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Abstract. We describe the q–Engel series expansion for Laurent series discovered
by John Knopfmacher and use this algorithm to shed new light on partition identities
related to two entries from Slater’s list. In our study Al-Salam/Ismail and Santos
polynomials play a crucial rôle.

Dedicated to the memory of John Knopfmacher 1937–1999

1. Introduction

In 1987 John Knopfmacher conceived of the idea of representing formal Laurent series
as sums of reciprocals of polynomials. The initial motivation was some old results on
representations for real numbers by sums of reciprocals of integers, due originally to
Lambert, Engel and Sylvester. John together with Arnold had previously investigated
various extensions of the real number representations (see the article by Kalpazidou
and Ganatsiou [10] in this issue). However the development of analogous expansions
for Laurent Series turned out to have some unexpected benefits.

Around the time of publication of [11] it was noticed that a number of famous ex-
pansions including those of Euler and the Rogers–Ramanujan identities were, in fact,
special cases of the q–Engel expansion. This led to the interesting project of using
the q–Engel algorithm (described below) to provide new proofs of these identities.
This gave rise to a first paper by George, Arnold and John [4] in which the Rogers–
Ramanujan identities and some identities of Euler were given new inductive proofs
using the q–Engel algorithm discovered by John. Subsequently George, Arnold and
Peter have continued these investigations leading to the further publications [3, 6, 5].

To explain our new results we begin by recalling the q–Engel expansion [11, 12] for
the field L = C((q)) of formal Laurent series over the complex numbers, C. If

A =
∞∑
n=ν

Lnq
n with Lν 6= 0,

we call ν = ν(A) the order of A and we define the norm of A to be

‖A‖ = 2−ν(A) .
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In addition, we define the integral part of A by

[A] =
∑
ν≤n≤0

Lnq
n . (1)

Engel (c. f. [14, §34]) originally defined a series expansion for real numbers. In [11],
this concept was extended to L in the following way:

Theorem 1. [q–Engel Expansion Theorem ([11, th. 1. 4]).] Every A ∈ L has a finite
or convergent (relative to the above norm) series expansion of the form

A = a0 +
∞∑
n=1

1

a1a2 · · · an
, (2)

where an ∈ C[q−1], a0 = [A],

ν(an) ≤ −n , and ν(an+1) ≤ ν(an)− 1 . (3)

The series (2) is unique for A, and it is finite if and only if A ∈ C(q). In addition, if

a0 +
n∑
j=1

1

a1 · · · aj
=
pn
qn

, where qn = a1a2 · · · an ,

then ∥∥∥∥A− pn
qn

∥∥∥∥ ≤ 1

2n+1‖qn‖
and

ν
(
A− pn

qn

)
= −ν(qn+1) ≥ (n+ 1)(n+ 2)

2
.

In fact, the an (the “digits”) are for n ≥ 1 given recursively by

an =

[
1

An

]
(4)

where A0 = A, a0 = [A], A1 = A− a0, and for n ≥ 1

An+1 = anAn − 1. (5)

�

To illustrate for example how the first Rogers–Ramanujan identity represents a

q–Engel expansion, we write it as
∞∏
n=0

1

(1− q5n+1)(1− q5n+4)
= 1 +

∞∑
n=1

qn
2

(1− q)(1− q2) · · · (1− qn)

= 1 +
∞∑
n=1

1

a1a2 · · · an
,

where an = (1− qn)/q2n−1 for n ≥ 1.

In Section 2, we will in fact make use of a slight variation of the q–Engel algorithm
in which (5) is replaced by

An+1 = q(anAn − 1). (6)



Corresponding to (2) we have instead the modified expansion,

A = a0 +
∞∑
n=1

q−n

a1a2 · · · an
. (7)

An explicit treatment of this modified q–Engel expansion can be found in [6].

In this paper we use the Engel approach e. g. to derive in a new way the representation

lim
n→∞

Un(0) = (q; q2)∞
∑
n≥0

q2n2

(q; q)2n

with (x; q)n := (1−x)(1−xq) . . . (1−xqn−1) for the limit of specialized Al-Salam/Ismail
polynomials defined below.

On the other hand, it has already been shown [7] that the Santos polynomials
converge as follows

Sn → S∞ :=
∏

k≥1, k≡±2,±3,±4,±5 (mod 16)

1

1− qk
.

We link the Al-Salam/Ismail polynomials to the Santos polynomials and shed in this
way new light on formulæ related to two identities due to Slater one of which being
of the form ∑

n≥0

q2n2

(q; q)2n

=
∏

k≥1, k≡±2,±3,±4,±5 (mod 16)

1

1− qk
.

One of the main results is Theorem 2 which embeds a new generating function relation
for Al-Salam/Ismail polynomials into a q–Engel context.

Finally, in Section 3, we discuss Al-Salam/Ismail and Santos polynomials in the con-
text of identities of Garrett/Ismail/Stanton type.

2. Al-Salam/Ismail polynomials and Slater’s identities (38) and (39)

The Al-Salam and Ismail polynomials Un(x; a, b | q) are defined by [1]

U−1(x; a, b | q) = 0, U0(x; a, b | q) = 1,

Un(x; a, b | q) = x(1 + aqn−1)Un−1(x; a, b | q)− bqn−2Un−2(x; a, b | q), n ≥ 1.

Al-Salam and Ismail gave the explicit representation

Un(x; a, b | q) =

bn/2c∑
k=0

(−a; q)n−k(q; q)n−kx
n−2k

(−a; q)k(q; q)k(q; q)n−2k

(−b)kqk(k−1)

=

bn/2c∑
k=0

(−aqk; q)n−2kx
n−2k

[
n− k
k

]
q

(−b)kqk(k−1);



here we used the Gaussian polynomials[
n

k

]
q

=
(q; q)n

(q; q)k(q; q)n−k
.

We specialize and consider Un(1;−q2α+1,−q2α+2 | q2), but simply write Un(α) for that.
Let us also rewrite the recursion

U−1(α) = 0, U0(α) = 1,

Un(α) = (1− q2n+2α−1)Un−1(α) + q2n+2α−2Un−2(α), n ≥ 1

and the explicit formula

Un(α) =

bn/2c∑
k=0

[
n− k
k

]
q2

q2k2+2kα(q2k+1+2α; q2)n−2k.

In our treatment, α will be either 0 or 1, and we try to treat both cases simultaneously
whenever possible.

The recursion can be rewritten as

Un(α)

(q1+2α; q2)n
=

Un−1(α)

(q1+2α; q2)n−1

+
q2n−2+2α

(q1+2α; q2)n
Un−2(α)

and summed:

Un(α)

(q1+2α; q2)n
= 1 +

n∑
k=1

q2k−2+2α

(q1+2α; q2)k
Uk−2(α).

In the limit n→∞,

U∞(α)

(q1+2α; q2)∞
= 1 +

∑
k≥1

q2k−2+2α

(q1+2α; q2)k
Uk−2(α).

Theorem 2. If one applies the (modified) Engel algorithm to U∞(α)
/

(q1+2α; q2)∞ the
quantities An(α) are given by

An(α) =
∑
k≥2

q2kn+2α−1Uk−2(α)

(q2n−1+2α; q2)k
=
∑
j≥0

q2j2+2αj+4nj+4n+2α−1

(q2n−1+2α; q2)j+1(q2n; q2)j+1

;

the digits an(α) are given by

an(α) =
(1− q2n−1+2α)(1− q2n)

q4n−1+2α
for n ≥ 1

and a0(α) = 1.



Proof. First, let us prove that the two expressions given for An(α) are indeed equal:

∑
k≥2

q2kn+2α−1Uk−2(α)

(q2n−1+2α; q2)k

=
∑
k≥0

q2(k+2)n+2α−1

(q2n−1+2α; q2)k+2

∑
0≤2j≤k

[
k − j
j

]
q2

q2j2+2jα(q2j+1+2α; q2)k−2j

=
∑
j,k≥0

q2(k+2j+2)n+2α−1

(q2n−1+2α; q2)k+2j+2

[
k + j

j

]
q2

q2j2+2jα(q2j+1+2α; q2)k

=
∑
j,k≥0

q2(2j+2)n+2α−1+2nk+2j2+2jα

(q2n−1+2α; q2)2j+2(q2n+4j+3+2α; q2)k

(q2j+2; q2)k
(q2; q2)k

(q2j+1+2α; q2)k

=
∑
j≥0

q2(2j+2)n+2α−1+2j2+2jα

(q2n−1+2α; q2)2j+2

∑
k≥0

(q2j+2; q2)k(q
2j+1+2α; q2)kq

2nk

(q2; q2)k(q2n+4j+3+2α; q2)k

(the inner sum can be computed by q–Gauss [2, p.20])

=
∑
j≥0

q2(2j+2)n+2α−1+2j2+2jα

(q2n−1+2α; q2)2j+2

(q2n+2α+2j+1; q2)∞(q2n+2j+2; q2)∞
(q2n+2α+4j+3; q2)∞(q2n; q2)∞

=
∑
j≥0

q4jn+4n+2α−1+2j2+2jα

(q2n−1+2α; q2)2j+2

(q2n+2α+2j+1; q2)j+1

(q2n; q2)j+1

=
∑
j≥0

q4jn+4n+2α−1+2j2+2jα

(q2n−1+2α; q2)j+1(q2n; q2)j+1

,

as desired.

Let us now prove the announced formula for the digits.

This is particularly easy since the j = 0 term is the reciprocal of an(α), and therefore

∑
j≥0

q2j2+2αj+4nj+4n+2α−1

(q2n−1+2α; q2)j+1(q2n; q2)j+1

=
1

an
+O(q8n+1+4α) =

1

an

(
1 +O(q4n+2α+2)

)
.

The recursion is also simple, since

q
(
an(α)An(α)− 1

)
= q

(
an(α)

∑
j≥0

q2j2+2αj+4nj+4n+2α−1

(q2n−1+2α; q2)j+1(q2n; q2)j+1

− 1

)

= qan(α)
∑
j≥1

q2j2+2αj+4nj+4n+2α−1

(q2n−1+2α; q2)j+1(q2n; q2)j+1



=
∑
j≥1

q2j2+2αj+4nj+1

(q2n+1+2α; q2)j(q2n+2; q2)j

=
∑
j≥0

q2(j+1)2+2α(j+1)+4n(j+1)+1

(q2n+1+2α; q2)j+1(q2n+2; q2)j+1

=
∑
j≥0

q2j2+2αj+4(n+1)j+4(n+1)+2α−1

(q2n+1+2α; q2)j+1(q2n+2; q2)j+1

= An+1(α),

as desired. �

Thus our Engel proof established the following relations.

Theorem 3. For α = 0, 1 we have

lim
n→∞

Un(α) = (q; q2)∞
∑
n≥0

q2n2+2nα

(q; q)2n+α

.

This is a new proof of known results due to Al-Salam and Ismail [1].

Slater’s identities (39) and (38)1 [16] are the formulæ∑
n≥0

q2n2

(q; q)2n

=
∏

k≥1, k≡±2,±3,±4,±5 (mod 16)

1

1− qk
,

∑
n≥0

q2n2+2n

(q; q)2n+1

=
∏

k≥1, k≡±1,±4,±6,±7 (mod 16)

1

1− qk
.

Let us consider the Santos polynomials in the representation

Sn =
∑

0≤2j≤n

q2j2
[
n

2j

]
q

,

Tn =
∑

0≤2j≤n−1

q2j2+2j

[
n

2j + 1

]
q

.

Originally these polynomials were studied in [15] and were discussed further in [7].
As pointed out ibid. they possess the following limit property,

Sn → S∞ :=
∏

k≥1, k≡±2,±3,±4,±5 (mod 16)

1

1− qk
,

Tn → T∞ :=
∏

k≥1, k≡±1,±4,±6,±7 (mod 16)

1

1− qk
.

In [6], the quantities S∞ and T∞ were undergone an Engel treatment; see also Section 3
below.

1Observe the order!



After observing these limits, Slater’s identities (39) and (38) are immediate by taking
n → ∞ in the polynomial representations of Sn and Tn above. However, the Engel
approach encoded by Theorem 2 admits another link to Slater’s identities which is
briefly explained as follows.

Although it is not shown explicitly in [7], it is easy to verify that the polynomials Sn
and Tn satisfy the following defining recurrences

Sn = Sn−1 + qnTn−1, S0 = 1,

Tn = Tn−1 + qn−1Sn−1, T0 = 0.

As a direct consequence of these recurrences we see that

S∞ = 1 +
∑
j≥1

qjTj−1 and (1− q)T∞ = 1 +
∑
j≥1

q2jTj−1.

So, by Theorem 2 we obtain an alternative statement being equivalent to Slater’s
identities; namely,

1

q
A1(α) =

∑
j≥1

q(1+α)jTj−1 (α = 0, 1)

where A1(α) is chosen as in Theorem 2. As we shall see below, this fact is easily
established, and—again as a by-product of the Engel context of Theorem 2—one
obtains the more general relation

An(α) =
∑
j≥1

q(2n−1+α)j+1Tj−1 (α = 0, 1)

where An(α) is chosen as in Theorem 2. However, the proof for n = 1 is at the same
level of complexity as for n, and so we do the computation for general n.

∑
j≥1

q(2n−1+α)j+1Tj−1 =
∑
j≥1

q(2n−1+α)j+1
∑

0≤2k≤j−2

q2k2+2k

[
j − 1

2k + 1

]
q

=
∑
j,k≥0

q(2n−1+α)(j+2k+2)+1+2k2+2k

[
j + 2k + 1

2k + 1

]
q

=
∑
k≥0

q(2n−1+α)(2k+2)+1+2k2+2k
∑
j≥0

q(2n−1+α)j

[
j + 2k + 1

2k + 1

]
q

=
∑
k≥0

q(2n−1+α)(2k+2)+1+2k2+2k

(q2n−1+α; q)2k+2

.

For α = 0 we have

∑
k≥0

q4nk+4n−1+2k2

(q2n−1; q)2k+2

=
∑
j≥0

q2j2+4nj+4n−1

(q2n−1; q2)j+1(q2n; q2)j+1

,

and for α = 1



∑
k≥0

q4nk+4n+1+2k2+2k

(q2n; q)2k+2

=
∑
j≥0

q2j2+2j+4nj+4n+1

(q2n+1; q2)j+1(q2n; q2)j+1

,

as it should.

(For other values of α it does not work!)

Finally we will establish that the Al-Salam/Ismail sequences Un(α)
/

(q; q2)n converge
about twice as fast to S∞ resp. T∞ as Sn resp. Tn.

For that we need two simple facts:

[
A

B

]
q

=
(1− qA)(1− qA−1) . . . (1− qA−B+1)

(q; q)B

=
1

(q; q)B

(
1− qA−B+1 +O(qA−B+2)

)
and

1

(qc; q)n
= 1 + qc +O(qc+1).

Therefore

Sn =
∑
j≥0

[
n

2j

]
q

q2j2 = 1 +
∑
j≥1

q2j2

(q; q)2j

(
1− qn−2j+1 +O(qn−2j+2)

)
=
∑
j≥0

q2j2

(q; q)2j

− qn+1 +O(qn+2).

Similarly

Tn =
∑
j≥0

[
n

2j + 1

]
q

q2j2+2j =
1− qn

1− q
+
∑
j≥1

q2j2+2j

(q; q)2j+1

(
1− qn−2j +O(qn−2j+1)

)
=
∑
j≥0

q2j2+2j

(q; q)2j+1

− qn +O(qn+1).

On the other hand,

Un(0)

(q; q2)n
=

1

(q; q2)n

∑
j≥0

[
n− j
j

]
q2

q2j2(q2j+1; q2)n−2j

=
∑
j≥0

[
n− j
j

]
q2

q2j2 1

(q; q2)j(q2n−2j+1; q2)j

= 1 +
∑
j≥1

1

(q2; q2)j

(
1− q2n−4j+2 +O(q2n−4j+4)

) q2j2

(q; q2)j

×
(

1 + q2n−2j+1 +O(q2n−2j+3)
)



=
∑
j≥0

q2j2

(q; q)2j

− q2n +O(q2n+1).

Similarly,

Un(1)

(q; q2)n
=

1

(q; q2)n

∑
j≥0

[
n− j
j

]
q2

q2j2+2j(q2j+3; q2)n−2j

=
1− q2n+1

1− q
+
∑
j≥1

[
n− j
j

]
q2

q2j2+2j 1

(q; q2)j+1(q2n−2j+3; q2)j−1

=
1− q2n+1

1− q
+
∑
j≥1

1

(q2; q2)j

(
1− q2n−4j+2 +O(q2n−4j+4)

) q2j2+2j

(q; q2)j+1

×
(

1 + q2n−2j+3 +O(q2n−2j+5)
)

=
∑
j≥0

q2j2+2j

(q; q)2j+1

− q2n+1 +O(q2n+2).

3. Identities of Garrett/Ismail/Stanton type

In [8] Garrett et al. presented a new parameterized generalization of the celebrated
Rogers–Ramanujan identities. As a by-product of an Engel study, Andrews et al. [5]
derived a polynomial version of it which in the limit coincides with the Garrett/Ismail/
Stanton result. In [9] Ismail et al. have put the polynomial version from [5] into the
context of orthogonal polynomials, in particular, of the Al-Salam/Ismail polynomials
Un.

It turned out that not only the Rogers–Ramanujan identities but also other entries
listed by Slater [16] give rise to this type of generalization. For instance, in [9] it was
shown that for m ≥ 0,

(−1)mqm
2+mUn(m+ 1) = Um(0)Um+n(1)− Um−1(1)Um+n+1(0). (8)

Above we have proved that

U∞(0)

(q; q2)∞
= S∞ and

U∞(1)

(q; q2)∞
= T∞. (9)

So after dividing both sides of (8) by (q; q2)∞ we obtain in the limit n → ∞ an
identity of Garrett/Ismail/Stanton type; namely for m ≥ 0,

(−1)mqm
2+m

∑
k≥0

q2k2+2(m+1)k

(q; q)2k+1(q2k+3; q2)m
= Um(0)T∞ − Um−1(1)S∞. (10)

The experimental use of Engel, a computer algebra implementation of the q–Engel
expansion algorithm, led Andrews et al. [6] to the discovery of an identity similar to



(10) but using Santos polynomials instead; namely for m ≥ 0,

qm(q; q2)m
∑
k≥0

q2k2+2(m+1)k

(q; q)2k+1

= Sm T∞ − Tm S∞. (11)

The corresponding polynomial version, the counterpart to (8), reads as follows. For
m ≥ 0,

qm(q; q2)m
∑
k≥0

[
n

2k + 1

]
q

q2k2+2(m+1)k = Sm Tm+n − Tm Sm+n. (12)

Once found, such identities most often find quite elementary proofs. Nevertheless,
the theme of this section is to sketch a framework that helps to explain and to derive
identities of this type. We also stress the fact that this approach can be ideally
supplemented by computer algebra packages like Engel and q–versions of Zeilberger’s
(“fast”) algorithm, as for instance qZeil [13]. Such packages not only can help in
proving, but also in finding such identities.

All what follows is motivated by techniques from orthogonal polynomials as used
e. g. in [9]. However, we will not enter this theory (e. g., numerator or associated
polynomials) but rather restrict ourselves to recall a few basic facts from the general
theory of difference equations.

Let F be a suitable field, as e. g. F = C(q) where q is an indeterminate. Let F?

denote the non-zero elements of F. Let us fix two coefficient sequences α = (αn)n≥0

and β = (βn)n≥0 with elements in F?. Consider the recurrence equation

xn = αn−1xn−1 + βn−2xn−2 (n ≥ 2). (13)

Suppose the F–sequences a = (an)n≥0 and b = (bn)n≥0 are solutions of (13). For n ≥ 0
we define the discrete Wronskian as usual by

Wn(a, b) :=

∣∣∣∣ an bn
an+1 bn+1

∣∣∣∣ .
As a matter of fact, the solutions a and b are linearly independent over F if and only
if Wn(a, b) 6= 0 for all n ≥ 0. But this is equivalent to W0(a, b) 6= 0 since

Wn(a, b) = (−1)nβn−1βn−2 . . . β0 W0(a, b) (n ≥ 0).

Combining these facts one can easily prove the following theorem.

Theorem 4. Let α, β, a, and b be sequences as above where a and b are linearly inde-
pendent solutions of (13). Let m be a non-negative integer and let c(m) =

(
cn(m)

)
n≥0

satisfy

zn = αm+n−1 zn−1 + βm+n−2 zn−2 (n ≥ 2). (14)

Then

cn(m) = um am+n + vm bm+n (n ≥ 0)

where

um = −c1(m) bm − c0(m) bm+1

Wm(a, b)



and

vm =
c1(m) am − c0(m) am+1

Wm(a, b)
.

Now we apply Theorem 4 in order to prove the polynomial identities (8) and (11).

Example 1. Let m be a non-negative integer. The Al-Salam/Ismail polynomials
Un(m) satisfy (14) with αn = 1 − qn and βn = qn. So in view of Theorem 4 we can
take a = (an)n≥0 with an = Un(0) and c(m) =

(
cn(m)

)
n≥0

with cn(m) = Un(m). But

we also need a linearly independent solution b = (bn)n≥0. Let us try bn = Un−1(1)
since then a and b are both solutions of (13). It turns out that b chosen this way is
also linearly independent since W0(a, b) = U0(0)U0(1) − U1(0)U−1(1) = 1; therefore
we can invoke Theorem 4. It is easily checked that

Wm(a, b) = (−1)mq2mq2m−2 . . . q2W0(a, b) = (−1)mqm
2+m,

and

c0(m) = U0(m) = 1 and c1(m) = U1(m) = 1− q2m+1.

For the coefficients we obtain

um = −(−1)mq−m
2−m((1− q2m+1)Um−1(1)− Um(1)

)
= (−1)mq−m

2+mUm−2(1)

where the last equation is by (14), and similarly,

vm = (−1)mq−m
2−m((1− q2m+1)Um(0)− Um+1(0)

)
= −(−1)mq−m

2+mUm−1(0).

Now Theorem 4 yields identity (11) with m replaced by m− 1.

Example 2. As an easy consequence of the mixed recurrences for the Santos poly-
nomials Sn and Tn one immediately derives that both polynomials are solutions of

xn = (1 + q)xn−1 − q(1− q2n−3)xn−2 (n ≥ 2). (15)

In view of (13) we have αn = 1 + q and βn = −q(1 − q2n+1). Setting an = Sn and
bn = Tn we see that the corresponding sequences a and b are linearly independent
since W0(a, b) = S0T1 − T0S1 = 1. In addition, for any non-negative integer m the
sequence c(m) =

(
cn(m)

)
n≥0

with

cn(m) =
∑
k≥0

[
n

2k + 1

]
q

q2k2+2(m+1)k

satisfies

zn = (1 + q) zn−1 − q(1− q2(m+n)−3) zn−2 (n ≥ 2). (16)

This e. g. can be proven automatically with the package qZeil. Summarizing, we are
in the position to invoke Theorem 4. It is easily checked that

Wm(a, b) = qm(1− q2m−1)(1− q2m−3) . . . (1− q)W0(a, b) = qm(q; q2)m,

and

c0(m) = 0 and c1(m) = 1.

Hence by Theorem 4, identity (8) is proved.



Finally we demonstrate the applicability of Theorem 4 by deriving a related identity
which to our knowledge is new.

Example 3. By using the package qZeil one finds that

cn(m) =
∑
k≥0

[
n

2k

]
q

q2k2+2mk

is also a solution of (16); this heuristic procedure will be described in a forthcoming
paper. Thus we can take a and b as in Example 2 which gives the same expression
for Wm(a, b). The only difference to the previous situation is that now

c0(m) = 1 and c1(m) = 1.

We obtain for the coefficients

um = − q−m

(q; q2)m
(Tm − Tm+1) =

1

(q; q2)m
Sm

where the last equation is by the mixed Santos recurrence, and similarly,

vm =
q−m

(q; q2)m
(Sm − Sm+1) = − q

(q; q2)m
Tm.

Theorem 1 now implies that for m ≥ 0,

(q; q2)m
∑
k≥0

[
n

2k

]
q

q2k2+2mk = Sm Sm+n − q Tm Tm+n. (17)

The corresponding limiting version, i. e. for n→∞, reads as follows. For m ≥ 0,

(q; q2)m
∑
k≥0

q2k2+2mk

(q; q)2k

= Sm S∞ − q Tm T∞. (18)
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Séminaire Lotharingien de Combinatoire, B44a (2000), 10 pp.

[10] S. Kalpazidou and G. Ganatsiou. Knopfmacher expansions in number theory. Quaestiones Math-
ematicæ (this volume), 2001.



[11] A. Knopfmacher and J. Knopfmacher. Inverse polynomial expansions of Laurent series. Constr.
Approx., 4:379–389, 1988.

[12] A. Knopfmacher and J. Knopfmacher. Inverse polynomial expansions of Laurent series ii.
J. Comp. and Appl. Math., 28:249–257, 1989.

[13] P. Paule and A. Riese, A Mathematica q–Analogue of Zeilberger’s Algorithm Based on an Alge-
braically Motivated Approach to q–Hypergeometric Telescoping , pp. 179–210 in: Fields Institute
Communications, Vol. 14, Amer. Math. Soc., Providence, 1997.

[14] O. Perron. Irrationalzahlen. Chelsea, 1951.
[15] J. Santos. Computer algebra and identities of the Rogers–Ramanujan type. Ph. D. thesis, Penn

State University, 1991.
[16] L. Slater. Further identities of the Rogers–Ramanujan type. Proc. London Math. Soc., 54:147–

167, 1952.

(G. E. A.) Department of Mathematics, The Pennsylvania State University, University

Park, PA 16802, U. S. A.

E-mail address: andrews@math.psu.edu

(A. K.) The John Knopfmacher Centre for Applicable Analysis and Number Theory,

University of the Witwatersrand, Private Bag 3, WITS 2050, South Africa

E-mail address: arnoldk@cam.wits.ac.za

URL: http://www.wits.ac.za/science/number theory/arnold.htm

(P. P.) Research Institute for Symbolic Computation, Johannes Kepler University

Linz, A-4040 Linz, Austria

E-mail address: Peter.Paule@risc.uni-linz.ac.at

URL: http://www.risc.uni-linz.ac.at/research/combinat/

(H. P.) The John Knopfmacher Centre for Applicable Analysis and Number Theory,

University of the Witwatersrand, Private Bag 3, WITS 2050, South Africa

E-mail address: helmut@cam.wits.ac.za

URL: http://www.wits.ac.za/helmut/index.htm


