An Algorithm for Automated Generation of Invariants for Loops with Conditionals

Laura Ildikó Kovács, Tudor Jebelean

Research Institute for Symbolic Computation Johannes Kepler University, Linz {kovacs, jebelean@risc.uni-linz.ac.at}

Institute e-Austria Timişoara, Romania

The Theorema System

Program Verification

mperative Program Verification in Theorema

a Related

Conclusion and Further work

・ロト・日本・日本・日本・日本

Outline

The Theorema System

Program Verification

Imperative Program Verification in Theorema Invariant Generation for Loops with Conditionals Application to Program Verification

Related Work

Conclusion and Further work

The Theorema System

Program Verification

mperative Program Verification in Theorema

a Related

Conclusion and Further work

Outline

The Theorema System

Program Verification

Imperative Program Verification in *Theorema* Invariant Generation for Loops with Conditionals Application to Program Verification

Related Work

Conclusion and Further work

・ロット (雪)・ (日)・ (日)・

The *Theorema* System

Theorema : A computer aided mathematical assistant

・ロト・日本・日本・日本・日本

The *Theorema* System

Theorema : A computer aided mathematical assistant

- { Proving Computing Solving

・ロト・日本・日本・日本・日本

The *Theorema* System

Theorema : A computer aided mathematical assistant

- { Proving Computing Solving

using: specified "knowledge bases"

The Theorema System

Theorema : A computer aided mathematical assistant

- Proving Computing Solving using: specified "knowledge bases" applying: provers, simplifiers and solvers from the *Theorema* library
 - Composing
 - Structuring mathematical texts
 - Manipulating
- Advantages of Program Verification in Theorema :
 - proofs in natural language and using natural style interence access to powerful computing and solving algorithms (Mathematica)

The *Theorema* System

Theorema : A computer aided mathematical assistant

- { Proving Computing Solving

using: specified "knowledge bases"

- { Composing Structuring mathematical texts Manipulating

The *Theorema* System

Theorema : A computer aided mathematical assistant

- { Proving Computing Solving

using: specified "knowledge bases"

- { Composing Structuring mathematical texts Manipulating
- Advantages of Program Verification in Theorema :

The *Theorema* System

Theorema : A computer aided mathematical assistant

- { Proving Computing Solving

using: specified "knowledge bases"

- { Composing Structuring mathematical texts Manipulating
- Advantages of Program Verification in Theorema :
 - 1. proofs in natural language and using natural style inference

The *Theorema* System

Theorema : A computer aided mathematical assistant

- { Proving Computing Solving

using: specified "knowledge bases"

- { Composing Structuring mathematical texts Manipulating
- Advantages of Program Verification in Theorema :
 - proofs in natural language and using natural style inference
 - access to powerful computing and solving algorithms (Mathematica)

The Theorema System

Program Verification

mperative Program Verification in Theorema

Related Wo

Conclusion and Further work

Outline

The Theorema System

Program Verification

Imperative Program Verification in *Theorema* Invariant Generation for Loops with Conditionals Application to Program Verification

Related Work

Conclusion and Further work

a Related Work

Conclusion and Further work

Program Verification

Rule–based Programming Theorema

Specifications, programs and verification can be viewed in a uniform framework (higher–order predicate logic)

• (consequence) verification: proving specifications based on definitions (both are logical formulae).

Imperative Programming Theorema

Additional assertions are needed (invariants, termination terms)

・ロト・日本・モト・モト モ

Program Verification

Rule–based Programming Theorema

Specifications, programs and verification can be viewed in a uniform framework (higher–order predicate logic)

• (consequence) verification: proving specifications based on definitions (both are logical formulae).

Imperative Programming Theorema

Additional assertions are needed (invariants, termination terms)

Program Verification

Rule–based Programming Theorema

Specifications, programs and verification can be viewed in a uniform framework (higher–order predicate logic)

• (consequence) verification: proving specifications based on definitions (both are logical formulae).

Imperative Programming Theorema

Additional assertions are needed (invariants, termination terms)

Program Verification

Rule-based Programming

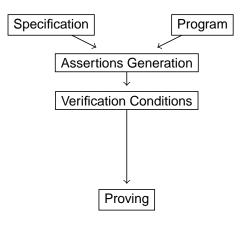
 $\label{eq:constraint} \begin{array}{l} \mbox{Theorema} \rightarrow \mbox{B.Buchberger, A.Crăciun,} \\ \mbox{N.Popov, T.Jebelean} \end{array}$

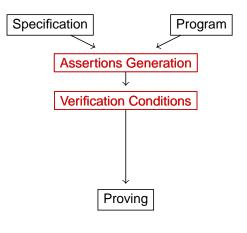
Specifications, programs and verification can be viewed in a uniform framework (higher–order predicate logic)

• (consequence) verification: proving specifications based on definitions (both are logical formulae).

Imperative Programming Theorema – L.Kovács, T.Jebelean

Additional assertions are needed (invariants, termination terms)





The Theorema System Program Verification

Imperative Program Verification in Theorema

a Related \

Conclusion and Further work

Outline

The Theorema System

Program Verification

Imperative Program Verification in Theorema Invariant Generation for Loops with Conditionals Application to Program Verification

Related Work

Conclusion and Further work

Example: Wensley's Algorithm for Real Division

SpecificationSpecification["ReDiv", ReDiv[$\downarrow P, \downarrow Q, \downarrow Tol, \uparrow r$],
Pre $\rightarrow (Q > P) \land (P \ge 0) \land (Tol \ge 0)$,
Post $\rightarrow (P/Q < r + Tol) \land (r \le P/Q)$]

Program

Example: Wensley's Algorithm for Real Division

 $\begin{array}{ll} \textit{Specification} & \textit{Specification}[``ReDiv", ReDiv[\downarrow P, \downarrow Q, \downarrow To!, \uparrow r], \\ & \textit{Pre} \rightarrow (Q > P) \land (P \geq 0) \land (Tol \geq 0), \\ & \textit{Post} \rightarrow (P/Q < r + To!) \land (r \leq P/Q)] \end{array}$

Program

Example: Wensley's Algorithm for Real Division

 $\begin{array}{ll} \textit{Specification} & \textit{Specification}[``ReDiv", ReDiv[\downarrow P, \downarrow Q, \downarrow Tol, \uparrow r], \\ & \textit{Pre} \rightarrow (Q > P) \land (P \geq 0) \land (Tol \geq 0), \\ & \textit{Post} \rightarrow (P/Q < r + Tol) \land (r \leq P/Q)] \end{array}$

Program

Verification Environment for Imperative Programs

Example: Wensley's Algorithm for Real Division

 $\begin{array}{ll} \textit{Specification} & \textit{Specification}[``ReDiv", ReDiv[\downarrow P, \downarrow Q, \downarrow To!, \uparrow r], \\ & \textit{Pre} \rightarrow (\textit{Q} > \textit{P}) \land (\textit{P} \geq \textit{0}) \land (\textit{Tol} \geq \textit{0}), \\ & \textit{Post} \rightarrow (\textit{P}/\textit{Q} < \textit{r} + \textit{Tol}) \land (\textit{r} \leq \textit{P}/\textit{Q})] \end{array}$

Example: Wensley's Algorithm for Real Division

 $\begin{array}{ll} \textit{Specification} & \textit{Specification}[``ReDiv", ReDiv[\downarrow P, \downarrow Q, \downarrow To!, \uparrow r], \\ & \textit{Pre} \rightarrow (\textit{Q} > \textit{P}) \land (\textit{P} \geq \textit{0}) \land (\textit{Tol} \geq \textit{0}), \\ & \textit{Post} \rightarrow (\textit{P}/\textit{Q} < \textit{r} + \textit{Tol}) \land (\textit{r} \leq \textit{P}/\textit{Q})] \end{array}$

ProgramProgram["ReDiv", ReDiv[$\downarrow P, \downarrow Q, \downarrow Tol, \uparrow r$],
Module[{a, b, d, y},
a := 0; b := Q/2; d := 1; y := 0;
While[$d \ge Tol$,
If[P < a + b,
b := b/2; d := d/2,
a := a + b; y := y + d/2; b := b/2; d := d/2],
;
Invariant $\rightarrow I$, TerminationTerm $\rightarrow T$];
r := y]]

Verification Environment for Imperative Programs in *Theorema*

VCG VCG[Program["ReDiv"], Specification["ReDiv"]]

- Based on Hoare Logic;
- Using the Weakest Precondition Strategy;
- Output: verification conditions in a *Theorema* lemma → proving lemma

```
Execute Execute[ReDiv[7.1, 19.4, 0.01, r]]
r = \frac{23}{64}
```


・ロット (雪)・ (日)・ (日)・

Verification Environment for Imperative Programs in *Theorema*

VCG VCG[Program["ReDiv"], Specification["ReDiv"]]

- Based on Hoare Logic;
- Using the Weakest Precondition Strategy;
- Output: verification conditions in a *Theorema* lemma → proving lemma

Execute Execute[ReDiv[7.1, 19.4, 0.01, r]]
$$r = \frac{23}{64}$$

Verification Environment for Imperative Programs in *Theorema*

VCG VCG[Program["ReDiv"], Specification["ReDiv"]]

- Based on Hoare Logic;
- Using the Weakest Precondition Strategy;
- Output: verification conditions in a *Theorema* lemma → proving lemma

Execute Execute [ReDiv[7.1, 19.4, 0.01, r]] $r = \frac{23}{64}$

Verification Environment for Imperative Programs in *Theorema*

VCG VCG[Program["ReDiv"], Specification["ReDiv"]]

- Based on Hoare Logic;
- Using the Weakest Precondition Strategy;
- Output: verification conditions in a *Theorema* lemma → proving lemma

Execute Execute [ReDiv[7.1, 19.4, 0.01, r]] $r = \frac{23}{64}$

Our Approach: Algebraic and Combinatorial Methods

• Based on the difference equations method [ElspasGreen72]

- 1. First step: find explicit forms of the loop variables, as functions of the loop counter
- 2. Second step: eliminate loop counter
- In *Theorema* : invariant generation using combinatorial and algebraic techniques:
 - Loops with assignments only (Synasc03, Synasc04): Gosper-summable, geometric series, generating functions;
 - Loops with conditionals: combinatorics alg., Gröbner basis → algebraic invariants;
 - 3. Nested Loops.

・ロト・日本・モト・モト モ

- Based on the difference equations method [ElspasGreen72]
 - 1. First step: find explicit forms of the loop variables, as functions of the loop counter
 - 2. Second step: eliminate loop counter
- In *Theorema* : invariant generation using combinatorial and algebraic techniques:
 - Loops with assignments only (Synasc03, Synasc04): Gosper-summable, geometric series, generating functions;
 - Loops with conditionals: combinatorics alg., Gröbner basis → algebraic invariants;
 - 3. Nested Loops.

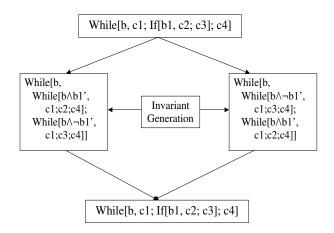
- Based on the difference equations method [ElspasGreen72]
 - 1. First step: find explicit forms of the loop variables, as functions of the loop counter
 - 2. Second step: eliminate loop counter
- In *Theorema* : invariant generation using combinatorial and algebraic techniques:
 - Loops with assignments only (Synasc03, Synasc04): Gosper-summable, geometric series, generating functions;
 - Loops with conditionals: combinatorics alg., Gröbner basis → algebraic invariants;
 - 3. Nested Loops.

- Based on the difference equations method [ElspasGreen72]
 - 1. First step: find explicit forms of the loop variables, as functions of the loop counter
 - 2. Second step: eliminate loop counter
- In *Theorema* : invariant generation using combinatorial and algebraic techniques:
 - Loops with assignments only (Synasc03, Synasc04): Gosper-summable, geometric series, generating functions;
 - Loops with conditionals: combinatorics alg., Gröbner basis → algebraic invariants;
 - 3. Nested Loops.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲ 圖▶ ▲ 圖

- Based on the difference equations method [ElspasGreen72]
 - 1. First step: find explicit forms of the loop variables, as functions of the loop counter
 - 2. Second step: eliminate loop counter
- In *Theorema* : invariant generation using combinatorial and algebraic techniques:
 - Loops with assignments only (Synasc03, Synasc04): Gosper-summable, geometric series, generating functions;
 - Loops with conditionals: combinatorics alg., Gröbner basis → algebraic invariants;
 - Nested Loops.

The Algorithm



The Algorithm

• Program Transformation \rightarrow Loop with only assignments

The Algorithm

• Program Transformation \rightarrow Loop with only assignments

 $\begin{array}{ll} \{I \wedge b1'\} & \{I \wedge \neg b1'\} \\ \mbox{While}[b, & \mbox{While}[b, \\ \mbox{While}[b \wedge b1', c1; c2; c4]; & \mbox{While}[b \wedge \neg b1', c1; c3; c4]; \\ \mbox{While}[b \wedge \neg b1', c1; c3; c4]] & \mbox{While}[b \wedge b1', c1; c2; c4]] \\ \mbox{\{}I \wedge \neg b\} & \mbox{\{}I \wedge \neg b\} \end{array}$

{*I*} While[*b*, *c*1; *IF*[*b*1, *c*2, *c*3]; *c*4] { $I \land \neg b$ }

The Algorithm

Program Transformation → Loop with only assignments

While d > Tol, While $d \ge Tol \land P < a + b$, While $d \ge Tol \land P \ge a + b$, b := b/2: d := d/2]; While $d \ge Tol \land P \ge a + b$, While $d \ge Tol \land P < a + b$, a := a + b: v := v + d/2: b := b/2; d := d/2]];

While d > Tol, a := a + b; y := y + d/2;b := b/2; d := d/2];b := b/2;d := d/2]];

・ ロ ト ・ 雪 ト ・ 目 ト ・

э

The Algorithm

- Program Transformation \rightarrow Loop with only assignments
- Invariant generation for each system of nested loops by combinatorics and algebra For the first nested-loop system:

The Algorithm

- Program Transformation \rightarrow Loop with only assignments
- Invariant generation for each system of nested loops by combinatorics and algebra For the first nested-loop system:
 - 1. Recurrence solving for the inner loops

$$\begin{array}{rcl} a_{j_{1}} & = & a_{j} & & & a_{j_{2}} & = & a_{j_{1}} + 2 * b_{j_{1}} - \frac{z_{j_{1}}}{2^{j_{2}-1}} \\ b_{j_{1}} & = & \frac{b_{j_{1}}}{2^{j_{1}}} & & & b_{j_{2}} & = & \frac{b_{j_{1}}}{2^{j_{2}}} \\ d_{j_{1}} & = & \frac{d_{j_{1}}}{2^{j_{2}}} & & & d_{j_{2}} & = & \frac{d_{j_{1}}}{2^{j_{2}}} \\ y_{j_{1}} & = & y_{j} & & & y_{j_{2}} & = & y_{j_{1}} + d_{j_{1}} - \frac{d_{j_{1}}}{2^{j_{2}}} \end{array}$$

The Algorithm

- Program Transformation \rightarrow Loop with only assignments
- Invariant generation for each system of nested loops by combinatorics and algebra For the first nested-loop system:
 - 1. Recurrence solving for the inner loops

$$\begin{array}{rcl} a_{j_1} & = & a_j & & & a_{j_2} & = & a_{j_1} + 2 * b_{j_1} - \frac{u_{j_1}}{2^{j_2 - 1}} \\ b_{j_1} & = & \frac{b_{j_1}}{2^{j_1}} & & & b_{j_2} & = & \frac{b_{j_1}}{2^{j_2}} \\ d_{j_1} & = & \frac{d_{j_1}}{2^{j_1}} & & & d_{j_2} & = & \frac{d_{j_1}}{2^{j_2}} \\ y_{j_1} & = & y_j & & & y_{j_2} & = & y_{j_1} + d_{j_1} - \frac{d_{j_1}}{2^{j_2}} \end{array}$$

$$\begin{array}{rcl} a_{j_2} & = & a_j + \frac{b_j}{2^{p_j-1}} (1 - \frac{1}{2^{p_j}}) \\ b_{j_2} & = & \frac{b_j}{2^{p_j+1/p_j}} \\ d_{j_2} & = & \frac{d_j}{2^{p_j+1/p_j}} \\ y_{j_2} & = & y_j + \frac{d_j}{2^{p_j}} (1 - \frac{1}{2^{p_j}}) \end{array}$$

・ロト ・聞ト ・ヨト ・ヨト 三日

The Algorithm

- Program Transformation \rightarrow Loop with only assignments
- Invariant generation for each system of nested loops by combinatorics and algebra For the first nested-loop system:
 - 1. Recurrence solving for the inner loops

$$\begin{array}{rcl} \mathbf{a}_{j_{2}} & = & \mathbf{a}_{j} + \frac{b_{j}}{2^{j_{1}-1}} \left(1 - \frac{1}{2^{j_{2}}}\right) \\ \mathbf{b}_{j_{2}} & = & \frac{b_{j}}{2^{j_{1}+j_{2}}} \\ \mathbf{d}_{j_{2}} & = & \frac{d_{j}}{2^{j_{1}+j_{2}}} \\ \mathbf{y}_{j_{2}} & = & \mathbf{y}_{j} + \frac{d_{j}}{2^{j_{1}}} \left(1 - \frac{1}{2^{j_{2}}}\right) \end{array}$$

The Algorithm

- Program Transformation \rightarrow Loop with only assignments
- Invariant generation for each system of nested loops by combinatorics and algebra For the first nested-loop system:
 - 1. Recurrence solving for the inner loops

2. Index and variable manipulation

$$\begin{array}{rcl} \mathbf{a}_{j_2} & = & \mathbf{a}_j + \frac{b_j}{2^{j_1 - 1}} \left(1 - \frac{1}{2^{j_2}} \right) \\ \mathbf{b}_{j_2} & = & \frac{b_j}{2^{j_1 + j_2}} \\ \mathbf{d}_{j_2} & = & \frac{d_j}{2^{j_1 + j_2}} \\ \mathbf{y}_{j_2} & = & \mathbf{y}_j + \frac{d_j}{2^{j_1}} \left(1 - \frac{1}{2^{j_2}} \right) \end{array}$$

・ロト ・個 ト ・ ヨト ・ ヨト ・ ヨ

The Algorithm

- Program Transformation \rightarrow Loop with only assignments
- Invariant generation for each system of nested loops by combinatorics and algebra

For the first nested-loop system:

- 1. Recurrence solving for the inner loops
- 2. Index and variable manipulation
- 3. Recurrence-counters elimination

The Algorithm

- Program Transformation \rightarrow Loop with only assignments
- Invariant generation for each system of nested loops by combinatorics and algebra

For the first nested-loop system:

- 1. Recurrence solving for the inner loops
- 2. Index and variable manipulation
- 3. Recurrence-counters elimination

$$-b_{j_2} + \frac{b_{j^*} d_{j_2}}{d_j} = 0$$

$$a_{j_2} * d_j - a_j * d_j - 2b_j * y_{j_2} + 2b_j * y_j = 0$$

$$-b_j d_{j_2} + b_{j_2} d_j = 0$$

$$-(a_{j_2}-a_j)*d_{j_2}+b_{j_2}*(-2y_j+2y_{j_2}) = 0$$

$$-2b_{j} + \frac{(a_{j_{2}}-a_{j}+2b_{j_{2}})*d_{j}}{d_{j_{2}}+y_{j_{2}}-y_{j}} = 0$$

◆□>

(日)

The Algorithm

- Program Transformation \rightarrow Loop with only assignments
- Invariant generation for each system of nested loops by combinatorics and algebra

For the first nested-loop system:

- 1. Recurrence solving for the inner loops
- 2. Index and variable manipulation
- 3. Recurrence-counters elimination

$$-b + \frac{b_0 * d}{d_0} = 0$$

$$a * d_0 - a_0 * d_0 - 2b_0 * y + 2b_0 * y_0 = 0$$

- $-b_0d+bd_0 = 0$
- $-(a-a_0)*d+b*(-2y_0+2y) = 0$

$$-2b_0 + \frac{(a-a_0+2b)*d_0}{d} + y - y_0 = 0.$$

・ロト ・四ト ・ヨト ・ヨト ・ ヨ

The Algorithm

- Program Transformation \rightarrow Loop with only assignments
- Invariant generation for each system of nested loops by combinatorics and algebra
 For the second posted loop system;

For the second nested-loop system:

$$a*d-a_0*d-2by+2by_0 = 0$$

$$\frac{(a-a_0)*d}{d_0} - b_0 - 2*d_0^{-1}*d_0 + y_0 - y = 0$$

$$-b + \frac{b_0 * d}{d_0} = 0$$

$$a * d_0 - a_0 * d_0 - 2b_0 * y + 2b_0 * y_0 = 0$$

$$-b_0*d+b*d_0 = 0$$

$$\frac{d*(y-y_0)}{d_0} - d_0 - d_0^{-1} * d_0 + y_0 - y = 0$$

$$2b_0 + \frac{(a-2b_0-a_0)*d_0}{d_0+y_0-y} = 0$$

The Algorithm

- Program Transformation \rightarrow Loop with only assignments
- Invariant generation for each system of nested loops by combinatorics and algebra
- Build the union of the obtained formulae for the nested–loop subsystems → system with 12 polynomial equations
- Check invariant property

$$\begin{array}{rcl} -b + \frac{b_0 * d}{d_0} & = & 0 \\ -b_0 * d + b * d_0 & = & 0 \end{array}$$

$$-(a - a_0) * d + b * (-2y_0 + 2y) = 0$$

$$\frac{*(y-y_0)}{d_0} - d_0 - d_0^{-1} * d_0 + y_0 - y = 0$$

$$\frac{a-a_0}{d_0} + a = b_0 - 2d_0^{-1} + d_0 + y_0 - y = 0$$

$$1 * d - a_0 * d - 2b * y + 2 * b * y_0 = 0$$

The Algorithm

- Program Transformation \rightarrow Loop with only assignments
- Invariant generation for each system of nested loops by combinatorics and algebra
- Build the union of the obtained formulae for the nested–loop subsystems → system with 12 polynomial equations
- Check invariant property

$$-b + \frac{b_0 * d}{d_0} = 0$$

$$-b_0 * d + b * d_0 = 0$$

$$\begin{array}{rcl} -(a-a_0)*d+b*(-2y_0+2y)&=&0\\ \frac{d*(y-y_0)}{dt}-d_0-d_0^{-1}*d_0+y_0-y&=&0 \end{array}$$

$$\frac{(a-a_0)*d}{d_0} - b_0 - 2d_0^{-1} * d_0 + y_0 - y = 0$$

$$a * d - a_0 * d - 2b * y + 2 * b * y_0 = 0$$

The Algorithm

- Program Transformation \rightarrow Loop with only assignments
- Invariant generation for each system of nested loops by combinatorics and algebra
- Build the union of the obtained formulae for the nested–loop subsystems → system with 12 polynomial equations
- Check invariant property

$$\begin{array}{rcl} -b + \frac{b_0 * d}{d_0} & = & 0 \\ -b_0 * d + b * d_0 & = & 0 \end{array}$$

$$\begin{array}{rcl} -(a-a_0)*d+b*(-2y_0+2y) &=& 0\\ \frac{d*(y-y_0)}{d_0}-d_0-d_0^{-1}*d_0+y_0-y &=& 0\\ \frac{(a-a_0)*d}{d_0}-b_0-2d^{-1}*d_0+y_0-y &=& 0 \end{array}$$

$$\frac{(a-a_0)*a}{a_0} - b_0 - 2d_0^{-1} * d_0 + y_0 - y = 0$$

a * d - a_0 * d - 2b * y + 2 * b * y_0 = 0

$$-b + \frac{b_0 * d}{d_0} = 0 \quad \bigwedge a * d - a_0 * d - 2b_0 * d * d_0^{-1} * y + \frac{2 * b_0 * d * y_0}{d_0} = 0$$

(日)

The Algorithm

- Program Transformation \rightarrow Loop with only assignments
- Invariant generation for each system of nested loops by combinatorics and algebra
- Build the union of the obtained formulae for the nested–loop subsystems → system with 12 polynomial equations
- Check invariant property

а

$$\begin{array}{rcl}
-b + \frac{b_0 * d}{d_0} &= & 0 \\
-b_0 * d + b * d_0 &= & 0
\end{array}$$

$$-(a - a_0) * d + b * (-2y_0 + 2y) = 0$$

$$d^{(y-y_0)} d d^{-1} * d + y = 0$$

$$\frac{b_0}{d_0} - b_0 - 2d_0^{-1} * d_0 + y_0 - y = 0$$

$$\frac{a - a_0) * d}{d_0} - b_0 - 2d_0^{-1} * d_0 + y_0 - y = 0$$

$$a * d - a_0 * d - 2b * y + 2 * b * y_0 = 0$$

$$-b + \frac{1}{2} * d * Q = 0 \ \bigwedge \ a * d - d * y * Q = 0$$

(日) (雪) (日) (日) (日)

The Algorithm

- Program Transformation \rightarrow Loop with only assignments
- Invariant generation for each system of nested loops by combinatorics and algebra
- Build the union of the obtained formulae for the nested–loop subsystems
- Check invariant property
- Take the minimal set of the invariant properties, by using Gröbner basis w.r.t. the loop variables
- Invariant ≡ generated algebraic property ∧ asserted non-algebraic properties

$$-b + \frac{1}{2} * d * Q = 0 \land a * d - d * y * Q = 0 \land y \le P/q < y + d \land 0 < d \le 1$$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Application to Program Verification

Specification ["ReDiv", ReDiv [$\downarrow P, \downarrow Q, \downarrow Tol, \uparrow r$],

$$\begin{array}{l} \mathsf{Pre} \to (\mathsf{Q} > \mathsf{P}) \land (\mathsf{P} \geq \mathsf{0}) \land (\mathit{Tol} \geq \mathsf{0}), \\ \mathsf{Post} \to (\mathsf{P}/\mathsf{Q} < r + \mathit{Tol}) \land (r \leq \mathsf{P}/\mathsf{Q})] \end{array}$$

Program["ReDiv", ReDiv[$\downarrow P, \downarrow Q, \downarrow Tol, \uparrow r$], Module $\{a, b, d, v\}$. a := 0; b := Q/2; d := 1; y := 0;While d > Tol, If P < a + b. b := b/2; d := d/2,a := a + b; y := y + d/2; b := b/2; d := d/2,Assert $\rightarrow y < P/q < y + d \land 0 < d < 1$, Invariant $\rightarrow -b + \frac{1}{2} * d * Q = 0 \land a * d - d * y * Q = 0];$ r := y]]

Related Work

Outline

Invariant Generation for Loops with Conditionals

Related Work

(日) (雪) (日) (日) (日)

Automated Invariant Generation - Related Work

Affine Relationships among Program Variables --- Gröbner basis

- B.Elspas, M.W.Green, K.N.Lewitt and R.J.Waldinger (1972);
- M.Karr (1974);
- M.Müller-Olm and H.Seidl (2002, 2004);
- S.Sankaranaryanan, B.S.Henry and Z.Manna (2004);
- E.Rodriguez-Carbonell and D.Kapur (2004).

・ロット (雪) ・ (目) ・ (日)

Automated Invariant Generation - Related Work

Affine Relationships among Program Variables \rightarrow Gröbner basis

- B.Elspas, M.W.Green, K.N.Lewitt and R.J.Waldinger (1972);
- M.Karr (1974);
- M.Müller-Olm and H.Seidl (2002, 2004);
- S.Sankaranaryanan, B.S.Henry and Z.Manna (2004);
- E.Rodriguez-Carbonell and D.Kapur (2004).

Outline

Related Work

• Powerful tool for Invariant Generation by algebraic and combinatorial methods

- 1. Loops only with assignments:
 - recurrence solving by: Gosper Alg., geometric series, Generating Function;
 - Intro-work: Integrate new recurrence adving techniques;
 also applicable for new linear inventent generation;
- 2. Loops with conditionals:
 - Novel-algorithm based on algorithms from combinatorics and polynomial algebra;
 - tuture work: reduction of obtained non-linear invariant properties;
- future work: slight modifications → invariant generation for nested loops;
- Treatment of other type of recurrences and solving techniques;
- Generation of invariant linear inequalities, non-algebraic invariant properties;
- Generation of termination terms.

- Powerful tool for Invariant Generation by algebraic and combinatorial methods
 - 1. Loops only with assignments:
 - recurrence solving by: Gosper Alg., geometric series, Generating Function;
 - future work: integrate new recurrence solving techniques;
 - also applicable for non–linear invariant generation;
 - 2. Loops with conditionals:
 - Novel-algorithm based on algorithms from combinatorics and a polynomial algobra;
 - future work: slight modifications → invariant generation for nested loops;
- Treatment of other type of recurrences and solving techniques;
- Generation of invariant linear inequalities, non-algebraic invariant properties;
- Generation of termination terms.

- Powerful tool for Invariant Generation by algebraic and combinatorial methods
 - 1. Loops only with assignments:
 - recurrence solving by: Gosper Alg., geometric series, Generating Function;
 - future work: integrate new recurrence solving techniques;
 - also applicable for non–linear invariant generation;
 - 2. Loops with conditionals:
 - Novel-algorithm based on algorithms from combinatorics and polynomial algebra;
 - future work: slight modifications → invariant generation for nested loops;
- Treatment of other type of recurrences and solving techniques;
- Generation of invariant linear inequalities, non-algebraic invariant properties;
- Generation of termination terms.

- Powerful tool for Invariant Generation by algebraic and combinatorial methods
 - 1. Loops only with assignments:
 - recurrence solving by: Gosper Alg., geometric series, Generating Function;
 - future work: integrate new recurrence solving techniques;
 - also applicable for non–linear invariant generation;
 - **2.** Loops with conditionals:
 - Navel-algorithm, based on algorithms from combinatorics and polynomial algobra.
 - future work: slight modifications → invariant generation for nested loops;
- Treatment of other type of recurrences and solving techniques;
- Generation of invariant linear inequalities, non-algebraic invariant properties;
- Generation of termination terms.

- Powerful tool for Invariant Generation by algebraic and combinatorial methods
 - 1. Loops only with assignments:
 - recurrence solving by: Gosper Alg., geometric series, Generating Function;
 - future work: integrate new recurrence solving techniques;
 - also applicable for non-linear invariant generation;
 - 2. Loops with conditionals:
 - Novel-algorithm based on algorithms from combinatorics and polynomial algebra;
 but me work: reduction of other polynomial contained more than the polynomial and polynomial and
 - future work: slight modifications → invariant generation for nested loops;
- Treatment of other type of recurrences and solving techniques;
- Generation of invariant linear inequalities, non-algebraic invariant properties;
- Generation of termination terms.

- Powerful tool for Invariant Generation by algebraic and combinatorial methods
 - 1. Loops only with assignments:
 - recurrence solving by: Gosper Alg., geometric series, Generating Function;
 - future work: integrate new recurrence solving techniques;
 - also applicable for non-linear invariant generation;
 - 2. Loops with conditionals:
 - Novel-algorithm based on algorithms from combinatorics and polynomial algebra;
 - future work: reduction of obtained non-linear invariant properties;
 - future work: slight modifications → invariant generation for nested loops;
- Treatment of other type of recurrences and solving techniques;
- Generation of invariant linear inequalities, non-algebraic invariant properties;
- Generation of termination terms.

- Powerful tool for Invariant Generation by algebraic and combinatorial methods
 - 1. Loops only with assignments:
 - recurrence solving by: Gosper Alg., geometric series, Generating Function;
 - future work: integrate new recurrence solving techniques;
 - also applicable for non-linear invariant generation;
 - 2. Loops with conditionals:
 - Novel-algorithm based on algorithms from combinatorics and polynomial algebra;
 - future work: reduction of obtained non-linear invariant properties;
 - future work: slight modifications → invariant generation for nested loops;
- Treatment of other type of recurrences and solving techniques;
- Generation of invariant linear inequalities, non-algebraic invariant properties;
- Generation of termination terms.

・ロット (雪) ・ (目) ・ (日)

- Powerful tool for Invariant Generation by algebraic and combinatorial methods
 - 1. Loops only with assignments:
 - recurrence solving by: Gosper Alg., geometric series, Generating Function;
 - future work: integrate new recurrence solving techniques;
 - also applicable for non-linear invariant generation;
 - 2. Loops with conditionals:
 - Novel-algorithm based on algorithms from combinatorics and polynomial algebra;
 - future work: reduction of obtained non-linear invariant properties;
 - future work: slight modifications → invariant generation for nested loops;
- Treatment of other type of recurrences and solving techniques;
- Generation of invariant linear inequalities, non-algebraic invariant properties;
- Generation of termination terms.

- Powerful tool for Invariant Generation by algebraic and combinatorial methods
 - 1. Loops only with assignments:
 - recurrence solving by: Gosper Alg., geometric series, Generating Function;
 - future work: integrate new recurrence solving techniques;
 - also applicable for non-linear invariant generation;
 - 2. Loops with conditionals:
 - Novel-algorithm based on algorithms from combinatorics and polynomial algebra;
 - future work: reduction of obtained non-linear invariant properties;
 - future work: slight modifications → invariant generation for nested loops;
- Treatment of other type of recurrences and solving techniques;
- Generation of invariant linear inequalities, non-algebraic invariant properties;
- Generation of termination terms.

(ロ)、(型)、(型)、(型)、(型)、(の)、

- Powerful tool for Invariant Generation by algebraic and combinatorial methods
 - 1. Loops only with assignments:
 - recurrence solving by: Gosper Alg., geometric series, Generating Function;
 - future work: integrate new recurrence solving techniques;
 - also applicable for non-linear invariant generation;
 - 2. Loops with conditionals:
 - Novel-algorithm based on algorithms from combinatorics and polynomial algebra;
 - future work: reduction of obtained non-linear invariant properties;
 - future work: slight modifications → invariant generation for nested loops;
- Treatment of other type of recurrences and solving techniques;
- Generation of invariant linear inequalities, non-algebraic invariant properties;
- Generation of termination terms.

- Powerful tool for Invariant Generation by algebraic and combinatorial methods
 - 1. Loops only with assignments:
 - recurrence solving by: Gosper Alg., geometric series, Generating Function;
 - future work: integrate new recurrence solving techniques;
 - also applicable for non-linear invariant generation;
 - 2. Loops with conditionals:
 - Novel-algorithm based on algorithms from combinatorics and polynomial algebra;
 - future work: reduction of obtained non-linear invariant properties;
 - future work: slight modifications → invariant generation for nested loops;
- Treatment of other type of recurrences and solving techniques;
- Generation of invariant linear inequalities, non–algebraic invariant properties;
- Generation of termination terms.

(ロ)、(型)、(E)、(E)、(E)、(O)

- Powerful tool for Invariant Generation by algebraic and combinatorial methods
 - 1. Loops only with assignments:
 - recurrence solving by: Gosper Alg., geometric series, Generating Function;
 - future work: integrate new recurrence solving techniques;
 - also applicable for non-linear invariant generation;
 - 2. Loops with conditionals:
 - Novel-algorithm based on algorithms from combinatorics and polynomial algebra;
 - future work: reduction of obtained non-linear invariant properties;
 - future work: slight modifications → invariant generation for nested loops;
- Treatment of other type of recurrences and solving techniques;
- Generation of invariant linear inequalities, non–algebraic invariant properties;
- Generation of termination terms.