1 −
dj1
2j2

2. Index and variable manipulation

aj2 = aj +
bj

2j1−1

(
1− 1

2j2

)
bj2 =

bj

2j1+j2

dj2 =
dj

2j1+j2

yj2 = yj +
dj

2j1

(
1− 1

2j2

)

The Theorema System Program Verification Imperative Program Verification in Theorema Related Work Conclusion and Further work

The Algorithm

• Program Transformation → Loop with only assignments

• Invariant generation for each system of nested loops by
combinatorics and algebra
For the first nested-loop system:

1. Recurrence solving for the inner loops
2. Index and variable manipulation
3. Recurrence-counters elimination

The Theorema System Program Verification Imperative Program Verification in Theorema Related Work Conclusion and Further work

The Algorithm

• Program Transformation → Loop with only assignments

• Invariant generation for each system of nested loops by
combinatorics and algebra
For the first nested-loop system:

1. Recurrence solving for the inner loops
2. Index and variable manipulation
3. Recurrence-counters elimination

−bj2 +
bj∗dj2

dj
= 0

aj2 ∗ dj − aj ∗ dj − 2bj ∗ yj2 + 2bj ∗ yj = 0

−bjdj2 + bj2 dj = 0

−(aj2 − aj) ∗ dj2 + bj2 ∗ (−2yj + 2yj2) = 0

−2bj +
(aj2

−aj +2bj2
)∗dj

dj2
+yj2

−yj
= 0

The Theorema System Program Verification Imperative Program Verification in Theorema Related Work Conclusion and Further work

The Algorithm

• Program Transformation → Loop with only assignments

• Invariant generation for each system of nested loops by
combinatorics and algebra
For the first nested-loop system:

1. Recurrence solving for the inner loops
2. Index and variable manipulation
3. Recurrence-counters elimination

−b + b0∗d
d0

= 0

a ∗ d0 − a0 ∗ d0 − 2b0 ∗ y + 2b0 ∗ y0 = 0

−b0d + bd0 = 0

−(a− a0) ∗ d + b ∗ (−2y0 + 2y) = 0

−2b0 + (a−a0+2b)∗d0
d + y − y0 = 0.

The Theorema System Program Verification Imperative Program Verification in Theorema Related Work Conclusion and Further work

The Algorithm

• Program Transformation → Loop with only assignments

• Invariant generation for each system of nested loops by
combinatorics and algebra
For the second nested-loop system:

a ∗ d − a0 ∗ d − 2by + 2by0 = 0
(a−a0)∗d

d0
− b0 − 2 ∗ d−1

0 ∗ d0 + y0 − y = 0

−b + b0∗d
d0

= 0

a ∗ d0 − a0 ∗ d0 − 2b0 ∗ y + 2b0 ∗ y0 = 0

−b0 ∗ d + b ∗ d0 = 0
d∗(y−y0)

d0
− d0 − d−1

0 ∗ d0 + y0 − y = 0

2b0 + (a−2b0−a0)∗d0
d0+y0−y = 0

The Theorema System Program Verification Imperative Program Verification in Theorema Related Work Conclusion and Further work

The Algorithm
• Program Transformation → Loop with only assignments
• Invariant generation for each system of nested loops by

combinatorics and algebra
• Build the union of the obtained formulae for the nested–loop

subsystems → system with 12 polynomial equations
• Check invariant property

−b + b0∗d
d0

= 0
−b0 ∗ d + b ∗ d0 = 0
−(a− a0) ∗ d + b ∗ (−2y0 + 2y) = 0
d∗(y−y0)

d0
− d0 − d−1

0 ∗ d0 + y0 − y = 0
(a−a0)∗d

d0
− b0 − 2d−1

0 ∗ d0 + y0 − y = 0
a ∗ d − a0 ∗ d − 2b ∗ y + 2 ∗ b ∗ y0 = 0

• Take the minimal set of the invariant properties, by using
Gröbner basis w.r.t. the loop variables

The Theorema System Program Verification Imperative Program Verification in Theorema Related Work Conclusion and Further work

The Algorithm
• Program Transformation → Loop with only assignments
• Invariant generation for each system of nested loops by

combinatorics and algebra
• Build the union of the obtained formulae for the nested–loop

subsystems → system with 12 polynomial equations
• Check invariant property

−b + b0∗d
d0

= 0
−b0 ∗ d + b ∗ d0 = 0
−(a− a0) ∗ d + b ∗ (−2y0 + 2y) = 0
d∗(y−y0)

d0
− d0 − d−1

0 ∗ d0 + y0 − y = 0
(a−a0)∗d

d0
− b0 − 2d−1

0 ∗ d0 + y0 − y = 0
a ∗ d − a0 ∗ d − 2b ∗ y + 2 ∗ b ∗ y0 = 0

• Take the minimal set of the invariant properties, by using
Gröbner basis w.r.t. the loop variables

The Theorema System Program Verification Imperative Program Verification in Theorema Related Work Conclusion and Further work

The Algorithm
• Program Transformation → Loop with only assignments
• Invariant generation for each system of nested loops by

combinatorics and algebra
• Build the union of the obtained formulae for the nested–loop

subsystems → system with 12 polynomial equations
• Check invariant property

−b + b0∗d
d0

= 0
−b0 ∗ d + b ∗ d0 = 0
−(a− a0) ∗ d + b ∗ (−2y0 + 2y) = 0
d∗(y−y0)

d0
− d0 − d−1

0 ∗ d0 + y0 − y = 0
(a−a0)∗d

d0
− b0 − 2d−1

0 ∗ d0 + y0 − y = 0
a ∗ d − a0 ∗ d − 2b ∗ y + 2 ∗ b ∗ y0 = 0

• Take the minimal set of the invariant properties, by using
Gröbner basis w.r.t. the loop variables

−b +
b0 ∗ d

d0
= 0

∧
a ∗ d − a0 ∗ d − 2b0 ∗ d ∗ d−1

0 ∗ y +
2 ∗ b0 ∗ d ∗ y0

d0
= 0

The Theorema System Program Verification Imperative Program Verification in Theorema Related Work Conclusion and Further work

The Algorithm
• Program Transformation → Loop with only assignments
• Invariant generation for each system of nested loops by

combinatorics and algebra
• Build the union of the obtained formulae for the nested–loop

subsystems → system with 12 polynomial equations
• Check invariant property

−b + b0∗d
d0

= 0
−b0 ∗ d + b ∗ d0 = 0
−(a− a0) ∗ d + b ∗ (−2y0 + 2y) = 0
d∗(y−y0)

d0
− d0 − d−1

0 ∗ d0 + y0 − y = 0
(a−a0)∗d

d0
− b0 − 2d−1

0 ∗ d0 + y0 − y = 0
a ∗ d − a0 ∗ d − 2b ∗ y + 2 ∗ b ∗ y0 = 0

• Take the minimal set of the invariant properties, by using
Gröbner basis w.r.t. the loop variables

−b +
1
2
∗ d ∗Q = 0

∧
a ∗ d − d ∗ y ∗Q = 0

The Theorema System Program Verification Imperative Program Verification in Theorema Related Work Conclusion and Further work

The Algorithm

• Program Transformation → Loop with only assignments

• Invariant generation for each system of nested loops by
combinatorics and algebra

• Build the union of the obtained formulae for the nested–loop
subsystems

• Check invariant property

• Take the minimal set of the invariant properties, by using
Gröbner basis w.r.t. the loop variables

• Invariant ≡ generated algebraic property ∧ asserted
non-algebraic properties

−b+
1
2
∗d∗Q = 0 ∧ a∗d−d∗y∗Q = 0 ∧ y ≤ P/q < y+d ∧ 0 < d ≤ 1

The Theorema System Program Verification Imperative Program Verification in Theorema Related Work Conclusion and Further work

Application to Program Verification

Specification[“ReDiv”, ReDiv[↓ P, ↓ Q, ↓ Tol , ↑ r],

Pre → (Q > P) ∧ (P ≥ 0) ∧ (Tol ≥ 0),

Post → (P/Q < r + Tol) ∧ (r ≤ P/Q)]

Program[“ReDiv”, ReDiv[↓ P, ↓ Q, ↓ Tol , ↑ r],

Module[{a, b, d , y},
a := 0; b := Q/2; d := 1; y := 0;

While[d ≥ Tol ,

If[P < a + b,

b := b/2; d := d/2,

a := a + b; y := y + d/2; b := b/2; d := d/2,

Assert → y ≤ P/q < y + d ∧ 0 < d ≤ 1,

Invariant → −b +
1
2
∗ d ∗Q = 0 ∧ a ∗ d − d ∗ y ∗Q = 0]];

r := y]]

The Theorema System Program Verification Imperative Program Verification in Theorema Related Work Conclusion and Further work

Outline

The Theorema System

Program Verification

Imperative Program Verification in Theorema
Invariant Generation for Loops with Conditionals
Application to Program Verification

Related Work

Conclusion and Further work

The Theorema System Program Verification Imperative Program Verification in Theorema Related Work Conclusion and Further work

Automated Invariant Generation - Related Work

Affine Relationships among Program Variables → Gröbner basis

• B.Elspas, M.W.Green, K.N.Lewitt and R.J.Waldinger (1972);

• M.Karr (1974);

• M.Müller-Olm and H.Seidl (2002, 2004);

• S.Sankaranaryanan, B.S.Henry and Z.Manna (2004);

• E.Rodriguez-Carbonell and D.Kapur (2004).

The Theorema System Program Verification Imperative Program Verification in Theorema Related Work Conclusion and Further work

Automated Invariant Generation - Related Work

Affine Relationships among Program Variables → Gröbner basis

• B.Elspas, M.W.Green, K.N.Lewitt and R.J.Waldinger (1972);

• M.Karr (1974);

• M.Müller-Olm and H.Seidl (2002, 2004);

• S.Sankaranaryanan, B.S.Henry and Z.Manna (2004);

• E.Rodriguez-Carbonell and D.Kapur (2004).

The Theorema System Program Verification Imperative Program Verification in Theorema Related Work Conclusion and Further work

Outline

The Theorema System

Program Verification

Imperative Program Verification in Theorema
Invariant Generation for Loops with Conditionals
Application to Program Verification

Related Work

Conclusion and Further work

The Theorema System Program Verification Imperative Program Verification in Theorema Related Work Conclusion and Further work

Conclusion and Further work

• Powerful tool for Invariant Generation by algebraic and
combinatorial methods

1. Loops only with assignments:
• recurrence solving by: Gosper Alg., geometric series, Generating

Function;
• future work: integrate new recurrence solving techniques;
• also applicable for non–linear invariant generation;

2. Loops with conditionals:
• Novel-algorithm based on algorithms from combinatorics and

polynomial algebra;
• future work: reduction of obtained non-linear invariant properties;

3. future work: slight modifications → invariant generation for nested
loops;

• Treatment of other type of recurrences and solving techniques;

• Generation of invariant linear inequalities, non–algebraic
invariant properties;

• Generation of termination terms.

The Theorema System Program Verification Imperative Program Verification in Theorema Related Work Conclusion and Further work

Conclusion and Further work

• Powerful tool for Invariant Generation by algebraic and
combinatorial methods

1. Loops only with assignments:
• recurrence solving by: Gosper Alg., geometric series, Generating

Function;
• future work: integrate new recurrence solving techniques;
• also applicable for non–linear invariant generation;

2. Loops with conditionals:
• Novel-algorithm based on algorithms from combinatorics and

polynomial algebra;
• future work: reduction of obtained non-linear invariant properties;

3. future work: slight modifications → invariant generation for nested
loops;

• Treatment of other type of recurrences and solving techniques;

• Generation of invariant linear inequalities, non–algebraic
invariant properties;

• Generation of termination terms.

The Theorema System Program Verification Imperative Program Verification in Theorema Related Work Conclusion and Further work

Conclusion and Further work

• Powerful tool for Invariant Generation by algebraic and
combinatorial methods

1. Loops only with assignments:
• recurrence solving by: Gosper Alg., geometric series, Generating

Function;
• future work: integrate new recurrence solving techniques;
• also applicable for non–linear invariant generation;

2. Loops with conditionals:
• Novel-algorithm based on algorithms from combinatorics and

polynomial algebra;
• future work: reduction of obtained non-linear invariant properties;

3. future work: slight modifications → invariant generation for nested
loops;

• Treatment of other type of recurrences and solving techniques;

• Generation of invariant linear inequalities, non–algebraic
invariant properties;

• Generation of termination terms.

The Theorema System Program Verification Imperative Program Verification in Theorema Related Work Conclusion and Further work

Conclusion and Further work

• Powerful tool for Invariant Generation by algebraic and
combinatorial methods

1. Loops only with assignments:
• recurrence solving by: Gosper Alg., geometric series, Generating

Function;
• future work: integrate new recurrence solving techniques;
• also applicable for non–linear invariant generation;

2. Loops with conditionals:
• Novel-algorithm based on algorithms from combinatorics and

polynomial algebra;
• future work: reduction of obtained non-linear invariant properties;

3. future work: slight modifications → invariant generation for nested
loops;

• Treatment of other type of recurrences and solving techniques;

• Generation of invariant linear inequalities, non–algebraic
invariant properties;

• Generation of termination terms.

The Theorema System Program Verification Imperative Program Verification in Theorema Related Work Conclusion and Further work

Conclusion and Further work

• Powerful tool for Invariant Generation by algebraic and
combinatorial methods

1. Loops only with assignments:
• recurrence solving by: Gosper Alg., geometric series, Generating

Function;
• future work: integrate new recurrence solving techniques;
• also applicable for non–linear invariant generation;

2. Loops with conditionals:
• Novel-algorithm based on algorithms from combinatorics and

polynomial algebra;
• future work: reduction of obtained non-linear invariant properties;

3. future work: slight modifications → invariant generation for nested
loops;

• Treatment of other type of recurrences and solving techniques;

• Generation of invariant linear inequalities, non–algebraic
invariant properties;

• Generation of termination terms.

The Theorema System Program Verification Imperative Program Verification in Theorema Related Work Conclusion and Further work

Conclusion and Further work

• Powerful tool for Invariant Generation by algebraic and
combinatorial methods

1. Loops only with assignments:
• recurrence solving by: Gosper Alg., geometric series, Generating

Function;
• future work: integrate new recurrence solving techniques;
• also applicable for non–linear invariant generation;

2. Loops with conditionals:
• Novel-algorithm based on algorithms from combinatorics and

polynomial algebra;
• future work: reduction of obtained non-linear invariant properties;

3. future work: slight modifications → invariant generation for nested
loops;

• Treatment of other type of recurrences and solving techniques;

• Generation of invariant linear inequalities, non–algebraic
invariant properties;

• Generation of termination terms.

The Theorema System Program Verification Imperative Program Verification in Theorema Related Work Conclusion and Further work

Conclusion and Further work

• Powerful tool for Invariant Generation by algebraic and
combinatorial methods

1. Loops only with assignments:
• recurrence solving by: Gosper Alg., geometric series, Generating

Function;
• future work: integrate new recurrence solving techniques;
• also applicable for non–linear invariant generation;

2. Loops with conditionals:
• Novel-algorithm based on algorithms from combinatorics and

polynomial algebra;
• future work: reduction of obtained non-linear invariant properties;

3. future work: slight modifications → invariant generation for nested
loops;

• Treatment of other type of recurrences and solving techniques;

• Generation of invariant linear inequalities, non–algebraic
invariant properties;

• Generation of termination terms.

The Theorema System Program Verification Imperative Program Verification in Theorema Related Work Conclusion and Further work

Conclusion and Further work

• Powerful tool for Invariant Generation by algebraic and
combinatorial methods

1. Loops only with assignments:
• recurrence solving by: Gosper Alg., geometric series, Generating

Function;
• future work: integrate new recurrence solving techniques;
• also applicable for non–linear invariant generation;

2. Loops with conditionals:
• Novel-algorithm based on algorithms from combinatorics and

polynomial algebra;
• future work: reduction of obtained non-linear invariant properties;

3. future work: slight modifications → invariant generation for nested
loops;

• Treatment of other type of recurrences and solving techniques;

• Generation of invariant linear inequalities, non–algebraic
invariant properties;

• Generation of termination terms.

The Theorema System Program Verification Imperative Program Verification in Theorema Related Work Conclusion and Further work

Conclusion and Further work

• Powerful tool for Invariant Generation by algebraic and
combinatorial methods

1. Loops only with assignments:
• recurrence solving by: Gosper Alg., geometric series, Generating

Function;
• future work: integrate new recurrence solving techniques;
• also applicable for non–linear invariant generation;

2. Loops with conditionals:
• Novel-algorithm based on algorithms from combinatorics and

polynomial algebra;
• future work: reduction of obtained non-linear invariant properties;

3. future work: slight modifications → invariant generation for nested
loops;

• Treatment of other type of recurrences and solving techniques;

• Generation of invariant linear inequalities, non–algebraic
invariant properties;

• Generation of termination terms.

The Theorema System Program Verification Imperative Program Verification in Theorema Related Work Conclusion and Further work

Conclusion and Further work

• Powerful tool for Invariant Generation by algebraic and
combinatorial methods

1. Loops only with assignments:
• recurrence solving by: Gosper Alg., geometric series, Generating

Function;
• future work: integrate new recurrence solving techniques;
• also applicable for non–linear invariant generation;

2. Loops with conditionals:
• Novel-algorithm based on algorithms from combinatorics and

polynomial algebra;
• future work: reduction of obtained non-linear invariant properties;

3. future work: slight modifications → invariant generation for nested
loops;

• Treatment of other type of recurrences and solving techniques;

• Generation of invariant linear inequalities, non–algebraic
invariant properties;

• Generation of termination terms.

The Theorema System Program Verification Imperative Program Verification in Theorema Related Work Conclusion and Further work

Conclusion and Further work

• Powerful tool for Invariant Generation by algebraic and
combinatorial methods

1. Loops only with assignments:
• recurrence solving by: Gosper Alg., geometric series, Generating

Function;
• future work: integrate new recurrence solving techniques;
• also applicable for non–linear invariant generation;

2. Loops with conditionals:
• Novel-algorithm based on algorithms from combinatorics and

polynomial algebra;
• future work: reduction of obtained non-linear invariant properties;

3. future work: slight modifications → invariant generation for nested
loops;

• Treatment of other type of recurrences and solving techniques;

• Generation of invariant linear inequalities, non–algebraic
invariant properties;

• Generation of termination terms.

The Theorema System Program Verification Imperative Program Verification in Theorema Related Work Conclusion and Further work

Conclusion and Further work

• Powerful tool for Invariant Generation by algebraic and
combinatorial methods

1. Loops only with assignments:
• recurrence solving by: Gosper Alg., geometric series, Generating

Function;
• future work: integrate new recurrence solving techniques;
• also applicable for non–linear invariant generation;

2. Loops with conditionals:
• Novel-algorithm based on algorithms from combinatorics and

polynomial algebra;
• future work: reduction of obtained non-linear invariant properties;

3. future work: slight modifications → invariant generation for nested
loops;

• Treatment of other type of recurrences and solving techniques;

• Generation of invariant linear inequalities, non–algebraic
invariant properties;

• Generation of termination terms.

	The Theorema System
	Program Verification
	Imperative Program Verification in Theorema
	Invariant Generation for Loops with Conditionals
	Application to Program Verification

	Related Work
	Conclusion and Further work

