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Chapter 1

Introduction

1.1 Symbolic Summation I

The answer to combinatorial enumerations often most easily can be expressed in
terms of sums. For instance, counting the number of multiplication operations in
the polynomial expression anxn + an−1x

n−1 + · · ·+ a0, the direct answer is

n∑

k=0

k.

Rewriting the polynomial expression, for instance, in Hornerform, and counting
multiplications again results in the more explicit answer n. In order to compare
complexities, a representation of the sum expression in closed form is desired.

In fact, everyone knows how to find a simpler expression for the sum: Since the
average of the summand is given by n

2 and the summation range is of size n + 1, we
have, that the sum is equal to n(n+1)

2 .

It is desirable to provide algorithms that look for simpler representations of sum
expressions. Symbolic Summation indeed is a task of its own beauty and will be
studied in the following.

Considering the task of Symbolic Summation, the next example is a little more
exiting:

n∑

k=0

1
(k + 1)(k + 2)

= ?

It can be solved by the observation that 1
(k+1)(k+2) = 1

k+1 − 1
k+2 , which yields

4



CHAPTER 1. INTRODUCTION 5

n∑

k=0

1
(k + 1)(k + 2)

= (1− 1
2
) + (

1
2
− 1

3
) + · · ·+ (

1
n + 1

− 1
n + 2

) = 1− 1
n + 2

.

It turns out that we can also solve the first example by this telescoping trick. (Ob-
serve that k = k(k+1)

2 − (k−1)k
2 .) This is not by accident! Whenever we have∑n

k=0 f(k) = g(n), we find that g(n + 1) − g(n) = f(n + 1), or stated with use
of difference and shift operator, ∆g = Ef .

Sum expressions of the type
∑n

k=0 f(k) are called indefinite sums. In order to find a
sum quantifier free representation for the indefinite sum over f , you have to construct
g, such that ∆g = f , and g free of sum quantifiers. g is called the anti-difference of
f . Then you have

∑n
k=0 f(k) = g(n + 1)− g(0).

Let us consider the polynomials

(x)i :=
i−1∏

j=0

(x− j).

If IF is a field, then the polynomials {(x)0, (x)1, . . .} are a basis of the vector space
IF[x] over IF, i.e., any p ∈ IF[x] can be represented as a linear combination of the
polynomials (x)i. Now we find that

∆(x)i = [(x + 1)− (x− i + 1)]
i−2∏

j=0

(x− j) = i (x)i−1, (1.1)

and therefore the anti-difference of a polynomial is constructible: Compute the repre-
sentation of the given polynomial p in terms of the basis above and use equation (1.1)
to replace the polynomials of the basis by linear expressions in the ∆ operator! Since
the operator ∆ is linear too, you find that your polynomial is represented as the re-
sult of a ∆ operation. The argument of this operation is the anti-difference of p.
This algorithm was already found by J. Bernoulli in the 17th century.

An algorithmic approach to find an anti-difference of a rational function, in case it
exists, was a byproduct of the work of Moenck in 1977 who found an algorithm to
compute a canonical form of indefinite sums over rational functions. Peter Paule
discovered that Moenck’s algorithm is not working in every case and gave a correct
solution in [Pau93]. The problem was solved by a different approach before by S.
Abramov.

In [Gos78] Gosper describes an algorithm for constructing the anti-difference for
hypergeometric sequences. The algorithm is very simple and does not reveal the
theory behind. You can use it and be fascinated by the fact that it works.

In various papers as for instance [Zei90], D. Zeilberger introduces an algorithm based
on Gosper’s algorithm for finding polynomial recurrences for definite hypergeometric
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sum expressions. His idea, however, has a more general background and together
with H. Wilf he was able do develop a method for finding recurrences for hypergeo-
metric multi-sums and integrals, see [WZ92].

Due to the work of M. Petkovšek, one can transform such recurrences back to hyper-
geometric expressions, if they admit a hypergeometric sequence solution, see [Pet92].

Recurrence relations are a convenient representation, for instance, for proving. That
is why it may be considered to be a more simple representation for sum-expressions,
anyhow.

1.2 Goals of the thesis

Together with Peter Paule I wrote an implementation of Zeilberger’s algorithm. Un-
like other implementations it can handle nonstandard boundary conditions. Since
no precise theory for the treatment of the summation bounds is available, we de-
veloped one, which is part of my diploma thesis now. The objective is to provide
a profound theoretical background to the already well working implementation; see
[PS95].

In chapter 2 we present the notation used; In chapter 3 we formalize the problem
of finding simpler representations for sum expressions. Chapter 4 is more or less
independent; there we set up a calculus to compute with hypergeometric terms. All
the knowledge of the chapters 3 and 4 is used in chapter 5 to discuss how Gosper’s
algorithm computes closed forms for indefinite hypergeometric sums, if they exist.
Our insight is backed up by two interesting examples. In chapter 6 we prove Zeil-
berger’s algorithm for definite sums with nonstandard boundary conditions, again
providing a few examples, that are off the road. In chapter 7 we proudly introduce
the new algorithm MS to simplify hypergeometric sum expressions. It is a very fast
tool for proving double-sum identities.



Chapter 2

Notation

In literature for some notions there are different conventions. Here we make clear
how we use notation.

2.1 Constants

Constant Description
IN := {0, 1, . . . , }
Z,C Integers, complex numbers.
Z− := {−1,−2, . . .}
Z−0 := {0,−1, . . .}
x, x1, . . . , y, y1, . . . To build up polynomial rings and rational function

fields we need transcendental extensions of simpler
domains. These are extended by an algebraic inde-
pendent indeterminate. To make this construction
convenient we use x, x1, . . . , y, y1, . . . as indetermina-
tes, which are always considered to be algebraic in-
dependent.

µ ∈ IN largest index i ∈ IN used for xi.
ν ∈ IN see page 17
~x := (x1, . . . , xµ)
~x2 := (x2, . . . , xµ)
~xν+1 := (xν+1, . . . , xµ)

7



CHAPTER 2. NOTATION 8

Constant Description
ϕ Denotes the Pochhammer function defined as follows: Let p be

some field element, z ∈ Z and let
∏

j∈{} p := 1; then

ϕ(p, z) :=
( z−1∏

j=0

(p + j)
)( −z∏

j=1

(p− j)
)−1

.

2.2 Typed Variables

I use typed variables. This is a handy way to get rid of lot of assertions like “let n ∈
IN”. The problem with this technique is, that it is usually hard to find out whether
a variable is typed or not. I cannot type all variables right at the beginning, because
some notions needed for a special type are not defined at this point. Nevertheless
I list all typed variables here, so the reader can always refer to this list. If the
typing done below uses notions not yet defined, then the typing is repeated in a
later chapter, after introducing the notion.

Typed Variables 1 (Overview)

Throughout this thesis assert:

A is a set,
R is a ring of characteristic 0,
IF is a field of characteristic 0,
i, j, m, n ∈ IN,
z ∈ Z,
u, w ∈ C,
~u ∈ Cµ,
~w ∈ Cµ−1,
%, ς ∈ C(~x),
f, g, h ∈ HT,
f−, g−, h− ∈ HT−,
f+, g+, h+ ∈ HT+.

For the chapters 3 and 4 assert:

r, r1, . . . , s, s1, . . . ∈ IL.
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2.3 Notions

Notion Description
p[c] If p ∈ R[x], c ∈ R then by p[c] we denote the ring element found

by substituting c for x in p.
p(x + 1) If p ∈ R[x] then by p(x + 1) we denote the composition of the

polynomial p and the polynomial x+1. If we have a multivariate
polynomial q ∈ R[x, y] then q(x + 1) is ambiguous. Therefore we
prefer writing q(x, y) ∈ R[x, y] to assert that x is the first variable,
in order to distinguish between q(x, x + 1) and q(x + 1, y). There
is no difference between p[c] and p(c).

p ◦ (x + 1) Denotes the same as above. For instance (x+1)◦y = y+1 cannot
be denoted by (x + 1)(y).

IF∗ Multiplicative group of the field IF.
〈A〉 Abelian group generated by A.
AIN A-sequences.
(u, ~w) Is an element of Cµ. It is not a pair, it is a tuple of length µ.



Chapter 3

Sequences

3.1 Basic facts about sequences

In Symbolic Summation we typically consider a sum with a symbolic upper bound
and therefore the sum over any finite starting section of a sequence of values. A
closed form to a summation problem actually represents a sequence of sums. In
the first example, for instance, we computed

∑0
k=0 k,

∑1
k=0 k,

∑2
k=0 k , etc. The

problem was formulated using the sequence (k)k≥0 and also the answer is a sequence:(
k(k+1)

2

)
k≥0

. Both sequences are represented by terms.

As a sequence is just a special type of function, we find that many terms represent
sequences. For instance, any polynomial p ∈ R[x] defines the R-sequence, (p[k])k≥0.
Consider a polynomial q(x, y) ∈ R[x, y]. It defines the R[y]-sequence, (q(k, y))k≥0

and the R[x]-sequence, (q(x, k))k≥0. But also (sin(k))k≥0 is a sequence.

3.1.1 Operations on sequences

For a fixed ring R, we define the following operations on R-sequences:

Definition 1 (Operations on R-sequences)

Let (ai)i≥0, (bi)i≥0 ∈ RIN, then we define:

1. Addition

(ai)i≥0 + (bi)i≥0 := (ai + bi)i≥0,

−(ai)i≥0 := (−ai)i≥0.

10
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2. Hadamard product

(ai)i≥0 · (bi)i≥0 := (ai · bi)i≥0.

3. First element sequence

L(ai)i≥0 := (a0)i≥0.

4. Shift operator

E(ai)i≥0 := (ai+1)i≥0.

5. Difference operator

∆(ai)i≥0 := E(ai)i≥0 − (ai)i≥0.

6. Sum operator

∑
(ai)i≥0 :=

( i∑

k=0

ak

)
i≥0

.

Note, that for any R also (RIN,+, ·) is a ring. Following the approach of [PN95] we
can more formally establish what we have found out in the introduction. In any ring
of R-sequences, we have a close relationship between a sum and the anti-difference
of a sequence.

Theorem 1 (Sum quantifier elimination)

If a, b ∈ RIN then
∑

a = b− Lb + La ⇔ Ea = ∆b,
∑

a = Eb− Lb ⇔ a = ∆b.

Proof

1. “⇒”: Assuming
∑

a = b − Lb + La, we find Ea = ∆b by applying the ∆
operator.

“⇐”: Assuming (Ea = ∆b), we have

E
∑

a = La +
∑

Ea = La +
∑

∆b = Eb− Lb + La = E(b− Lb + La),
L

∑
a = La = L(b− Lb + La).
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Combining this we have
∑

a = b− Lb + La.

2. “⇒”: Assuming
∑

a = Eb− Lb, we find

Ea = E∆b, by applying the ∆-operator;
La = LEb− Lb, by applying the L-operator;

We combine this to a = ∆b.

“⇐”: Assuming (a = ∆b), by direct application of the
∑

-operator we have∑
a = b− Lb.

2

Note, that if
∑

a = b we immediately derive b = b− Lb + La and also b = Ec− Lc,
with Lc = 0 and Ec = b. So again, given

∑
a = b, we can apply the theorem above

to find the anti-differences Ea = ∆b and a = ∆c. In the world of sequences looking
for anti-differences is just the same thing as looking for sums!

In the following we will have to restrict the sequences in use to a subset that can
be represented by a class of terms. In that case version 1 of the theorem above
is preferable since there the related anti-difference (b) can be expressed with the
same term as the sum. Using version 2, we do not know if the anti-difference (c) is
representable by the class of terms in question, even under the assumption that the
sum is.

The two versions switch sides, if the class of terms allows to define an inverse shift-
operator. Then the anti-difference c is given by L−1b. In that case the formula for
the sum in version 2 (Eb− Lb) is a little bit simpler and should be prefered.

3.1.2 Symbolic Summation II

In the world of computers we do not know any sequences. Rather than that, we
have terms (or data structures) that implicitly define sequences. It is a task of this
thesis to give explicit definitions of the sequences represented by a special class of
terms.

The input of a summation algorithm will be some term f defining a sequence (ai)i≥0.
The problem is to find a term g, free of sum quantifiers defining the sequence (bi)i≥0,
such that

∑
(ai)i≥0 = (bi)i≥0.

Definition 2 (Sequence representations)

If X is a set of terms, then the pair (X, φ) is an A-sequence representation iff
φ : X → AIN.
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Definition 3 (Indefinite summation problem)

Let (Y, φ) be a R-sequence representation and X ⊆ Y , then the indefinite summation
problem of (Y, φ) with input domain X is defined by

Input : f ∈ X
Output : g ∈ Y, such that

∑
φ(f) = φ(g)

or failure, if no such g exists.

By theorem 1 we know that the indefinite summation problem of (RIN, id) with input
domain RIN is equivalent to the problem of finding anti-differences of sequences.

Definition 4 (Anti-difference problem)

Let (Y, φ) be a R-sequence representation and X ⊆ Y , then the anti-difference
problem is given by:

Input : f ∈ X
Output : g ∈ Y, such that φ(f) = ∆φ(g)

or failure, if no such g exists.

In order to be able to solve the related problem of finding the anti-difference, it is of
advantage to equip the set of terms with the operations of shifting (E), adding (+,−)
and projection (L). These operations must be such, that they can be performed by
a computer. Furthermore the operations on the terms have to go along with the
corresponding operations on the represented sequences.

For a set of terms with such operations we can relate the problem of summation
with the problem of finding anti-differences once again:

Corollary 2 (Anti-difference vs. indefinite summation)

Let (Y, φ) be a R-sequence representation; E, L, +,− are operators on Y as above,
such that Y is closed under these operators and φ is an (E, L,+,−)-homomorphism.
If X ⊆ Y is closed under E then for f ∈ X and g ∈ Y , we have:

φ(Ef) = φ(Eg − g) ⇔
∑

φ(f) = φ(g−Lg+Lf).

By this corollary we know that for a set of R-sequence representations containing the
operators E, L, + and −, the problem of finding the anti-difference is equivalent to
the problem of finding the solution of the (backwards shifted) indefinite summation
problem. An algorithm solving the indefinite summation problem for a special class
of terms does not have to deal with sum quantifiers!
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We give an informal summary of what we have to establish in order to solve the
indefinite summation problem for a set of sequence defining terms.

Concept 1 (Finding closed forms for sum-expressions)

We need:

1. A R-sequence interpretation (Y, φ), and an input domain X ⊆ Y .

2. The operations E, L,+ and −, such that

(a) Y is closed under E, L,+ and − and X is closed under E,

(b) φ is an (E, L,+,−)-homomorphism.

3. An algorithm that solves the anti-difference problem of Y with input domain
X.

To illustrate this procedure, we prove the summation algorithm for polynomial se-
quences: The terms are given by Y = X = R[x], the interpretation of the terms as
R-sequences is defined by

∀p ∈ R[x] : φ(p) := (p[i])i≥0.

The operations are given by ∀p ∈ R[x] : Lp := p[0], Ep(x) := p(x + 1),−p := −p and
∀p, q ∈ R[x] : p+q := p + q.

It is an easy exercise to prove that φ is an (E, L,+,−)-homomorphism φ : R[x] →
RIN. As we showed in the beginning we have an algorithm that solves the anti-
difference problem for polynomials. If q(x) is the anti-difference of p(x) ∈ R[x],
then the result for the indefinite summation problem with input p(x) is given by
(E− L)q(x) = q(x + 1)− q[0].

3.1.3 Sequences defined by recurrences

We already discussed that in order to work with sequences we have to be able to
represent sequences. Any function defines a sequence, for instance (sin(i))i≥0 is one.
Today algorithmic Symbolic Summation can be done only for a small class of such
defined sequences.

The most celebrated algorithms in the field of Symbolic Summation are Gosper’s
and Zeilberger’s algorithm for summing over hypergeometric sequences. Actually I
do not like the notion of hypergeometric because scientists around the world do not
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agree what the definition of hypergeometric is. I do not want to contribute to more
confusion, but use the notion of “order one sequences” instead. For headlines and
names “hypergeometric” is just fine.

We deal with sequences that satisfy polynomial recurrences.

Definition 5 (P-finite sequences)

Let a = (ai)i≥0 ∈ RIN, then a is p-finite of order n iff

∃p0, . . . pn ∈ R[x], pn 6= 0: ∀i :
p0[i]ai + p1[i]ai+1 + · · ·+ pn[i]ai+n = 0.

The definition above suggests to ask for the minimal recurrence relation a sequence
satisfies.

Definition 6 (Order of a p-finite sequence)

Let a ∈ RIN, then

ord(a) := min{n | a is p-finite of order n}.

As an example we give the sequence (k!)k≥0. It is p-finite of order one since

∀i : (i + 1) i!− (i + 1)! = 0.

It is the class of p-finite sequences of order one, we are interested in. Assume we
have an R-sequence, a = (ai)i≥0, of order one, then it satisfies a recurrence relation
of order one, i.e., for some p, q ∈ R[x], q 6= 0, we have

p[i]ai − q[i]ai+1.

If we assume that ∀i : q[i] 6= 0 then we have

ai = a0

i−1∏

j=0

p[j]
q[j]

.

We can do even more under the additional assumption, that p and q can be represen-
ted as product of linear factors in x. This is possible, for instance, if R is a rational
function field over C. So assume that p = c

∏n
l=1(x + cl) and q = d

∏m
l=1(x − dl),

then we have
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ai = a0

( c

d

)i
∏n

l=1 ϕ(cl, i)∏m
l=1 ϕ(dl, i)

.

So we have a representation for many p-finite sequences of order one. This was the
motivation for mathematicians to define terms, sequences or series, similar to the
sequence above, to be hypergeometric. Note, that this representation – using rising
factorials – can be given in terms of factorials or falling factorials, also.

Summarizing we found a set of terms defining many sequences of order one. These
terms can serve as input class for a summation algorithm.

3.2 Hypergeometric terms representing sequences of
order one

3.2.1 The definition of hypergeometric terms

Motivated by the fact that a lot of p-finite sequences of order one can be represented
as a product of

• Rational functions

• Factorials

• Rising factorials

• Falling factorials

• Binomials

• Exponential expressions

we will use these ingredients to define the set of hypergeometric terms. A factorial
or a binomial with an arbitrary rational function as an argument, however, is not
necessarily of order one. For instance, (1

2y)!/(1
2(y + 1))! is not rational. Using

integer linear rational functions, we are on the safe side and find that factorials and
binomials define sequences of order one. Note, that for instance

1
4π

(2
√

2)k Γ
(k

4

)
Γ

(k + 2
4

)
Γ

(k + 1
2

)

defines a p-finite sequence of order one, but cannot directly be rewritten in terms of
integer linear factorials. (Hint: Γ(x)Γ(x+ 1

2) =
√

x
22x−1 Γ(2x), therefore the expression

above reduces to Γ(k).)



CHAPTER 3. SEQUENCES 17

Here we fix the number of variables we are interested in to be µ. These variables
are named x1, . . . , xµ. A term may be read as a sequence in several variables, for
instance, x + y defines the sequence y, y + 1, . . . or the sequence x, x + 1, . . .. We fix
ν ∈ IN, ν < µ such that x1, . . . , xν can be used to translate a term into a sequence
of order one. We fix the following constants:

~x := (x1, . . . , xµ),
~x2 := (x2, . . . , xµ),
~xν+1 := (xν+1, . . . , xµ).

Typed Variables 2 (Rational functions)

%, ς ∈ C(~x).

Definition 7 (Integer linear functions)

1. % is integer linear in xi iff

∃z, ς : ς free of xi, % = zxi + ς.

2. IL := {% | % is integer linear in x1, . . . , xν}.

Typed Variables 3 (Integer linear functions)

r, r1, . . . , s, s1, . . . ∈ IL.

Out of these rational functions we generate the multiplicative abelian group of hy-
pergeometric terms by introducing new function symbols. Right now, we define
only terms without meaning, afterwards we will map the terms to sequences. For
instance, in the following the exclamation mark is just a symbol without any func-
tional impact.

Definition 8 (Hypergeometric terms)

• Factorials

Fac := 〈{r! | r 6∈ Z−}〉,
FFac := 〈{(r)s | r, (r − s) 6∈ Z−}〉,
RFac := 〈{(r)s | r + s, r 6∈ Z−0 }〉.
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• Binomials

Bin :=

〈{(
r

s

)∣∣∣∣∣ r, s, r − s 6∈ Z−
}〉

.

• Exponential expressions

Exp := {rx1
1 rx2

2 · · · rxν
m | r1, . . . , rν ∈ C( ~xν+1)}.

• Multiplicative abelian group of hypergeometric terms

HT− := Fac× FFac× RFac× Bin× Exp,

HT := C(~x)∗ ×HT−,

In addition, we define

HT0 := HT ∪ {0}.

Typed Variables 4 (Terms)

f, g, h ∈ HT
f−, g−, h− ∈ HT−.

We had to exclude a couple of constructions, such as (−1)! and (−2)k. There are
three different types of terms that do not fit into the definition of hypergeometric
terms. The easiest one is the type of expression that does not make sense, since the
classic evaluation of the construction is not defined (compare definition 9). So do
not use (−1)!, (2)−3 or

(−1
0.5

)
. The second type is an expression, which evaluates to 0

for any choice of values. This means it can be viewed as zero on the algebraic level,
too. Write 0 instead of 1

(−1)! or (−1)2. Calculating with 1
(a)! and then plugging in

−1 for a will be no problem at all. To the third type belong expressions that can
be rewritten, for example (−3)2 = 6 or (−2)a = (−1)a(2)a.

We give a complete table of rules that show how to rewrite an expression excluded
in the definition above to a hypergeometric term. Note, that such a rewrite rule
may enlarge the domain of evaluation, again compare definition 9, only the last rule
leaves you with an expression evaluable over a smaller domain than the original. So
we did find one type of expression, namely

(s+z
s

)
, that cannot fully be expressed in

our model.

If z ∈ Z− then use the following rewrite rules:



CHAPTER 3. SEQUENCES 19

z! → is meaningless 1
z! → 0

(z)s → (−1)s(−z)s

(s)s−z → (−1)s−z(−s)s−z

(z + 1)s → (−1)s(−z − 1)s

(s)z−s+1 → (−1)z−s+1(−s)z−s+1(z
s

) → (−1)s
(s−z−1

s

)
(s
z

) → 0 1

(s
z)

→ is meaningless
(s+z

s

) → (−1)s
(−z−1

s

)
.

A hypergeometric term is defined as a tuple of subexpressions. We do not always
want to write (x, (1, 1, 1, 1, 1)) for the rational function x as an element of HT. Rather
than that we express the elements of HT by the sloppily introduced canonical form,

%
n1∏

i=0

(ri,1)!ji,1

n2∏

i=0

(ri,2)si,2

ji,2

n3∏

i=0

(ri,3)si,3

ji,3

n4∏

i=0

(
ri,4

si,4

)ji,4

rx1
1 rx2

2 · · · rxm
m .

This is a canonical form because each subexpression appears in its obvious canonical
form. Translating this canonical form back to the tuple notation we have to be care-
ful. Multiplication of elements of HT will always be written using a dot, whereas the
canonical form does not contain any dots. Thus with %ς we denote (%ς, (1, 1, 1, 1, 1))
whereas %·ς must be translated to (%, (1, 1, 1, 1, 1))(ς, (1, 1, 1, 1, 1)). Since both terms
are equal in HT the different meaning of %ς and % · ς is usually of little importance.

3.2.2 Standard interpretation of hypergeometric terms

In order to be able to speak of a representations for sequences we need some func-
tional interpretation of hypergeometric terms. Factorials, binomials and rational
functions have a precise meaning, already. We acknowledge this fact by giving a
definition of the evaluation of hypergeometric terms extending the classic meaning
of the terms over the complex numbers. I must point out that this evaluation cannot
be used to set up the sequence interpretation, as we see in section 4.1.4. This is why
we define an alternative evaluation model in section 4.2. The following definition
will give us an orientation for how evaluation has to look like.

Definition 9 (Classic evaluation of hypergeometric terms)

We define the c-evaluation of a hypergeometric term at ~u to be the product of the
c-evaluation of its sub-terms. If any sub-term cannot be evaluated, then the overall
evaluation is undefined, as well.

The evaluation of the sub-terms is given by the following, where the symbol ∞ is
used to indicate that an evaluation is undefined:
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s![~u] :=

{
Γ(s[~u] + 1), if s[~u] 6∈ Z−,
∞, if s[~u] ∈ Z−;

(r)s[~u] := lim
r→r[~u]

Γ(r + 1)
Γ(r − s[~u] + 1)

=

=





Γ(r[~u]+1)
Γ((r−s)[~u]+1) , if r[~u] 6∈ Z− ∧ (r − s)[~u] 6∈ Z−,

0, if r[~u] 6∈ Z− ∧ (r − s)[~u] ∈ Z−,
∞, if r[~u] ∈ Z− ∧ (r − s)[~u] 6∈ Z−,

(−1)s[~u] Γ((s−r)[~u])
Γ(−r[~u]) , if r[~u] ∈ Z− ∧ (r − s)[~u] ∈ Z−;

(r)s[~u] := lim
r→r[~u]

Γ(r + s[~u])
Γ(r)

=

=





Γ((r+s)[~u])
Γ(r[~u]) , if (r + s)[~u] 6∈ Z−0 ∧ r[~u] 6∈ Z−0 ,

0, if (r + s)[~u] 6∈ Z−0 ∧ r[~u] ∈ Z−0 ,
∞, if (r + s)[~u] ∈ Z−0 ∧ r[~u] 6∈ Z−0 ,

(−1)s[~u] Γ(−r[~u]+1)
Γ(1−(r+s)[~u]) , if (r + s)[~u] ∈ Z−0 ∧ r[~u] ∈ Z−0 ;

(
r

s

)
[~u] :=





(r)s[~u]

s![~u] , if s[~u] ∈ IN ∨ r[~u] 6∈ Z−,

0, if s[~u] ∈ Z−,
∞, if s[~u] 6∈ Z ∧ r[~u] ∈ Z−.

Further we give the domain of classic evaluation by

Dc(f) := {~u | f [~u] 6= ∞}.

It is up to the reader to verify that this definition, restricted to integers or some
other domain meets his view of evaluating factorials and binomials.

Did you notice, that we interpreted hypergeometric terms as functions and not as
sequences? We did so, because a term does not give an indication in which variable
it should define a sequence. So it is easier to interpret terms as functions with several
arguments. After fixing an index variable, we get a sequence of functions with one
argument less.
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3.2.3 IF-sequence interpretation of hypergeometric terms

In the traditional proofs of Gosper’s and Zeilberger’s algorithm one always assumes
that a hypergeometric term represents a IF-sequence. Following this approach in
[Koo92] you find a concise proof of Gosper’s and Zeilberger’s algorithm.

There is a problem with this approach. You have to impose unnecessary restrictions
to the problems solved by Gosper’s algorithm in order to make your proof work:
Let (ai)i≥0 be the sequence defined (via c-evaluation) by a hypergeometric term f ,
and (bi)i≥0 the sequence interpretation of the anti-difference of f , then the proof of
Gosper’s algorithm works under the following restrictions:

• ∀i : ai ∈ IF,

• ∀i : ai 6= 0,

• ∀i : bi 6= 0.

First, it is not discussed what field can be used to give a IF-sequence interpreta-
tion for an arbitrary hypergeometric term, therefore it is not clear for which terms
the proof applies. (It is clear for which sequences though!) For instance, at the
first glance it looks as if factorials, would be excluded from being part of the sum-
mand. ( 1

(a+k)!)k≥0 is a sequence of terms. We may interpret this as ( 1
Γ(a+k+1))k≥0,

a sequence of functions. To what kind of field do the sequence elements belong?
Luckily, factorials can be expressed in terms of rising factorials. The transformation
(a + k)! = (a)!(a + 1)k and moving the k-free part out of the summation does the
job. Instead of

∑n
k=0

1
(a+k)! we are faced with 1

a!

∑n
k=0

1
(a+1)k

, a sequence of rational
functions. Therefore the summation problem can be interpreted via C(a)-sequences.
Notice that in opposition to the former representation the latter cannot be evaluated
if a evaluates to a negative integer. So there are tricks to give IF-sequence interpre-
tations to problems. Again they work only as long, as the sequences do not contain
zeros.

Second, polynomials with an integer root in the summation variable are not allowed
to be part of the input. This can be the case quite often. Equation (3.1) may serve
as an example.

Third, it is important to see that we cannot conclude that a summation problem
rejected by Gosper’s algorithm has no closed form within the set of hypergeometric
terms. Although the algorithm did not produce a solution to a problem there might
be one, namely an anti-difference containing a polynomial factor with an integer
root in the summation variable, as this occurs in equation (3.2), for instance.

Here are two examples where Gosper’s algorithm is better than we can expect:
a∑

k=0

(k − 4) =
(a− 8)(a + 1)

2
, (3.1)
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n∑

k=0

(
1− 2 k2 + k n

)

1 + k

(
n

k

)
= 1. (3.2)

In the first example, there is a zero among the summands. In the second one, the
anti-difference contains a zero. Observe, that the following holds:

∆

(
(k − 1)

(
n

k

))

k≥0

=

((
1− 2 k2 + k n

)

1 + k

(
n

k

))

k≥0

.

3.2.4 Symbolic Summation III

Let us interpret hypergeometric terms as sequences of functions, for instance, in
the example above: ( 1

Γ(a+k+1))k≥0. One indeterminate (namely k) is spent to index
the sequence, thus the elements of the sequence are functions with µ− 1 arguments.
Therefore, their domain is a subset of Cµ−1. If we restrict the domain of all sequence-
elements to the same subset of Cµ−1, then all these functions belong to a function
ring. In order to give a R-sequence interpretation to a hypergeometric term we
have to find a common domain for the sequence-element functions. We specify this
domain as large as possible, i.e. we take all tuples of values, to which all of the
sequence-element functions can be applied.

Definition 10 (Classic interpretation domain)

DC(f) := {~w | IN× {~w} ⊆ Dc(f)}.

We give an example:

Dc

( x1!
x1 − x2

)
= {(u, v) ∈ C2 | u 6∈ Z−, u− v 6= 0},

DC

( x1!
x1 − x2

)
= C \IN.

Now we can interpret single terms as sequence of functions. In the example f =
x1!

x1−x2
this would be the sequence (Γ(k+1)

k−x )k≥0, where the domain of the sequence-
element functions is given by DC(f) = C \IN.

We can use the same domain to give an interpretation for other hypergeometric
terms. This works for all terms g with DC(f) ⊆ DC(g). These terms form a subset
of HT and for a moment let us denote it by Yf . Then we can define an interpretation
φf : Yf → RIN, where R = CDC(f). Since this RIN is closed under the summation
operator, we know that

∑
φf (f) is an element of RIN again. Assume that there

exists a hypergeometric term g that represents this sum then g must be evaluable
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over IN ×DC(f). This means that DC(f) ⊆ DC(g) and therefore g ∈ Yf . We may
look for the representation of the sum sequence only among those terms that can be
interpreted with φf .

We adjust concept 1 to the latest explorations.

Concept 2 (Finding closed forms for sum-expressions)

We take HT as input domain. We need

1. A solution domain Y .

2. A restricted solution domain Yf , for each f .

3. An R-sequence interpretation (Yf , φf ), for each f .

4. The operations E, L,+ and −, such that

(a) HT is closed under E,

(b) Yf is closed under E, L,+ and −,

(c) φf is a (L,E,+,−)-homomorphism.

5. An algorithm that constructs g ∈ Yf to a given f , such that φf (Eg − g) =
φf (Ef), if such a g exists.

In the next chapter we will define the operations and an alternative to c-evaluation,
since we will show that the properties above cannot be established, using c-eva-
luation.



Chapter 4

Operating with hypergeometric
terms

We build up the structure on HT and define an interpretation according to concept 2.

4.1 Calculus for hypergeometric terms

As we defined our hypergeometric terms, we already introduced some structure. HT
is a multiplicative abelian group. We define three more operations.

4.1.1 Adding hypergeometric terms in an extension

Instead of constructing a group of hypergeometric terms we could have built up a
field of terms. We avoided doing so, because we do not consider expressions like

1

(x
y)+x!

. We are interested in sums that can be simplified to hypergeometric terms

again:

x! + (x + 1)! = (x + 2)x!(
x

y − 1

)
+

(
x

y

)
=

(
x + 1

y

)
,

and sums that must be left as they are:

x!− 1,

(
x

y − 1

)
+

(
2y

x

)
.

In order to be able to represent sums of the second type we have to extend the set
HT by finite sums:

24
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Definition 11 (Extension of HT)

HT+ is defined to be the term algebra that is generated from HT0 by the operations
+ and −, and is afterwards reduced by the abelian ring-axioms

t · 0 = 0,

t + 0 = t,

t− t = 0,

t1 + t2 = t2 + t1,

(t1 + t2) + t3 = t1 + (t2 + t3),
t1 · (t2 + t3) = t1 · t2 + t1 · t3,

and the additional axiom

(%, f−) + (ς, f−) = (% + ς, f−).

Typed Variables 5 (Terms)

f+, g+, h+ ∈ HT+.

4.1.2 Shifting of hypergeometric terms

Imagine you want to shift the hypergeometric term
(x
y

)
in x. You have two pos-

sibilities to achieve this. You can say
(x+1

y

)
is the shifted version of it. On the

other hand, since this binomial satisfies a recurrence relation of order 1 you have
x+1

x−y+1

(x
y

)
as the shifted version. The first method displays the functional technique

of computing the shift of a function by composing it with the function x + 1. The
second method, however, displays the functional approach of computing the action
of the shift operator on the binomial by means of the recurrence relation. Note that
the results of the two shifting methods are different in HT.

We have to choose one of the methods, and indeed it is not hard to decide between
both of them. As Gosper’s algorithm heavily depends on the observation that the
shift operator just changes the rational part of a hypergeometric term, we will have
to follow this approach.

First we define the shift quotient, Q, which displays the change of the rational
part by the action of shifting. The shift quotient will be a group homomorphism
Q : HT → C(~x)∗, compare proposition 1; the shift operator is a ring endomorphism
on HT+, see definition 14.

Definition 12 (Shift quotient Q)

In this definition assert that ς is free of xi. We define the shift quotient Qi for
i = 1, . . . , ν:
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• Rational functions

Qi%(xi) :=
%(xi + 1)

%(xi)
.

• Factorials

Fac is free over the set of elements used to generate Fac (refer to definition 8).
Therefore the definition of Qi for these elements uniquely extends to a group-
homomorphism. Qi : Fac → C(~x)∗ is the unique extension of the following
base cases:

Qi(zxi + ς)! := ϕ(zxi + ς + 1, z).

• Falling factorials

Qi : FFac → C(~x)∗ is the unique extension of the following base cases:

Qi(r)s := Qi
r!

(r − s)!
.

• Rising factorials

Qi : RFac → C(~x)∗ is the unique extension of the following base cases:

Qi(r)s := Qi
(r + s− 1)!

(r − 1)!
.

• Binomials

Qi : Bin → C(~x)∗ is the unique extension of the following base cases:

Qi

(
r

s

)
:= Qi

r!
s!(r − s)!

.

• Exponentials

For all rx1
1 · · · rxi

i · · · rxν
ν ∈ Exp we define

Qi (rx1
1 · · · rxi

i . . . rxν
ν ) := ri.

• Hypergeometric terms For all (r, (a, b, c, d, e)) ∈ HT we define

Qi(r, (a, b, c, d, e)) := Qir Qia Qib Qic Qid Qie.
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Proposition 1 (Homomorphic property of the shift quotient)

Qi : HT → C(~x)∗ is a group-homomorphism.

Proof

First we prove that the shift quotients for the components of a hypergeometric term
are homomorphisms to the group C(~x)∗: Fix i.

1. (Rational functions) We have to show that

Qi(%(xi)ς(xi)) = Qi%(xi) ·Qiς(xi),

or equivalently:

(%(xi)ς(xi)) ◦ (xi + 1)
%(xi)ς(xi)

=
%(xi + 1)ς(xi + 1)

%(xi)ς(xi)
.

2. (Factorials, falling factorials, rising factorials, binomials) Obvious from defini-
tion.

3. (Exponentials) To show the homomorphic property, we take arbitrary but fixed
r1, . . . , rν , s1, . . . , sν from C( ~xν+1)∗ and show that

Qi((r1s1)x1 . . . (rνsν)xν ) = Qi(rx1
1 . . . rxν

ν )Qi(sx1
1 . . . sxν

ν ),

or equivalently risi = risi.

The shift quotient of a hypergeometric term is the product of the shift quotients of
the subexpressions. These shift quotients are elements of C(~x)∗, therefore the shift
quotient is an element of C(~x)∗ as well.

The following chain of equalities proves the homomorphic property:

Qi

(
(%, a, b, c, d, e) · (%′, a′, b′, c′, d′, e′)

)
=

= Qi(%%′, aa′, bb′, cc′, dd′, ee′) =
= Qi(%%′) ·Qi(aa′) · · · Qi(ee′) =
= Qi% ·Qi%

′ ·Qia ·Qia
′ · · · Qie

′ =
= Qi(%, a, b, c, d, e) Qi(%′, a′, b′, c′, d′, e′).

2
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Proposition 2 (Shift quotients in several variables)

QiQjf = QjQif.

Proof

We prove this for i = 1 and j = 2:

1. (Rational functions) We have

Q1Q2(%(x1, x2)) = Q1
%(x1, x2 + 1)

%(x1, x2)
=

%(x1 + 1, x2 + 1)%(x1, x2)
%(x1 + 1, x2)%(x1, x2 + 1)

.

2. (Factorials) With r = z1x1 + z2x2 + ς we have,

Q1Q2(r!) = Q1ϕ(r + 1, z2) =
ϕ(r + z1 + 1, z2)

ϕ(r + 1, z2)
=

ϕ
(
r + max(z1, z2) + 1,min(z1, z2)

)
ϕ

(
r + z1 + 1, max(0, z2 − z1)

)

ϕ
(
r + 1, min(z1, z2)

)
ϕ

(
r + min(z1, z2) + 1, max(0, z2 − z1)

) =

ϕ(r + max(z1, z2) + 1, min(z1, z2))
ϕ(r + 1, min(z1, z2))

.

3. (Falling factorials, rising factorials, binomials) Clear, since in these cases the
definition of the shift quotient is fully based on the shift quotient of factorials.

4. (Exponentials) We have

Q1Q2(rx1
1 . . . rxν

ν ) = Q1r2 = 1.

The commutative property easily carries over to hypergeometric terms.

2

Definition 13 (Shift operator on HT0)

We define the shift-operator Ei for i = 1, . . . , ν by

Eif := (Qif) · f,
Ei0 := 0.

Proposition 3 (Homomorphic property of the shift operator)

Ei : HT → HT is a group-endomorphism.



CHAPTER 4. OPERATING WITH HYPERGEOMETRIC TERMS 29

Proof

We have to show

Ei(f · g) = Eif · Eig.

Using the definitions and the fact that the shift quotient is a homomorphism and
HT an abelian group, the following chain of equalities is true:

Ei(f · g) = Qi(f · g) · (f · g) = (Qif) · f · (Qig) · g = Eif · Eig.

2

Definition 14 (Shift operator on HT+)

We define the operator Ei on HT+ to be the homomorphic extension of Ei on HT.

We show that the homomorphic extension exists. The algebra, we generated by the
operations + and −, is free over HT0 and has a homomorphic extension of Ei. For
each equation, used to reduce the free algebra, we can prove that both sides remain
equal under the shift operator. We have:

Ei(t · 0) = (Eit) · Ei0 = 0 = Ei0,
Ei(t + 0) = Eit + Ei0 = Eit,
Ei(t− t) = Eit + Ei((−1) · t) = Eit + Qit · (−1) · t = Eit−Eit = 0 = Ei0
Ei(t1 + t2) = Ei(t2 + t1),
Ei(t1 + (t2 + t3)) = Ei((t1 + t2) + t3),
Ei(t1 · (t2 + t3)) = Ei(t1 · t2 + t1 · t3),
Ei((%, e) + (ς, e)) = Ei(%, e) + Ei(ς, e) =

= Qi% ·Qi(1, e) + Qiς ·Qi(1, e) = (Qi% + Qiς) ·Qi(1, e) =
= Qi(% + ς) ·Qi(1, e) = Ei(% + ς, e).

Because Ei is well defined, it is a ring-endomorphism.

Proposition 4 (Shifts in several variables)

EiEjf
+ = EjEif

+.

Proof

Without loss of generality we prove the property above for i = 1 and j = 2. In HT
we have,
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E1E2f = E1(Q2f · f) = Q1Q2f ·Q2f ·Q1f · f.

Use proposition 2 to complete the proof for f ∈ HT.

Because both E1 and E2 are homomorphisms on HT+, the property easily carries
over to sums of hypergeometric terms.

2

4.1.3 The operator Lc

Definition 15 (First element)

Lcf := f [0, ~x2].

In the definition above we partially evaluate the hypergeometric term f . Note that
this is impossible for the term g := 1/x1. On the other hand we also have DC(g) =
{}. And indeed, if the interpretation domain of a hypergeometric term is not empty,
then the action of Lc is well defined: Since f [~u] is defined by evaluating sub-term
by sub-term, compare definition 9, the substitution lemma – known from logics (see
[EFT84]) – guarantees, that (Lcf)[~w] = f [(0, ~w)]. Now, if the interpretation domain
of f is not empty, then we have at least one ~w, for which f [(0, ~w)] is well defined
and therefore Lcf is well defined, too.

4.1.4 Classic evaluation is not enough

According to concept 2, we have to guarantee, that for the interpretation φf of
hypergeometric terms, a couple of homomorphic properties hold. Assume, we define
φf via c-evaluation:

φf (g) := (ai)i≥0, ai : DC(f) → C, ai(~w) = g[(i, ~w)].

Then, take property φf (Eg) = Eφf (g) with the choice g = f , then we must have

φf (E1f) = Eφf (f).

This equivalently reads as

∀~w ∈ DC(f) : (E1f)[i, ~w] = f [(i + 1, ~w)].
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With the choice f = 1
(x1+x2)! we find that DC(f) = C and that

1
(x1 + x2)!(x1 + x2 + 1)

[i, w] =
1

(x1 + x2)!
[i + 1, w],

has to hold. But for the choice i = 0 and w = −1 we immediately see, that the
left-hand side is not evaluable, whereas the right-hand side equals 0.

Shortly before reaching our goal we are faced with a wall forcing the detour of the
additional section 4.2.

4.2 The evaluation model

According to concept 2 we are looking for an interpretation of hypergeometric terms.
In section 4.1 we extended HT to HT+ introducing the operators + and −, and also
supplied the operators E = E1 and L = Lc. We also gave an interpretation for
hypergeometric terms as R-sequences. We have seen, that this interpretation (based
on c-evaluation) is no (E,L,+,−)-homomorphism and does therefore not suffice.

Using the same approach as in section 4.1, but basing the interpretation upon a new
evaluation, we will finally succeed. We are looking for a new method of evaluating
hypergeometric terms. We give it a name and . . .

eval
is born.

Obviously we want, that eval is just the same as c-evaluation, wherever both eva-
luations are defined. We also want that eval is a homomorphism. (Then also the
interpretation based on eval will be a homomorphism.) Let’s see, whether we can
meet both requirements. First, we will focus on the latter.

For instance, we need that

eval(x!, 0) = eval((x + 1)x!,−1),

eval

((
x + 2

2

)
, 0

)
= eval

(
x + 3
x + 1

(
x + 2

2

)
,−1

)
.

For the last time we try out c-evaluation and also list how eval has to behave.



CHAPTER 4. OPERATING WITH HYPERGEOMETRIC TERMS 32

f u f [u] eval(f, u)
x! 0 1 1

(x + 1)x! −1 0 · ∞ 1

(x+2
2

)
0 1 1

x+3
x+1

(x+2
2

) −1 2
0 · 0 1

Here we encountered a problem that is similar to the problem of evaluating rational
functions. The term (x2 − 1) · 1

x−1 , for instance, cannot be evaluated for x := 1,
whereas it is possible to carry out this evaluation for the simplified term x + 1.
Both terms represent the same element in the rational function field, therefore both
terms must have the same evaluation. In order to achieve this, we can calculate the
canonical representation of a rational function ahead of evaluation. The standard
canonical form of a term representing a rational function has the nice property that
it can be evaluated whenever any other representation of the same term (with larger
denominator) is evaluable. In this paper we have to do evaluation of rational func-
tions, too. Let %[~u] denote the procedure of evaluating the canonical representation
of the rational function % at the tuple of values ~u.

Unfortunately life is tougher with hypergeometric terms. There is this easy looking
term (2x)!/x! which cannot be evaluated for x := −1. Transforming this term to
(2x + 2)!/(2(x + 1)!(2x + 1)) we end up being able to evaluate for x := −1; but still
we cannot evaluate for x := −2.

Therefore we decided that there is no canonical form for hypergeometric terms that
is good enough – you might find one – to base our evaluation on. Our idea is
neither to evaluate hypergeometric terms directly to a number field nor to calculate
a canonical form before evaluation, but something in between.

4.2.1 Rational evaluation

We have to do the evaluation of a hypergeometric term in two steps. First we pick a
rational function by means of a function ρ defined below, and then use c-evaluation
( [ ]) to further evaluate the rational function to C. This intermediate step, called
rational evaluation, allows us to cancel out non-zero polynomial factors that evaluate
to zero in the number field. The rational evaluation already depends on the point
of evaluation. For instance, we have ρ(x!, 0) 6= ρ(x!, 1).

The rational evaluation ρ of a rational function % is defined as the function % itself,
since it is already rational (ρ(%, ~u) = %). The rational evaluation of a factorial, x! at
i, is ϕ(x− i + 1, i) as we illustrate in a couple of examples:
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Figure 4.1: Evaluation of hypergeometric terms

ρ(x!, 2) = (x− 1)x ρ( 1
x! , 2) = 1

(x−1)x

ρ(x!, 1) = x ρ( 1
x! , 1) = 1

x
ρ(x!, 0) = 1 ρ( 1

x! , 0) = 1
ρ(x!,−1) = 1

(x+1) ρ( 1
x! ,−1) = x + 1

ρ(x!,−2) = 1
(x+1)(x+2) ρ( 1

x! ,−2) = (x + 1)(x + 2)

As a second step, we do a standard evaluation of the rational evaluation. Both steps
together, i.e., ρ(x!, i)[i] result in what we expect from the evaluation of a factorial
at i. The second step is undefined if i = −1,−2, and so on. Up to here we neither
changed the domain of a factorial nor the result of its evaluation.

For the multiplicative inverse we already gained the evaluation to 0 for negative
integers. We give an example: To evaluate 1

x! at −1 we first apply rational evaluation
with −1 as evaluation-point: ρ( 1

x! ,−1) = x+1. Evaluating this term at −1 we come
up with the predicted zero: (x + 1)[−1] = 0.

Another advantage lies in the fact that once you multiply x! with x + 1 the rational
evaluation will loose the x + 1 in the denominator, since it cancels with the extra
polynomial factor x + 1. Thus the product x!(x + 1) becomes evaluable at −1:

We apply the evaluation method on the examples from the beginning of this section:

f u ρ(f, u) eval(f, u) = ρ(f, u)[u]
x! 0 1 1

x! −1 1
x+1 ∞

x + 1 −1 x + 1 0
(x + 1)x! −1 (x + 1) 1

x+1 = 1 1

(x+2
2

)
0 (x+1)(x+2)

2 1

x+3
x+1

(x+2
2

) −1 (x+3)(x+2)(x+1)
(x+1) 2 = (x+3)(x+2)

2 1
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Now there is enough work left to do:

• We define rational evaluation for all hypergeometric terms.

• Based on rational evaluation we define the functional interpretation of a hy-
pergeometric term (i.e., domain and evaluation).

• We investigate the relation between the evaluation defined by this model and
c-evaluation.

Definition 16 (Rational evaluation)

We define the rational evaluation ρ for fixed ~u.

• Rational functions

ρ(%, ~u) := %.

• Factorials

Fac is free over the set of elements that generate Fac (refer to definition 8).
Therefore the definition of ρ for these elements uniquely extends to a group-
homomorphism, ρ( , ~u) : Fac → C(~x)∗ is the unique extension of the following
base cases:

ρ(r!, ~u) := Γ(r[~u]− c + 1) ϕ(r − c + 1, c),
c = bRe(r[~u])c.

• Falling/Rising factorials

ρ( , ~u) : FFac → C(~x)∗ and ρ( , ~u) : RFac → C(~x)∗ are the unique extensions
of the following base cases:

ρ((r)s, ~u) := ρ

(
r!

(r − s)!
, ~u

)
,

ρ((r)s, ~u) := ρ

(
(r + s− 1)!

(r − 1)!
, ~u

)
.

• Binomials

ρ( , ~u) : Bin → C(~x)∗ is the unique extension of the following base cases:

ρ

((
r

s

)
, ~u

)
:= ρ

(
r!

s!(r − s)!
, ~u

)
.
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• Exponentials

For all rx1
1 rx2

2 · · · rxν
ν ∈ Exp and ~u = (u1, u2, . . . , uµ) we define:

ρ (rx1
1 rx2

2 · · · rxν
ν , ~u) := ru1

1 ru2
2 · · · ruν

ν .

• Hypergeometric terms

For all (%, a, b, c, d, e) ∈ HT we define:

ρ((%, a, b, c, d, e), ~u) := ρ(r, ~u) ρ(a, ~u) · · · ρ(e, ~u),
ρ(0, ~u) = 0.

If the rational evaluation of factorials is unequal zero, then it is clear that it is non-
zero for all hypergeometric terms. Then, rational evaluation is indeed well defined:

Proposition 5 (Rational evaluation of factorials is non-zero)

∀r! ∈ Fac: ρ(r!, ~u) 6= 0.

Proof

Let ~u and r! ∈ Fac be arbitrary but fixed, then we have

ρ(r!, ~u) = Γ(r[~u]− c + 1) ϕ(r − c + 1, c),

where c = bRe(r[~u])c. The Gamma function is never 0, thus we have to consider
only the Pochhammer function. It is obviously non-zero, unless r[~u] is an integer. In
that case we know, that r[~u] ∈ IN (compare definition 8). Therefore the expression
simplifies to the non-zero term ϕ(1, r[~u]).

2

Proposition 6 (Homomorphic property of rational evaluation)

For any ~u the function ρ( , ~u) : HT → C(~x)∗ is a group-homomorphism.

Proof

Let ~u be arbitrary but fixed. First we prove that the rational evaluations for the
components of a hypergeometric term are homomorphisms to the group C(~x)∗:
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1. (Rational functions)

ρ(%ς, ~u) = ρ(%, ~u)ρ(ς, ~u),

is clear by looking at the equivalent equation %ς = %ς.

2. (Factorials, falling factorials, rising factorials, binomials) The homomorphic
property is clear from construction.

3. (Exponentials) We take arbitrary but fixed r1, . . . , rν , s1, . . . , sν ∈ C( ~xν+1)∗

and prove

ρ((r1s1)x1 · · · (rνsν)xν , ~u) = ρ(rx1
1 · · · rxν

ν , ~u)ρ(sx1
1 · · · sxν

ν , ~u)

by the equivalent and trivial equation

(r1s1)u1 . . . (rνsν)uν = ru1
1 . . . ruν

ν su1
1 . . . suν

ν .

Now using the facts above, we can prove the homomorphic property for any hyper-
geometric term by the following chain of equalities:

ρ((%, a, b, c, d, e) · (%′, a′, b′, c′, d′, e′), ~u) =
= ρ((%%′, aa′, bb′, cc′, dd′, ee′), ~u) =
= ρ(%%′, ~u) ρ(aa′, ~u) · · · ρ(dd′, ~u)ρ(ee′, ~u) =
= ρ(%, ~u) ρ(%′, ~u) ρ(a, ~u) · · · ρ(e, ~u) ρ(e′, ~u) =
= ρ((%, a, b, c, d, e), ~u)ρ((%′, a′, b′, c′, d′, e′), ~u).

2

Definition 17 (Rational evaluation on sums)

For fixed ~u we define ρ(f+, ~u) to be the homomorphic extension of ρ( , ~u) on HT0.

We show that the homomorphic extension exists. The algebra, we generated by the
operation + is free over HT0 and has a homomorphic extension of ρ( , ~u). For each
equation, used to reduce this algebra, we can prove that both sides remain equal
under rational evaluation. With ρ(t) short for ρ(t, ~u), we have:
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ρ(t · 0) = ρ(t) · ρ(0) = 0 = ρ(0),
ρ(t + 0) = ρ(t) + ρ(0) = ρ(t),
ρ(t− t) = ρ(t) + ρ(−1 · t) = ρ(t)− ρ(t) = 0 = ρ(0),
ρ(t1 + t2) = ρ(t2 + t1),
ρ(t1 + (t2 + t3)) = ρ((t1 + t2) + t3),
ρ(t1 · (t2 + t3)) = ρ(t1 · t2 + t1 · t3),
ρ((%, t0) + (ς, t0)) = ρ(%, t0) + ρ(ς, t0) =

= ρ(%)ρ(1, t0) + ρ(ς)ρ(1, t0) = (% + ς)ρ(1, t0) =
= ρ(% + ς)ρ(1, t0) = ρ(% + ς, t0).

Since the homomorphic extension of the rational evaluation is well defined, it is a
ring-homomorphism.

4.2.2 Functional interpretation of hypergeometric terms

Based on the rational evaluation we define a domain for a hypergeometric term and
an evaluation to the complex numbers.

Definition 18 (Functional interpretation)

We define m-evaluation of hypergeometric terms

Dm(f+) := {~u | ~u is no root of den(ρ(f+, ~u))},
∀~u ∈ Dm(f+) : eval(f+, ~u) := ρ(f+, ~u)[~u].

In the following we will have to compare m-evaluation to c-evaluation, therefore it
is convenient to define an abbreviation for the intersection of the domains of c- and
m-evaluation.

In section 3.2.4 we had a discussion on interpreting hypergeometric terms as se-
quences. We found out that we can base such an interpretation upon an evaluation.
Following these lines we define a domain for the sequence-interpretation of a hy-
pergeometric term, and again for matters of comparison, it is convenient to have
an abbreviation for the intersection of this domain with the corresponding domain,
based on c-evaluation.

Finally, also motivated in section 3.2.4 by concept 2, we define the solution-domain
for symbolic sums of a hypergeometric term.

Definition 19 (Domains)

• Domain of sequence-interpretation
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DM (f+) := {~w | IN× {~w} ⊆ Dm(f+)}.

• Intersections

Dc,m(f+) := Dc(f+) ∩Dm(f+),
DC,M (f+) := DC(f+) ∩DM (f+).

• Solution-domain for symbolic sums

HT+
f := {g+ | DM (f) ⊆ DM (g+)}.

The open problem is the operator L, since we cannot use Lc, which is defined using
c-evaluation, compare definition 15. It is possible to give a definition of Lm based
on the evaluation model. The resulting operation, though is impractical. As we see
in the following we will not have to compute Lm, therefore I ask you to accept that
it is possible to give an appropriate definition of Lm.

4.2.3 Properties of the evaluation model

It is time to reconsider what we had in mind when we started out defining the
evaluation model. The purpose was to introduce an evaluation of hypergeometric
terms that cooperates with shifting. In this subsection we will prove this and similar
properties.

Lemma 1 (Relation between ρ and Qi)

ρ(f, (u + 1, ~w)) ◦ (x1 + 1)
ρ(f, (u, ~w))

= Q1f. (4.1)

Proof

First we deal with the components of a hypergeometric term and then combine this
knowledge to prove equation (4.1):

Let ~w and u be arbitrary but fixed.

1. (Factorials)

Let r = zx1 + h and c = bRe(r[(u, ~w)])c, then we have
ρ(r!, (u + 1, ~w)) ◦ (x1 + 1)

ρ(r!, (u, ~w))
=

=
Γ(z(u + 1) + h[~w]− c− z + 1) ϕ(r − c− z + 1, c + z) ◦ (x1 + 1)

Γ(zu + h[~w]− c + 1) ϕ(r − c + 1, c)
=

=
ϕ(r − c + 1, c + z)

ϕ(r − c + 1, c)
= ϕ(r + 1, z) = Q1r!.
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2. (Falling factorials, rising factorials and binomials) The definitions of shift quo-
tient and the rational evaluation are both based on the ones of factorials. We
carry out the proof for rising factorials:

ρ((r)s, (u + 1, ~w)) ◦ (x1 + 1)
ρ((r)s, (u, ~w))

=

=
ρ((r + s− 1)!, (u + 1, ~w)) ◦ (x1 + 1) ρ((r − 1)!, (u, ~w))
ρ((r + s− 1)!, (u, ~w)) ρ((r − 1)!, (u + 1, ~w)) ◦ (x1 + 1)

=

=
Q1(r + s− 1)!

Q1(r − 1)!
= Q1(r)s.

3. (Exponentials) For arbitrary rx1
1 · · · rxν

ν ∈ Exp and with ~w = (w2, . . . , wµ), the
following is true:

ρ(rx1
1 · · · rxν

ν , (u + 1, ~w)) ◦ (x1 + 1)
ρ(rx1

1 · · · rxν
ν , (u, ~w))

=

=
ru+1
1 rw2

2 · · · rwν
ν

ru
1rw2

2 · · · rwν
ν

= r1 = Q1(rx1
1 · · · rxν

ν ).

4. It is left to combine the knowledge for arbitrary elements (%, a, b, c, d, e) ∈ HT:

ρ((%, a, b, c, d, e), (u + 1, ~w)) ◦ (x1 + 1)
ρ((%, a, b, c, d, e), (u, ~w))

=

=
ρ(%, (u + 1, ~w)) ◦ (x1 + 1) · · · ρ(e, (u + 1, ~w)) ◦ (x1 + 1)

ρ(%, (u, ~w)) · · · ρ(e, (u, ~w))
=

= Q1% · · ·Q1e = Q1(%, a, b, c, d, e).

2

It is clear that the lemma holds for x1, . . . , xν . Since this is hard to notate in a
readable manner, it is written for x1, only.

Proposition 7 (Properties of the evaluation model)

The following statements hold independently:

1. Multiplication:

~u ∈ Dm(f+) ∩Dm(g+) ⇒
{

~u ∈ Dm(f+ · g+),
eval(f+ · g+, ~u) = eval(f+, ~u) eval(g+, ~u).

2. Inversion:
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~u ∈ Dm(f), eval(f, ~u) 6= 0 ⇒
{

~u ∈ Dm( 1
f ),

eval( 1
f , ~u) = 1/eval(f, ~u).

3. Addition:

~u ∈ Dm(f+) ∩Dm(g+) ⇒

⇒
{

~u ∈ Dm(f+ + g+),
eval(f+ + g+, ~u) = eval(f+, ~u) + eval(g+, ~u).

4. Subtraction:

~u ∈ Dm(f+) ⇒
{

~u ∈ Dm(−f+),
eval(−f+, ~u) = −eval(f+, ~u).

5. Shifting:

(u + 1, ~w) ∈ Dm(f) ⇔ (u, ~w) ∈ Dm(E1f),
(u + 1, ~w) ∈ Dm(f) ⇒ eval(f, (u + 1, ~w)) = eval(E1f, (u, ~w)).

Proof

Let f, g, f+, g+, ~u be arbitrary but fixed.

1. Assume ~u ∈ Dm(f+) ∩Dm(g+) then we know

den(ρ(f+, ~u))[~u] 6= 0,

den(ρ(g+, ~u))[~u] 6= 0.

Since ρ is a ring-homomorphism we easily conclude

den(ρ(f+ · g+, ~u))[~u] 6= 0.

So the following equality is true:

eval(f+ · g+, ~u) = ρ(f+ · g+, ~u)[~u] = (ρ(f+, ~u)ρ(g+, ~u))[~u] =
= ρ(f+, ~u)[~u]ρ(g+, ~u)[~u] = eval(f+, ~u)eval(g+, ~u).

2. Assume ~u ∈ Dm(f) with eval(f, ~u) 6= 0 then we have

num(ρ(f, ~u))[~u] 6= 0,

den(ρ(
1
f

, ~u))[~u] 6= 0.

So the following holds:



CHAPTER 4. OPERATING WITH HYPERGEOMETRIC TERMS 41

eval(
1
f

, ~u) =
1

ρ(f, ~u)
[~u] =

1
ρ(f, ~u)[~u]

=
1

eval(f, ~u)
.

3. Assume that ~u ∈ Dm(f+) ∩Dm(g+), then analogously to before we conclude
that den(ρ(f+ + g+, ~u)) 6= 0 and the following holds:

eval(f+ + g+, ~u) = ρ(f+ + g+, ~u)[~u] =
= ρ(f+, ~u)[~u] + ρ(g+, ~u)[~u] = eval(f+, ~u) + eval(g+, ~u).

4. Clear, by an analogous argument.

5. Let u, ~w be arbitrary but fixed, such that (u + 1, ~w) ∈ Dm(f). Then we have

0 6= den(ρ(f, (u + 1, ~w)))[(u + 1, ~w)] =
= den(ρ(f, (u + 1, ~w)) ◦ (x1 + 1))[(u, ~w)]. (4.2)

Using lemma 1, we have

ρ(f, (u + 1, ~w)) ◦ (x1 + 1) =
= ρ(f, (u, ~w)) ·Q1(f) = ρ(f, (u, ~w)) · ρ(Q1(f), (u, ~w)) =
= ρ(f ·Q1(f), (u, ~w)) = ρ(E1f, (u, ~w)).

By replacing ρ(f, (u + 1, ~w)) ◦ (x1 + 1) in Equation (4.2) we find, that

den(ρ(E1f, (u, ~w)))[(u, ~w)] 6= 0.

The equalities

eval(f, (u + 1, ~w)) = ρ(f, (u + 1, ~w))[(u + 1, ~w)] =
= ρ(f, (u + 1, ~w)) ◦ (x1 + 1)[(u, ~w)] = ρ(E1f, (u, ~w))[(u, ~w)] =
= eval(E1f, (u, ~w)).

complete the proof.

2

4.2.4 Comparison with classic evaluation

Finally we try to prove that the m-evaluation is sound, i.e., it should coincide with
the c-evaluation of factorials and binomials. To our pity the m-evaluation of falling
factorials, rising factorials and binomials is bound to the additional condition, that
for the terms (r)s and

(r
s

)
the sub-term r must not evaluate to a negative integer

and that for (r)s the sub-term r+s must not evaluate to a non-positive integer. But
there is a way to work around this bug, compare proposition 9.
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Proposition 8 (Evaluation of hypergeometric terms is correct)

The following statements hold for arbitrary ~u.

eval(%, ~u) =

{
%[~u], if den(r)[~u] 6= 0,
undefined, else.

eval(r!, ~u) =

{
Γ(r[~u] + 1), if r[~u] 6∈ Z−,
undefined, if r[~u] ∈ Z−;

eval(
1
r!

, ~u) =

{
1

Γ(r[~u]+1) , if x0 6∈ Z−,

0, if x0 ∈ Z−;

eval((r)s, ~u) =





Γ(r[~u]+1)
Γ((r−s)[~u]+1) , if r[~u] 6∈ Z− ∧ (r − s)[~u] 6∈ Z−,

0, if r[~u] 6∈ Z− ∧ (r − s)[~u] ∈ Z−,
undefined, if r[~u] ∈ Z−;

eval(
1

(r)s
, ~u) =





Γ((r−s)[~u]+1)
Γ(r[~u]+1) , if r[~u] 6∈ Z− ∧ (r − s)[~u] 6∈ Z−,

0, if r[~u] ∈ Z− ∧ (r − s)[~u] 6∈ Z−,
undefined, if (r − s)[~u] ∈ Z−.

eval((r)s, ~u) =





Γ((r+s)[~u])
Γ(r[~u]) , if (r + s)[~u] 6∈ Z−0 ∧ r[~u] 6∈ Z−0 ,

0, if (r + s)[~u] 6∈ Z−0 ∧ r[~u] ∈ Z−0 ,
undefined, if (r + s)[~u] ∈ Z−0 ;

eval(
1

(r)s
, ~u) =





Γ(r[~u])
Γ((r+s)[~u]) , if r[~u] 6∈ Z−0 ∧ (r + s)[~u] 6∈ Z−0 ,

0, if r[~u] 6∈ Z−0 ∧ (r + s)[~u] ∈ Z−0 ,
undefined, if r[~u] ∈ Z−0 .

eval(

(
r

s

)
, ~u) =





(r)s

s! [~u], if r[~u] 6∈ Z− ∧ s[~u] 6∈ Z−,
0, if r[~u] 6∈ Z− ∧ s[~u] ∈ Z−,
undefined, if r[~u] ∈ Z−;

eval(
1(r
s

) , ~u) =

{
s!

(r)s
[~u], if (r − s)[~u] 6∈ Z− ∧ s[~u] 6∈ Z−,

undefined, if (r − s)[~u] ∈ Z− ∨ s[~u] ∈ Z−.

Let ~u = (u1, . . . , uµ), then

eval(rx1
1 · · · rxν

ν , ~u) = r1[~u]u1 · · · rν [~u]uν .
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Proof

1. (Rational functions) The proposition is obvious.

2. (Factorials) To examine the domain of r! we have to take a look at the deno-
minator of the rational evaluation of r!. Recall that

ρ(r!, ~u) = Γ(r[~u]− c + 1) ϕ(r − c + 1, c), c = bRe(r[~u])c.

The Pochhammer function contributes to the denominator only if c is negative.
These contributions are (r+1), (r+2), . . . , (r−c); thus their product evaluates
to 0 if and only if r[~u] ∈ Z−.

Otherwise:

eval(r!, ~u) =
= Γ(r[~u]− c + 1) ϕ(r − c + 1, c)[~u] = Γ(r[~u] + 1).

The domain of 1
r! is not restricted: If the Pochhammer function contributes to

the denominator of the rational evaluation, c has to be positive and therefore
also Re(r[~u]) ≥ 1. The contributions are of form r, (r − 1), and so on. The
smallest factor will be r − c + 1 which evaluates positively for positive r[~u].
Due to the equation above the evaluation of the inverse is 1

Γ(r[~u]+1) .

3. (Falling factorials) Again we analyze the denominator of the rational evalua-
tion,

ρ((r)s, ~u) = ρ

(
r!

(r − s)!
, ~u

)
:

The factorial in the denominator never contributes factors evaluating to zero
to the rational evaluation. However, r! does, if and only if r[~u] ∈ Z− (as
discussed above).

For the multiplicative inverse obviously the critical term is given by (r − s)!;
So the domain is restricted by (r − s)[~u] 6∈ Z−.

The evaluation for ~u ∈ Dm(· · ·) is obvious.

4. (Rising factorials) This case can be treated analogously to the case ahead.

5. (Binomials)

ρ

((
r

s

)
, ~u

)
= ρ

(
r!

s!(r − s)!
, ~u

)
:

Thus the domain is restricted by r[~u] 6∈ Z−.

Again the multiplicative inverse can be treated analogously, and the evaluati-
ons are obvious.
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6. (Exponentials) The proposition is obvious.

2

As you can see by proposition 8 the evaluation model handles rational functions,
factorials and exponentials correctly.

Falling factorials, rising factorials and binomials are evaluated correctly over their
domain Dm. This domain, however is smaller than the standard evaluation suggests.

Falling factorials (r)s are additionally undefined for r[~u], (r − s)[~u] ∈ Z−, Rising
factorials (r)s for (r + s)[~u] ∈ Z−0 and binomials

(r
s

)
for r[~u] ∈ Z−.

To have a tool to deal with these cases we state some limit properties for the eva-
luation of these terms:

Proposition 9 (Limit properties)

1. (Falling factorials)

lim
ε→0

eval
(
(r + ε)s, ~u

)
= (r)s[~u].

2. (Rising factorials)

lim
ε→0

eval
(
(r + ε)s, ~u

)
= (r)s[~u].

3. (Binomials)

lim
ε→0

eval

((
r + ε

s

)
, ~u

)
=

(
r

s

)
[~u].

Proof

1. (Falling factorials) Using proposition 8 we have:

lim
ε→0

eval
(
(r + ε)s, ~u

)
=

= lim
ε→0

Γ(r[~u] + ε + 1)
Γ((r − s)[~u] + ε + 1)

=

= lim
r→r[~u]

Γ(r + 1)
Γ(r − s[~u] + 1)

= (r)s[~u].
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2. (Rising factorials) The proof can be done in just the same way.

3. (Binomials) Here we have to distinguish between the cases s[~u] ∈ Z− and
s[~u] 6∈ Z− ∧ r[~u] ∈ Z−. There is a third case where neither of the two previous
cases applies; there, however, both possibilities of evaluating the Binomial are
not defined.

s[~u] ∈ Z− :

lim
ε→0

eval

((
r + ε

s

)
, ~u

)
= 0 =

(
r

s

)
[~u],

s[~u] 6∈ Z− ∧ r[~u] ∈ Z\IN :

lim
ε→0

eval

((
r + ε

s

)
, ~u

)
= lim

ε→0

(r[~u] + ε)s[~u]

s![~u]

(
r

s

)
[~u].

2

We did not discuss the problematic cases of the multiplicative inverses of binomials,
falling and rising factorials. These expressions can be rewritten (within the theory
of the evaluation model) according to the following proposition, and are therefore
also subject to the limit properties stated above.

Proposition 10 (Hypergeometric exponential laws)

1. Falling factorials

Dm

(
1

(r)s

)
= Dm((r − s)−s),

eval

(
1

(r)s
, ~u

)
= eval((r − s)−s, ~u);

2. Rising factorials

Dm

(
1

(r)s

)
= Dm((r + s)−s),

eval
(

1
(r)s

, ~u

)
= eval((r + s)−s, ~u);
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3. Binomials

Dm

(
1(r
s

)
)

= Dm(s!) ∩Dm((r − s)−s),

eval

(
1(r
s

) , ~u

)
= eval(s! (r − s)−s, ~u);

Proof

If two different hypergeometric terms have the same rational evaluation, then they
clearly have the same domain and the same evaluation. So we show equality of
rational evaluation for each pair of hypergeometric terms above.

ρ

(
1

(r)s
, ~u

)
= ρ

(
(r − s)!

r!
, ~u

)
= ρ

(
(r − s)−s, ~u

)
,

ρ

(
1

(r)s
, ~u

)
= ρ

(
(r − 1)!

(r + s− 1)!
, ~u

)
= ρ

(
(r + s)−s, ~u

)
,

ρ

(
1(r
s

) , ~u

)
= ρ

(
r!(r − s)!

r!
, ~u

)
= ρ

(
s! (r − s)−s, ~u

)
.

2

We found, that the domains of c- and m-evaluation are different. On their inter-
section Dc,m, they yield the same result. On Dc\Dm c-evaluation usually can be
retrieved by approaching it by a limit of m-evaluations. On Dm\Dc we defined
additional evaluations.

4.3 Simplification of hypergeometric terms

In Gosper’s algorithm we construct rational multiples of given hypergeometric terms.
In the theory of the evaluation model we will eventually be able to prove that such
constructed terms are evaluable. By the example of section 5.3.2 we know that in
general we cannot evaluate these terms via classic evaluation. I invented a simplifier,
which transfers the c-unevaluable terms back to c-evaluable ones.

I want to be more precise. We start with some term f . It has a domain Dc(f). We are
interested in the anti-difference g of f . Such an anti-difference is a rational multiple
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of f as we see later, and is supposed to be defined over Dc(f). Using the evaluation
model, we will be able to prove that g has almost the same domain as f . So for
Dc,m(f) we can m-evaluate the anti-difference; but not by classic means! We only
know that Dm(g) ≈ Dm(f). Now we use the simplifier Ψ. It simplifies g such that
the m-evaluation does not change but with the property that Dc(Ψ(g)) ⊇ Dc,m(f).
Where the evaluation of f is continuous we can enlarge the domain of validity to
usually all of Dc(f) by using the limit properties. In section 6.3.5, however, we
present an interesting example that is not continuous.

Figure 4.2: The simplifier Ψ

The simplifier we want to construct has to enlarge the c-domain of a given term to
all of the m-domain. This works only if we may assume that all but the rational part
of the term is already c-evaluable. Actually we only have to get rid of denominators
that evaluate to zero somewhere in the m-domain of the term. For instance 1

x(x−1)!

is better written as 1
x! . In the following we establish simplification rules, that can

be carried out by some algorithm. Matching of the rules is considered to be part of
the algorithm and is therefore also described in the following definition:

Definition 20 Simplifier Ψ

Given f = (%, f−), let den(%) be monic in C(xν+1, . . . xµ)[x1, . . . , xν ], then we define

Ψ(f) := Ψ1(f) ·Ψ2(f),

(Ψ1(f),Ψ2(f)) := Ψ0

(
1

den(%)
,num(%) · t

)
.

The underlying simplifier Ψ0 acts on a pair consisting of an inverted polynomial and
a hypergeometric term. Ψ0 of such a pair is the result of iteratively applying the
simplification rules below, up to the point, where no rule fires. The first and second
component of the result of Ψ0 is denoted by Ψ1 and Ψ2, respectively.

A rule fires, if the pair can be written as the left-hand side of the rule. This is
more than just rewriting, since in general a polynomial can be written as various
products.
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Assert in the following, that %, ς, r, s ∈ C(xν+1, . . . xµ)[x1, . . . , xν ] monic, and j 6= 0.

R1 : (
1
%ς

, % · g) → (
1
%
, g);

R2 : (
1
%r

,
1

(jr − i− 1)!
· g) → (

1
%
,
j ϕ(jr − i, i)

(jr)!
· g);

R3 : (
1
%r

, (jr − i)s · g) → (
1
%
, j ϕ(jr − i, i) · (jr + 1)s−i−1 · g);

R4 : (
1
%r

,
1

(jr − i− s)s
· g) → (

1
%
,
j ϕ(jr − i, i)
(jr − s + 1)s

· g);

R5 : (
1
%r

, (jr − i− 1 + s)s · g) → (
1
%
, j ϕ(jr − i, i)(jr + s)s · g);

R6 : (
1
%r

,
1

(jr − i− 1)s
· g) → (

1
%
,
j ϕ(jr − i, i)

(jr)s
· g);

R7 : (
1
%r

,

(
s

jr − i− 1

)
· g) → (

1
%
,

j ϕ(jr − i, i)
ϕ(s + 1, i + 1)

(
s + i + 1

jr

)
· g);

R8 : (
1
%r

,

(
jr − i− 1 + s

s

)
· g) → (

1
%
,

j ϕ(jr − i, i)
ϕ(jr + s− i, i + 1)

(
jr + s

s

)
· g);

It is easy to see, that the iterative application of the rules above terminates, as in
each step the degree of the first component is decreased.

The most important fact is, that the simplification process Ψ does not change the
m-evaluation of the term. This can be seen, since both sides of any rule above have
the same rational evaluation.

Lemma 2 (Invariant 1 of Ψ)

ρ(f, ~u) = ρ(Ψ(f), ~u).

Proof

The proof is given for rule R2, only. Let r, j and i be fixed, such that R2 may fire.
Now, with fixed u and c = bRe(jr[~u])c for the left-hand side of R2 we have:

ρ

(
1

r · (j r − i− 1)!
, ~u

)
=

1
Γ(jr[~u]− c + 1) ϕ(j r − c + 1, c− i− 1) r

.

For the right-hand side we have:

ρ

(
j ϕ(jr − i, i)

(jr)!
, ~u

)
=

j ϕ(jr − i, i)
Γ(jr[~u]− c + 1) ϕ(j r − c + 1, c)

=
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=
j ϕ(jr − i, i)

Γ(jr[~u]− c + 1) ϕ(j r − c + 1, c− i− 1) ϕ(j r − i, i) j r
=

=
1

Γ(jr[~u]− c + 1) ϕ(j r − c + 1, c− i− 1) r
.

2

Lemma 3 (Invariant 2 of Ψ)

Dc,m(f) ⊆ Dc,m(Ψ2(f)).

Proof

The technical proof is given for rule R7, only. Let r, s, i and j be fixed, such that
rule R7 may fire. Now we fix ~u ∈ Dc,m

(( s
jr−i−1

))
, then by proposition 8 we have,

that s[~u] 6∈ Z−. Obviously we also have, that (s + i + 1)[~u] 6∈ Z−. Therefore, ~u is
part of both the c- and the m-domain of jϕ(jr−i,i)

ϕ(s+1,i+1)

(s+i+1
j r

)
.

2

Theorem 3 Simplifier Ψ

Let g = % · f , then

Dm(g) ∩Dc,m(f) ⊆ Dc(Ψ(g)).

Proof

Fix f, % and g as above and take arbitrary but fixed ~u ∈ Dm(g) ∩ Dc,m(f). Let
1
%′ := Ψ1(g) and f ′ := Ψ2(g). (So we have Ψ(g) = 1

%′ · f ′.)

1. By lemma 3 we know that ~u ∈ Dc,m(f ′). If %′[~u] 6= 0, then we find that
~u ∈ Dc(Ψ(g)), and we are done.

2. We assume that %′ has an irreducible factor d, such that d[~u] = 0. With this
assumption we derive a contradiction:

By lemma 2 we know, that ~u ∈ Dm(Ψ(g)), therefore den( 1
%′ ρ(f ′, ~u))[~u] 6= 0.

In order that d does not appear in the denominator of the rational evaluation
above it has to appear in the numerator of ρ(f ′, ~u).

We analyze what kind of sub-terms of f ′ can cause the factor d in the numerator
of the rational evaluation ρ(f ′, ~u):
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(a) The rational part contributes itself to the rational evaluation, therefore
we find d as factor of the numerator of the rational evaluation, iff it is a
factor of the numerator of the rational part.

(b) For a sub-term s! the rational evaluation yields ϕ(s−z+1, z)Γ(s−z+1),
where z = bRe(s[~u])c. We know that Γ( ) 6= 0 therefore we concentrate
on the other part. If z ≥ 0, then we have s(s−1) · · · (s−z+1)Γ(·) and we
can guarantee, that none of the factors evaluates to zero (Re(s[~u]) ≥ z).
On the other hand, if z < 0, we have Γ( )

(s+1)(s+2)···(s−z) and we find that
the denominator of this evaluates to 0, iff s[~u] ∈ Z−. Then more precisely
(s − z)[~u] = 0. The factor (s − z) is integer-linear in x1 thus it contains
d, iff for some j 6= 0 we have s− z = jd, i.e., s = jd + z.
We summarize: If j 6= 0 then d is a factor of numρ( 1

(jd−i−1)! , ~u), and there
are no other factorials, that contribute d to the numerator of the rational
evaluation.

(c) The rational evaluation of an exponential expression is free of x1 and thus
cannot contribute d.

(d) The rational evaluation of all the other sub-terms is defined via the ra-
tional evaluation of factorials, thus it can be read off, that

(jd− i)s,
1

(jd−i−s)s
,

(jd− i− 1 + s)s,
1

(jd−i−1)s
,

( s
jd−i−1

)
,

(jd−i−1+s
s

)

contribute d to the numerator of the rational evaluation, and no others.

Now you can see, that in any of the cases where f ′ contains a sub-term capable
of causing the factor d in the rational evaluation, there is a rule in definition 20
that fires for ( 1

%′ , f
′). This is a contradiction to the fact that ( 1

%′ , f
′) is the final

result of the iterative application of the rules.

2



Chapter 5

Indefinite sums of
hypergeometric terms

5.1 What do we want to compute?

We want to find “closed forms” for indefinite sums of hypergeometric terms. If we
give a R-sequence representation, we can make this more precise in terms of Symbolic
Summation and follow concept 2. We have the ingredients and in the following we
establish this interpretation.

Given f , we have an interpretation of f as a sequence of functions with domain
DM (f). This sequence is an element of (CDM (f))IN, which forms a ring and therefore
we have a R-sequence interpretation of f . Note that this representation can be used
for a term g+ only, iff g+ ∈ HT+

f , as discussed in section 3.2.4 before.

Definition 21 (Sequence-interpretation of a term)

For f , we define:

∀g+ ∈ HT+
f :

φf (g+) := (ai)i≥0,

ai : DM (f) → C,

ai(~w) := eval(g+, (i, ~w)).

∀g+ ∈ HT+
f :

φf (Lmg+) := (a0)i≥0,

a0 : DM (f) → C,

a0(~w) := eval(g+, (0, ~w)).

51
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Due to the fact that the sequence interpretation depends on the summand, we can
discuss only one instance of the indefinite summation problem of HT+ with input
domain HT. Since the argument works in any instance we still say that we solve the
indefinite summation problem of HT over HT+.

The operators are given by E := E1, L := Lm, +,−; to make it easier, the operator
Lm was not defined, see discussion in section 5.4. Thanks to the evaluation model
the homomorphic properties of these operators hold.

All we need now, is an algorithm that computes the anti-difference of f .

5.2 Gosper’s algorithm computes anti-differences

For a given hypergeometric term f , Gosper’s algorithm sets up a polynomial diffe-
rence equation and solves it by computing a degree bound and using the method
of undetermined coefficients. From the solution of the equation it constructs an
anti-difference to f .

Given such a f , we specify how Gosper’s equation looks like and furthermore how
the algorithm constructs the anti-difference to f from the solution of the equation:

Definition 22 (Gosper-Petkovšek canonical form)

(p, q, r) is the GP-representation of u(x1) ∈ C(~x) in x1, iff

1. p(x1), q(x1), r(x1) ∈ C(x2, . . . , xµ)[x1],

2. u(x1) =
p(x1 + 1)

p(x1)
q(x1)

r(x1 + 1)
.

3. ∀i 6= 0: gcd(q(x1), r(x1 + i)) = 1.

4. p, r monic.

5. gcd(p, q) = 1, gcd(p, r) = 1,

This representation is due to Gosper and exists for any rational function. Petkovšek
refined it by supplying condition 4 and 5. In [Pet92] he proves that then this
representation is unique. Furthermore it is computable by an algorithm.

Definition 23 (Gosper’s equation and solution)

Given f , let (p, q, r) be the GP-representation of Q1f . Then for f we define:
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• Gosper’s equation to f is given by

p(x1) = q(x1)y(x1 + 1)− r(x1)y(x1),

it contains one unknown, namely y.

• If Gosper’s equation to f has a polynomial solution, i.e. y ∈ C(x2, . . . , xµ)[x1],
then by taking the polynomial solution, y, with minimal degree in x1 we define
the Gosper-term, g, to f by:

g :=
r y

p
· f.

In [LPS93] it is shown that the solution to Gosper’s equation to f is unique, if f is
not rational.

5.2.1 Correctness

Proposition 11 (Gosper’s algorithm is correct)

If g is the Gosper-term to f then φf (E1g − g) = φf (f).

Proof

It suffices to prove E1g − g = f . We have

E1g − g = (Q1g − 1) · g = (Q1
r y

p
·Q1f − 1)

r y

p
· f,

and complete the proof by

(Q1
r y

p
·Q1f − 1)

r y

p
= E1

r y

p
·Q1f − r y

p
= E1

r y

p
· (E1p) q

p (E1r)
− r y

p
=

=
qE1y − ry

p
= 1.

2

You can see, to find an anti-difference of a hypergeometric term it suffices to compute
one by Gosper’s algorithm. If the algorithm does not yield a result, then in most
cases this necessarily means that the anti-difference of the input-term cannot be
expressed in HT+, see section 5.2.3. That we cannot expect this property for all
indefinite sums, is shown by the following example:
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5.2.2 (Very) finite summation

Try to find a closed form for the indefinite sum

s(a) =
a∑

k=0

12

(
3
k

)(
n

k

)

by applying Gosper’s algorithm! I did, in Maple V Release 3, and got the following
answer:

> sum( 36*binomial(3,k)*binomial(n,k),k=0..a);

a
-----
\
) 12 binomial(3, k) binomial(n, k)
/

-----
k = 0

But check out the hypergeometric term

g := n
(
−22 + 49 k − 20 k2 − 12n + 3 k n + 3 k2 n− 2n2 + 2 k n2 − k2 n2

) (
2
k

)
.

We have that ∆kg = Ekf and therefore also s(a) = g[a] − g[0] + f [0]. We cannot
see this right away, but the computer reveals the facts:

In[1]:=
f[k_] := 12 Binomial[3, k] Binomial[n, k]

In[2]:=
g[k_] := n (-22 + 49 k - 20 k^2 - 12 n + 3 k n + 3 k^2 n -

2 n^2 + 2 k n^2 - k^2 n^2) Binomial[2, k]

In[3]:=
Table[ Factor[f[i+1]] == Factor[ g[i+1] - g[i]], {i, 0, 4}]

Out[3]=
{True, True, True, True, True}

In[4]:=
Table[ Factor[Sum[f[i], {i,0,j}]] == Factor[g[j]-g[0]+f[0]],
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{j, 0, 4}]
Out[4]=
{True, True, True, True, True}

5.2.3 Symbolic sums with better support

If the domain of a hypergeometric term is large enough, then we are able to prove,
that Gosper’s algorithm finds all anti-differences to that term.

Definition 24 (Sufficiently large sets)

A set A is sufficiently large iff Cµ\A is contained by some finite union of (ν − 1)-
dimensional lines.

Lemma 4 (Checking equality of rational functions)

Let A be sufficiently large, such that for fixed %, ς we have Dm(%), Dm(ς) ⊆ A, then:

(∀~u ∈ A : %[~u] = ς[~u]) ⇒ % = ς.

Proof

Left to the reader.

Definition 25 (Good support)

A term f has good support iff {~u ∈ IN×DM (f) | eval(f, ~u) 6= 0} is sufficiently large.

Note that if f has good support, then its m-domain is a set of values that can be
used to check equality in C(~x).

We are looking for a representation g+ ∈ HT+
f of the anti-difference of the sequence

φf (f) in HT+
f . Let us write g+ as finite sum of elements of hypergeometric terms,

g+ = g1+g2+· · ·+gm, where none of g1, . . . , gm has a zero sequence as interpretation.
We are only interested in those g+, where all of the hypergeometric constitutes
are m-evaluable over the m-domain of f . If there is an anti-difference using other
constitutes, then we are not able to m-evaluate it.

We have an algorithm, that looks for anti-differences of f in HTf but none that
looks in HT+

f . Therefore we need the following proposition:

Proposition 12 (Anti-differences are simple)

If f has good support, and φf (f) = φf (E1g
+ − g+), with g+ = g1 + g2 + · · · + gn,

g1, . . . , gn ∈ HTf , then there exist g ∈ HTf and a sufficiently large set D such that
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∀~u ∈ D : eval(f, ~u) = eval(E1g, ~u)− eval(g, ~u).

Proof

Fix f, g+, g1 + g2 + · · ·+ gn, as in the proposition. Then we want to prove that there
is at least one constitute gi, for which we have eval(E1gi − gi, ~u) = eval(f, ~u) over a
domain D which is sufficiently large.

Assume that none of the constitutes is such an anti-difference of f , then we derive a
contradiction: Since φf (f) satisfies a recurrence relation of order one, we know that
the anti-difference φf (g+) satisfies such a relation of order two. Let p0, p1 and p2 be
such that φf (p0g

+ + p1E1g
+ + p2E

2
1g+) = 0.

Let D := IN×DM (f), then we have

∀~u ∈ IN×DM (f) : eval(p0g
+ + p1E1g

+ + p2E
2
1g+, ~u) = 0.

There exist rational functions %1, . . . , %m, such that

∀~u ∈ IN×DM (f) : eval(%1g1 + %2g2 + · · ·+ %mgm, ~u) = 0.

If %1 = 0 then we have that g1 satisfies the recurrence relation for the anti-differences
of f , i.e. g1 is an anti-difference of f . We conclude that %1 6= 0. From that we find

∀~u ∈ D′ : eval(g1, ~u) = eval(
%2

%1
g2 + · · ·+ %m

%1
gm, ~u),

where D′ := IN×DM (f) ∩Dm( 1
%1

). As you see, we can find g+
1 by replacing g1 by

a linear combination of all but the first constitutes.

By iteratively applying the same argument we find a g in HT with the property that
eval(E1g − g, ~u) = eval(f, ~u) over D′′, which is still sufficiently large.

2

I have to mention that the basic idea to this argument can be found in [Pet92].
There is a big difference, though, since there sequences are considered to be equal
as soon as almost all sequence elements are equal. As we showed above the idea
carries over to our refined sequence interpretation.

Proposition 13 (Gosper’s algorithm finds all anti-differences)

If f has good support and Gosper’s equation to f has no polynomial solution,
then there are no g1, . . . gm ∈ HTf , such that φf (E1g

+ − g+) = φf (E1f), where
g+ := g1 + · · ·+ gm.
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Proof

Assume that φf (E1g
+ − g+) = φf (f) then, by proposition 12, we have a g and a

domain D, such that

∀~u ∈ D : eval(E1g − g, ~u) = eval(f, ~u),

where D is sufficiently large.

Since f has good support the intersection D′ of D and the support of f is still
sufficiently large.

For a sufficiently large D′′, we have

∀~u ∈ D′′ :
eval(E1g − g, ~u) = eval(f, ~u) 6= 0,

eval(E1(E1g − g), ~u) = eval(E1f, ~u) 6= 0,

where equality in C(~x) can still be decided over D′′. By Property 1 and 2 of the
evaluation model, compare proposition 7, we have

∀~u ∈ D′′ : eval(Q1(E1g − g), ~u] = eval(Q1f, ~u).

Since D′′ is sufficiently large, we have Q1(E1g − g) = Q1f or equivalently

Q1g ·Q1(Q1g − 1) = Q1f.

Let (y, q̄, r̄) be the GP-representation of Q1g, then we have

(E1y) q̄

y (E1r̄)
Q1

(E1y) q̄ − y (E1r̄)
y (E1r̄)

= Q1f.

After some simplification we find

q̄

E2
1 r̄

Q1(q̄(E1y)− (E1r̄)y) = Q1f.

Observe, that gcd(q̄, q̄E1y − r̄y) = gcd(r̄, q̄E1y − r̄y) = 1. Therefore the left-hand
side is already written in GP-form, and we find with c free of x1 and (p, q, r) as
GP-representation of Q1f , that

E1r̄ = r, q̄ = q, qE1y − ry = c p.

This implies that Gosper’s equation has a polynomial solution.

2
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5.2.4 Evaluation domain of Gosper-terms

We have an algorithm that finds (all) anti-differences for f over HT+
f . So far, we

did not check, whether the Gosper-term computed is really an element of HT+
f .

In other words is the anti-difference found by Gosper’s algorithm a sequence of
functions, which have domains larger than DM (f)? The next proposition is born to
answer this subtle question.

Proposition 14 (Gosper-terms are evaluable)

Let g be the Gosper-term to the given f , let y be the corresponding solution of
Gosper’s equation to f and (p, q, r) the GP-representation of Q1f . Then

DM (f) ∩DM (y) ⊆ DM (g).

Proof

Assume that ~w ∈ (DM (f)∩DM (y)). We know, that g = r y
p · f . Because p is monic,

we can choose an n such that (n, ~w) ∈ Dm(1
p) and thus (n, ~w) ∈ Dm(g).

With n as a basis we use induction to prove ∀i : (i, ~w) ∈ Dm(g). The induction
leads from n in both directions towards 0 and ∞:

1. The forward step:

Let n be such that (n, ~w) ∈ Dm(g). Then we have (n, ~w) ∈ Dm(g + f) and
since E1g = g + f , we have (n, ~w) ∈ Dm(E1g). By property 5 in proposition 7
we have (n + 1, ~w) ∈ Dm(g).

2. Stepping backwards:

Let n > 0 be such that (y, ~w) ∈ Dm(g). Then we have (n − 1, ~w) ∈ Dm(f).
By property 5 in proposition 7 we also have (n − 1, ~w) ∈ Dm(E1g) and since
g = E1g − f , we have (n− 1, ~w) ∈ Dm(g).

This completes induction and proof.

2

Actually, an answer with an exception (DM (f) ∩ DM (y) instead of DM (f) is no
solution to the anti-difference problem for a given f over HT+

f . It is a solution for
the problem using an even smaller domain. This domain is not known before the
execution of the algorithm, therefore we may be tempted to say, that this is too easy
if a decision algorithm itself sets up the domain where its decisions are valid.
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Is there another algorithm, that finds more solutions by setting up its domain of vali-
dity? The answer is no, as long as these domain restrictions do not destroy the good
support property. If you want to find an algorithm that computes anti-differences,
where Gosper’s algorithm fails, then you have to make domain restrictions such that
the terms loose the good support property, compare section 5.2.2. Note that the
restrictions set up by Gosper’s algorithm do not spoil the good support property.

5.3 Examples

5.3.1 Harmonic Numbers

We try to find a closed form for the harmonic numbers:

Hm :=
m∑

k=0

1
k + 1

=?

We try to solve the related indefinite problem by Gosper’s algorithm and find no
solution.

If we use a variation of the problem:

S(m,n) :=
m∑

k=0

k!
(k + n)!

,

we can use Gosper’s algorithm!

In[39]:= Gosper[1/(k+1), {k,0,m}]
Out[39]= {}

In[40]:= Gosper[k!/(k+n)!, {k,0,m}]
If ‘m’ is a natural number, then:

(1 - n) k! n (1 + m) m!
Out[40]= {SUM[----------, {k, 0, m}] == -(--) + ----------}

(k + n)! n! (m + n)!

So for n 6= 1, we have that

S(m,n) =
−(m + 1)!(n− 1)! + (n + m)!

(n− 1)(n− 1)!(n + m)!
.
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Note that the closed form cannot be evaluated for n = 1. Of course, the reason
for this is, that the solution to Gosper’s equation in this example is given by − 1

n−1 .
Our theory suggests that this is an evaluation point where things can go wrong and
therefore in the Paule/Schorn implementation (1−n) is multiplied to the summand.

We go further by observing that S(m,n) is continuous in n and therefore we have

Hm = S(m, 1) = lim
n→1

−(m + 1)!(n− 1)! + (n + m)!
(n− 1)(n− 1)!(n + m)!

.

This limit can be converted:

In[42]:= Limit[(-(m+1)!(n-1)!+(n+m)!) / ((n-1)(n-1)!(n+m)!), n-> 1]

Out[42]= EulerGamma + PolyGamma[0, 2 + m]

We have proven a result that can be found for instance in [SLL89]. The result can
be found more conveniently by a rational summation algorithm, which for instance
is implemented in Maple:

> sum(1/(k+1), k=0..m);
Psi(2 + m) + gamma

5.3.2 Applying the simplifier Ψ

To find a closed form for

s(m,n) =
m∑

k=0

−k(n + 1) + n2 + 2(n + 1)
(k − 1)!

(
k

n

)
,

we apply Gosper’s algorithm:

> sum( (-k*(n+1)+n^2+2*(n+1))*binomial(k,n)/(k-1)!, k);
binomial(k, n) (k - n) (- 1 + k n + k)
--------------------------------------

(k - 1) (k - 2)! k

Surprisingly Maple does not give a rational multiple of f as an answer. Since in this
example the GP-form of the shift quotient is given by (k(−k(n + 1) + n2 + 2(n +
1)), 1, k − n) and the solution to the Gosper-equation is (−1 + kn + k) I expected



CHAPTER 5. INDEFINITE SUMS OF HYPERGEOMETRIC TERMS 61

g :=
(k − n)(kn + k − 1)

k(k − 1)!

(
k

n

)
.

Anyways we solved the summation problem:

s(m,n) = eval(g,m + 1, n)− eval(g, 0, n).

Since we do not know the specific values for m and n, we are not able to compute
the evaluations. Therefore we try to use classic evaluation instead. If g[m + 1, n]
is defined, then it is equal to eval(g, (m + 1, n)), anyhow. In proposition 14 we
proved that (m + 1, n) belongs to the domain of eval. And indeed in this ex-
ample we have g[m + 1, n] = (m−n+1)(m+mn+n)

(m+1)m!

(m+1
n

)
, so also eval(g, n + 1, n) =

(m−n+1)(m+mn+n)
(m+1)m!

(m+1
n

)
. With eval(g, (0, n)), the same trick does not work, because

g[0, n] is not defined.

It is time to use the simplifier Ψ to construct an evaluable term. We know that the
original summand f is c- and m-evaluable at (0, n) and g, a rational multiple of f , is
m-evaluable at (0, n). Therefore we know that Ψ(g) is c- and m-evaluable at (0, n)!
So lets compute it.

In[2]:=
SimplifierPsi[(k-n)(k n + k -1)/k Binomial[k, n]/ (k-1)!, k]
Out[2]=

(-k + n) (-1 + k + k n) Binomial[k, n]
-(--------------------------------------)

k!

Now, denoting the result above as g′, we find that

eval(g, 0, n) = eval(g′, 0, n) = g′[0, n] = n

(
0
n

)
= 0.

So we have

S(m,n) =
(m− n + 1)(m + mn + n)

(m + 1)m!

(
m + 1

n

)
=

(m + mn + n)
m!

(
m

n

)
.

The Paule/Schorn implementation does most of this automatically:

In[4]:= Gosper[(-k(n+1)+n^2+2(n+1)) Binomial[k,n]/(k-1)!, {k,0,n}]
If ‘m’ is a natural number, then:
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(m + n + m n) Binomial[m, n]
Out[4]= {-(n Binomial[0, n]) + ----------------------------}

m!

Also Maple is capable of producing a similar result automatically:

> sum((-k*(n+1)+n^2+2*(n+1))*binomial(k,n)/(k-1)!,k=0..m);
binomial(m + 1, n) (m + 1 - n) ((m + 1) n + m) 1
---------------------------------------------- + --------------------

m (m - 1)! (m + 1) n GAMMA(n) GAMMA(-n)

5.4 Summary for real life

Given f , Gosper’s algorithm finds a representation in HT+ of the indefinite sum
over f , if it exists. There are two foot-traps:

1. This “closed form” for the indefinite sum must be interpreted as sequence of
functions with domain DM (f) ∩ DM (y), where y is the solution of Gosper’s
equation to f . The user believes that the result is valid on DC(f).

2. The evaluation of the anti-difference (the Gosper-term) is guaranteed to work
only by means of eval.

Since you cannot ask every user of Gosper’s algorithm to be aware of this, it is your
task to make your implementation safe.

Half of the first problem can be avoided, if you multiply the denominator of y to the
summand as this was done in the first example above. Then we get a solution that
is valid on DM (f).

The second half is more difficult, it has to take care of the values in DC(f)\DM (f).
As we know, this set of values contains these choices of parameters, where the upper
entries of a binomial become a negative integer (and similar restrictions on falling
and raising factorials). If the sum in question is continuous in some variable that
appears in the upper parameter of a binomial, then we can approach the values
ruled out from DM (f) by this binomial by a limit. Continuity of the sum can be
determined automatically and therefore the algorithm can output the restriction for
the remaining binomials.

The second problem can be attacked by applying the simplifier Ψ to the Gosper-
term. We have to express Lmg and E1g such that the user can c-evaluate these
terms over IN × DC(f). If we find a representation g′ for g that evaluates over
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IN × DC,M (f), then we can express Lmg by Lcg
′ which is nothing but g′[(0, ~x2)].

Since g is a rational multiple of f which is c- and m-evaluable over IN × DC,M (f)
and IN×DC,M (f) ⊆ Dm(g) such a g′ can be computed by Ψ(g). Summarizing, for
~u ∈ IN×DC,M (f) we have

eval(Lmg, ~u) = eval(LmΨ(g), ~u) = (Ψ(g)[0, ~x2])[~u].

Therefore we represent Lmg by Ψ(g)[0, ~x2].

Similarly we have

eval(E1g, ~u) = eval(Ψ(E1g), ~u) = (Ψ(E1g)[~x])[~u],

and therefore represent E1g by Ψ(E1g)[~x]. These representations are at least eva-
luable over IN×DC,M (f).

Remark For f with Gosper-term r y
p f we have

E1g = E1
r y

p
· E1f = E1

r y

p
· (E1p) q

p (E1r)
· f =

q E1y

p
· f.



Chapter 6

Definite sums of
hypergeometric terms

In the previous chapters we discussed indefinite sums in every detail. These sums
have the nice property that the summation bounds are independent of the sum-
mands. This is already different looking at the Binomial Theorem

n∑

k=0

(
n

k

)
xkyn−k = (x + y)n,

where the n occurs both in the summand and the summation bound. Thus, the
∆-operator applied on this sum does not yield the shifted summand.

We could go for an interpretation in the sequence world, again. The following
example though, suggests to avoid this:

n∑

k=0

(n− k)!(n− k) = (n + 1)!− 1.

You can see, that the summand is undefined as soon as k is larger than n. However,
due to the upper summation bound we have a guarantee, that the sum can be
evaluated for any choice of parameters. In other words, we have to introduce a
summation range in dependence of the parameters. We do this in a straight forward
manner, rather than in a general setting of sequences.

6.1 Basic notions of definite summation

We give a definition of definite summation:

64
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Definition 26 (Definite hypergeometric sum)

If bl, bu ∈ IL, free of x1, then the tuple (f, bl, bu) denotes a definite (hypergeometric)
sum; instead of (f, bl, bu) we also write

∑bu
x1=bl

f .

Note, that indefinite sums are just a special subclass of the definite sums. As an
example of a definite sum we have:

(
(−1)x1

(
x2

x1

)
, 0, x2

)
, or more familiar

x2∑

x1=0

(−1)x1

(
x2

x1

)
.

If we choose x2 to be 1/2, then this problem does not make sense. The difference
between the upper and lower bound has to be a natural number. Furthermore, the
summand must be evaluable throughout the range of summation; thus in this case
we have x2 ∈ IN. We will now define the domain of a definite summation problem.
For a fixed value out of the domain the definite sum reduces to a finite sum over
complex numbers.

Definition 27 (Interpretation of definite sums)

1. For the summation-problem P = (f, bl, bu) we define a domain for both eva-
luation methods:

DC(P ) :=

{
~w

∣∣∣∣∣
bu[~w]− bl[~w] ∈ IN,
∀u ∈ {bl[~w], . . . , bu[~w]} : (u, ~w) ∈ Dc(f)

}
,

DM (P ) :=

{
~w

∣∣∣∣∣
bu[~w]− bl[~w] ∈ IN,
∀u ∈ {bl[~w], . . . , bu[~w]} : (u, ~w) ∈ Dm(f)

}
.

2. The evaluation of a definite sum P = (f, bl, bu) at ~w is defined by:

∀~w ∈ DC(P ) : P [~w] :=
bu[~w]∑

k=bl[~w]

f [k, ~w],

∀~w ∈ DM (P ) : eval(P, ~w) :=
bu[~w]∑

k=bl[~w]

eval(f, k, ~w).

3. For the definite sum P = (f, bl, bu) we define two summation ranges at ~w:

range(P, ~w) := {bl[~w], . . . , bu[~w]}.

The max-range at ~w is defined only if ~w ∈ DM (P ) and is the range extended
in both directions as long as f remains m-evaluable.
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In the example, P =
∑x2

x1=0(−1)x1
(x2

x1

)
, we find that DM (P ) = DC(P ) = IN. There-

fore the evaluation of P at 5 is defined and it is given by

5∑

k=0

(−1)k

(
5
k

)
= 0.

The ranges are:

range(P, 5) = {0, 1, 2, 3, 4, 5}
max-range(P, 5) = IN.

Assume we have a definite sum P . We take an evaluation point out of DC(P ) and
find the evaluation P [~w]. Now a representation of the definite sum must have the
same evaluation at ~w. At the best this is true for all evaluation points of DC(P ). In
the following we will also consider representations that evaluate correctly only over
a subset of DC(P ).

Definition 28 (Representation of definite sums)

g+ is a representation of the definite sum P = (f, bl, bu) over D ⊆ DC(P ), iff for any
~w ∈ D, the following holds:

• The representation is evaluable:

range(P, ~w)× {~w} ⊆ DC(g+).

• The c-evaluation of P at ~w is equal to the c-evaluation of the representation:

P [~w] = g+[~w].

6.2 Using indefinite summation

Prove the Binomial Theorem

n∑

k=0

(
n

k

)
xkyn−k = (x + y)n,

by showing that (x + y)n is a representation of the definite sum to the left! We can
try do do this by finding a representation of the corresponding indefinite problem
by means of Gosper’s algorithm. It is given by
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a∑

k=0

(
n

k

)
xkyn−k = ?

As a first drawback we find out that in opposition to the definite sum, the indefinite
one does not have a hypergeometric representation. This is not very surprising, as
the indefinite problem is much more general and the nice representation for a definite
sum may depend on the additional information stored in the summation bounds.
In other words, we will need further methods to compute representations of definite
sums, see section 6.3.

6.2.1 The starting condition of a double sum

In the computer proof of

n∑

i=0

m∑

j=0

(−1)i+j

(
n

i

)(
m

j

)(
i + j

j

)
= δm,n

at the initial value n = 0 one has to check a single sum:

m∑

j=0

(−1)j

(
m

j

)
= ?

We try to solve the related indefinite problem by Gosper’s algorithm and (using
Maple V) we find:

> sum((-1)^j*binomial(m,j), j=0..n);
n

binomial(m, n + 1) (n + 1) (-1)
--------------------------------

m

Now setting n := m we find that

∀m 6= 0:
m∑

j=0

(−1)j

(
m

j

)
= 0.

Maple can do this in a single step, too,

> sum((-1)^j*binomial(m,j), j=0..m);
0
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but the answer is wrong! The right hand side of the sum is given by (m = 0). Let
us investigate this example further and try the implementation of Peter Paule and
Markus Schorn.

In[1]:=
<< fastZeil.m
Fast Zeilberger by Peter Paule and Markus Schorn. (V 2.0)
Systembreaker = ENullspace

In[2]:=
Gosper[(-1)^j Binomial[m,j], {j, 0, m}]
If ‘m’ is a natural number, then:

Out[2]=
j

{SUM[-((-1) m Binomial[m, j]), {j, 0, m}] == 0}

Here you can see that the summand was multiplied by m, thus also for m = 0 we
have a correct evaluation. So it can be discovered automatically that something is
different in the case m = 0. Of course, the reason is, that in this example the solution
of the Gosper-equation is given by y := − 1

m and thus {0} = DM ((−1)j
(m

j

)
)\DM (y).

6.2.2 Evaluation domain of Gosper-terms

In section 5.2.4 we proved that in general we can evaluate Gosper-terms. The proof
depends on the fact that the summation-range (of an indefinite sum) may be exten-
ded arbitrarily. For definite sums, this is definitely not the case, therefore proposi-
tion 14 must be slightly modified:

Proposition 15 (Evaluation domain of Gosper-terms)

Let P = (f, bl, bu) be a definite sum, g = r y
p · f is the Gosper-term to f then we

have

DM (f) ∩DM (y) ∩ {~w | degx1
(p) < |max-range(P, ~w)|} ⊆ DM (g).

You see, that we had to add another restriction, that guarantees that p evaluates non
zero at least once. That this condition is really necessary is shown by the following
example.
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A constructed example

I constructed an example where the polynomial p causes a problem. We try to find
a closed form of the following sum:

Sa,b =
b∑

k=a

(−1)kk!
k − 1

Here is what the algorithm computes:

> sum((-1)^k*k!/(k-1), k=a..b);

b (a - 1)
b! (-1) (a - 1)! (-1)
-------- - --------------------

b a - 1

The degree of p is one and the max-range of the sum at ~w = (0, 0) is of length one.
Therefore theory does not guarantee that we can evaluate the result; and indeed
S0,0 can by no means be calculated by the formula above. Transformations do not
help! Theory has predicted (or at least not ruled out) this breakdown.

Note, that the max-range of the sum ( (−1)kk!
k−1 , {k, 2, b}) at any ~w := (a0, b0), where

a0, b0 ∈ IN, a0 ≥ 2, b0 ≥ a0 is given by IN\{0, 1}. Thus the formula found by Gosper’s
algorithm can be evaluated, for instance, for the choice a = 2, b ≥ a.

6.2.3 Expressing the result by terms

Given the definite sum P = (f, bl, bu) with g as Gosper-term to f , we have that over
a suitable domain

eval(P, ~w) = eval(E1g, (bu[~w], ~w))− eval(g, (bl[~w], ~w)).

This follows from the properties of the evaluation-model together with the fact that
E1g − g = f . Now the question is, how can we express eval(g, (bu[~w] + 1, ~w)) as
eval(g′, ~w) ? Somehow this is a partial evaluation of a hypergeometric term. In
other words, you can say that g′ is the composition of g with bu + 1 in x1. We do
not have a method to compute such a composition. Indeed it would be possible to
define one. (Here is a warning: It is not totally straight forward!) But in fact we
want to give a link back to classic evaluation anyhow, so we can avoid introducing
this method.
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We look for a representation of an indefinite sum over the intersection of DC,M (P )
and the restrictions of proposition 15, then over that domain we have:

P [~w] = eval(P, ~w) = eval(E1g, bu[~w], ~w)− eval(g, bl[~w], ~w) =
= eval(Ψ(E1g), bu[~w], ~w)− eval(Ψ(g), bl[~w], ~w) =
= Ψ(E1g)[bu[~w], ~w]−Ψ(g)[bl[~w], ~w].

Now, we can compute the composition of Ψ(E1g) and bu in x1, since c-evaluation
is defined by evaluating sub-term by sub-term, and there the substitution lemma
known from logics (see [EFT84]) tells us that composition of functions can be com-
puted by replacement. So we have

P [~w] = ((Ψ(E1g) ◦ bu)−Ψ(g) ◦ bl)[~w].

We summarize in a proposition:

Proposition 16 (Representation of definite sums)

Given the indefinite sum P = (f, bl, bu), where g = r y
p · f is the Gosper-term to f

then for

P ′ := (den(y) · f, bl, bu), g′ := den(y) · g,

we have that Ψ(E1g
′) ◦ bu − Ψ(g′) ◦ bl is a solution to P ′ over DC,M (P ′) ∩ {~w |

degx1
(p) < |max-range(P ′, ~w)|}.

Note that again the domain of the solution can usually be enlarged to DC ∩ . . . by
automatically applying the limit properties.

6.3 Finding more representations of definite sums

Instead of constructing a hypergeometric term as a representation of a definite sum,
D. Zeilberger had the idea to automatically look for recurrences for these sums. A
recurrence relation together with some initial values is a perfect representation for
proving identities: Find a recurrence satisfied by both sides of an identity and check
enough initial values!

Using Marko Petkovšek’s algorithm HYPER (see [Pet92]) you can find all hypergeo-
metric solutions to a recurrence relation. Both methods together form an algorithm
to find hypergeometric representations for definite sums!

To talk about Zeilberger’s creative telescoping algorithm we need a good notation
for recurrences.
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6.3.1 Operators and recurrences

Definition 29 (Set of operators)

We define the multiplicative group of operator monomials in E1, . . . , Em:

Θ(E1, . . . , Em) := 〈{E1, . . . , Em}〉.

Upon this we define the set of operators in E1, . . . , Em with rational coefficients:

Θ(x1, . . . , xn;E1, . . . , Em) :=



∑

X∈Θ(E1,...,Em)

pXX | pX ∈ C(x1, . . . , xn), pX = 0 for almost all X,



 .

Θ(E1, . . . , Eν) is the largest set of shift operator monomials for hypergeometric terms
and Θ(x1, . . . , xµ; E1, . . . , Eν) the largest set of rational shift operators on HT.

An operator monomial can act on a hypergeometric term (E1@f := E1f). It is just
the regular action of the operators E1, . . . , Eν . Note that with proposition 4 we have
that Ei@(Ej@f) = Ej@(Ei@f) and therefore the action of an operator monomial
(E1E2)@f is well defined.

On the set of operators, we introduce two operations (operations on operators!) +
and ·, yielding an Ore-ring of operators, see, e.g., [BP93].

Definition 30 (Operations on operators)

With
∑

X pXX,
∑

X qXX ∈ Θ(x1, . . . , xµ; E1, . . . , Eν) we define:
∑

X

pXX +
∑

X

qXX :=
∑

X

(pX + qX)X.

(∑

Y

pY Y

) (∑

Z

qZZ

)
:=

∑

X

( ∑

Y Z=X

pY (Y @qZ)

)
X.

We define the order of an operator O =
∑n

i=0 piXi ∈ Θ( ; ) to be n. Write
ord(O) = n.

These operators may be applied on hypergeometric terms.

Definition 31 Application of operators

For
∑

i piXi ∈ Θ(x1, . . . , xµ; E1, . . . , Eν) we define

(∑

i

piXi

)
@f :=

∑

i

pi(Xi@f).
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The proof of

∀A,B ∈ Θ(x1, . . . , xµ; E1, . . . , Eν), f ∈ HT: (AB)f = A(Bf)

is left to the reader.

Very often one uses E1f instead of E1@f , which is fine. At the same time the
abbreviation O1O2 for O1 ·O2 is very common. Now if an operator acts on a rational
function the notation is ambiguous. For instance E1x1 = x1+1 or E1x1 = (x1+1)E1.
In such cases you have to write E1@x1 = x1 + 1 and E1 · x1 = (x1 + 1)E1.

We have operators that act on hypergeometric terms. To express the impact of such
an operator on the functions represented by the terms we need to define operators
acting on functions. The functions have to be shifted in specific arguments. To
do this we use the operators E#1, E#2, . . ., shifting the first, second, and so forth
argument. If a function is given by some term, lets say a(k, y) := sin(ky), then we
will also use Ek := E#1. As one more remark, such a shift operator also shifts the
domain of a function. Analogous to above we build up an Ore-ring of operators.

Definition 32 (Application of operators on functions)

With D ⊆ Cµ, a : D → C, and
∑

X pXX ∈ Θ(x1, . . . , xµ; E#1, . . . , E#ν) we define

E#1D := {(u− 1, ~w)|(u, ~w) ∈ D},
E#1a := b,

b : E#1D → C,

b(u, ~w) := a(u + 1, ~w);(∑

X

pXX

)
a := b,

b : D′ → C,

b(~u) :=
∑

X

pX [~u](Xa)(~u),

D′ :=
⋂

X

(XD ∩Dc(pX)).

An operator on hypergeometric terms, A ∈ Θ(x1, . . . , xµ; E1, . . . , Eν) has an obvi-
ous interpretation φ(A) ∈ Θ(x1, . . . , xµ; E#1, . . . , E#ν). Due to the homomorphic
properties of the evaluation model on a proper domain, we have

φ(Af) = φ(A)φ(f).

If you have a p-finite sequence a, then you can express the recurrence by means of
an operator, A ∈ Θ(x1, . . . , xµ; E#1, . . . , E#ν) with the simple equation Aa = 0.
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To find recurrences for sums, we have to analyze the impact of an operator on
a definite sum. We have to be careful, as not only the summand is shifted but
also the summation bounds. Let P = (f, bl, bu), then using the definition of c-
evaluation, P defines a function φ(P ) with µ − 1 arguments. Take an arbitrary
A =

∑
piAi ∈ Θ(x2, . . . , xµ;E#2, . . . E#ν), then we have

Aφ(P ) =
∑

i

piAi

bu∑

k=bl

φ(f) =
∑

i

Aibu∑

k=Aibl

piAiφ(f) =

=
mu∑

k=ml

Aφ(f) +
∑

i

ml−1∑

k=Aibl

piAiφ(f) +
∑

i

Aibu∑

k=mu+1

piAiφ(f). (6.1)

Above we use the functions ml(~w) = maxi((Aibl)[~w]) and mu(~w) = mini((Aibu)[~w]).
Since bl and bu are integer linear in x2, . . . , xm, we can determine closed forms
ml, mu ∈ IL for them.

Note that the two double sums, correcting the shift in the bound, are finite. We
call them correcting terms. Each of the two correcting terms can be expressed by
one hypergeometric term, which can be simplified by means of Ψ to a c-evaluable
term (on the intersection of the c- and the m-domain). Therefore, using Equa-
tion (6.1) backwards, it is enough to find a sum quantifier free representation for∑mu

k=ml
Aφ(f) to come up with a sum quantifier free representation of Aφ(P ). In

other words, to find a recurrence relation for the definite sum it suffices to find an
operator A ∈ Θ(x2, . . . , xµ;E#2, . . . E#ν), such that we can find a sum quantifier
free representation of

∑mu
k=ml

Aφ(f).

It also suffices to find an A′ ∈ Θ(x2, . . . , xµ;E2, . . . Eν) such that we can find a
closed form for the indefinite sum

∑
x1

A′f . Of course we have to take care of the
domain, on which then the interpretation is defined. Note, that it is possible that
for a ~w ∈ DM (P ) we have ml[~w] > mu[~w] and thus ~w 6∈ DM ({A′f, ml,mu}).

6.3.2 Zeilberger’s method of creative telescoping

Given f , then the theory of holonomic functions makes it possible – via the k-free
recurrence – to find an operator A and a closed form g such that

∑
Af = g, see

[WZ92]. In practice, you can only compute very few examples with this method,
since you have to solve huge linear systems, which usually cause your computer to
run out of memory.

Zeilberger’s method of creative telescoping is a more efficient algorithm, that finds
smaller recurrences than the general theory. The algorithm is described for instance
in [Zei91]. It is based on Gosper’s algorithm and finds the operator A and the
closed form for

∑
Af at the same time. You can then use Equation (6.1) to find the

inhomogeneous part of A
∑

f .
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Given f , then we are looking for C ∈ Θ(x2, . . . , xµ; E2) and g ∈ HT, such that
∆g = Cf . Assume that C is given by

∑n
i=0 ciE

i
2 then

Cf =
( n∑

i=0

ci

i∏

j=1

Ej−1
2 Q2f

)
· f.

This means that we can compute two polynomials b0 and b1 such that

Cf =
b0(c0, . . . , cn)

b1
· f.

The polynomial b0 depends on the coefficients of C, in a linear manner. Note, that
Cf is a rational multiple of 1/b1 · f and therefore with the help of proposition 11
also g. Let’s say g = ς

b1
· f . Expressing everything as multiple of f the requirement

∆g = Cf reads as

Q1

(
1
b1
· f

)
E1ς − ς = b0(c0, . . . , cn).

This is a rational difference equation. With the representation a0/a1 := Q1( 1
b1
· f),

where a0 and a1 are polynomials, we make the coefficients of the difference equation
polynomial:

a0 E1ς − a1ς = a1b0(c0, . . . , cn).

In [Abr89] it is discussed that the denominator of ς has to be bordered by E−1
1 a0 and

a1 and it is my claim that it is enough to take p as the largest possible denominator
if (p, q, r) is the GP-representation of a0

a1
. Peter Paule established a proof for that,

see [Pau95]. Therefore we can transform the equation to a polynomial difference
equation (ς ′ = pς):

q E1ς
′ − E1rς

′ = E1r b0(c0, . . . , cn).

Since E1r does not divide q, we read off, that it divides E1ς
′ and with ς ′′r = ς ′ we

finally have

q E1ς
′′ − r ς ′′ = b0(c0, . . . , cn).

Now we have various methods to solve this polynomial difference equation with the
extra parameters c0, . . . , cn. The easiest one is by computing a degree-bound and
comparing coefficients, [Gos78, Zei91], another possibility is [ABP95]. If y solves the
equation above, then a representation for the sum is given by

g =
r y

p b1
· f.
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6.3.3 Validity of recurrences found by Zeilberger’s algorithm

If Zeilberger’s algorithm has found C and g such that ∆g = Cf , then we are
close to applying Equation (6.1). What we need is, that

∑mu
k=ml

φ(C)φ(f) can be
expressed sum quantifier free. In the following we investigate on which domain this
interpretation works.

First, notice that for any operator A ∈ Θ(x2, . . . , xµ;E2) the interpretation φ(A)
exists. We have

Dm(Af) ⊆
ord(A)⋂

i=0

Dm(Ei
2f).

Proceeding as suggested by proposition 16 we find an analog:

Proposition 17 (Validity of sum recurrences)

Given the definite sum P = (f, bl, bu), where g = r y
p b1

· f as above, and C is the
output of Zeilberger’s algorithm, with input f and order n, then with

C ′ := den(y) · C, g′ := den(y) · g,

we have:

∀~w ∈
(

n⋂

i=0

DC,M (Ei
2P ) ∩ {~w | degx1

(p) < |max-range(Ei
2P, ~w)|}

)
:

(φ(C ′)φ(P ))(~w) =
(
Ψ(E1g

′) ◦mu −Ψ(g′) ◦ml − correcting Terms
)
[~w].

6.3.4 Bounds for the order of recurrence relations of sums over
hypergeometric terms

By the argument above we have a sound and correct method to find recurrences for
definite sums. A weak point is, that we had to fix the order of the recurrence before
we constructed it. Therefore, looking for a recurrence we have to try Zeilberger’s
algorithm for recurrences of order 1 then 2, and so on.

For the large class of proper hypergeometric terms – these are hypergeometric terms,
where the denominator of the rational part can be split into linear factors – it is
proven that there exists such a recurrence and furthermore a bound for the order is
given, see [WZ92]. The claim is, that the order of the minimal recurrence of

∑
x1

%

∏n
i=1(aix2 + bix1 + ci)!∏m
i=1(uix2 + vix1 + wi)!

,
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found by Zeilberger’s algorithm, is bound by

∑

i

|bi|+
∑

i

|vi|.

This is not the best bound that can be given. In [Wil91] you find the bound

∑

i

max(bi, 0) +
∑

i

max(−vi, 0) + max
(
0,

∑

i

vi −
∑

i

bi

)
.

I suggest to rewrite this bound in a representation that displays the symmetry:

max
( ∑

i

max(bi, 0) +
∑

i

max(−vi, 0),
∑

i

max(−bi, 0) +
∑

i

max(vi, 0)
)
.

In the latter form you can also see the connection to the GP-representation (p, q, r)
of the summand. The bound can be written as max(deg q, deg r).

6.3.5 Examples

SIAM-Problem 95-1

The following example was given as a problem in [XRTM95]:

T (m,n) :=
m∑

k=0

(
2n−m− k − 1

n− k

)(
m + k

k

)

︸ ︷︷ ︸
t(k,m,n)

.

For m,n ∈ IN we want to find a closed form for T .

Using the Paule/Schorn implementation We try to come up with the recur-
rence for the sum by simply applying Zeilberger’s algorithm:

In[1]:=
<< fastZeil.m
Fast Zeilberger by Peter Paule and Markus Schorn. (V 2.0)
Systembreaker = ENullspace

In[2]:=
t[k_,m_,n_] := Binomial[2n-m-k-1, n-k] Binomial[m+k,k];
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In[3]:=
Zb[ t[k,m,n], {k,0,m}, m, 1]
If ‘m’ is a natural number
and ‘-3 - 2 m + 2 n’ is no negative integer, then:
Out[3]=
{SUM[m] - SUM[1 + m] == 0}

The second restriction out-putted is due to the fact that otherwise the upper para-
meter of the binomial changes its sign, which as we know from the evaluation model
causes problems. So for 0 ≤ m ≤ n− 1 we have T (m,n) = T (0, n) =

(2n−1
n

)
.

To examine the case m ≥ n, I split T (m,n) into two sums, such that in both sums
the sign of the upper parameter of the first binomial does not change.

T1(m,n) :=
2n−m−2∑

k=0

(
2n−m− k − 1

n− k

)(
m + k

k

)
,

T2(m,n) :=
m∑

k=2n−m−1

(−1)n−k

(
−n + m

n− k

)(
m + k

k

)
.

Obviously we have, T (m,n) = T1(m,n)+T2(m,n). First we analyze T1 by applying
Zeilberger’s algorithm, and we find:

In[4]:=
Zb[ t[k,m,n], {k, 0, 2n-m-2}, m, 1]
If ‘-3 - m + 2 n’ is a natural number
and ‘2 (-1 + n)’ is no negative integer, then:
Out[4]=
{SUM[m] - SUM[1 + m] ==

((-1 + 2 n) Binomial[1, 2 + m - n]

Binomial[-2 + 2 n, -2 - m + 2 n]) / (1 + m)}

We found an inhomogeneous recurrence. But note, if m ≥ n then the binomial( 1
2+m−n

)
is zero and the recurrence relation turns into a homogeneous one. Therefore

for 0 < n ≤ m ≤ 2n − 3 we know that T1(m, n) = T1(n, n). Now T1(n, n) =
0, T1(m, 0) = 0, and for m ≤ 2n− 3 even, all summands are zero. If m ≥ n we have
T (m,n) = T2(m,n).

We analyze T2:

In[5]:=
u[k_,m_,n_]:= (-1)^(n-k) Binomial[-n+m,n-k] Binomial[m+k,k];
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In[6]:=
Zb[ u[k,m,n],{k, 2n-m-1, m}, m, 1]
If ‘1 + 2 m - 2 n’ is a natural number and none of
{2 m, m - n}
is a negative integer, then:
Out[6]=
{SUM[m] - SUM[1 + m] == 0}

For m ≥ n we have that T2(m,n) = T2(n, n) and with the previous result also
T (m,n) = T2(n, n), for m ≥ n.

We complete the answer by computing T2(n, n):

T2(n, n) =
n∑

k=n−1

(−1)n−k

(
0

n− k

)(
n + k

k

)
=

(
2n

n

)
.

Summarizing both cases we have

T (m,n) =

{ (2n−1
n

)
, if m ≤ n− 1(2n

n

)
, if m ≥ n

.

We check the result with some values:

In[7]:=
Table[ Sum[ t[k,m,n], {k,0,m}], {n,0,5}, {m,0,6}]˘
Out[7]=
{{1, 1, 1, 1, 1, 1, 1}, {1, 2, 2, 2, 2, 2, 2},
{3, 3, 6, 6, 6, 6, 6}, {10, 10, 10, 20, 20, 20, 20},
{35, 35, 35, 35, 70, 70, 70},
{126, 126, 126, 126, 126, 252, 252}}

In[8]:=
Table[ If[ m <= n-1, Binomial[2n-1,n], Binomial[2n, n]],

{n,0,5}, {m,0,6}]
Out[8]=
{{1, 1, 1, 1, 1, 1, 1}, {1, 2, 2, 2, 2, 2, 2},
{3, 3, 6, 6, 6, 6, 6}, {10, 10, 10, 20, 20, 20, 20},
{35, 35, 35, 35, 70, 70, 70},
{126, 126, 126, 126, 126, 252, 252}}

A shorter variant of the former proof To prove the result of above for the
case m ≥ n we use the fact that then T (m,n) =

∑n
k=0 t(k, m, n). By replacing the
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upper bound we found a representation of T (m,n) which immediately tells us that it
is continuous in m (also the Paule/Schorn implementation knows that!). Therefore
the values of T (m,n) can be approached by a limit.

In[9]:=
Zb[ t[k,m,n], {k,0,n}, m, 1]
If ‘n’ is a natural number, then:
Out[9]=
{SUM[m] - SUM[1 + m] == 0}

Again, the example is completed by computing T (n, n).



Chapter 7

A new method attacks double
sums

In the previous chapters we guaranteed the correctness of algorithmically computed
recurrences for

∑
k f by the evaluation model. A different approach is naturally

given by starting with several small recurrences for the summand, for instance:

A(k, n; Ek)f = 0, B(k, n; En)f = 0.

If we compute any polynomial linear combination of these two operators, then we
again get a correct recurrence relation for f .

(
C(k, n;Ek, En)A + D(k, n; Ek, En)B

)
f = 0. (7.1)

Inspired by the inventors of Gosper’s and Zeilberger’s algorithm I leave the details
of when and over what domain such recurrences are valid to the advanced reader.
He will observe that for the required correctness proofs, the evaluation model will be
helpful, again. Also following famous paragons in the following we assume standard
boundary conditions for f , which means that f is non-zero over a finite range for
the summation variables only, and f is well defined just outside this range. Now
we can conclude that F (n; En) annihilates

∑
k f from the fact that F + (Ek − 1)R

annihilates f .

If we cleverly choose C and D in Equation (7.1), we will eventually be able to come
up with a recurrence F (n; En) for the sum over f . All what we need is an operator
that can be represented as CA + DB (then it is annihilating) and as F + (Ek − 1)R
(then it is summable) at the same time. So we have to find C, D,F and R, such
that

C(k, n;Ek, En)A + D(k, n; Ek, En)B = F (n; En) + (Ek − 1)R(k, n; Ek, En).

80
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In the multi-sum case we start with the annihilating operators A1(k1, . . . , kr, n, Ek1),
. . ., Ar(k1, . . . , kr, n, Ekr), B(k1, . . . , kr, n; En) and look for a left linear combination
of these operators representable as

F (n; En) + (Ek1 − 1)R1 + · · ·+ (Ekr − 1)Rr.

If we solve the problem for r = 1, then we have a solution to the general problem:
Starting with the operators A1, . . . , Ar we can compute the following operators, that
are all left linear combinations of the starting operators, by means of an algorithm
for the case r = 1:

Figure 7.1: Iterative elimination

Here we present an algorithm that in most cases solves the problem for r = 1 but
sometimes is not able to produce a solution. Nevertheless, on this algorithm we will
base an algorithm, algorithm MS, for the general multi-sum case.

As a first surprise we find out that it is enough to look for operators C and D, free
of Ek: Assume that for given A(k, n;Ek) and B(k, n; En) we have C(k, n; Ek, En),
D(k, n;Ek, En), Q(k, n;Ek, En) and F (n; En) such that CA+DB = F +(Ek−1)Q.
Then we can write C = CR(k, n; En) + (Ek − 1)CQ(k, n;Ek, En) and similar D =
DR(k, n;En) + (Ek − 1)DQ(k, n;Ek, En). Now we have

CRA + DRB = F + (Ek − 1)(Q + CQA + DQB).

So there exist also CR and DR, free of Ek solving the problem.

7.1 The algorithm MS

1. As input to MS we provide two operators, A(k, n;Ek) and B(k, n;En), none
of which is free of k.
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2. Let β := degk B, α := degk A and A = a0 + Eka1 + · · · + Em
k am. In the

following we use the notation C(k + j) := (Ek)j@C – which is different to
(Ek)j · C – and use the fact that Ej

kC(k − j) = C(k)Ej
k.

3. We analyze the impact of an arbitrary C on A:

CA = C(k)a0 + EkC(k − 1)a1 + · · ·+ Eα
k C(k − α)aα =

= C(k)a0 + · · ·+ C(k − α)aα +
+(Ek − 1)C(k − 1)a1 + · · ·+ (Eα

k − 1)C(k − α)aα︸ ︷︷ ︸
(Ek−1)Q

.

So for any C, there exists a Q, such that

CA + DB = C(k)a0 + · · ·+ C(k − α)aα + DB︸ ︷︷ ︸
free of Ek

+(Ek − 1)Q.

4. The operator C(k)a0 + · · · + C(k − α)aα + DB is the one we have to make
free of k. Remember that C and D are still arbitrary and with the additional
unknown F we have to solve the operator equation

C(k)a0 + · · ·+ C(k − α)aα + DB − F = 0. (7.2)

5. We make an Ansatz for C(k, n; En) and D(k, n; En) by fixing their degree in
k:

C :=
β−1∑

i=0

Ci(n; En)ki,

D :=
α−1∑

i=0

Di(n;En)ki.

Now we can compare the coefficients of k in Equation (7.2), leading us to a
system of linear and homogeneous equations in C0, . . . , Cβ−1, D0, . . . , Dα−1

and F . All these unknowns are operators in n and En. Therefore, this is a
linear system over an Ore-algebra, see [BP93]. All the unknowns in the set of
equations appear with right coefficients. We can compute its null-space by the
Gaussian algorithm using right multiplications on the equations.

Since degk(CA), degk(DB) ≤ α+β−1, we have at most α+β linear equations.
The number of unknowns is given by α + β + 1 and exceeds the number of
equations by one, so for sure, we find a non-trivial null-space vector.

6. It is possible that F = 0 in which case we did not solve the problem.
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7.2 MS-proofs for double-sum identities

We have a Mathematica implementation of MS looking for recurrence relations of
multi-sums over hypergeometric terms with standard boundary conditions and use
it to prove two binomial identities of V. Strehl (see [Str93]). The three sums in
question have standard boundary conditions.

We want to prove

n∑

k=0

k∑

j=0

(
n

k

)(
n + k

k

)(
k

j

)3

=

=
n∑

k=0

k∑

j=0

(
n

k

)(
n + k

k

)(
k

j

)2(
2j

k

)
=

n∑

k=0

(
n

k

)2(
n + k

k

)2

.

We simply apply MS:

In[2]:=
MS[ Binomial[n,k] Binomial[ n+k, k] Binomial[k,j]^3, {j,k},n]
If none of {1 + n, 2 + n} is zero, then
Out[2]=

3 2 3 2
-(1 + n) + (3 + 2 n) (39 + 51 n + 17 n ) N + -(2 + n) N

In[3]:=
MS[ Binomial[n,k] Binomial[ n+k, k] Binomial[k,j]^2 *

Binomial[2j, k], {j,k},n]
If none of {1 + n, 2 + n} is zero, then
Out[3]=

3 2 3 2
-(1 + n) + (3 + 2 n) (39 + 51 n + 17 n ) N + -(2 + n) N

In[4]:=
MS[ Binomial[n,k]^2 Binomial[n+k, k]^2, {k}, n]
Out[4]=

3 2 3 2
(1 + n) + -((3 + 2 n) (39 + 51 n + 17 n )) N + (2 + n) N

Since all of the three sums satisfy the same recurrence relation, we only have to check
two initial values (the leading coefficient of the recurrence does not have integer roots
in n). So we do that:
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In[5]:=
Table[

{Sum[ Binomial[n,k] Binomial[ n+k, k] Binomial[k,j]^3,
{k,0,n},{j,0,k}],

Sum[ Binomial[n,k] Binomial[ n+k, k] Binomial[k,j]^2 *
Binomial[2j, k], {k,0,n}, {j,0,k}],

Sum[ Binomial[n,k]^2 Binomial[k+n,k]^2, {k,0,n}]}, {n,0,1}]
Out[5]=
{{1, 1, 1}, {5, 5, 5}}

The amazing thing is, that we are not only able to compute recurrences for double
sums, we can do it very fast! The recurrences for the double-sums above have been
computed in less than 20 seconds. We list further double-sums that have been proven
with MS and give a list of timings afterwards.

• Trinomial Identity (see [GKP88])

n∑

k=0

k∑

i=0

(
n

k

)(
k

i

)
xn−kyizk−i = (x + y + z)n. (7.3)

• Vandermonde for 2 variables (see [GKP88]

r∑

i=0

s∑

j=0

(
r

i

)(
s

j

)(
t

n− i− j

)
=

(
r + s + t

n

)
. (7.4)

• Strehl: Binomial Identities (see [Str93])

n∑

k=0

k∑

j=0

(
n

k

)(
k

j

)2(
k

j + a

)
=

n∑

k=0

(
n

k

)2(
2k

k + a

)
. (7.5)

n∑

k=0

k∑

j=0

(
n

k

)(
n + k

k

)2(
k

j

)3

=
n∑

k=0

(
n

k

)2(
n + k

k

)2

. (7.6)

n∑

k=0

k∑

j=0

(
n

k

)(
n + k

k

)(
k

j

)2(
2j

k

)
=

n∑

k=0

(
n

k

)2(
n + k

k

)2

. (7.7)

• Stechkin Identity in simple form (see [Ego84]
n∑

i=0

r∑

j=0

(
n

i

)(
r − n

j − i

)(
m

q − i

)(
s−m

q − i + j − l

)
=

=

(
n + m

q

)(
r + s− n−m

r + q − n− l

)
. (7.8)
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• Carlitz Identities (see [Car68], [Car64])

n∑

i=0

n∑

j=0

(
i + j

i

)(
n− i

j

)(
n− j

i

)
=

n∑

k=0

(
2k

k

)
(7.9)

m∑

i=0

n∑

j=0

(
i + j

i

)(
j + m− i

j

)(
m + n− i− j

m− i

)(
n− j + i

i

)
=

=
(m + n + 1)!

m!n!

n∑

k=0

1
2k + 1

(
m

k

)(
n

k

)
. (7.10)

For each identity above you can compute recurrence relations in n for the left and
right-hand side. We give a table that lists the order of the recurrence relation found
for the left-hand side and the computation time needed using Mathematica 2.2 on
an SGI-workstation with the following hardware configuration:

1 100 MHZ IP20 Processor, FPU: MIPS R4010 Floating Point
CPU: MIPS R4000 Processor, Main memory size: 96 Mbytes

Identity Computation time Order of computed recurrence
7.3 1 sec. 1
7.4 2 sec. 1
7.5 16 sec. 3
7.6 6 sec. 2
7.7 7 sec. 2
7.8 13 sec. 1
7.9 76 sec. 6
7.10 52 sec. 4

7.3 MS as an alternative to Zeilberger’s algorithm of
creative telescoping

Each example, where you can find a recurrence relation for a sum by means of
Zeilberger’s algorithm, may be inputted to MS. It turns out that MS is a little
slower than his companion, but note you do not have to supply the order of the
recurrence it looks for! Of course, we cannot neglect the unfortunate property that
for some examples MS does not find recurrences.

7.3.1 Three easy examples and a conjecture

1. An easy example, where MS delivers just the same recurrence as Zeilberger’s
algorithm:
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In[2]:=
Zb[(-1)^k Binomial[n,k] Binomial[3k,n],k,n,1]
Try higher order!
Out[2]=
{}

In[3]:=
Zb[(-1)^k Binomial[n,k] Binomial[3k,n],k,n,2]
Out[3]=
{9 (1 + n) (2 + n) SUM[n] + 3 (2 + n) (7 + 5 n) SUM[1 + n] +
2 (2 + n) (3 + 2 n) SUM[2 + n] == 0}

In[4]:=
MS[(-1)^k Binomial[n,k] Binomial[3k,n],{k},n]
If none of {n, 1 + n, 2 + n} is zero, then
Out[4]=

2
-9 (1 + n) + -3 (7 + 5 n) N + -2 (3 + 2 n) N

2. An example where MS finds an operator of higher order:

In[5]:=
Zb[(n+k) Binomial[n,k],k,n,1]
Out[5]=
{-2 (1 + n) SUM[n] + n SUM[1 + n] == 0}

In[6]:=
MS[ (n+k) Binomial[n,k], {k}, n]
If none of {1 + n, 2 + n} is zero, then
Out[6]=
2 (1 + n) (2 + n) + (2 + n) (12 + 7 n) N +

2
-2 (1 + n) (3 + 2 n) N

3. An example where MS fails:

In[7]:=
Zb[1/(n+k) Binomial[n,k], k, n, 2]

Out[7]=
{-2 n (1 + n) (5 + 3 n) SUM[n] -

2
(1 + n) (16 + 44 n + 21 n ) SUM[1 + n] +
2 (2 + n) (3 + 2 n) (2 + 3 n) SUM[2 + n] == 0}
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In[8]:=
MS[ 1/(n+k) Binomial[n,k], {k}, n]
Method fails at level 1:1
Out[8]=
$Aborted

Examining more examples we find a pattern and a conjecture: If we have a polyno-
mial factor in the summand, then the order of the recurrence found by MS is higher
than the one found by Zeilberger’s algorithm. If we have a polynomial divisor in the
summand, then MS fails, else both algorithms deliver the same recurrence.

Actually it is only easy to prove the negative result, namely that MS does not find
recurrences, if the summand contains a polynomial divisor p: Then p is a polynomial
right-hand factor of A and B and by the operator Equation (7.2) we find that p
right-divides F . Since F is constant, it immediately follows that F is zero.

Whether the recurrences found by MS for sums over pure hypergeometric terms are
the same as those found by Zeilberger’s algorithm is just a conjecture.

7.3.2 A slight improvement and an open problem

If f is a hypergeometric summand containing a polynomial factor p, then we can
write f = p f ′. Now f ′ is a hypergeometric term, too, and with Af ′ = 0, Bf ′ = 0
we have A1

pf = 0 and B 1
pf = 0. Therefore we can look for C,D, F and Q such that

CA
1
p

+ DB
1
p

= F + (K − 1)Q
1
p
.

Solving this modified operator equation for the second example above, we find the
operator of order 1.

In[9]:=
MSpoly[ (n+k) Binomial[n,k], {k}, n]
Out[9]=
{{-2 (1 + n) + n N, True}}

Since the algorithm was formulated using only operators, we have to ask, how can the
algorithm detect polynomial factors in the summand by just looking at the operators.
For operators of order 1, you can look at the hypergeometric terms defined by these
operators, the generalization to operators of higher order is an open problem to me.
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