
An Algorithm for Automated Generation of
Invariants for Loops with Conditionals
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The Theorema System

Theorema : A computer aided mathematical assistant

•

{ Proving
Computing
Solving

using: specified “knowledge bases”
applying: provers, simplifiers and solvers from the Theorema
library

•

{ Composing
Structuring
Manipulating

mathematical texts

• Advantages of Program Verification in Theorema :

1. proofs in natural language and using natural style inference
2. access to powerful computing and solving algorithms

(Mathematica)
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Program Verification

Rule–based Programming Theorema

Specifications, programs and verification can be viewed in a uniform
framework (higher–order predicate logic)

• (consequence) verification: proving specifications based on definitions
(both are logical formulae).

Imperative Programming Theorema

Additional assertions are needed (invariants, termination terms)

• Backward Reasoning: Predicate Transformer (weakest precondition)
[Dijkstra76, Gries81]
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Program Verification

Rule–based Programming Theorema → B.Buchberger, A.Cr ăciun,
N.Popov, T.Jebelean

Specifications, programs and verification can be viewed in a uniform
framework (higher–order predicate logic)

• (consequence) verification: proving specifications based on definitions
(both are logical formulae).

Imperative Programming Theorema→ L.Kov ács, T.Jebelean

Additional assertions are needed (invariants, termination terms)

• Backward Reasoning: Predicate Transformer (weakest precondition)
[Dijkstra76, Gries81]
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Verification Environment for Imperative Programs
Example: Wensley’s Algorithm for Real Division

Specification

Program

Specification[“ReDiv”, ReDiv[↓ P, ↓ Q, ↓ Tol , ↑ r ],

Pre → (Q > P) ∧ (P ≥ 0) ∧ (Tol ≥ 0),

Post → (P/Q < r + Tol) ∧ (r ≤ P/Q)]
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Pre → (Q > P) ∧ (P ≥ 0) ∧ (Tol ≥ 0),

Post → (P/Q < r + Tol) ∧ (r ≤ P/Q)]

Program[“ReDiv”, ReDiv[↓ P, ↓ Q, ↓ Tol , ↑ r ],

Module[{a, b, d , y},
a := 0; b := Q/2; d := 1; y := 0;

While[d ≥ Tol ,

If[P < a + b,

b := b/2; d := d/2,

a := a + b; y := y + d/2; b := b/2; d := d/2]];

r := y ]]
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Verification Environment for Imperative Programs
in Theorema

VCG VCG[Program[“ReDiv”], Specification[“ReDiv”]]

• Based on Hoare Logic;

• Using the Weakest Precondition Strategy;

• Output: verification conditions in a Theorema lemma
→ proving lemma

Execute Execute[ReDiv[7.1, 19.4, 0.01, r]]
r = 23

64



The Theorema System Program Verification Imperative Program Verification in Theorema Related Work Conclusion and Further work

Verification Environment for Imperative Programs
in Theorema

VCG VCG[Program[“ReDiv”], Specification[“ReDiv”]]

• Based on Hoare Logic;

• Using the Weakest Precondition Strategy;

• Output: verification conditions in a Theorema lemma
→ proving lemma

Execute Execute[ReDiv[7.1, 19.4, 0.01, r]]
r = 23

64



The Theorema System Program Verification Imperative Program Verification in Theorema Related Work Conclusion and Further work

Verification Environment for Imperative Programs
in Theorema

VCG VCG[Program[“ReDiv”], Specification[“ReDiv”]]

• Based on Hoare Logic;

• Using the Weakest Precondition Strategy;

• Output: verification conditions in a Theorema lemma
→ proving lemma

Execute Execute[ReDiv[7.1, 19.4, 0.01, r]]
r = 23

64



The Theorema System Program Verification Imperative Program Verification in Theorema Related Work Conclusion and Further work

Verification Environment for Imperative Programs
in Theorema

VCG VCG[Program[“ReDiv”], Specification[“ReDiv”]]

• Based on Hoare Logic;

• Using the Weakest Precondition Strategy;

• Output: verification conditions in a Theorema lemma
→ proving lemma

Execute Execute[ReDiv[7.1, 19.4, 0.01, r]]
r = 23

64



The Theorema System Program Verification Imperative Program Verification in Theorema Related Work Conclusion and Further work

Our Approach: Algebraic and Combinatorial
Methods

• Based on the difference equations method [ElspasGreen72]

1. First step: find explicit forms of the loop variables, as functions of
the loop counter

2. Second step: eliminate loop counter

• In Theorema : invariant generation using combinatorial and
algebraic techniques:

1. Loops with assignments only (Synasc03, Synasc04):
Gosper-summable, geometric series, generating functions;

2. Loops with conditionals: combinatorics alg., Gröbner basis →
algebraic invariants;

3. Nested Loops.
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algebraic invariants;

3. Nested Loops.



The Theorema System Program Verification Imperative Program Verification in Theorema Related Work Conclusion and Further work

The Algorithm
 

While[b, c1; If[b1, c2; c3]; c4] 

While[b, 

   While[b⁄b1’, 

c1;c2;c4]; 

   While[b⁄Ÿb1’,  

c1;c3;c4]] 

While[b, 

   While[b⁄Ÿb1’,  

c1;c3;c4];   

   While[b⁄b1’, 

c1;c2;c4]] 
    

While[b, c1; If[b1, c2; c3]; c4] 

Invariant 

Generation 
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The Algorithm

• Program Transformation → Loop with only assignments

{I ∧ b1′} {I ∧ ¬b1′}
While[b, While[b,

While[b ∧ b1′, c1; c2; c4]; While[b ∧ ¬b1′, c1; c3; c4];
While[b ∧ ¬b1′, c1; c3; c4]] While[b ∧ b1′, c1; c2; c4]]
{I ∧ ¬b} {I ∧ ¬b}

{I} While[b, c1; IF [b1, c2, c3]; c4] {I ∧ ¬b}
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The Algorithm

• Program Transformation → Loop with only assignments

While[d ≥ Tol , While[d ≥ Tol ,
While[d ≥ Tol ∧ P < a + b, While[d ≥ Tol ∧ P ≥ a + b,

b := b/2; a := a + b; y := y + d/2;
d := d/2]; b := b/2; d := d/2];

While[d ≥ Tol ∧ P ≥ a + b, While[d ≥ Tol ∧ P < a + b,
a := a + b; y := y + d/2; b := b/2;
b := b/2; d := d/2]]; d := d/2]];
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The Algorithm
• Program Transformation → Loop with only assignments
• Invariant generation for each system of nested loops by

combinatorics and algebra
For the first nested-loop system:

1. Recurrence solving for the inner loops
aj1 = aj

bj1 =
bj

2j1

dj1 =
dj

2j1

yj1 = yj

aj2 = aj1 + 2 ∗ bj1 −
bj1

2j2−1

bj2 =
bj1
2j2

dj2 =
dj1
2j2

yj2 = yj1 + dj1 −
dj1
2j2

2. Index and variable manipulation

aj2 = aj +
bj

2j1−1

(
1− 1

2j2

)
bj2 =

bj

2j1+j2

dj2 =
dj

2j1+j2

yj2 = yj +
dj

2j1

(
1− 1

2j2

)
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−bj2 +
bj∗dj2

dj
= 0

aj2 ∗ dj − aj ∗ dj − 2bj ∗ yj2 + 2bj ∗ yj = 0

−bjdj2 + bj2 dj = 0

−(aj2 − aj) ∗ dj2 + bj2 ∗ (−2yj + 2yj2) = 0

−2bj +
(aj2

−aj +2bj2
)∗dj

dj2
+yj2

−yj
= 0
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The Algorithm

• Program Transformation → Loop with only assignments

• Invariant generation for each system of nested loops by
combinatorics and algebra
For the first nested-loop system:

1. Recurrence solving for the inner loops
2. Index and variable manipulation
3. Recurrence-counters elimination

−b + b0∗d
d0

= 0

a ∗ d0 − a0 ∗ d0 − 2b0 ∗ y + 2b0 ∗ y0 = 0

−b0d + bd0 = 0

−(a− a0) ∗ d + b ∗ (−2y0 + 2y) = 0

−2b0 + (a−a0+2b)∗d0
d + y − y0 = 0.
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The Algorithm

• Program Transformation → Loop with only assignments

• Invariant generation for each system of nested loops by
combinatorics and algebra
For the second nested-loop system:

a ∗ d − a0 ∗ d − 2by + 2by0 = 0
(a−a0)∗d

d0
− b0 − 2 ∗ d−1

0 ∗ d0 + y0 − y = 0

−b + b0∗d
d0

= 0

a ∗ d0 − a0 ∗ d0 − 2b0 ∗ y + 2b0 ∗ y0 = 0

−b0 ∗ d + b ∗ d0 = 0
d∗(y−y0)

d0
− d0 − d−1

0 ∗ d0 + y0 − y = 0

2b0 + (a−2b0−a0)∗d0
d0+y0−y = 0
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The Algorithm
• Program Transformation → Loop with only assignments
• Invariant generation for each system of nested loops by

combinatorics and algebra
• Build the union of the obtained formulae for the nested–loop

subsystems → system with 12 polynomial equations
• Check invariant property

−b + b0∗d
d0

= 0
−b0 ∗ d + b ∗ d0 = 0
−(a− a0) ∗ d + b ∗ (−2y0 + 2y) = 0
d∗(y−y0)

d0
− d0 − d−1

0 ∗ d0 + y0 − y = 0
(a−a0)∗d

d0
− b0 − 2d−1

0 ∗ d0 + y0 − y = 0
a ∗ d − a0 ∗ d − 2b ∗ y + 2 ∗ b ∗ y0 = 0

• Take the minimal set of the invariant properties, by using
Gröbner basis w.r.t. the loop variables
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d0
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0 ∗ y +
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d0
= 0
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The Algorithm

• Program Transformation → Loop with only assignments

• Invariant generation for each system of nested loops by
combinatorics and algebra

• Build the union of the obtained formulae for the nested–loop
subsystems

• Check invariant property

• Take the minimal set of the invariant properties, by using
Gröbner basis w.r.t. the loop variables

• Invariant ≡ generated algebraic property ∧ asserted
non-algebraic properties

−b+
1
2
∗d∗Q = 0 ∧ a∗d−d∗y∗Q = 0 ∧ y ≤ P/q < y+d ∧ 0 < d ≤ 1
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Application to Program Verification

Specification[“ReDiv”, ReDiv[↓ P, ↓ Q, ↓ Tol , ↑ r ],

Pre → (Q > P) ∧ (P ≥ 0) ∧ (Tol ≥ 0),

Post → (P/Q < r + Tol) ∧ (r ≤ P/Q)]

Program[“ReDiv”, ReDiv[↓ P, ↓ Q, ↓ Tol , ↑ r ],

Module[{a, b, d , y},
a := 0; b := Q/2; d := 1; y := 0;

While[d ≥ Tol ,

If[P < a + b,

b := b/2; d := d/2,

a := a + b; y := y + d/2; b := b/2; d := d/2,

Assert → y ≤ P/q < y + d ∧ 0 < d ≤ 1,

Invariant → −b +
1
2
∗ d ∗Q = 0 ∧ a ∗ d − d ∗ y ∗Q = 0]];

r := y ]]
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Automated Invariant Generation - Related Work

Affine Relationships among Program Variables → Gröbner basis

• B.Elspas, M.W.Green, K.N.Lewitt and R.J.Waldinger (1972);

• M.Karr (1974);

• M.Müller-Olm and H.Seidl (2002, 2004);

• S.Sankaranaryanan, B.S.Henry and Z.Manna (2004);

• E.Rodriguez-Carbonell and D.Kapur (2004).
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Conclusion and Further work

• Powerful tool for Invariant Generation by algebraic and
combinatorial methods

1. Loops only with assignments:
• recurrence solving by: Gosper Alg., geometric series, Generating

Function;
• future work: integrate new recurrence solving techniques;
• also applicable for non–linear invariant generation;

2. Loops with conditionals:
• Novel-algorithm based on algorithms from combinatorics and

polynomial algebra;
• future work: reduction of obtained non-linear invariant properties;

3. future work: slight modifications → invariant generation for nested
loops;

• Treatment of other type of recurrences and solving techniques;

• Generation of invariant linear inequalities, non–algebraic
invariant properties;

• Generation of termination terms.
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