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Abstract. In this paper an algorithm is presented for decomposing large sparse non-
linear systems into smaller subsystems in order to solve them in parallel. The algorithm
is independent on the method used to solve the system.

1. Introduction

Solving large nonlinear systems of equations is required by many real-life problems.
When the system is large, treating it as a whole is a quite hard task and is time consuming.
Most large systems are sparse and we can take advantage of the sparsity by solving the
system in parallel.
In this paper an algorithm is presented that can be used to solve in parallel a large

sparse nonlinear system. The algorithm uses the mathematical form of the system (as
used in mathematical packages like Mathematica or Maple) and can be easily integrated
into a mathematical package.
The algorithm is a generalization of the method presented in [8] and is based on Tarjan’s

algorithm [11]. The algorithm is used for a n× n system and can be easily extended to a
m× n system.
Section 2 presents motivation and background of the algorithm. In Section 3 the al-

gorithm is presented and Section 4 deals with local convergence and stability issues.
Applications to the algorithm are presented in Section 5.

2. Motivation and background

In solving a nonlinear system three situations can occur. The simplest situation is when
the system is composed of two or more independent subsystems, as is illustrated in the
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following example: 

2x21 − 2 cos(x1 − 1) = 0
x2
2
sin(x3) + sin(x2) = 0

tan(x1) + x1x4 = 0
2(x5 − x6)− 2 cos(x7)− sin(x8 − 1) = 0
x6
2
sin(x5 − x7)− sin(x7) + cos(x8) = 0

x5 − tan(x6) + x7 − x8 = 0
x25 + x6 − 4x8 + 2 = 0
x1x2 − 4x3 + 2 = 0

(2.1)

It is easy to see that the subsystem of equations 1, 2, 3 and 8 is independent from the
subsystem of equations 4,5,6 and 7, because they have no variables in common. The
situation above is very particular.
A more general situation is reflected by the system

x31 + x
3
2 + 4 = 0

x1 exp (x2 − 1) + 2x1x2 = 0
sin (x3 − x4) + 2x3 + x3x4 − 3 = 0
x3x4 + x

2
4 − 2 = 0

x1 cos (x6 − 2x5) + 1 = 0
x5x6 − 3 = 0

(2.2)

It is easy to see that in this situation we have three subsystem, consisting of equations 1
and 2, 3 and 4, respectively 5 and 6. The subsystem consisting of equations 3 and 4 is
independent from the others, while the two others have the unknown x1 in common.
Another situation can be seen in the system

2x1x2 − 2 cos (x1 − 1)− 10 = 0
sin (x1 + x3) +

x2
2
+ sin (x1 + x2) = 0

x4 tan (x3 + x4) + 12 = 0
2x4 − 5x3 + 2 = 0
2 (x5 − x6)− 2 cos (x7)− sin (x8 − 1) = 0
x6
2
sin (x5 − x6) + sin (x8 − sin (x7))− 2 = 0

x7 − tan (x6) + x5 − x8 + 5 = 0
tan (x1x5) + x6 sin (x5 + x8) + 2 = 0

. (2.3)

In this case we don’t have any independent subsystem.
Because the last two situations are similar, we can consider only the first two situations.
To solve a sparse nonlinear system several techniques have been proposed. In [13] is

described a Jacobi-type method for solving a sparse nonlinear system, which uses a block
diagonal Broyden matrix for solving a nonlinear system. This Broyden matrix can be
decomposed using some block partitioning strategies.
In [7] is presented an asynchronous parallel algorithm for solving the nonlinear simulta-

neous equations Ax+ φ(x) = 0, where A = (aij) ∈ L (Rn) and φ : Rn → Rn is a diagonal
isotone and continuous mapping. This algorithm is based by expressing A, φ and x in the
block form.



ON DECOMPOSING LARGE SPARSE SYSTEMS OF NONLINEAR EQUATIONS 3

In [9] are described and compared eight algorithms of Newton and quasi-Newton type
for solving large sparse systems of nonlinear equations. The sparsity of each of these algo-
rithms are used for solving linear systems which results from applying these algorithms.
In [8] is presented a method for solving a linear system based on Tarjan’s algorithm [11],

which uses a transversal algorithm based on work by Duff [5]. In the algorithm presented
we use this method, but there are some several restrictions resulting from nonlinearity of
the system. These restrictions will be described shortly.
Consider the nonlinear operator F : D ⊂ Rn → Rn, F = (f1, f2, . . . , fn)

T , of class C1
such that the system F (x) = 0 has a solution x? = (x?1, x

?
2, . . . , x

?
n) ∈ D which can be

computed with an approximation method. The system above can be written as
f1 (x1, x2, . . . , xn) = 0
f2 (x1, x2, . . . , xn) = 0
· · · · · · · · · · · · · · · · · ·
fn (x1, x2, . . . , xn) = 0

(2.4)

We can associate the (n× n) matrix A to this system such that aij = 1 if unknown xj
appears in function fi and aij = 0 otherwise. For example, for the system (2.3) the matrix
A is

A =



1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 1


Also we introduce the following definitions.

Definition 2.1. [8] Given a nonsymmetric (n× n) matrix A, the digraph associated with
A is defined to be the graph G = (V,E) with |V | = n such that (i, j) ∈ E if and only if
aij 6= 0.
Definition 2.2. [11] Let G = (V,E) be a graph. For each vertex v ∈ V , the adjacency
list for vertex v is the list containing all vertices w ∈ V such that (v, w) ∈ E. A set of
such lists, one for each vertex in G, is called adjacency structure of G.

Using this matrix we will use the ideas from H? ordering ([8]) to solve a large sparse
nonlinear system. In the linear case the technique presented in [8] is based on the linearity
of the system and cannot be used in the nonlinear case, so we have to modify the algorithm
in order to reflect this case.

3. Decomposing algorithm

In this section we present an algorithm to achieve the decomposition of the system
(2.4) into subsystems. The algorithm uses the mathematical representation of the system
and gives the subsystems in the same representations. The advantage of using external
representation is that the algorithm can be easily integrated into a symbolic system solver.
Also the decomposition of a system is independent of any algorithm used for solving the
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system. The external representation can be achieved by manual coding the equations or
by using for example the user interface presented in [4].
To analyze each equation from the system we can use a simplified form of the algorithm

presented in [3]:

repeat
read next token
if token is not function and token is variable
search variable and remember the line

endif
until input string is empty

The equations are numbered from 1, each equation is considered to be on a single line.
The unknowns are numbered also from 1 as they are encountered in each equation. When
an unknown is found, it is searched if it was found before. If it was not found, it is
considered a new unknown (the next one) and the line number is stored. If the unknown
was found in the same line, it is ignored, otherwise the line (equation) number is stored.
The process continues until the whole system was examined.
Once we have the line numbers in which each variable appears, we can split the system

into the subsystems. First we will construct the digraph G based on matrix A associated
with the system (2.4) and the adjacency structure for G. The digraph is constructed using
Definition 2.1. Once we have the adjacency structure for G we can split the system into
subsystems, which means to determine the biconnected components of G. The algorithm
is based on Tarjan’s algorithm [11] and is modified to reflect our needs.
The procedure decompose has as input the graph G and gives the list s of the subsys-

tems.
The algorithm below is explained shortly. The edges are placed on a stack as they are

traversed. When an articulation point is found, the corresponding edges are all on top of
the stack. An articulation point is an equation which belongs to two subsystems.
A connected component is in our case a subsystem. In the Tarjan’s algorithm, when an

edge (u1, u2) is removed from the stack, it is added to the current biconnected component.
In our case it means that we add equations u1 and u2 to the current subsystem, if they
are not yet added.
When procedure biconnect terminates, the edge stack must be empty. If the edge

stack is not empty, we have another subsystem.

proc decompose(G, s)
empty the edge stack
construct the adjacency structure of G
for w a vertex do
if w is not yet numbered then
biconnect(w, 0)

endif
if edge stack is not empty then
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empty the edge stack and get a new subsystem
endif

endfor
identify equations for each subsystem
determine articulation points which belongs to two subsystems

end

proc biconnect(v, u)
number [v] = + + i
lowpt [v] = number [v]
for w in the adjacency list of v do
if w is not yet numbered then
add (v, w) to edge stack
biconnect(w, v)
lowpt [v] = min (lowpt [v] , lowpt [w])
if lowpt [w] > number [v] then
start new subsystem
while new top edge e = (u1, u2) on edge stack

has number [u1] > number [w] do
delete (u1, u2) from edge stack
if equation u1 is not yet in current subsystem
add equation u1 to current subsystem

endif
if equation u2 is not yet in current subsystem
add equation u2 to current subsystem

endif
enddo
delete (v,w) from edge stack
if equation v is not yet in current subsystem
add equation v to current subsystem

endif
if equation w is not yet in current subsystem
add equation w to current subsystem

endif
endif

else if (lowpt [w] > number [v]) and (w 6= u) then
add (v, w) to edge stack
lowpt [v] = min (lowpt [v] , number [w])

endif
endfor

end
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It is obvious that, in the worst case, when the system (2.1) is dense, we get the whole
system, which means that the system cannot be decomposed into smaller ones using this
technique.
In the section 5 some applications of the algorithm are presented.

4. Local convergence and stability issues

Before studying the stability we need the definition of an asynchronous iterative method
and the definition given below is similar to the definition in [2] and [6]. Such a method is
used to solve the equation

x = F (x) . (4.1)

It is obvious that this system and the system F (x) = 0 can be transformed into each
other.

Definition 4.1. Let F : Rn → Rn be an operator. An asynchronous iteration corre-
sponding to the operator F and starting with a given vector x (0) is a sequence x (j) ,
j = 0, 1, . . . , of vectors of Rn defined recursively by

xi (j) =

½
xi (j − 1) , i /∈ Jj
fi (x1 (s1 (j)) , . . . , xn (sn (j))) , i ∈ Jj ,

where J = {Jj : j = 1, 2, . . .} is a sequence of nonempty subsets of {1, . . . , n} and S =
{s1 (j) , . . . , sn (j) : j = 1, 2, . . .} is a sequence of elements in Nn such that for every i =
1, . . . , n,

(a) si (j) 6 j − 1, j = 1, 2, . . . ;
(b) lim

j→∞
si (j) =∞;

(c) i occurs infinitely many often in the sets Jj , j = 1, 2, . . . .

This definition can be applied in the case when the system can be decomposed into
independent subsystems.
In the parallel evaluation of F (x), the idea is to allow different processes to compute

different subsets of the components. This idea corresponds to the decomposition given by
the algorithm.
A generalization of Definition 4.1 is described similar as in [2] and [6]. Given F :

(Rn)m → Rn an operator, the problem is to find a vector ξ ∈ Rn, called such that
ξ = lim

(x1→ξ,...,xm→ξ)
F
¡
x1, . . . , xm

¢
(4.2)

The vector ξ is called fixed point for the operator F . Similar to asynchronous iterative
methods to solve equation (4.1) we introduce the class of asynchronous iterative method
with memory to solve equation (4.2).

Definition 4.2. Let F : (Rn)m → Rn be an operator. An asynchronous iteration
with memory corresponding to the operator F and starting with a given set of vec-
tors x (0) , . . . , x (m− 1) is a sequence x (j) , j = 1, 2, . . . , of vectors of Rn defined for
j = m,m+ 1, . . . by

xi (j) =

½
xi (j − 1) , i /∈ Jj
fi (z

1, . . . , zm) , i ∈ Jj ,
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where zr, 1 6 r 6 m, is the vector with components zri = xi (s
r
i (j)) , 1 6 i 6 n, J =

{Jj : j = m,m+ 1, . . .} is a sequence of nonempty subsets of {1, . . . , n} which correspond
to the subsets of components evaluated at each step and

S = ©¡s11 (j) , . . . s1n (j) , s21 (j) , . . . , smn (j)¢ : j = m,m+ 1, . . .ª
is a sequence of elements in (Nn)m which satisfies condition (c) from Definition 4.1 and
(a) max {sri (j) : 1 6 r 6 m} 6 j − 1 for j = m,m+ 1, . . . ,
(b) lim

j→∞
min {sri (j) : 1 6 r 6 m} =∞.

This definition can be applied when the subsystems obtained by applying the algorithm
described in the previous section are not independent.
Suppose that the system F (x) = 0 can be decomposed by the above described algorithm

into p > 1 smaller subsystems, F = (F1, F2, . . . Fp)T . Then the system is equivalent with

F1
¡
x1
¢
= 0, . . . , Fp (x

p) = 0, (4.3)

where x = (x1, . . . , xp) and xi, 1 6 i 6 p, contains the unknowns of the subsystem i,
1 6 i 6 p, such that if a variable appears in two subsystems it is taken only once.
Using the definitions and notations above we can give the following theorem

Theorem 4.1. If the system F (x) = 0 has a solution x? = (x?1, x
?
2, . . . , x

?
n) ∈ D which can

be computed with an approximation method, then the subsystems (4.3) has the solutions

F1
¡
x1?
¢
= 0, . . . , Fp (x

p?) = 0, (4.4)

where x? =
¡
x1?, . . . , xk?

¢
.

Proof. If p = 1 the theorem is trivial. If p > 1 we can have one of the situations as
in systems (2.1), (2.2) or (2.3). The situations described in systems (2.2) and (2.3) are
similar and we will consider only the system (2.2).
From [2] and [6] it results that the system F (x) = 0 can be solved using asynchronous

iterations and asynchronous iterations with memory. We have to show that the subsystems
given by the algorithm are particular cases of asynchronous iterations or asynchronous
iterations with memory.
Without loosing generality we can suppose p = 2 (i.e. the system can be decompose

into two subsystems).
If we have the situation (2.1) then each subsystem is independent on the others and can

be solved separately. In this case the system can be solved using asynchronous iterations
and each subsystem can be solved on a different processor.
If we have the situation (2.2) then there is only one unknown which appears in both

subsystems as it results from the algorithm, and all other unknowns appears in only one
subsystem. In this case the system can be solved using asynchronous iterations with
memory. Each subsystem can be solved on a different processor and uses for the common
unknown whatever value is currently available when needed. ¤
Conjecture 4.2. Let F (x) = 0 be a nonlinear subsystem which can be decomposed with
the algorithm from the Section 3 into subsystems (4.3). If x0 is a starting value of an
approximation method for the solution x? of the equation F (x) = 0, then, starting from
the x0 = (x1,0, x2,0, . . . , xp,0) with the same approximation method, subsystems (4.4) have
the solution

¡
x1?, . . . , xk?

¢
= x?.
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5. Applications

To illustrate the decomposition above, we will consider some examples. First, consider
the system (2.1). This system can be decomposed in the subsystems


2x21 − 2 cos(x1 − 1) = 0
x2
2
sin(x3) + sin(x2) = 0

tan(x1) + x1x4 = 0
x1x2 − 4x3 + 2 = 0
2(x5 − x6)− 2 cos(x7)− sin(x8 − 1) = 0
x6
2
sin(x5 − x7)− sin(x7) + cos(x8) = 0

x5 − tan(x6) + x7 − x8 = 0
x25 + x6 − 4x8 + 2 = 0

Each of those subsystems can be solved on a different processor. The system (2.2) can be
decomposed by the algorithm in three subsystems, x31 + x

3
2 + 4 = 0

x1 exp (x2 − 1) + 2x1x2 = 0
x1 cos (x6 − 2x5) + 1 = 0½
sin (x3 − x4) + 2x3 + x3x4 − 3 = 0
x3x4 + x

2
4 − 2 = 0½

x1 cos (x6 − 2x5) + 1 = 0
x5x6 − 3 = 0

The system (2.3) is decomposed in three subsystems, 2x1x2 − 2 cos (x1 − 1)− 10 = 0
sin (x1 + x3) +

x2
2
+ sin (x1 + x2) = 0

tan (x1x5) + x6 sin (x5 + x8) + 2 = 0 sin (x1 + x3) +
x2
2
+ sin (x1 + x2) = 0

x4 tan (x3 + x4) + 12 = 0
2x4 − 5x3 + 2 = 0
2 (x5 − x6)− 2 cos (x7)− sin (x8 − 1) = 0
x6
2
sin (x5 − x6) + sin (x8 − sin (x7))− 2 = 0

x7 − tan (x6) + x5 − x8 + 5 = 0
tan (x1x5) + x6 sin (x5 + x8) + 2 = 0

Is easy to see that neither of these systems is independent on the others and the equa-
tions 2 and 5 from the system (2.3) links these subsystems.

6. Conclusions and future work

For a nonlinear system most algorithms deals with a particular form of the system. The
algorithm presented can be used for any form of a system (in particular, it can be used
even for a linear system).
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If one of the subsystems has a large cycle, the algorithm cannot deal with it. Also
in practice it is possible that the system could be decomposed into subsystems which
have in common more than one unknown and in such a situation the system cannot be
decomposed into subsystems using the algorithm. In such situations the system could
be decomposed into smaller ones following the idea in [8], by introduction the notion
of separator set. The method presented in [8] cannot be applied as it is and has to be
adapted to the nonlinear case.
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