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Abstract It is shown how the performance of Zeilberger’s algorithm and its q-version
for proving (q-)hypergeometric summation identities can be dramatically im-
proved by a frequently missed optimization on the programming level and
by applying certain kinds of substitutions to the summand. These methods
lead to computer proofs of identities for which all existing programs have
failed so far.
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1. INTRODUCTION
With Zeilberger’s [20, 21] algorithm — also known as the method of cre-

ative telescoping — the process of proving and finding definite hypergeomet-
ric summation identities has become a task that to a large amount can be
executed by computers. In recent years several implementations have been
developed mainly for the computer algebra systems Maple and Mathemat-
ica. Nevertheless we are still faced with the situation that all those packages
rather quickly exceed the systems’ memory-capacities if applied to intricate
examples. The object of this paper is to present two methods, one purely
on the programming level and one on the user level, for improving the per-
formance of the algorithm in general and for certain types of applications,
respectively.
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The paper is organized as follows. In Section 2 we briefly outline the the-
oretical background of Zeilberger’s algorithm and its q-version. In Section 3
we present the method of automatic filtering, a simple but efficient program-
ming trick to speed-up the algorithm. In Section 4 we describe the method
of creative substituting. In other words, we show how a clever substitution
of parameters in the summand or a shifting of the summation interval can
reduce the run-time of the algorithm substantially.

Several examples of computer proofs will illustrate the power of both
techniques. To indicate the magnitude of the achieved speed-up we include
the following table which summarizes the run-times for the proofs listed
in this paper with applying none, one, or both of the optimizations. The
timings refer to tests on an SGI Octane, “o.o.m.” is used as an abbreviation
for “out of memory”.

Table 1. Timings

Id. none A. Filt. C. Subst. both

(5) o.o.m. 1820 s 2 s 1 s
(6) 1506 s 414 s 14 s 2 s
(7) o.o.m. o.o.m. o.o.m. 123 s
(8) o.o.m. o.o.m. o.o.m. 11 s
(9) o.o.m. o.o.m. 516 s 475 s
(10) 213 s 27 s 38 s 6 s

2. ZEILBERGER’S ALGORITHM
Zeilberger’s algorithm takes as input a terminating hypergeometric sum

and computes a linear recurrence with polynomial coefficients that is satis-
fied by this sum. Additionally it delivers a rational function, the so-called
certificate, which contains all information necessary to validate the result
independently.

More precisely, let fn,k be a double-indexed sequence over some suitable
domain F (for computability, usually the field of rational numbers extended
by some transcendental indeterminates), where n ranges over the nonneg-
ative integers and k over all integers. We call fn,k hypergeometric in both
parameters if both quotients

fn+1,k

fn,k
and

fn,k+1

fn,k

are rational functions in n and k over F (disregarding singularities). For
example, the sequence fn,k :=

(
n
k

)
is hypergeometric in n and k.

It was shown by Wilf and Zeilberger [18] that any hypergeometric sequence
fulfilling some extra conditions, i.e. any so-called proper hypergeometric se-
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quence, satisfies a linear recurrence of the form

σ0(n) fn,k + σ1(n) fn+1,k + · · ·+ σd(n) fn+d,k = gn,k+1 − gn,k, (1)

where the σi are polynomials in n over F not depending on k, and gn,k is a
rational function multiple of fn,k and therefore a hypergeometric sequence,
too.

Now suppose that fn,k has finite support, i.e., for each nonnegative integer
n there exists a finite integer interval In such that fn,k vanishes for k 6∈ In.
Then Sn :=

∑
k fn,k, where k runs through all integers, actually denotes a

finite sum, for which a recurrence can be easily deduced from (1), namely

σ0(n)Sn + σ1(n)Sn+1 + · · ·+ σd(n)Sn+d = 0. (2)

Zeilberger [20] made the crucial observation that a slight variation of
Gosper’s [7] algorithm applied to

fn,k ·
(
σ0(n) + σ1(n)

fn+1,k

fn,k
+ · · ·+ σd(n)

fn+d,k

fn,k

)
, (3)

a rational function multiple of the original summand fn,k with undetermined
σi, can be used to compute both the polynomials σi and the sequence gn,k
from (1).

Several implementations of Zeilberger’s algorithm have been carried out;
the most prominent ones are due to Koepf [8], Koornwinder [9], Paule and
Schorn [12], and Zeilberger (see Petkovšek, Wilf and Zeilberger [14]).

Since our methods will be shown to work also in the q-hypergeometric
universe, we briefly comment on the underlying theory. A sequence fn,k
with values in F(q) is called q-hypergeometric if the quotients

fn+1,k

fn,k
and

fn,k+1

fn,k

are rational functions in qn and qk over F(q). Recall the standard definition
of the q-shifted factorial,

(a; q)0 := 1, and (a; q)k := (1− a)(1− aq) · · · (1− aqk−1) for k > 0,

with the common abbreviation

(a1, . . . , am; q)k := (a1; q)k · · · (am; q)k.

Then the sequence of Gaussian polynomials (or q-binomial coefficients)[
n

k

]
q

:=


(q; q)n

(q; q)k (q; q)n−k
, if 0 ≤ k ≤ n,

0, otherwise
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is q-hypergeometric in n and k.
Wilf and Zeilberger [18] first showed that Zeilberger’s algorithm can be

carried over to the q-case. It computes for a terminating q-hypergeometric
sum a recurrence of form (2) with the only difference that the σi are poly-
nomials in qn over F(q). Implementations have been developed by Böing
and Koepf [4], Koornwinder [9], the author (see Paule and Riese [11]), and
Zeilberger (see Petkovšek, Wilf and Zeilberger [14]).

The efficiency of Zeilberger’s algorithm suffers from the fact that the most
expensive part of Gosper’s algorithm consists in solving a homogeneous sys-
tem of linear equations with coefficients being polynomials in several vari-
ables, which is known to be a rather time- and especially memory-consuming
task. Furthermore, Zeilberger’s algorithm does not always find a recurrence
of minimal order. While Paule’s [10] method of creative symmetrizing over-
comes this problem in many instances and, as a side-effect, reduces the
run-time of the algorithm for certain types of summands, we shall present
different optimizations in the following.

3. THE METHOD OF AUTOMATIC
FILTERING

The first improvement is based on an observation we made in the process of
fine-tuning our implementation of the q-Zeilberger algorithm (see Paule and
Riese [11]) and has been described originally in the author’s PhD thesis [16,
p. 89]. Although the idea is straightforward and simple, it has been obviously
overlooked by all programmers. The method can be easily integrated into
Zeilberger’s algorithm and does not require any creativity from the user.

Suppose that the summand fn,k contains factors that do not depend on
k. As an example think of the numerator factor n! in the common definition
of the binomial coefficient

(
n
k

)
:= n!/(k! (n − k)!) for 0 ≤ k ≤ n. Moreover,

such factors may be hidden as one can see for instance from the relation
(a + k)n−k = (a)n/(a)k, 0 ≤ k ≤ n, where (a)k denotes the rising factorial
given by

(a)0 := 1, and (a)k := a (a+ 1) · · · (a+ k − 1) for k > 0.

If we now set up the input to Gosper’s algorithm as in (3), then also
the quotients fn+i,k/fn,k contain factors free of k. Consequently, (3) can be
written as

fn,k ·
(
σ0(n) + σ1(n) r1(n) s1(n, k) + · · ·+ σd(n) rd(n) sd(n, k)

)
, (4)

where the ri are rational functions in n and the si are rational functions in
both n and k. Of course we do not have to enter Gosper’s algorithm also
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with the ri, because if we find a solution corresponding to the “filtered”
summand

fn,k ·
(
σ̂0(n) + σ̂1(n) s1(n, k) + · · ·+ σ̂d(n) sd(n, k)

)
,

then the solution corresponding to the full summand (4) is given by

σ0 = σ̂0, σ1 = σ̂1/r1, . . . , σd = σ̂d/rd.

To transform the new rational solution into polynomials we only have to
multiply by the least common multiple of the numerators of the ri, which is
admissible because the equations are homogeneous.

To summarize, by filtering out all factors not depending on k the coeffi-
cients of the equation system in Gosper’s algorithm become smaller and the
run-time decreases significantly. In particular this holds true for all recur-
rences computed in the following section; see also the timings in Table 1.

4. THE METHOD OF CREATIVE
SUBSTITUTING

Our second optimization utilizes the fact that the complexity of the quo-
tients fn+i,k/fn,k involved in (3),

fn,k ·
(
σ0(n) + σ1(n)

fn+1,k

fn,k
+ · · ·+ σd(n)

fn+d,k

fn,k

)
,

sometimes can be reduced simply by the following two actions:

The Method of Creative Substituting.

Find a clever substitution for free parameters in fn,k in order to reduce
the dependence of fn,k on the recurrence variable n.

Shift the finite summation interval, for instance, by substituting k+n,
k − n, etc. for k in fn,k.

Although these suggestions do not look very spectacular, the effect on the
run-time again might be dramatic. With both techniques combined we are
able to compute certain recurrences for which we ran out of memory before
within a few minutes now.

Note that the task of creative substituting cannot be performed automat-
ically, since it has to rely heavily — in contrast to automatic filtering — on
the trained eye of the user.
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4.1. PARAMETER SUBSTITUTION
To explain the applicability of creative substituting, we need the notion

of hypergeometric series which we define as usual by

rFs

[
a1, a2, . . . , ar
b1, . . . , bs

; z
]

:=
∞∑
k=0

(a1)k (a2)k · · · (ar)k
k! (b1)k · · · (bs)k

zk.

As a first example let us consider a problem that has been communicated
to us recently by J. Wimp [19], who being interested in closed form aspects
asked for a recurrence representation w.r.t. n of

4F3

[
n− j, n+ j + 2a, n+ a, n+ b+ 1/2

2n+ b+ 1, n+ 2a, n+ a+ 1/2
; 1
]
. (5)

It is known that such a closed form evaluation exists for a = b or b = 2a−1/2
by Saalschütz’s theorem (see, for instance, Slater [17]).

In Wimp’s case it turns out that the Paule/Schorn1 Mathematica imple-
mentation of Zeilberger’s algorithm does not find a first-order recurrence
and needs half an hour to compute a recurrence of order 2. Note that with-
out filtering we run out of memory immediately. This does not come as a
complete surprise, because actually seven parameters in the 4F3-summand
depend on n, one of them (even worse!) on 2n, which blows up the rational
function in (3) enormously. On the other hand, if we denote the summand
by fn,k(a, b, j) and apply the first idea of creative substituting stated above,
we find that in fn,k(a − n, b − n, j + n) only two parameters depend on n.
The corresponding recurrence can be found in one second:

In[1]:= <<zb.m

Fast Zeilberger by Peter Paule and Markus Schorn. (V 2.52 beta)

Systembreaker = ENullspace

In[2]:= (* the shifted factorial *)

shfac[a_, b_] := (a+b-1)! / (a-1)!

In[3]:= Zb[shfac[n-j,k] shfac[n+j+2a,k] shfac[n+a,k] shfac[n+b+1/2,k] /

(k! shfac[2n+b+1,k] shfac[n+2a,k] shfac[n+a+1/2,k]) /.

{a->a-n,b->b-n,j->j+n}, {k,0,Infinity}, n, 2]

Out[3]=

1available at: http://www.risc.uni-linz.ac.at/research/combinat/risc/software/PauleSchorn/
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{(−3 + 4 a− 2 b− 2n) (−4 + 2 a− b− 2n) (−1 + a− n) (−1 + 2 a+ j − n)

(1 + b+ n) (2 + b+ n) (1 + j + n) SUM(n) +

(−3 + 2 a− b− 2n) (−1 + 2 a− n) (2 + b+ n)
(
−20 + 54 a− 46 a2 + 12 a3 − 25 b+

47 a b− 22 a2 b− 8 b2 + 8 a b2 + 16 a j − 24 a2 j + 8 a3 j + 14 a b j − 12 a2 b j +

4 a b2 j + 8 j2 − 12 a j2 + 4 a2 j2 + 7 b j2 − 6 a b j2 + 2 b2 j2 − 54n+ 108 an−

60 a2 n+ 8 a3 n− 51 b n+ 64 a b n− 16 a2 b n− 11 b2 n+ 6 a b2 n+ 24 a j n−

16 a2 j n+ 8 a b j n+ 12 j2 n− 8 a j2 n+ 4 b j2 n− 54n2 + 72 an2 − 20 a2 n2 −

35 b n2 + 22 a b n2 − 4 b2 n2 + 8 a j n2 + 4 j2 n2 − 24n3 + 16 an3 − 8 b n3 − 4n4)
SUM(1 + n)−

(−2 + 2 a− b− 2n) (−2 + 2 a− n) (−1 + 2 a− n) (−2 + a− b− n)

(−2 + 2 a− b+ j − n) (2 + b+ j + n) (3 + 2n) SUM(2 + n) = 0}

After doing the inverse substitutions for a, b and j, and applying Pet-
kovšek’s [13, 14] algorithm Hyper, we indeed see that this recurrence has
no hypergeometric solution.

As a second example we investigate an identity due to Andrews [1, (4.2)]
slightly rewritten as

H0(n, n+ 1) = 0, (6)

where

H0(n,m)

= 5F4

[
−m− n, x+m+ n+ 1, x− z + 1/2, x+m, z + n+ 1

(x+ 1)/2, x/2 + 1, 2z +m+ n+ 1, 2x− 2z + 1
; 1
]
.

While we do not intend to comment on the discussion about the role of
computer proofs that was initiated by a lengthy and — due to a bug in
the implementation — wrong automatic proof of this identity, it is worth
noting that both opponents, Andrews and Zeilberger, developed different
strategies for proving identities of this type (see Andrews [1, 2], and Ekhad
and Zeilberger [6]).

First of all we observe that with the Paule/Schorn implementation and
automatic filtering it takes about 7 minutes to compute a recurrence of order
2 for the sum, whereas without filtering we need 25 minutes. However, if we
creatively substitute x − n for x and z − n for z, we reduce the number of
n-dependent parameters in the 5F4-series. In addition we make use of the
rewriting rule

((x+ 1)/2)k (x/2 + 1)k = 2−2k (x+ 1)2k,

since after substituting x − n for x both factorial expressions on the left-
hand side are no longer “Zeilberger admissible” (the coefficients of n must
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be integers). This problem does not occur on the right-hand side. Finally
we obtain within 2 seconds:

In[4]:= H0[n_, m_] :=

shfac[-m-n,k] shfac[x+m+n+1,k] shfac[x-z+1/2,k] *

shfac[x+m,k] shfac[z+n+1,k] 4^k /

(k! shfac[x+1,2k] shfac[2z+m+n+1,k] shfac[2x-2z+1,k])

In[5]:= Zb[H0[n,n+1] /. {x->x-n,z->z-n}, {k,0,Infinity}, n, 2]

Out[5]=

{(1 + n) (2 + n) (3 + 2n) (1 + n+ x− 2 z) (2 + n− x+ 2 z) SUM(n)−

(2 + n) (n− x)
(
42 + 57n+ 26n2 + 4n3 + 23x+ 19nx+ 4n2 x− 3x2 −

2nx2 − 2x3 − 12 z − 5n z + 20x z + 10nx z + 8x2 z − 24 z2 −

10n z2 − 8x z2) SUM(1 + n) +

(n− x) (1 + n− x) (3 + n+ x) (5 + 2n+ 2x− 2 z) (3 + n+ z) SUM(2 + n) = 0}

We want to emphasize that the positive effect of this substitution on the
run-time has been already observed by Zeilberger2. Nevertheless, Zeilberger
was not able to prove the other 19 identities of this type listed in Andrews’ [1]
paper with his implementation, and the problem of finding computer proofs
for them remained open for almost 6 years. Only the combination of auto-
matic filtering and creative substituting could finally close this gap, which
means that now we are able to semi-automatically prove each of the identities
within 3 minutes!

For instance, the proof of the next identity in Andrews’ list [1, (4.3)],

H0(n, n) =
(x+ n) (2z − x+ 2n)
(x+ 2n) (2z − x+ n)

Pn, (7)

wherein

Pn =
(1/2)n (2z − x)2n

(x+ 1)n (1 + x− z)n (z + n+ 1/2)n

reads as follows (note that we divide the summand by the closed form on
the right-hand side of the identity and shorten the output which otherwise
filled more than two pages):

In[6]:= P[n_] := shfac[1/2,n] shfac[2z-x,2n] /

(shfac[x+1,n] shfac[1+x-z,n] shfac[z+n+1/2,n])

In[7]:= Zb[H0[n,n] (x+2n) (2z-x+n) / ((x+n) (2z-x+2n) P[n]) /.

{x->x-n,z->z-n}, {k,0,Infinity}, n, 3] // Short[#, 7]&

2see http://www.math.temple.edu/˜zeilberg/synd.html
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Out[7]//Short=

{(1 + n) (2 + n) (1 + n+ x− z) (2 + n+ x− z) (1 + 2n+ 2 z) (3 + 2n+ 2 z)(
24 + 17n+ 3n2 + 7x+ 8nx+ 2n2 x+ 9x2 + 4nx2 + 2x3 − 26 z − 26n z −

6n2 z − 16x z − 8nx z − 6x2 z − 4 z2 + 4x z2) SUM(n) +�2�−
(5 + 2n) (2 + n+ x) (3 + n+ x− 2 z) (5 + 2n+ 2x− 2 z) (3 + n+ z)

(3 + n− x+ 2 z)
(
10 + 11n+ 3n2 + x+ 4nx+ 2n2 x+ 5x2 +

4nx2 + 2x3 − 6 z − 14n z − 6n2 z − 8x z − 8nx z − 6x2 z − 4 z2 + 4x z2)
SUM(3 + n) = 0}

Now we prove that this recurrence is indeed satisfied by 1:

In[8]:= ExpandAll[% /. SUM[_] -> 1]

Out[8]= True

Checking that the sum evaluates to 1 for n ∈ {0, 1, 2} completes the proof.

4.2. SHIFTING THE SUMMATION INTERVAL
Let us now turn to the second idea of creative substituting. For this we

examine the innocent-looking summand fn,k =
(

2n
k

)
. If we applied Zeil-

berger’s algorithm directly with order 1, say, the quotient fn+1,k/fn,k in (3)
were found to be

fn+1,k

fn,k
=

(2n+ 2) (2n+ 1)
(2n− k + 2) (2n− k + 1)

=
(2n+ 2) (2n+ 1)

(2n+ 2) (2n+ 1)− k(4n+ 3) + k2
.

On the other hand, since

2n∑
k=0

(
2n
k

)
=

n∑
k=−n

(
2n
n+ k

)

we could also run the algorithm on f̄n,k := fn,n+k. In this case the quotient
seen as a function in k reduces to the much simpler expression

f̄n+1,k

f̄n,k
=

(2n+ 2) (2n+ 1)
(n+ k + 1) (n− k + 1)

=
(2n+ 2) (2n+ 1)

(n+ 1)2 − k2
.

It hardly needs to be pointed out that such a substitution improves the per-
formance of the algorithm for more involved examples dramatically provided
that other factors of the shifted summand f̄n,k do not produce considerably
more complicated quotients.
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To illustrate the power of this method we look at an identity due to
Carlitz [5],

2n∑
k=0

(−1)k
[
2n
k

]
q

(b, c, d, e; q)k (b, c, d, e; q)2n−k q
k(6n−3k+1)/2

= (−1)n (b, c, d, e; q)n (qn+1, qnbc, qncd, qnbd; q)n en qn(3n−1)/2, (8)

where bcde = q1−3n. In this case it emerges that no existing implementation
of the q-Zeilberger algorithm is able to compute a recurrence of order 1 even
with the help of creative symmetrizing and filtering.

However, shifting the summation interval via substituting k + n for k
solves the problem in less than 2 minutes. This happens because from the
sequences

f
(1)
n,k :=

[
2n
k

]
q

, f
(2)
n,k := (a; q)k (a; q)2n−k, and f

(3)
n,k := qk(6n−3k+1)/2

we obtain much more involved quotients f
(i)
n+1,k/f

(i)
n,k than the quotients

f̄
(i)
n+1,k/f̄

(i)
n,k, where f̄ (i)

n,k := f
(i)
n,k+n (i ∈ {1, 2, 3}). If we additionally apply

the first idea of creative substituting, i.e., if we replace c by c q−n and d by
d q−n, the run-time decreases once more to 11 seconds.

For instance, using the author’s3 Mathematica implementation we get:

In[1]:= <<qZeil.m

Out[1]= Axel Riese’s q-Zeilberger implementation version 1.9 loaded

In[2]:= b = q^(1-3n) / (c d e);

In[3]:= qZeil[(-1)^k qBinomial[2n,k,q] qfac[b,q,k] qfac[c,q,k] *

qfac[d,q,k] qfac[e,q,k] qfac[b,q,2n-k] qfac[c,q,2n-k] *

qfac[d,q,2n-k] qfac[e,q,2n-k] q^(k(6n-3k+1)/2) /

((-1)^n qfac[b,q,n] qfac[c,q,n] qfac[d,q,n] qfac[e,q,n] *

qfac[q^(n+1),q,n] qfac[q^n b c,q,n] qfac[q^n c d,q,n] *

qfac[q^n b d,q,n] e^n q^(n(3n-1)/2)) /.

{k->k+n,c->c q^(-n),d->d q^(-n)}, {k,-n,n}, n, 1,

MagicFactor->-k]

Out[3]= SUM(n) = 1

In a paper of Berkovich and McCoy [3] the sum
n∑

k=−n

[
3n+ k

n− k

]
q

qk
2
y−k (9)

3available at http://www.risc.uni-linz.ac.at/research/combinat/risc/software/qZeil/
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came to our attention. Again, we succeeded to compute a recurrence of
order 4 only after shifting the summation interval via substituting k− n for
k within a few minutes. Otherwise we ran out of memory rather quickly.

In our final example we show that also reversing the order of summation
might be of advantage sometimes. Let us consider a special case of an
identity due to Rahman [15],

n∑
k=0

(1− q3k−2n) (q−2n, d, q1−2n/d; q2)k (b, c, q1−2n/bc; q)k
(q2−2n/b, q2−2n/c, bcq; q2)k (q, q1−2n/d, d; q)k

qk = 0. (10)

If we reverse the order of summation, i.e., we replace k by n−k, the run-time
decreases from 27 seconds to 6 seconds. Note that this happens for a differ-
ent reason now. With this substitution it turns out that the degree of the
solution polynomial in Gosper’s algorithm, which is needed for computing
the sequence gn,k in (1), drops from 2 to 1. Hence we end up with a smaller
system of equations again.

In[4]:= Clear[b]

In[5]:= qZeil[(1-q^(3k-2n)) qfac[q^(-2n),q^2,k] qfac[d,q^2,k] *

qfac[q^(1-2n)/d,q^2,k] qfac[b,q,k] qfac[c,q,k] *

qfac[q^(1-2n)/(b c),q,k] q^k /

(qfac[q^(2-2n)/b,q^2,k] qfac[q^(2-2n)/c,q^2,k] *

qfac[b c q,q^2,k] qfac[q,q,k] qfac[q^(1-2n)/d,q,k] *

qfac[d,q,k]) /. k->n-k, {k,0,n}, n, 1]

Out[5]=

SUM(n) =

(1− q2n) (1− b c q−2+2n) (1− b d q−2+2n) (1− c d q−2+2n) SUM(−1 + n)

q2 (1− b q−2+2n) (1− c q−2+2n) (1− d q−2+2n) (1− b c d q−2+2n)
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