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Abstract

We report on how mathematics is done in the MIZAR system. MIZAR offers a
language for writing mathematics and provides software for proof-checking. MIZAR is
used to build Mizar Mathematical Library (MML). This is a long term project aiming
at building a comprehensive library of mathematical knowledge. The language and the
checking software evolve and the evolution is driven by the growing MML.

1 Introduction

The MIZAR language is the language of practical formalization of mathematics developed
by A. Trybulec. The main goal for its original design and further development was a
formal system close to the mathematical jargon used in publications but at the same time
simple enough to enable computerized processing, in particular mechanical verification of
correctness.

For the above reasons, the logical basis of M1ZAR is formed by:

e the system of natural deduction by S. Jaskowski [14] (see also [19]), which is considered
an adequate reconstruction of proof styles used in mathematical publications. Similar
systems were independently described by K. Ono [21] and F. B. Fitch [10].

e the notion of an obvious inference instead of using some fixed set of inference rules.
This notion has been addressed in the past by M. Davis [8], in the Kiev project [9]
and recently by H. Friedman [11].

At the beginning of the project, there were plans to test the MiZAR language and
software in building libraries based on various axiomatics: ZFC for ‘normal’ mathematics,
Peano axioms for theoretical arithmetic, etc. Because of substantial effort needed do build
such libraries, a decision was made to focus on developing one such library (MML) based on
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the Tarski-Grothendieck set theory. In the 1980’s, some experiments were carried out with
the Morse-Kelley theory of classes but they have been discontinued because of complications
arising in mechanical processing of relationships between sets and classes.

We would like to stress the distinction between MIzZAR as a formal system of general
applicability (which as such has little in common with any set theory) and the specific
application of M1zAR in developing MML which is entirely based on a set theory (see
Appendix A). In building MML, the Mi1ZAR language and set theory provide an environ-
ment in which all further mathematics is developed. This development is definitional: new
mathematical objects can be defined provided we supply a model for them in the already
available theories.

Currently, the development of MML(see http: ://mizar.org) is the main activity in
the M1ZAR project as it is believed that only substantial experience may help in improving
the system. There has been a focused effort to advance the contents of MMUL in some areas:

e the theory of continuous lattices through translation of the entire main text of [12].
This theory involves diverse and recent mathematics, see [1] for the report on the
MIZAR developments.

e the proof of the Jordan curve theorem is being continued, articles in the series GOBOARD
and JORDAN;

e reasoning about computations, articles in the series AMI and SCM;
e algebra towards symbolic computation by following [5].

The management of mathematical knowledge in MIZAR can be considered at different
levels.

e When writing a single proof we have to deal with proof structuring, forming auxiliary
lemmas, referencing available knowledge inside and outside the proof and forming
individual inference steps.

e When writing a MI1ZAR article (containing usually a number of theorems and defini-
tions which require proofs) we first establish a local conceptual basis for our work by
importing material from MML. An article is usually dealing with a restricted area
of knowledge and the number of notions that are needed is typically small. Since
processing speed depends on the size of the local environment it is important that the
environment is reasonably small. While this may not seem as a big problem now, we
anticipate it becoming serious when MML grows.

e Once an article is finished, it is included into MML and thus made available for
referencing from other articles. As of August 2001, MML contains 700 articles which
include some 32000 mathematical facts and some 6000 definitions. MML undergoes
revisions as a result of the evolution of the M1ZAR language and software. An article
is also translated into several other representations which are available on the WWW.

Below, we present some issues of knowledge management at these three levels.
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2 An article and its processing

A MIZAR article is written as a text file and consists of two parts: the Environment Dec-
laration and the Text Proper (see Figure 1). The Environment Declaration begins with
environ and consists of Directives. The Text Proper is a sequence of Sections, each start-
ing with begin and consisting of a sequence of Text Items. The division of the Text Proper
into sections is only for editing purposes and has no impact on the correctness of an article.
This division is used for sections when typesetting M1ZAR abstracts in TEX for publication
in Formalized Mathematics.

environ
Environment-Declaration
begin
Text- Proper

Figure 1: The overall structure of a MI1ZAR article.

The two parts of an Article are processed by two separate programs: the ACCOMMODA-
TOR and the VERIFIER. The ACCOMMODATOR processes the Environment Declaration and
creates the local Environment, which consists of a number of working files in which the
information requested in Directives and imported from the data base is stored.

The VERIFIER has no direct communication with the data base and checks the correct-
ness of the Text Proper using only the information stored in the local Environment files.
The VERIFIER consists of three phases the PARSER, the ANALYZER and the CHECKER.
The efficient mechanism for importing the information from the MML into the local Envi-
ronment files is of utmost importance and its design presents a substantial challenge; the
ACCOMMODATOR evolves probably faster than other components of MIZAR.

2.1 Some remarks about the language

The MI1zAR language includes the standard set of first order logical connectives for forming
formulae and syntactic constructs for writing proofs. The language provides means for using
free second order variables in forming schemes of theorems (infinite families of theorems). An
introductory information about M1zZAR with numerous examples can be found in [23, 26, 20].

M1zZAR offers a number of definitional facilities. Each definition defines a new constructor
later used in syntactic constructions, and gives its syntax and meaning.

In MIZAR terminology, predicates are constructors of (atomic) formulae, modes are
constructors of types, functors are constructors of terms, and attributes are constructors of
adjectives. The syntactic format of a constructor specifies the symbol of the constructor
and the place and number of arguments. The format of a constructor together with the
information about the types of arguments is called a pattern. The formats are used for
parsing and the patterns for identifying constructors. A constructor may be represented by
different patterns as synonyms and antonyms are allowed.

The definitions of functors, modes and clusters of adjectives require correctness condi-
tions: for a new functor we have to demonstrate that it uniquely denotes an object, for a
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mode that it constructs non empty types, for a cluster of adjectives we have to show that
there are objects with all the corresponding properties.
We borrowed the name “functor” from [22], p. 148:

. some signs in the formalized language should correspond to the mappings and
functions being examined. These signs are called functors, or—more precisely—
m-argument functors provided they correspond to m-argument mappings from
objects to objects (m = 1, 2, ...).

Mizar functors must not be confused with functors as used in category theory.

2.2 The Environment directives

There are three kinds of Directives: Vocabulary Directives, Library Directives and Require-
ments Directives.

A Vocabulary is a text file in which symbols are defined. The symbols are qualified
with their kind (predicate, functor, mode, structure, selector, attribute, left or right functor
bracket) and are used for lexical analysis. A Vocabulary Directive has the form

vocabulary Vocabulary-Name, ..., Vocabulary-Name ;

and requests that all symbols from the listed vocabularies be included in the local environ-
ment. Vocabularies are independent of MIZAR articles.

Library Directives request information from the data base for inclusion in the local
environment used later by the VERIFIER to check the article.

The conceptual framework of an article is imported by the directive:

constructors Article-Name, ..., Article-Name;
The notation used for the concepts come through the directive:
notation Article-Name, ..., Article-Name;

The library directives work at the level of MI1ZAR articles and for instance, including
notation from an article includes all notation defined in an article.

The constructors directive first imports all constructors defined in the listed articles
and then recursively all other constructors needed to understand them. As a result, if a
local environment contains a constructor then it also contains the constructors occurring in
types of its arguments and in case of functors also in the result type.

The remaining directives are:

e clusters Article-Name, ..., Article-Name;

imports, from the listed articles, the registrations of clusters. There is a number of
different types of cluster registrations. Each registered cluster needs to satisfy certain
correctness conditions. Cluster registrations state relationships among adjectives,
modes, and functors, and are automatically processed by the ANALYZER and the
CHECKER.
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e definitions Article-Name, ..., Article-Name;
requests definientia that can be used in proving by definitional expansion without
mentioning the definition’s name.

e theorems Article-Name, ..., Article-Name;

enables referring to theorems and definitional theorems from the listed articles.

e schemes Article-Name, ..., Article-Name;

gives access to schemes, which are theorems with second order free variables.

e requirements Req-Name, ..., Req-Name;

gives access to built-in features; there are only four such requirements groups at the
moment named ARYTM, BOOLE, SUBSET and REAL.

As mentioned before, the Environment Declaration is processed by the program called
AccOMMODATOR. The basic directive is constructors which imports constructors from
the listed articles and sets the conceptual framework of the local environment. The directives
clusters, definitions, theorems and schemes then import respective library items from
the listed articles provided the constructors needed to understand the items already have
been imported. This approach aims at controlling the local environment to be small (see
Section 6). It seems, that with the growing size of MML there is a need for such control.

2.3 The Text Proper

Each section of Text Proper is a sequence of Text Items. There are the following kinds of
Text Items:

e a Reservation is used to reserve identifiers for a type. If a variable has an identifier
reserved for a type, and no explicit type is stated for the variable, then its type defaults
to the type for which its identifier was reserved.

a Definition Block contains a sequence of Definition Items, each defining or redefining
a constructor or a cluster. Each definition and redefinition of a constructor requires
a justification of its correctness. For instance, when defining a functor, one has to
justify conditions of its existence and uniqueness; when redefining a functor, one has
to demonstrate that the redefinition is coherent with respect to the original definition
of the functor.

a Structure Definition introduces a new structure which is an entity that consists of
a number of fields (members) that are accessible by selectors.

a Theorem announces a proposition that is put into the data base and can then be
referenced from other articles.

a Scheme announces a scheme which is a theorem with second order free variables
and is accessible from other articles. Schemes can be perceived as inference rules and
they have to be proven before being used. The replacement axiom is formulated as a
scheme named Fraenkel, see Appendix A.
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o Auziliary Items form those parts of a MI1ZAR article that are local to the article and
are not exported to the data base files (e.g. auxiliary lemmas, definitions of local
predicates, local functions, and variables).

Most Text Items require a Justification, which can be either a Straightforward Justifi-
cation, a Proof, or a, Scheme Justification. MIZAR permits a multitude of proof structures
in the spirit of natural deduction—too many to discuss them here, see [20], pp. 8-22.

The Straightforward Justification takes the form:

by Reference, ..., Reference;

where a Reference is either a Private Reference—a reference to a statement in the current
article, or a Library Reference—a reference to a theorem stored in the data base. The latter
has two forms:

Article-Name : Theorem-Number
or
Article-Name : def Definition-Number

where the latter refers to the so called definitional theorem, a theorem automatically created
from a definition.

The Scheme Justification is of the form:
from Scheme-Name ( Reference, ..., Reference )

Scheme-Names are global and are not prefixed with the name of the article where they were
introduced. The References give the premises of the scheme.

2.4 Processing

The ACCOMMODATOR creates the local Environment files for an article based on the Enuvi-
ronment Directives. Then the VERIFIER works with this local environment never contacting
the data base. The VERIFIER consists of five modules:

e The PARSER is a relatively complicated program because of the rich MI1ZAR syntax,
multi-way overloading of names, and the presence of newly defined formats of con-
structors and their precedences.

e The ANALYZER identifies constructors based on the available patterns and this involves
processing type information. This module also processes clusters of attributes.

e The REASONER checks the correctness of proof structures and computes the formulae
demonstrated in diffuse statements.
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e The CHECKER checks the straightforward justifications by treating each as an infer-
ence of the form

premiseg, premisei, ..., premiseg

conclusion
which is transformed into

premisey & premise; & ... & premisey & not conclusion

contradiction

If the checker finds the conjunction contradictory then the original inference step is
accepted, see Section 3. The checker may not accept an inference that is logically
correct; to get the inference accepted one has to split it into a sequence of ‘smaller’
ones, or possibly use a proof structure.

e The SCHEMETIZER checks the correctness of Scheme Justifications by pattern match-
ing the premises and the conclusion of the scheme definition with the actual premises
and the actual proposition being justified.

3 Obvious inferences

One may write Straightforward Justifications at a very low level, using a single basic in-
ference rule at an inference step. Let the basic inference rule be one of the introduc-
tion/elimination rules of natural deduction. All correct applications of single basic rules
will be accepted by the checker; however, the rule involved in an inference step cannot be
named as MIZAR does not provide syntax for such naming. (One can put the name of the
inference rule in a comment; this is how MIZAR is sometimes used in teaching introductory
logic).

Using only a single basic inference rule at an inference step would certainly make even
a simple proof very long. Therefore, the MI1ZAR checker when verifying an inference step
uses a more complicated decision procedure which recognizes a set of ‘obvious’ inferences.
This decision procedure stresses the processing speed, not power. The characterization of
‘obvious’ inferences is best given by describing the checker actions. At this moment, we
cannot offer a high-level explanation of what constitutes an ‘obvious’ inference. In the
description below (based on a write-up by F. Wiedijk) we only give a general idea of the
checker’s work; many details are not mentioned.

Given a conjunction to be refuted:

premisey & premiser & ... & premiser & not conclusion

the checker works in three stages: PRECHECKER, EQUALIZER and UNIFIER.

Prechecker
All formulae are converted into a normal form:

e Only the following logical connectives are used: &, not, and for (the universal quan-
tifier). All other connectives are eliminated using the well known equivalences.
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Conjunctions are represented as lists of conjuncts. An empty list is a unity of con-
junction and serves as the logical value true. A negated empty list represents a
contradiction.

Double negations are eliminated.

The distributivity of the universal quantifier over conjunction and the distributivity
of the existential quantifier over disjunction are used to ‘push down’ the quantifiers.
Fictitious quantifiers are removed.

Disjunctive normal form of the starting conjunction is created resulting in:

(00 & ... & qog) OF ... or (gno & ... & g ,)

A disjunct is stored as a collection of formulae with no repetitions and at this level
conjunction is treated as a commutative connective. Contradictory disjuncts are not
considered any further. If the original inference is a propositional tautology then the
disjunctive normal form is empty and the inference is accepted.

If a disjunct contains an existential sentence then PRECHECKER applies the existential
elimination rule to this sentence by introducing a new constant and replacing the
sentence after appropriate substitution. A new disjunctive form for this disjunct is
built.

After the above steps, we have a collection of disjuncts and each item in a disjunct is either
an atomic formula, a negated atomic formula or a universally quantified sentence. Further
processing is done separately of each disjunct and if all disjuncts are refuted, the inference
is accepted.

Equalizer

EQUALIZER processes ground terms occurring in a disjunct. All ground terms are collected
and then ‘equated classes’ are built by processing equalities among ground terms. An
equated class (of terms) is a class of the congruence closure of a relation consisting of pairs
of ground terms [, 5] where @ = 8 is an equality originating from:

explicit equalities occurring in the disjunct;

equalities inherited from the context of the inference as a result of processing the take
and reconsider constructs;

if an explicit equality of two structures occurs in the disjunct then the equalities of
their selectors are added;

properties of functors occurring in ground terms like commutativity or idempotency;

requirements specified in the local environment. Requirements provide access to built-
in features which can be selectively imported and some provide equalities, for example
with requirements REAL the EQUALIZER uses the fact that x-0=x.
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e the values of integer expressions involving only small integer constants (up to 16 bit)
and basic arithmetic operations are computed.

Equated classes are later used for substitutions in the UNIFIER.

EQUALIZER ‘rounds-up’ conditional clusters applicable to terms in an equated class and
as a result new adjectives may be added to the equated class.

EQUALIZER also adds new inequalities on the basis of the so called one difference rule.
Given an inequality of two terms, a new inequality between their sub-terms is added pro-
vided it is the only inequality explaining the inequality of the original terms. Similarly, if
an atomic sentence and a negation of an atomic sentence occurring in the disjunct differ
only at one of their arguments, then a new inequality is added.

After creating equated classes of terms and adding new inequalities, EQUALIZER tests
whether a contradiction has been reached, that is, whether there is an inequality of two
terms in the same equated class.

Unifier

At this point, a disjunct to be refuted consists of a list of atomic formulae (but no equalities),
negated atomic formulae and universal quantifiers. (If there are no universal sentences, the
inference is not accepted.) All ground terms have been put into equated classes.

UNIFIER processes universal sentences occurring in a disjunct by considering one of them
at a time. The universal sentence being processed is called the main premise; the remaining
members of the disjunct are called auxiliary premises. The external universal quantifiers in
the main premise are removed and their bound variables are replaced by free variables. The
name UNIFIER is unfortunate as no unification is performed, only substitutions of equated
classes for free variables are considered later.

What remains of the main premise now is best looked at as a & and or tree (or is
internally represented as a negated conjunction). Because of de Morgan laws we can imagine
that negations are pushed down to the leaves and each leaf is either an atomic formula, a
negated formula, a universal formula or a negated universal (existential) formula. The leaf
formulae are treated as a whole, no substitutions for bound variables of quantified leaf
formulae are considered. For every leaf of the tree, UNIFIER looks for a complementary
(with different sign) auxiliary premise with the same structure, that is having a ground
term in a place where the leaf has a free variable. This way, a list of possible substitutions
is built for every leaf (partial maps from free variables to ground terms) such that if they
are applied, a contradiction results between a leaf and an auxiliary premise.

An algebra of substitutions is used to compute the substitutions for which the entire
main premise is contradictory with the auxiliary premises. If the set of such substitutions
is non empty the disjunct has been refuted.

4 Developing an article

A typical ‘loop’ when writing a MIZAR article is illustrated in Figure 2. An author prepares
their text and presents it to the MIZAR processor (in our slang: one mizars a text). The
processor creates a number of auxiliary files and also generates an error file. An additional
utility program (ERRFLAG) inserts the error messages into the source text. Now, the author



10

P. Rudnicki and A. Trybulec Mathematical Knowledge Management in MI1ZAR

tries to fix the errors and mizars the text again. If there are no changes in the environment
part then the ACCOMMODATOR is not run. This loop is repeated until there are no errors.

( Mizar DB )

environ

Directives Accommodator
Local environment
begin
Text Proper ————————> Verifier

> Error-printer

Figure 2: Developing an article loop

Once we have created a satisfactory environment, further work with the MIZAR verifier
is best described as a low intensity interaction: the entire text is processed each time. Such
a low intensity interaction has its advantages as it stresses the division of responsibilities
between the author and the checker ([11, 13]). The part of the M1zZAR language for struc-
turing proofs is close to mathematical vernacular and can be used to record just an idea of
a proof (with many unproven steps). Then one can check the overall proof structure while
postponing the checking of low-level details. Since the author works with the text, it is
the author that is in control of this step-wise refinement process and thus can attempt a
forward proof, or a backward proof, or any mixture of the two. Typically, a forward proof
is attempted, if this fails, we try the proof backwards and then iterate.

MIZAR proofs are written in declarative style (see [13]), i.e. an author is writing a proof
rather than some instructions to a machine of how to construct or reconstruct a proof which
is the essence of the so called procedural style. This is important for the M1ZAR author: at
all times, the author has access to and manipulates “a state” of the proof being developed
and this “state” is recorded in the M1ZAR language. This is not so in the procedural style
of proving when “a state” of a partial proof can be displayed albeit usually not in the same
notation as the proof instructions given by the proof developer.

There are means for excluding proofs from being checked by replacing proof with
@proof. This is employed for two reasons:

e In step-wise refinement we leave some proofs unfinished for future development.

e We exclude checking proofs which have been already completed.



Mathematical Knowledge Management in MI1ZAR P. Rudnicki and A. Trybulec

11

The final check always consists of checking the entire article (with no @proof).

A natural question arises: how many times this development loop is repeated? This
depends on the nature of the article and on the experience of the author. The less experi-
enced authors tend to start writing a MIZAR text while not having a clear idea of how to do
a proof on paper. This compounded with their lax knowledge of MIZAR results in running
the MIZAR processor many, many times and finally asking a more experienced MIZAR user
for help.

4.1 Errors

The errors reported by the MIZAR processor can be roughly categorized as follows:

e Lexical errors: announced for undefined tokens.

e Syntax errors: the text is not written according to the MIZAR grammar or an
identifier is not defined; these errors are easy to correct.

e Library directives errors: importing from the library imposes certain conditions,
for instance, when we want to import notations from an article then our local environ-
ment must include constructors to understand these notations. If this is not the case
we get Nothing imported from notations error. Adding an appropriate vocabulary or
constructors directive remedies the problem.

e Constructor identification errors: these errors are caused by the inadequacy of
the local environment; for instance, we want to use a functor and the local environ-
ment does not include its definition. In the presence of overloading these errors are
frequently difficult to remedy; and the remedy is an adjustment of the local environ-
ment.

e Proof or diffuse statement structure: The structure of the proof is guided by the
sentence being proven and these errors indicate disagreements. A diffuse statement is
like a proof-body without announcing a priori what is being proven. Its structure is
similar to proof structure and similar errors occur.

The first step in writing a proof is typically writing down its skeleton and having
it accepted by the VERIFIER. This is a routine work to the point that it could be
mechanized. This resembles step-wise refinement, as after completing the skeleton we
have a number of ‘smaller’ claims to prove; smaller in that we have same additional
assumptions to use. A proof by contradiction is a proof when at certain point we
assume the negation of what remains to be proven and then we have to conclude a
contradiction.

e Checker errors: Basically there is only one such error This inference is not accepted
which is announced for Straightforward Justifications, see Section 3. This error does
not mean that an inference step is logically invalid, it means that the M1ZAR checker
does not accept the step. It may be too complicated for the checker to see its cor-
rectness, and frequently such an inference step needs to be split into a sequence of
‘smaller’ steps. However, the most frequent cause of this error is an omitted premise.

e Schemetizer errors: a scheme is erroneously used.
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4.2

Implementation restriction: there is a large number of such errors due to assumed
maximum sizes of machine representations of MIZAR constructs; for instance Too long
universal prefix.

Constructor identification errors

Even for advanced MIZAR users, the most troublesome activity is preparing the environment
directives, i.e. setting up the imports from the MML. Doing it well requires an intimate
knowledge of MML and the current organization of MML seems not very well suited for
this task. The difficulty stems from the fact that relevant material may be spread over a
host of M1ZAR articles and the only searching tools available at the moment are utilities
of the grep family. Knowing the data base is the essential asset. The grep-like search is
done over the MIZAR abstracts (see Section 5) and they constitute more than 7MB at the
moment. On the current machines a run of grep over all abstracts takes only few seconds.
Consider the following example:

environ

vocabulary FUNC;

notation ARYTM, FUNCT_2, FUNCT_1;
constructors ARYTM, FUNCT_2;
clusters ARYTM;

requirements SUBSET, ARYTM;
begin

consider f being Function of NAT, NAT;
consider g being Function;
consider x being set;

f.1 in NAT;

g.x is set;

All the above directives are needed for the following reasons:

vocabulary FUNC for mode name Function and operation symbol . used for function
application.

notation ARYTM for definition of the set of natural numbers NAT; notation FUNCT_2 for
definition of mode Function of (a function from a set to a set) and the function
application functor . for functions of this type; notation FUNCT_1 for definition of
mode Function and the function application functor . for functions of this type;
note that the functor symbol . is overloaded.

constructors from ARYTM for requirements ARYTM, see below; constructors from FUNCT_2
for the notation imported from FUNCT_2; note that we do not mention constructors
from FUNCT_1—they are imported automatically as they are needed by constructors
imported from FUNCT_2.

clusters from ARYTM to know that NAT is non empty;

requirements SUBSET and ARYTM to know that 1 belongs to NAT.

Note that due to the definition of the function application functor in FUNCT_1 we can say
that g.x is set even when we do not know whether x is in the domain of g.
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If for some reason, the directives also include clusters from RELSET_1, then we get a
checker error:

environ
vocabulary FUNC;

notation ARYTM, FUNCT_2, FUNCT_1;
constructors ARYTM, FUNCT_2;
clusters ARYTM, RELSET_1;
requirements SUBSET, ARYTM;

begin
consider f being Function of NAT, NAT;
consider g being Function;
consider x being set;

f.1 in NAT;

*4
is set;

VvV V K V

4: This inference is not accepted

This should not be surprising! We have now a different environment. Due to the clusters
imported from RELSET_1 the mode Function of now widens to the mode Function; without
these clusters it was not so and in f.1 the function application was as defined for the mode
Function of and in g.x as defined for the mode Function. Now, f has also the mode
Function, so the question is which function application is to be used for £7 This is resolved
by trying available notations from notation in order listed and using the last one that fits.
In this case, it is the function application as defined in FUNCT_1 and this is not what we
want. If we swap the order of imported notations, we get the expected result:

environ

vocabulary FUNC;

notation ARYTM, FUNCT_1, FUNCT_2;
constructors ARYTM, FUNCT_2;
clusters ARYTM, RELSET_1;
requirements SUBSET, ARYTM;
begin

consider f being Function of NAT, NAT;
consider g being Function;
consider x being set;

f.1 in NAT;

g.x is set;

The work on better organizing MML and improving the means for building the local
environment is being continued.

4.3 Proof structure and checker errors

In the following example, we deal with an empty environment. This means that all what
we can do is some ‘gymnastics’ in logic.

environ

begin
scheme T{P[set],Q[set],R[set]} :
for a being set st P[al holds Rl[al
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provided
A: for a being set st P[a] holds Q[a] and
B: for a being set st Q[al holds Rl[al

proof :: thesis is : for a being set st P[a] holds R[al
thus thesis by A, B;

1> *4

end;

>

::> 4: This inference is not accepted

The checker announces an error as it cannot see that the formulae labeled A and B imply
the claim. We have to structure the proof in order to succeed. First we make a mistake in
the proof structure:

environ
begin
scheme T{P[set],Q[set],R[setl}
for a being set st P[al holds R[al
provided
A: for a being set st P[a] holds Q[a] and
B: for a being set st Q[a] holds R[al

proof :: thesis: for a being set st P[a] holds R[al
let a be set; :: thesis: P[a]l implies R[al
assume Q[a];

HEpS *52
hence thesis by B;

end;

>

::> 52: Invalid assumption

Certainly we are not allowed to assume Q [a] when proving the implication P[a] implies
R[al.

environ
begin

scheme T{P[set],Q[set],R[set]l}

for a being set st P[al holds Rl[al
provided

A: for a being set st P[a] holds Q[a] and
B: for a being set st Q[a] holds R[a]

proof :: thesis: for a being set st P[a] holds R[al
let a be set; :: thesis: P[a] implies R[al
assume P[a]; :: thesis: R[a]
hence thesis by A, B;

> *x4

end;

1>

::> 4: This inference is not accepted

The checker is still unhappy, we have to make two steps in our reasoning.

environ
begin
scheme T{P[set],Q[set],R[set]}
for a being set st P[al holds Rl[al
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provided
A: for a being set st P[a] holds Q[a] and
B: for a being set st Q[al holds R[al

proof :: thesis: for a being set st P[a] holds R[a]
let a be set; :: thesis: P[a] implies R[a]
assume P[a]; :: thesis: R[a]

then Q[a] by A;
hence thesis by B;
end;

One can get an impression that M1ZAR checker is rather weak and thus forces annoyingly
detailed reasonings, see Section 3. However, we have observed that the new MIZAR users
tend to write their proofs at even more detailed level than required by the checker. Finding
a right balance between what should be the responsibility of the user and what should be
obvious to the checker is important and only extensive practice can indicate the direction
towards a satisfactory solution.

Strengthening the checker such that the last proof would not require two inner steps
is certainly possible. However, we are facing here a delicate trade-off. A more powerful
checker will certainly run longer on more complicated inference steps and thus the time of
checking an article would increase. Since the checker is run many, many times this would
imply an idle time for the author. Since every author is interested in optimizing their time,
it seems more reasonable that for batch processing we have a fast checker rather than a
powerful and a slow one. Certainly, if a fully interactive proof assistant for MI1ZAR is built
one can consider employing different decision procedures.

5 Including an article into MML

Once an article is completed and the VERIFIER finds no errors in it, the article may be
presented for inclusion into the central Mizar Mathematical Library (MML). The decision
about acceptance/rejection of an article is made by the Library Committee. At the moment
there is no refereeing process besides mechanically checking the correctness of the article
and running some mechanical ‘improvers’. The need for human refereeing of articles may
become a pressing issue with the growth of MML.

It seems crucial, at least at this stage of the system development, to maintain a cen-
tralized data base of articles. The MIizAR language and the checking software evolve and
as a result the articles stored in MML need to be revised in order to take advantage of the
new language features and the new capabilities of software. It is also the role of the Library
Committee to perform such revisions.

An article accepted into MML gets a unique identifier and is processed into several
forms later distributed together with the checking software:

e The source text of the article submitted by the author(s) is subjected to a number of
utility programs which aim at discovering parts of the text that can be irrelevant and
then some minimal automatic ‘beautification’ at the textual level. This source text
may change in the future when the library undergoes a revision.

e An abstract of the article is a text file containing only the statements of theorems,
definitions and schemes and they are uniformly labelled. These labels are used for
referencing items in the article from other articles.
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e Data base files (also called library files) which are used by ACCOMMODATOR when
importing items from the article to the local environment of another article. These
files are not meant to be read by MIZAR authors.

The Text Proper of an article contains public and non-public information. The public
information are statements of: theorems, definitions and schemes. Their justifications and
all other items from Text Proper are non-public and they leave no trace in either the abstract
or the library files.

The process of creating the data base files for a new article included into MML is
illustrated in Figure 3. The ACCOMMODATOR program is central in this process and the
design of its functionality raises several interesting problems which we discuss in Section 6.
This is the same program which is used when creating the local environment of an article.
It creates a number of working files (not meant to be read by Mi1zAR authors) which are
used when mizaring an article. From these files the EXPORTER program creates the data
base files about the exported items: constructors, notation, clusters, theorems, definitions

and schemes.
Finished C Mizar DB }— -9
article

environ

Directives Accommodator

Local environment

begin

Text Proper —* Exporter

DB Files
defs thms schms

Figure 3: Including an article to MML

The library files of the public data base are built from the articles submitted to the
MML and are distributed by the MIZAR Society. A private data base may be created by a
user (or a group of users) using the EXPORTER on articles stored in a private library. Private
data bases have temporary character: once the author is sure of the quality of an article
(which usually requires writing a couple of other articles using it), the article is submitted
to the MML.

5.1 Journal of Formalized Mathematics

Every article accepted to MML gets its presence on the web in the electronic Journal of
Formalized Mathematics maintained at http://mizar.org/JFM. The Journal is organized
into annual volumes and each article is presented in a number of forms:
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A short summary provided by the author(s) in English.

e The abstract of the article in the html format where all defined items used in the
article are hyperlinked to their place of definition. This browsing facility is very
useful especially to the new authors.

e The full text of the article.

e The abstract of the article is automatically converted into TEX and the postscript
version is posted.

As MML is continually revised, the electronic Journal is updated and presents the up
to date version of the articles. There is an associated paper publication called Formalized
Mathematics which publishes the articles in the state of their inclusion to MML. Formalized
Mathematics is now published by University in Bialystok, Poland; the initial volumes were
published by Fondation Philippe le Hodey, Brussels, Belgium.

6 Local environment

The local environment of an article forms the connection between the article being developed
and the MML data base. Why do we need it? Typically, when writing a mathematical
paper we are focused on a narrow domain and we do not reference a big variety of other
areas.

In a naive approach one might suggest that there is no local environment and the context
in which an article is being checked is just the entire data base. While this may be a solution
when the data base is sufficiently small, with growth of the data base we unavoidably run
into the problem of size. Additionally, in the presence of symbol overloading we may face
difficulties even with grammatical analysis of the source text. It seems awkward to require
that every notion introduced is expressed by a unique notation.

Another extremal approach to creating the local environment is importing all needed
items individually. This approach would require that every data base item is (uniquely)
named. While this approach seems possible, it may turn out to be too tedious in practice
(but only a large scale experiment could tell). One can modify this approach such that when
we import a notion, say a functor, we recursively import all notions needed to represent
also the types of its arguments and the type of its result. But here we face a problem: when
shall we stop this recursive descent? Are we unfolding down to the basic notions? If so,
then with a sizeable data base we may run again into the problem of size. Alternatively,
we may look for some rules guiding and restricting this process of recursive imports.

We feel that the description of the local environment should be ‘rough’ meaning that
we should not be forced to give too many details. This description certainly depends on
the organization of the data base and with the current MML being a collection of articles,
an article is a unit of import. The creation of the local environment is ruled by the imports
of constructors according to the constructors directives. When we request constructors
from an article, all constructors from this article are imported into the local environment.
But that is not all. The ACCOMMODATOR after importing a constructor brings into the
local environment also all the constructors needed to understand the arguments of the
constructors already in the local environment. This process is continued recursively at
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the level of articles, that is, if a constructor from an article needs to be imported, the
ACCOMMODATOR imports all the constructors from the article. Here we face the issue of
how long this process should be continued. With a larger data base we may face the problem
of too big an environment that is created and many of the imported constructors may be
not needed for processing of the article being developed. We call this problem the “cutting-
off” level of constructor imports. At which level we should stop this recursive process is a
subject of current research.

The processing of remaining environment directives for importing notation, theorems,
clusters, and schemes is driven by the collection of constructors already in the local envi-
ronment. These imports are done by individual items; that is, if we request notation from
an article, only these notation items are imported for which all the needed constructors are
in the local environment. This aims at keeping the local environment small.

Certainly, a collection of source articles is not the only possible organization of a math-
ematical data base. One can imagine treating the source articles as “raw” material and
creating topical articles on top of them. Then the the local environment can be described
in terms of this topical higher level articles. However, the problem of keeping the local
environment small still remains. For example, consider a topical unit which covers finite
sequences (even now, all the facts about and tools for dealing with finite sequences form
a sizeable chunk of MML spread over many articles). It is hard to imagine, that someone
would need all this information in a local environment when proving a theorem. So the
problem, of the “cutting-off” level of imports still remains as the size of the local environ-
ment has a crucial effect on resources, both time and speed, when processing an article
under development.

It is felt, that with the small size of the MML data base now, the problems mentioned
above may not be so burning. However, we should bear in mind that thinking of a date
base for ‘all’ of mathematics we will have to deal with a data base quite a few orders of
magnitude bigger.

7 Miscellany

Classical vs abstract mathematics

The current MML can be roughly divided into two parts:

e mathematics not using the concept of structure, we propose to call this part classical
mathematics, and

e mathematics using the concept of structure which can be called abstract mathematics.

Undoubtedly, there are results belonging to classical mathematics which are best achieved
using structures. For example, it would be hard to imagine a reasonable elimination of the
notion of structure from the proof of Fermat Last Theorem. (On the other hand, struc-
tures can always be eliminated.) This type of results probably deserves a name advanced
mathematics.

A typical example of classical mathematics in MML is arithmetic. The real numbers
are defined without introducing the field of reals. The real numbers in MML are first
introduced as a meta-structure, the structure is embedded into MML. We have the set
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of real numbers, their addition, multiplication and ordering. As long as we work with a
specific structure, a meta-structure suffices. Once we want to develop a general theory and
talk about relationship among structures, then the notion of a structure is indispensable.
(In MML, the field of reals is defined later in [16].) Another examples of widely use meta-
structures in MML: integer arithmetic, natural arithmetic, finite sets, finite sequences.

Choosing notions

The roles of classical and abstract mathematics are different. The former plays the role
of a tool-kit, the latter addresses abstract problems. To use an analogy with computer
software: classical mathematics is what corresponds to system software or firmware, abstract
mathematics—to problem or user oriented software. The firmware should be compact,
efficient and frugal, even at the expense of using some tricks.

Let us look at some examples illustrating the problems of choosing appropriate notions
for the mathematical tool-kit. At the moment there are two notions of a pair in MML:

1. [x,y] defined as {{x,y},{x}}, that is the Kuratowski pair (see Section A) and

2. <*x,y*> defined as an Element of 2-tuples on a set, that is a finite sequence of
length 2 ([6]).

and there is a prevailing opinion that only one of them should be widely used: preferably
the second, while the first should be avoided. Note that the first definition is used when
defining relation, which is used to define function, which is needed to define finite sequence,
so the first definition cannot be eliminated.

If we wanted to use an abstract notion of a pair then we would have to define a structure
like:

definition
let S be 1-sorted;
struct (1-sorted) PairStr over S
(# carrier -> set,
Pair -> Function of [:the carrier of S, the carrier of S:], the carrier,
Left, Right -> Function of the carrier, the carrier of S
#)

and then for a pair we would use Element of P where P is a PairStr. Note however, that
such a definition uses the notions of a Cartesian product and a function, but in order to
define them we need some notion of pairing.

As another example let us take the notion of Cartesian product. A binary Cartesian
product can be expressed either as:

1. [:X,Y:] defined in [7], or
2. product <*X,Y*> using the generalized product defined in [2].

(If we want a Cartesian square, we can use the above as [:X,X:] or product <*X,X*>;
the latter has a semantically equal counterpart available through a different notation:
2-tuples_on X, see [6].)

The question is whether we can justify maintaining these possibilities which were added
to MML by various authors. It is typical in MML that when defining Cartesian products
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of structures, authors separately define a binary Cartesian product of structures and only
then a general product (see products of universal algebras in [17] or products of many sorted
algebras in [18]). This is repetition of effort and if we decide to use the second variant for
the binary Cartesian product then a lot of duplicated material could be eliminated. This
type of issues are subject to frequent MML revisions in order to maintain the integrity of
the mathematical tool-kit.

How general?

There are many mathematical structures that are sufficiently important to develop their
theories individually—groups, lattices etc. In order to develop a general theory of structures
one must introduce a general notion of structure (for example a la Bourbaki) and then it
would be possible to introduce a general notion of homomorphism, of substructure etc.
in MML, this has been done for one-sorted algebras [15]. Since this is a simple case let
us examine it a bit closer. The notion of a group may be defined in a number of ways
using various constructs of MIZAR or we can treat a group as a universal algebra. In the
former case, we have to introduce all the needed notions from scratch (see [25]), in the
latter, one can employ the notions (e.g. isomorphism) previously developed for universal
algebras. Certainly, using a more general apparatus (universal algebras) may cause various
troubles. However, by properly developing a group theory as a universal algebra one may
be as comfortable working with such groups as with groups defined in a traditional way.

Why not work with groups defined from universal algebras? First of all, let us not forget
other possible generalizations: e.g. introduce the notion of a group in a category. Developing
the group theory in this approach yields the common group theory for the category of sets
and for the category of topological spaces we get the theory of topological groups. One
may foresee big gains as we would have a common theory for various groups: algebraic,
metric, ordered, rings - as a group in the category of monoids, and so on. Certainly it is
also possible to introduce the notion of universal algebra in a category and treat a group as
a special case of such an algebra. Categories can be generalized and we may, for instance,
consider such categories in which hom-sets are not just sets but objects of some closed
category. Generalizations may go ad infinitum, and unlike many other cases where we have
one, two, three, heck of a lot we are dealing here with a genuine infinity. Nonetheless, in
order to do something specific, one has to stop at a certain point.

In MML we have the notion of a real vector space (see the series RLVECT) and more
generally of a vector space over an arbitrary field (see the series VECTSP). Should we define
complex vector spaces separately like the real vector space or employ the general notions
from VECTSP?

Language evolution

At the moment, the M1ZAR language does not provide means to define the general notion
of isomorphism for MIZAR structures. In order to define such a notion, we would need
variables ranging over structures, therefore we would need some type Structure and so
on. In other words: the MizAR language would have to be generalized, but it boils down
to developing some theory of structures (set theoretical) and possibly building it into the
MizAR processor. This can be done, however, doing so will tempt implementing other
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generalizations that will inevitably show up and as a result we will have a rapid evolution
of the language instead of developing the data base.

The above concerns what we call the roofing problem: constructs of the M1ZAR language

are kept fixed in one place—Ilet us call it a ‘roof’, and if anyone wants to look at their objects
from a higher level, they must dig a few levels underground, put their objects there and then
investigate them in the comfortable conditions of the ground level — the M1ZAR language.

Of course, the MI1ZAR language has evolved in the past. This evolution has been slow

and has been driven by the development of MML.

8

Conclusions

We would like to offer only one conclusion: we need more experience in building a data base
of computer verified mathematics. Building such a data base is a substantial undertaking of
evolving nature. We need to involve mathematicians—this seems to be a necessary condition
for a success of such a project.
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MML Axiomatics

The development of mathematics in MIZAR is based on a version of the Zermelo-Fraenkel

set

theory.
Several notions of set theory are built into the MI1ZAR processor and their ‘user interface’

is given in a special article named HIDDEN. The symbols used in defining these notions are
given in a special vocabulary also called HIDDEN. The conceptual framework introduced
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in HIDDEN is automatically added to the local environment of each article checked by the
MIZAR. processor (and so are the symbols from vocabulary HIDDEN).
The first notion defined in HIDDEN is a mode set:
definition
mode set;

end;

This mode is the root of the MIZAR type hierarchy; the type of every object ultimately
widens to set.

Absolute equality is built-in as a reflexive, symmetric and transitive predicate, written
in the common infix notation.
definition let x,y be set;
pred x = y;

reflexivity;

symmetry;
antonym x <> y;

end;

The above definition also introduces the inequality predicate as an antonym of equality, so
that x <> y can be written instead of not x = y. Note that transitivity is not announced
in this definition but equality is processed as a transitive predicate.
The asymmetric elementhood predicate in is built-in:
definition let x,X be set;

pred x in X;
asymmetry;

end;

From the asymmetry we have that not x in x.
The inclusion predicate is given its syntax here:
definition let X,Y be set;
pred X c= Y;
reflexivity;

end;

and its reflexivity is announced; the definiens is given in a redefinition of the predicate in
TARSKI [24] (see below).

The axioms of set theory are contained in article TARSKI [24] which is the only Mi1zAR
article not checked for correctness (HIDDEN plays an auxiliary role).

¢ Extensionality axiom
theorem :: TARSKI:2
(for x holds x in X iff x in Y) implies X = Y;
e Singleton and doubleton axioms
definition let y; func { y } -> set means :: TARSKI:def 1

x in it iff x = y;
let z; func { y, z } -> set means :: TARSKI:def 2
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x in it iff x =y or x = z;
commutativity;

end;

Note that the singleton could have been defined once the doubleton was available.

e Definition of set inclusion (not an axiom, a defined predicate):
definition let X,Y;
redefine pred X c= Y means :: TARSKI:def 3
x in X implies x in Y;

end;

e Union axiom
definition let X;

func union X -> set means :: TARSKI:def 4
x in it iff ex Y st x in Y & Y in X;

end;

e Regularity axiom

theorem :: TARSKI:7

X in X implies ex Y st Y in X & not ex x st x in X & x in Y;

¢ Replacement axiom

scheme Fraenkel { A()-> set, P[set, set] }:
ex X st for x holds x in X iff ex y st y in AQ) & P[y,x]

provided for x,y,z st P[x,y] & P[x,z] holds y = z;

e Ordered pairs (not an axiom, definable with singleton and doubleton)

definition let x,y;

func [x,y] equals :: TARSKI:def 5
{{=yh {=x}}h
end;

e Equipotence of sets (not an axiom, a defined predicate)

definition let X,Y;
pred X,Y are_equipotent means :: TARSKI:def 6
ex Z st
(for x st x in X ex y st y in Y & [x,y] in Z) &
(for y st y in Y ex x st x in X & [x,y] in Z) &
for x,y,z,u st [x,y] in Z & [z,u] in Z holds x = z iff y = u;

end;
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e Tarski axiom on existence of arbitrarily large, strongly inaccessible cardinals.

theorem :: TARSKI:9

ex Mst Nin M &
(for X,Y holds X in M & Y c= X implies Y in M) &
(for X st Xin Mex Z st Z in M & for Y st Y c= X holds Y in Z) &

(for X holds X c= M implies X,M are_equipotent or X in M);

Using this axiom one can define infinite sets (article CARD_5 [4]), the powerset operator
(article ZFMISC_1 [7]), and prove the axiom of choice (article WELLORD2 [3]). Note,
that the axiom of choice can also be proven using the available counterpart of the ¢
operator.



