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Abstract
Gröbner bases are one of the most significant methods of computer alge-
bra. Its high computational complexity makes the method often unfea-
sible in practice, and several techniques for its improvement have been
investigated. Algorithms for change of orderings reduce the complexity
of lexicographic Gröbner bases, that are interesting for many practical ap-
plications.
This thesis is concerned with an unified treatment of the Gröbner walk
and the FGLM algorihms for change of orderings. The relation between
the two algorithms becomes clear in a combination of the two methods
that we call FGLM walk.
After a thorough description of the algorithms and their mathematical
background, we conclude by comparing their performance on some real
examples.

Kurzfassung
Gröbner Basen sind eine der bedeutendsten Methoden der Computeral-
gebra. Ihre höhe Berechnungskomplexität macht die Methode oft unprak-
tisch, und mehrere Techniken für Ihre Verbesserung sind untersucht wor-
den. Algorithmen für Ordnungsänderung senken die Komplexität der
Berechnung von lexicographischen Gröbner Basen, die für viele Praktis-
che Anwendungen interessant sind.
Diese Dissertation beschäftigt sich mit einer vereinigten Behandlung der
Gröbner Walk und FGLM Algorithmen für Ordnungsänderung. Der
Zusammenhang zwischen den zwei Algorithmen wird offensichtlich in
einer Kombination der zwei methoden die wir FGLM Walk nennen.
Nach einer vollständigen Beschreibung der Algorithmen und deren
mathematischen Hintergrund, wir schliessen mit dem Vergleich deren
Leistung für einige echte Beispiele.
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Chapter 1

Preliminaries

1.1 Introduction

Introduced in 1965 by Buchberger, Gröbner bases are a powerful compu-
tational method in algebra. Given a system of polynomials in several vari-
ables, a Gröbner basis provides a set of canonical representatives for the
ideal generated by the polynomials together with an effective method for
reducing any given polynomial to its canonical form. Once a Gröbner
basis is known, one has a tool for investigating algorithmically several al-
gebraic and geometric properties of the system. Among others, one can
decide if the system has finitely many solutions and, if not, what is the
dimension of the space of solutions.

Gröbner bases depend on the choice of some special orders on the set
of power products called term orderings. Some problems like for instance
the elimination of variables from a polynomial system require special term
orderings called lexicographic. Since lexicographic orderings make the
computation of Gröbner bases particularly hard, algorithms for change of
orderings have been devised. These algorithms take as input a Gröbner
basis with respect to some ordering that is known to be easier to compute
and deliver a Gröbner basis with respect to a prescribed lexicographic or-
dering.

There exist two methods for change of orderings in the theory of Gröb-
ner bases: the Gröbner walk algorithm and the FGLM algorithm. The
first method relies on the properties of a fan of polyhedral cones called
the Gröbner fan of an ideal. To each class of term orderings giving rise to
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2 CHAPTER 1. PRELIMINARIES

the same Gröbner basis for an ideal corresponds a cone in the fan. Given
an initial Gröbner basis, one walks from one cone to another in the fan
until the target cone and its corresponding Gröbner basis is reached. The
FGLM algorithm works for zero-dimensional ideals and it uses linear al-
gebra methods on the vector space constituted by the classes of reduced
polynomials modulo the ideal.

In this manuscript we study the classification of term orderings on the
rings of polynomials. Following the characterization given by Robbiano,
we enfold Hahn’s embedding theorem and give a simple visual represen-
tation of term ordering types.

We then introduce partial term orderings and demonstrate some sig-
nificant properties in relation to Gröbner bases. For this part we mainly
follow the work laid out by Collart and Mall. Partial term orderings are
the foundations of the Gröbner walk algorithm. We present the algorithm
and give a hint for a local complexity analysis as suggested by Kalkbrener.

We then present the algorithm by Faugere, Gianni, Lazard and Mora
(FGLM) for zero-dimensional ideals and demostrate how this method can
be modified in order to be feasible for positive dimensional ideals.

We conclude by presenting some computations of Gröbner bases done
with the two methods. The Gröbner walk shows to be superior to the
FGLM algorithm for both zero-dimensional and positive dimensional poly-
nomial systems. For zero-dimensional systems a modification of the FGLM
algorithm allows us to present what we believe is a fairer comparison of
the two methods and show that in this case their performance is quite sim-
ilar.

1.2 Outline

In Section 1.3 we introduce the notation and definitions that will be used
throughout the rest of the thesis.

Chapter 2 starts with an exposition of the basic notions in the theory
of Gröbner bases. In Section 2.3 we present with Robbiano’s constructive
proof of a theorem by Hahn ([30], see also Erdös ([24]) yielding a repre-
sentation of term orderings as matrices with real entries. We conclude the
section by presenting our result on term ordering types (2.3.1). The rest of
Chapter 2 is devoted to the investigation of the properties of partial term
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orderings (Sections 2.4 through 2.6). Partial term orderings allow to gen-
eralize the notions of homogeneity and quasi-homogeneity of polynomi-
als. We show how the properties of Gröbner bases of quasi-homogeneous
ideal hold in this more general setting and give an analogous of the notion
of Hilbert function.

In Chapter 3 we start by recalling some notions from convex geometry
(Section 3.1) that will be needed in Section 3.2 to define the Gröbner cone
of an ideal with respect to a given term ordering. In Section 3.3 we give a
definition of the Gröbner fan of an ideal and present a new concise proof
of its finiteness.

Section 3.5 deals with implementation issues for improving the perfor-
mance of the Gröbner walk, as described by Armhrein, Gloor and Küch-
lin. In Section 3.6 we investigate Kalkbrener’s degree bound for adjacent
Gröbner bases. This bound allows a local analysis of the complexity of the
algorithm.

In Chapter 5 we conclude by comparing the two methods for zero-
dimensional and positive dimensional ideals.

1.3 Basic definitions and notation

We summarise here some of the basic definitions and notations that will
be used throughout the rest of this thesis.

Let K be a field. By K[x1, . . . , xn] we denote the ring of polynomials in
the variables x1, . . . , xn with coefficients in K and by T n the set

{xd1
1 · · ·xdn

n | d1, . . . , dn ∈ N}
of power products (or terms) in the variables x1, . . . , xn.

A product of the form ct where c ∈ K and t ∈ T n is called a monomial.

Given a set F ⊆ K[x1, . . . , xn] we denote by 〈F 〉 the ideal generated by
F in K[x1, . . . , xn], that is

〈F 〉 := {
∑

fi∈Φ

fihi | Φ is a finite subset of F, hi ∈ K[x1, . . . , xn]}

The symbol K will denote the algebraic closure of the field K.
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By N, Z, Q, and R we will denote the sets of natural, integer, rational,
and real numbers and by Nn, Zn, Qn, and Rn respectively the sets of their
n-tuples. A subscript + close to a set will denote the subset of nonnegative
elements of that set, for instance Rn

+ will denote the set of vectors whose
coordinates are nonnegative real numbers

Rn
+ := {(v1, . . . , vn) | vi ∈ R, vi ≥ 0 for every i = 1, . . . , n}

Let K be a field (for instance K = Q, K = R). Then the symbol Kn

represents

• the set of points {(a1, . . . , an) | a1, . . . , an ∈ K} called the affine space
over K

• the K-vector space with componentwise addition

(a1, . . . , an) + (b1, . . . , bn) = (a1 + b1, . . . , an + bn)

and scalar multiplication

c(a1, . . . , an) = (ca1, . . . , can)

for every (a1, . . . , an), (b1, . . . , bn) ∈ Kn, c ∈ K

Given two vectors v, w ∈ Kn, with v = (v1, . . . , vn) and w = (w1, . . . , wn),
we denote by v · w the inner product (or dot product) v1w1 + . . . + vnwn ∈ K.
For K = R the space Rn, equipped with the distance function

d(p, q) =

√√√√
n∑

i=1

(pi − qi)2

defined for every p = (p1, . . . , pn), q = (q1, . . . , qn) ∈ Rn, is called Euclidean
space. When dealing withRn it should be clear from the context whether
we are referring to the affine, vector, or Euclidean space.



Chapter 2

Gröbner bases and term orderings

In this chapter we begin by recalling the basic notions from the theory of
Gröbner bases of polynomial ideals. Associated to a polynomial ideal is
the vector space of the residue classes modulo the ideal, called the residue
class ring, for which Gröbner bases provide a canonical representation.

Gröbner bases are dependent on the choice of particular orderings of
polynomials, called term orderings. Following Robbiano, we show how to
represent term orderings by suitable matrices and give a full classification
of term orderings. By recalling some notions from the theory of ordered
groups, we show how the finitely many different types of term orderings
may be described as chains of some special subspaces.

By dropping the condition that the order be total, one obtains a wider
family of polynomial orderings called partial term orderings. Partial term
orderings allow to generalize the notions of quasi-homogeneity - and hence
of homogeneity - for polynomials. We demonstrate under which condi-
tions the properties of Gröbner bases of quasi-homogeneous ideals can be
carried on in this more general setting.

The results in this chapter constitute the theoretical foundations on
which the methods for change of orderings that will be presented in the
following chapters are built. Namely, the vector structure of the residue
class ring allows to use linear algebra methods in the FGLM algorithm,
while the properties of partial term orderings are exploited in the Gröbner
walk algorithm.

After recalling some equivalent definitions of Gröbner bases in Section
2.1, in Section 2.2 we show how from any Gröbner bases one may read

5



6 CHAPTER 2. GRÖBNER BASES AND TERM ORDERINGS

off a canonical set of generators for the residue class ring called staircase.
In Section 2.3 we demonstrate how the monoid of terms may be embed-
ded into Rn, thus providing a representation of term orderings as classes
of matrices with real entries. Furthermore, in 2.3.1 we look at the classifi-
cation of term orderings within a group-theoretic framework and are able
to present a characterization of term ordering types as chains of values.
In Section 2.4 we introduce partial term orderings and discuss their basic
properties. Partial term ordering allow to generalize the notion of homo-
geneity. Given a partial term ordering, one may associate to a polynomial
ideal a so-called toric degeneration. The main properties of toric deforma-
tions are presented in Section 2.5. Finally, in Section 2.6 we discuss Hilbert
functions of toric deformations as a natural extension of Hilbert functions
of homogeneous and quasi-homogeneous ideals.

Our main sources for this chapter are:

• [44], [43], and [46] for the classification of term orderings

• [18] for the characterization of partial term orderings and toric de-
generations

Other sources used throughout the chapter are indicated within each sec-
tion.

2.1 Gröbner bases

Gröbner bases are special bases of polynomial ideals that allow to reduce
any polynomial in the ideal to its canonical representative (normal form).
The construction of a Gröbner basis for an ideal requires an ordering on
the set of terms that guarantees that the reduction of any polynomial to
normal form may be performed in a finite number of steps.

In this section we will define Gröbner bases and state the properties
that will be needed later. Methods for the construction of Gröbner bases
as well as numerous applications to symbolic computation may be found
in the vast literature on the subject.

Gröbner bases were introduced by Buchberger in his Ph.D thesis in
1965 ([11], see also [12, 13]). The theory of Gröbner bases has since then
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been widely investigated, together with its applications to algebraic ge-
ometry and commutative algebra. The basic theory is presented in several
books ([20, 9, 42, 2, 51, 28]). Applications of Gröbner bases to algebraic ge-
ometry and commutative algebra are presented in [21] and [38]. See also
[47] for the use of Gröbner bases in invariant theory.

Before defining term orderings on the ring of polynomials we will re-
call the definition of order relation on a set.

Let A be a set. A relation R ⊆ A× A is called

• reflexive if (a, a) ∈ R for every a ∈ A

• anti-symmetric if (a, b) ∈ R and (b, a) ∈ R imply a = b

• transitive if (a, b) ∈ R and (b, c) ∈ R imply (a, c) ∈ R

Any relation satisfying the three properties above will be called a partial
order or simply an order on the set A. A set A endowed with an order R is
called an ordered set and denoted by (A,R).

If R ⊆ A × A is an order and, for every a, b ∈ A , either (a, b) ∈ R or
(b, a) ∈ R (that is, every two elements of A are comparable with respect to
R) then R is called a total order on A and we call (A,R) a totally ordered set.

A total order ≺ on T n is called admissible term ordering or simply term
ordering if it is well-founded and compatible with the semi-group structure
of T n, that is for all t, t1, t2 ∈ T n

• 1 = x0
1 · · · x0

n ≺ t

• if t1 ≺ t2 then tt1 ≺ tt2

Given a term-ordering≺ and a polynomial f ∈ K[x1, . . . , xn] we denote by
supp(f) the set of monomials occurring with a non-zero coefficient in the
distributive normal form of f and call this set the support of f . The greatest
monomial in supp(f) with respect to ≺ is called initial monomial of f with
respect to ≺ and is denoted by f≺. If the coefficient of f≺ is 1 then f≺ is
called the initial term or leading term of f with respect to ≺.

Given a term ordering ≺ and a set F ⊆ K[x1, . . . , xn], we denote by
F≺ the set {f≺ | f ∈ F} of the initial monomials of the polynomials in



8 CHAPTER 2. GRÖBNER BASES AND TERM ORDERINGS

F . Analogously, for an ideal I , the ideal 〈I≺〉 generated by the initial
monomials of the polynomials in I is called the initial ideal of I with respect
to ≺.

Fix a term ordering ≺. A finite subset G of non-zero polynomials G ⊆
I ⊆ K[x1, . . . , xn] of an ideal I is a Gröbner basis (or standard basis) of I with
respect to ≺ if and only if

〈I≺〉 = 〈G≺〉
that is, the initial ideal of I with respect to ≺ is generated by the initial
terms of the polynomials in G with respect to ≺.

An ideal I ⊆ K[x1, . . . , xn] is called a monomial ideal if it is generated
by monomials. By Dickson’s lemma we know that any monomial ideal in
K[x1, . . . , xn] admits a finite basis of monomials. Given a monomial ideal
I = 〈m1, . . . , mr〉, a monomial m belongs to I if and only if m is divisible
by some monomial mj , for j ∈ {1, . . . , r}, in the basis.

Hence, a Gröbner basis can be equivalently defined as a finite set G of
non-zero polynomials G ⊆ I ⊆ K[x1, . . . , xn] of an ideal I such that the
initial term of any element of I is divisible by one of the initial terms of the
polynomials in G.

Given f, g, h ∈ K[x1, . . . , xn] with g 6= 0 and a term ordering ≺, we say
that f reduces to h modulo g and write

f −→g h

if and only if g≺ divides a monomial m ∈ supp(f) and

h = f − m

g≺
g

Analogously, if G ⊆ K[x1, . . . , xn], we say that f reduces to h modulo
G and write

f −→G h

if there exists a sequence of reductions

f −→gi1
h1 −→gi2

h2 · · · −→gik−1
hk−1 −→gik

h

with gi1 , gi2 , . . . , gik ∈ G. The polynomial h is called the remainder of the
division of f by G.
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Another characterisation of Gröbner bases is that they are subsets of
an ideal containing no zero polynomials and such that every polynomial
has a unique remainder with respect to them. This unique remainder of a
polynomial f modulo a Gröbner basis G is called the normal form of f with
respect to G and is denoted by NFG(f).

A reduced Gröbner basis for an ideal I is a Gröbner basis such that

• for every g ∈ G no monomial in supp(g) is divisible by any of the
terms in G≺ \ {g≺}

• for every g ∈ G the coefficient of of g≺ is 1, that is G≺ ⊂ T n

Note that in our definition of reduced Gröbner basis we require the poly-
nomials in the basis to be monic.

2.2 Residue class rings

The ring of classes of polynomials modulo an ideal may be viewed as a
vector space over the field of coefficients. A Gröbner basis of an ideal de-
livers as a side-product a linearly independent basis for this vector space.
The basis consists of all terms contained in a set that is fully determined
by the initial terms of the polynomials in the Gröbner basis and is called a
staircase.

Let R := K[x1, . . . , xn] be the ring of n−variate polynomials over the
field K and let I be a proper ideal of R. For each f ∈ R define the residue
class of f modulo I to be the set f + I = {f + g | g ∈ I} and denote by R/I
the set of all residue classes. Together with addition and multiplication
defined by

• (f + I)(g + I) = (f + g) + I

• (f + I)(g + I) = fg + I

for every f, g ∈ R, R/I becomes a ring with 1 + I as unity and I = 0 + I as
zero element.



10 CHAPTER 2. GRÖBNER BASES AND TERM ORDERINGS

One can see that the map

φ : R −→ R/I
f −→ f + I

is a surjective ring homomorphism whose kernel is the ideal I .

R/I may be regarded as a vector space over K by viewing it as an
additive abelian group with scalar multiplication

c(f + I) = cf + I for every c ∈ K, f ∈ R.

Identify terms in T n with n-tuples of natural numbers through the map
log given by

log : T n −→ Nn

xd1
1 · · · xdn

n −→ (d1, . . . , dn)

Then a staircase S ⊆ Nn is a set with the property that for every a =
(a1, . . . , an) ∈ S, if b = (b1, . . . , bn) ∈ Nn is smaller that a coordinatewise,
i.e. bi ≤ ai for every i = 1, . . . , n, then b ∈ S.

Let G be a Gröbner basis for the ideal I . Then the set

S(G) = {t ∈ T n | t is not multiple of any of the initial terms in G}

is a linearly independent vector space basis of R/I . We call S(G) the stair-
case of G.

For every f ∈ R the terms appearing in the normal form of f with
respect to G belong to S(G) and conversely every linear combination of
elements of S(G) is the normal form of some polynomial in R with respect
to G. Hence, we can express the fact that the K-vector space generated
by S(G) is isomorphic to R/〈G〉 by saying that S(G) is a canonical basis of
R/〈G〉 . The terms in S(G) are sometimes also called standard terms.

If G is a reduced Gröbner basis then its leading terms are the minimal
elements with respect to the coordinatewise ordering in Nn \ S(G), the
complement of S(G) in Nn.

Let U = {u1, . . . , ur} be a subset of the set of variables {x1, . . . , xn}.
Then I ∩K[u1, . . . , ur] is an ideal in K[u1, . . . , ur] called the elimination ideal
of I with respect to U . A set of variables U ⊆ {x1, . . . , xn} is called indepen-
dent modulo I if I ∩K[u1, . . . , ur] = {0}.

Define the dimension of an ideal I as
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dim(I) = max{|U | | U ⊆ {x1, . . . , xn} independent modulo I}

It can be proven that an ideal I is zero-dimensional if and only if S(G) is
finite for any Gröbner basis G of I . This implies that I is zero-dimensional
if and only if any Gröbner basis G of I contains a polynomial gi whose
leading term is a pure power of xi for every variable xi , i = 1, . . . , n. This
result is known as the “shape lemma” (see also [8]).

2.3 Classification of term orderings

It is useful to have a representation of term orderings in order to get a
better insight into their behaviour in relation with Gröbner bases. In this
section we will show how to represent term orderings as special matrices
with coefficients in Rn. Our exposition is based on Robbiano’s work ([44],
see also [43]). This topic has been also treated in Chapter 4 of [50].

We will start by identifying in a natural way the set of terms in n vari-
ables with the set of n-tuples of natural numbers. We will then show how
to embed Nn as an ordered structure into Zn,Qn, and finally Rn preserving
its order. As a result, we are able to represent term orderings as special
matrices whose rows are vectors in Rn.

Given two ordered sets A and B, a map f : A −→ B is order-preserving
if whenever a1 ≤ a2 in A, then f(a1) ≤ f(a2) in B.

The set of terms T n can be identified in a natural way with Nn through
the map log introduced in Section 2.2.

One can see that log is an isomorphism between the multiplicative
semigroup T n and the additive semigroup Nn . Hence we can identify
every term ordering on Tn with an ordering < on Nn .

Let us now regard Zn as the group generated by Nn . Then an ordering
< on Nn uniquely extends to a total group ordering on Zn such that Nn is
positive.

Let q = (q1, . . . , qn) ∈ Qn. Then one can always find an m ∈ N+ \ {0}
such that

mq = (mq1, . . . , mqn) ∈ Zn
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In this way any total ordering < on the group Zn uniquely extends to the
total group ordering on Qn defined by q > 0 if and only if mq > 0 .

We will now show how to embed Qn into Rn as ordered groups.

Let G be a Q -subvectorspace of Qn of dimension r and denote by GR
the R -subvectorspace of Rn generated by G .

Let G+ = {g ∈ G | g > 0} and G− = {g ∈ G | g < 0} .

Denote by IG the subset of GR of all elements p ∈ GR such that, for
every open neighborhood Up of p in Rn , Up ∩ G+ and Up ∩ G− are non-
empty.

Then IG is a subvectorspace of GR of dimension r − 1 (think of GR as
the real line, IG as the 0 element).

Given v ∈ Rn denote by d(v) the dimension of the Q -subvectorspace
of R spanned by the coordinates of v. We call d(v) the rational dimension of
v.

Denote by U(G) the half-line which is orthogonal to IG and such that
U(G) ∩ G ⊆ G− . Then d(v) is constant on the set of nonzero multiples of
v, in particular on U(G) .

A base {v1, . . . , vr} of GR as R -vectorspace can be chosen in such a way
that v1, . . . , vr ∈ Qn. Hence, if we write a vector v ∈ GR as

∑r
i=1 λivi with

λi ∈ R , it is clear that the vector space spanned over Q by its coordinates
is contained in the vector space spanned by λ1, . . . , λr and therefore the
rational dimension of v can be at most r (the dimension of G).

Example Let v = (
√

2, 1, 0) . Then v =
√

2(1, 0, 0) + (0, 1, 0) and the ratio-
nal dimension of v is d(v) = 2 . Let G be the Q -subvectorspace of Q3 of
dimension 2 generated by (1, 0, 0) , (0, 1, 0) . Then cleary any vector v ∈ GR
can have at most rational dimension 2 . //

Let G , GR be as before and u1, . . . , us ∈ GR . Denote for short with u
the array (u1, . . . , us) . Define

degu : Qn −→ Rs

v −→ (v · u1, . . . , v · us)
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where v · ui denotes the inner product of v and ui.

The map degu is called the u -multi-degree map.

Endow Rs with the lexicographic ordering defined by (a1, . . . , as) > 0
if and only if the first non-zero coordinate ai is positive. Then the u -multi-
degree map gives an ordering on Qn which is in general partial as the
following example shows.

Example Let u = (u1, u2) where u1 = (0, 1, 0), u2 = (0, 0, 1) and let v =
(1, 0, 0). We can’t decide if v > 0 according to the u -multi-degree, in fact
v · u1 = v · u2 = 0 . //

In order to get a total ordering onQn we will need to make the map degu

injective. Then degu becomes an injective order homomorphism between
Qn into Rs as ordered groups.

Set G1 = Qn , r1 = n , the dimension of Qn. Let IG1 be the subvec-
torspace of G1 defined as before as the set of the elements p ∈ G1 which
have a positive and a negative element of (G1)R in every open neighbor-
hood. Choose a vector u1 on the half-line U(G1) contained in G1 \ IG1 . Let
d1 = d(u1) be the rational dimension of u1 . For a vector v ∈ G1 \ IG1 we
have vu1 = 0 if and only if u1 = 0 . This is because u1 ∈ U(G1) ⊆ G1 \ IG1 .

Now we have to take care of what happens on IG1 .

Let G2 = IG1 ∩Qn. Note that G2 is a Q -subvectorspace of Qn of dimen-
sion r2 = r1 − d1 = n− d1 .

Repeat the argument above with IG2 and get a vector u2 of rational
dimension d2 . Note that since the rational dimensions are positive inte-
gers, and at each step the rational dimension decreases, this procedure will
eventually stop.

In the end we have a set of orthogonal vectors u1, . . . , us such that
d(u1) + · · ·+ d(us) = n .

We have now enough notions to provide a characterisation of term or-
derings.

Let ∼ be the equivalence relation on the set of real vectors given by
v1 ∼ v2 if d(v1) = d(v2) and there exists λ ∈ R+ such that v2 = λv1 .



14 CHAPTER 2. GRÖBNER BASES AND TERM ORDERINGS

Then it is clear that the above construction yields the same ordering
if we substitute ui with an equivalent vector, hence we will consider the
equivalence class [ui] in place of ui .

Finally, let ≺ be a term ordering on K[x1, . . . , xn] . Then ≺ is given by
the following data:

• the type of ≺ , an integer s with 1 ≤ s ≤ n

• the partition type of ≺ , i.e. a partition (d1, . . . , ds) of n

• an element ([u1], . . . , [us]) of classes of real vectors such that for every
i = 1, . . . , s , if Gi−1 is the Q -subvectorspace of Qn orthogonal to
(u1, . . . , ui−1) , then ui ∈ Gi−1 .

Example The pure lexicographic ordering is defined as the term ordering
≺plex such that

t1 ≺plex t2

whenever t1 = xa1
1 · · · xan

n , t2 = xb1
1 · · ·xbn

n and for the smallest i such that
bi 6= ai, the difference bi − ai is positive. Then ≺lex is of type n and
partition type (1, 1, . . . , 1) and it can be represented by the vectors
([e1], . . . , [en]), the rows of the identity matrix




1 0 . . . 0
0 1 . . . 0
. . . . . . . . . 0
0 0 . . . 1




The total degree reverse lexicografic ordering ≺grevlex is given by

t1 ≺grevlex t2

whenever t1 = xa1
1 · · · xan

n , t2 = xb1
1 · · ·xbn

n are such that either

a1 + · · ·+ an < b1 + · · ·+ bn (that is, deg(t1) < deg(t2))

or deg(t1) = deg(t2) and if i is the biggest index for which for bi 6= ai, then
bi − ai is negative.

This is also an ordering of type n and partition type (1, 1, . . . , 1) and its
vectors are represented by the rows of the matrix
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


1 1 . . . 1 1
0 0 . . . 0 −1
0 0 . . . −1 0
. . . . . . . . . . . . . . .
0 −1 0 . . . 0




//

2.3.1 Hahn’s embedding theorem

The classification of term orderings may be regarded as a special case of
Hahn’s embedding theorem (see for instance [29], Th. 4.D, p. 73) for
abelian lattice-ordered groups. In this framework term ordering types
may be defined as chains of values in lattice-ordered groups and have a
simple visual characterisation. The following material is from [46].

Let G be an abelian group written additively, ordered by ≤. A subset
C ⊆ G is called a convex subgroup of G if for all g ∈ G and c1, c2 ∈ C

c1 ≤ g ≤ c2 implies g ∈ C

It can be proven that the set of convex subgroups of G is totally ordered
by inclusion and that the union of any family of convex subgroups of G is
itself a convex subgroup of G. Observe that {0} is a convex subgroup of G
for every group G.

By applying Zorn’s lemma one can see that for every g ∈ G \ {0} there
exists a convex subgroup V ⊆ G such that g ∈ G \ V and such that V
is maximal with this property. This subgroup is called a value of g in G.
The set of all values of g is denoted by Γ(g) and the set of all values of all
g ∈ G \ {0} by Γ(G).

Since we will consider only abelian groups, in the following when we
speak of a group we will implicitely assume it is abelian.

Lemma The coarsest admissible order on Nn is the “divides” order rela-
tion.
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Proof Let ¹ be any admissible order on T n and t1, t2 ∈ T n such that
t1 6= t2 and t1 | t2. Write t1 = xα1

1 . . . xαn
n and t2 = xβ1

1 . . . xβn
n . We will show

that t1 and t2 must be comparable with respect to ¹ and that t1 ¹ t2, thus
proving that “divides” is the coarsest admissible order on T n.

Observe that t = t2
t1

= (xβ1−α1

1 . . . xβn−αn
n ) ∈ T n since βi − αi ≥ 0 in

Nn for every i = 1, . . . , n. Since ¹ is admissible we have 1 ¹ t from the
well-foundedness property and t1 ¹ tt1 from the compatibility with the
semigroup structure of T n. But tt1 = t2, hence we have found the desired
relation. //

Observe that the “divides” order relation on T n is the coordinatewise
order on Nn and that its embedding in Zn (resp. Qn) is the coordinatewise
order in Zn (resp. Qn).

Hence, classifying orders on Qn is the same as classifying refinements
of the coordinatewise order.

Denote by ¹c the coordinatewise order on Qn and let Qn be ordered by
¹c. Then the set of values Γ(Qn) has a simple characterisation as will be
shown in the next lemma.

Lemma All convex subgroups ofQn, regarded as ordered group with¹c,
are the subspaces of Qn, regarded as the Euclidean space, of the form

{(a1, . . . , an) ∈ Qn | c1a1 = 0, . . . , cnan = 0, ci ∈ {0, 1}}

Proof We prove the statement by induction on n.

For n = 1, the only convex subgroups ofQ areQ = {a ∈ Q | ca = 0, c =
0} itself and {0} = {a ∈ Q | ca = 0, c = 1}, hence the statement holds.

Assume that the statement holds for n − 1 and consider the projection
map

pj : Qn −→ Qn−1

(a1, . . . , aj−1, aj, aj+1, . . . , an) −→ (a1, . . . , aj−1, aj+1, . . . , an)

For every 1 ≤ j ≤ n, pj is a linear map and it is order-preserving, in
particular it preserves convexity. Let C be a convex subgroup of Qn. Then
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its projection under pj is a convex subgroup of Qn−1 and by induction
hypothesis must be of the form

{(a1, . . . , an−1) ∈ Qn−1 | c1a1 = 0, . . . , cn−1an−1 = 0, ci ∈ {0, 1}}

Note that for ci = 0 for all i = 1, . . . , n− 1 we have Qn−1 and for ci = 1 for
all i = 1, . . . , n− 1 we have {0} as convex subgroups of Qn−1.

Without loss of generality we can assume that there exists k ∈ {1, . . . , n−
1} such that, up to a permutation of variables, every element in pj(C) is of
the form (a1, . . . , ak, 0, . . . , 0), that is

pj(C) = {(a1, . . . , an−1) ∈ Qn−1 | ai = 0 for 0 ≤ i ≤ k}

Then every element of C is of the form

a = (a1, . . . , ak, 0, . . . , 0, aj, 0, . . . , 0)

If aj = 0 for every a ∈ C then C has the desired form. Otherwise, assume
that there exist ξ1, . . . , ξk, ξj ∈ Q not all zero such that

ξ1a1 + · · ·+ ξkak + ξjaj = 0

for every a = (a1, . . . , ak, 0, . . . , 0, aj, 0, . . . , 0) ∈ C. But then we have a
contradiction.

In fact, one can always choose b1, . . . , bk, bj ∈ Q such that

ξ1b1 + · · ·+ ξkbk + ξjbj 6= 0

Then (b1, . . . , bk, 0, . . . , 0) ∈ pj(C) but (b1, . . . , bk, 0, . . . , 0, bj, 0, . . . , 0) /∈ C.
Therefore it must be ξ1 = . . . = ξk = 0. Then C may be either of the form

C = {(a1, . . . , an) ∈ Qn | ai = 0 for 0 ≤ i ≤ k, aj = 0}

or
C = {(a1, . . . , an) ∈ Qn | ai = 0 for 0 ≤ i ≤ k}

thus proving the claim. //

Let α ⊆ {1, . . . , n} and denote by Sα the subspace of Qn given by

Sα = {(a1, . . . , an) ∈ Qn | ai = 0 for every i ∈ α}
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We have shown that the set of values Γ(Qn) ofQn endowed with the¹c

ordering is exactly the collection of the 2n− 1 values Sα as α varies among
the non-empty subsets of {1, . . . , n}

Γ(Qn) = {Sα | α ⊆ {1, . . . , n}, α 6= ∅}

Lemma 3.1.2, p. 32 from [29] states that in an ordered group the set
of all convex subgroups is a chain. Hence, in order to refine ¹c on Qn

one needs to form chains within the set of values such that the inclusion
relations between any two subspaces are preserved.

Note that such chains have maximal length n.

Also note that the subspace {0} = S{1,2,...,n} must be convex for every
term ordering because of the well-foundedness condition. Hence, every
chain defining a term ordering must contain the {0} value.

We call the chain of values of the term ordering ≺ the type of ≺.

Let m ≤ n and αi ⊆ {1, . . . , n} for i = 1, . . . , k and

(Sα1 , Sα2 , . . . , Sαm)

be the ascending chain of values defining a term ordering type. Then we
must have α1 = {1, . . . , n} and αi+1 ⊂ αi for every i = 1, . . . ,m− 1.

We can encode the type into an m× n matrix



α1

α2

· · ·
αm


 =




1 2 . . . n
α21 α22 . . . α2n

· · · · · · · · · · · ·
αm1 αm2 . . . αmn




where, for every j = 2, . . . ,m, αjk is the k-th coordinate of αj for k ≤ |αj|,
0 otherwise.

Let a(n) be the number of term ordering types. A combinatorial argu-
ment gives

a(n) =
n∑

k=1

(
n
k

)
a(n− k)

that evaluates asymptotically to 1
2

n!
log(2)(n+1) .
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Figure 2.1: values in Q3

Example Let n = 3. Then the set of values of Qn endowed with the ¹c

ordering is

S{1}, S{2}, S{3}, S{1,2}, S{1,3}, S{2,3}, S{1,2,3} = {0}

The partial ordering on Γ(Q3) is shown by a graph in Figure 2.1 where
the edges represent inclusion.

We have 13 different term ordering types on T 3 corresponding to the
chains of values

3− chains 2− chains 1− chain
S{1} ⊂ S{1,2} ⊂ {0} S{1} ⊂ {0} {0}
S{1} ⊂ S{1,3} ⊂ {0} S{2} ⊂ {0}
S{2} ⊂ S{1,2} ⊂ {0} S{3} ⊂ {0}
S{2} ⊂ S{2,3} ⊂ {0} S{1,2} ⊂ {0}
S{3} ⊂ S{1,3} ⊂ {0} S{1,3} ⊂ {0}
S{3} ⊂ S{2,3} ⊂ {0} S{2,3} ⊂ {0}

By applying the definition of convexity, one can verify that the 3-chains
correspond to pure lexicographic orderings on all three variables, whereas
2-chains correspond to orderings where one variable is compared lexico-
graphically to the other two. The 1-chain {0} corresponds to archimedean
orderings. //
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The term ordering types described here as chains of values encode the
type (length of the chain) and the partition type (dimensions of the sub-
spaces) described before.

2.4 Some properties of partial term orderings

An ordering on the set of terms that is not necessarily total but that satis-
fies the properties of compatibility with the semigroup structure of T n and
of well-foundedness is called a partial term ordering. Clearly every term
ordering is a refinement of a partial term ordering. Given a partial term or-
dering /, a polynomial is called /-homogeneous if all of its monomials be-
long to the same layer with respect to /. This notion of /-homogeneity gen-
eralizes the customary notions of homogeneity and quasi-homogeneity.

An order relation on T n (not necessarily a total one) is called admissible
partial term ordering or simply partial term ordering if it is well-founded and
compatible with the semi-group structure of T n.

As shown in the previous section, any term ordering ≺ can be repre-
sented by some special finite sequence Ω = (ω1, . . . , ωs) of weight vectors
ωi ∈ Rn

+ with nonnegative real coordinates through the multi-degree map

degΩ : Qn −→ Rs

v −→ (v · ω1, . . . , v · ωs)

by prescribing

t1 ≺ t2 if and only if degΩ(log(t1)) <lex degΩ(log(t2))

where <lex is the canonical lexicographic ordering on Rn.

Conversely, any Ω-sequence gives rise to a partial term ordering that
will be denoted by /Ω or shortly by / when Ω is clear from the context.
Recall that /Ω is total if and only if the map degΩ is injective.

A term ordering arising from an Ω-sequence will be called a repre-
sentable admissible partial term ordering.

Remark that any representable admissible partial term ordering con-
tains the “divides” order relation on T n. In fact, given the partial term
ordering /Ω with Ω = (ω1, . . . , ωs), whenever t1 | t2 , if we write log(t1) =
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(α1, . . . , αn) and log(t2) = (β1, . . . , βn), we have log(t1) − log(t2) = (α1 −
β1, . . . , αn − βn) with αi − βi ≤ 0 for every i = 1, . . . , n. But then the scalar
product

(log(t1)− log(t2)) · ωj ≤ 0

for every j = 1, . . . , s since ωj ≥ 0 and log(t1) − log(t2) is a vector whose
coordinates are all ≤ 0. Hence t1 /Ω t2.

From now on when we talk about partial term orderings we will al-
ways assume that they are representable unless otherwise stated.

Example Let n = 3 and T n be the set of terms in the variables x, y, z. Let
Ω = ((1, 1, 1), (1, 0, 0)). Then

xa1ya2za3 / xb1yb2zb3

if and only if a1 + a2 + a3 < b1 + b2 + b3 or a1 + a2 + a3 = b1 + b2 + b3 and
a1 < b1.

The ordering / is partial since for instance the terms y and z are incom-
parable. Note that / is a refinement of the usual partial ordering “deg”
given by comparing the degrees of terms. While for instance all terms of
degree 2 {x2, y2, z2, xy, xz, yz} form one layer with respect to “deg” in T 3, /
partitions this layer into the three subsets {x2}, {xy, xz} , and {y2, z2, yz}.
//

Let us recall some notions from the theory of ordered sets (an exhaus-
tive treatment of the theory can be found for instance in [22]).

Let (A,R) be an ordered set. A chain C ⊆ A is a totally ordered subset
of A, that is for every a, b ∈ C either (a, b) ∈ R or (b, a) ∈ R.

An antichain C ⊆ A is a subset of A such that no two elements of C are
comparable with respect to R, that is for every a, b ∈ C , (a, b) ∈ R if and
only if a = b.

A filter Q ⊆ A is a subset of A such that for every b ∈ Q and for every
a ∈ A, if (b, a) ∈ R then a ∈ Q.

If B ⊆ A we denote by ↑ B := {a ∈ A | there exists b ∈ B s. t. (b, a) ∈
R} the smallest filter containing B. Remark that ↑ B = B if and only if B is
a filter. If B = {b} is a singleton we denote by ↑ b the set {a ∈ A|(b, a) ∈ R}.
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An ordered set (A,R) satisfies the descending chain condition if there do
not exist infinite chains C ⊆ A where C = {a1, a2, . . .} such that (ai+1, ai) ∈
R for every i ∈ N.

Lemma Let (A,R) be an ordered set satisfying the descending chain con-
dition. Then the following properties are equivalent

1. every filter can be written as a finite union
⋃k

i=1 ↑ ai with ai ∈ A such
that {a1, . . . , ak} is an antichain

2. the set of filters of A satisfies the ascending chain condition with re-
spect to inclusion

3. every nonempty collection of filters admits at least one maximal ele-
ment with respect to inclusion

4. in A there are no infinite antichains

5. every subset of A admits a finite number of minimal elements

Proof 1⇒2 Let Iλ be an ascending chain of filters. Then their union is
also a filter that we denote by I = ∪Iλ. Since by 1 I admits a finite sys-
tem of generators, there exists an index Λ such that all generators of I are
contained in IΛ. Therefore I = IΛ and the chain becomes stationary.

2⇒3 Let I1 be an element of a nonempty collection of filters of A. If I1 is
maximal, then the assertion is proven. Otherwise let I2 be a filter properly
containing I1. By repeating the same argument one obtains an ascending
chain of filters that by 2 has to terminate with the desired maximal ele-
ment.

3⇒4 Let {a1, a2, . . .} be an antichain. The collection of filters ↑ {a1},
↑ {a1, a2}, . . . must have by 3 a maximal element and since ↑ {a1} ⊂↑
{a1, a2} ⊂ . . . there must exist k ∈ N such that {a1, a2, . . . , ak} is maximal
and the antichain cannot contain any further elements.

4⇒5 The set of minimal elements is an antichain and it is a nonempty
set since the descending chain condition holds.

5⇒1 Let Q be a filter and let {a1, . . . , ak} be its minimal elements. Let
P :=

⋃k
i=1 ↑ ai =↑ {a1, . . . , ak}. Then P ⊆ Q. Let b ∈ Q \ {a1, . . . , ak} a

non minimal element. Then there exists z1 ∈ Q such that (z1, b) ∈ R. If z1
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is minimal then z1 ∈ {a1, . . . , ak} thus b ∈ P . Otherwise let z2 ∈ Q be such
that (z1, b) ∈ R and so on. Eventually one will have to stop because the set
{y, z1, z2, . . .} admits a minimal element. Hence Q ⊆ P . //

An ordered set (A,R) for which the descending chain condition holds
and that satisfies the previous equivalent properties is called noetherian.

The property of T n (respectively Nn) with the partial order “divides”
(respectively the natural order) being noetherian is known as Dickson’s
lemma. A proof of the lemma may be found for instance in [9], p. 163,
Corollary 4.48, or in [51], p. 186, Theorem 8.3.2.

The following lemma tells us that any order refining a noetherian order
is itself noetherian (the proof of this property is proposed as an exercise in
[9], p. 160, Exercise 4.41).

Lemma Let (A,R) be a noetherian ordered set and let R′ be an order
relation on A such that R ⊆ R′. Then (A, R′) is also noetherian.

Proof We start by showing that the descending chain condition holds
for R′. By contradiction, let C = {a1, a2, . . .} ⊆ A such that (ai+1, ai) ∈ R′

for every i ∈ N be an infinite descending chain. Since (A,R) is noethe-
rian, C admits a finite number of minimal elements with respect to R. Let
{bj1 , . . . , bjm} ⊆ C be such set of minimal elements with j1 < · · · < jm.
Then for every j > jmwe have (aj+1, aj) ∈ R′ and (aj+1, aj) 66∈ R, otherwise
we would contradict the property of minimality. But then {aj, aj+1, . . .}
is an infinite antichain in (A,R) and this is not possible since (A, R) is
noetherian.

We now need to prove one of the equivalent conditions of the previous
lemma. We show that (A,R′) does not contain any infinite antichain. By
contradiction, let C = {a1, a2, . . .} ⊆ A be an infinite antichain with respect
to R′. As before, let {bj1 , . . . , bjm} ⊆ C the finite of minimal elements with
respect to R. But then, for every ai ∈ C, there exists jk such that (bjk

, ai) ∈
R and since R ⊆ R′ it also holds (bjk

, ai) ∈ R′, hence C is not an antichain
with respect to R′. //

We already observed that any partial term ordering / is a refinement of
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the “divides” order relation on T n, hence every partial term ordering / is
noetherian.

A partial term ordering / partitions T n and therefore KT n into maximal
antichains or /-layers that are strictly ordered by /.

Hence we can generalize the concept of quasi-homogeneity (and of ho-
mogeneity as a special case of quasi-homogeneity) to that of /-homogeneity.
Note that whenever / is total, the /-layers of T nare finite since each layer
contains homogeneous (resp. quasi-homogeneous) forms of the same de-
gree (resp. weighted degree). When considering partial term orderings,
the /-layers of T n may be infinite.

A polynomial f ∈ K[x1, . . . , xn] is called /-homogeneous if all terms in
supp(f) belong to the same /-layer. Any polynomial f can be uniquely
decomposed into a sum of /-homogeneous segments f1, f2, . . . , fm such
that

f = f1 + f2 + · · ·+ fm

with f1 / f2 / · · · / fm.

Note that for the singleton Ω = (ω) /-homogeneity coincides with
quasi-homogeneity with respect to the weight vector ω. If in addition ω
is the vector (1, 1, . . . , 1) then we have the classical definition of homo-
geneity.

For a polynomial f ∈ K[x1, . . . , xn] denote by f/ the sum of all mono-
mials in supp(f) that belong to the maximal segment of f with respect to /.
This is the /-initial segment of f and it coincides with the initial monomial
of f whenever / is total (and hence a term ordering).

Example Let n = 3, T n be the set of terms in the variables x, y, z, and
Ω = ((1, 0, 1), (1, 0, 0)).

Then the polynomial

f = 3xz3 − x5 + 2x3yz + 3x4z + 2x4 − 2y2z3

is already decomposed into /Ω-segments since all of its terms are
incomparable with respect to degΩ.

Since degΩ(xz3) = (4, 1), degΩ(x5) = (5, 5), degΩ(x3yz) = (4, 3), degΩ(x4z) =
(5, 4), degΩ(x4) = (4, 4), and degΩ(y2z3) = (3, 3) we can order the /Ω-
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segments by sorting the Ω-degrees lexicographically obtaining

f = −x5 + 3x4z + 2x4 + 2x3yz + x2z2 + 3xz3 − 2y2z3

where −x5 is the maximal /Ω-segment in f . //

Example Let n = 3, T 3 the set of terms in the variables x, y, z, and Ω =
((1, 1, 2), (1, 1, 0)). Then f = f1 + f2 where f1 = y3z2 + 2x2y5, f2 = 3x5y2 +
x4yz is the decomposition of f into /Ω-segments where degΩ(f1) = (7, 5)
and degΩ(f2) = (7, 2) and f1 is the maximal /Ω-segment in f . //

For a set F ⊆ K[x1, . . . , xn] denote by F/ the set {f/ | f ∈ F}.

An ideal I ⊆ K[x1, . . . , xn] is /-homogeneous if for all f ∈ I , the /-
homogeneous decomposition f = f1 / · · · / fm of f satisfies fi ∈ I for
all i = 1, . . . ,m. This is equivalent to saying that I admits a basis of /-
homogeneous polynomials.

For a partial term ordering /Ω represented by a sequence Ω = (ω) con-
sisting of one single vector, we will denote for short by fω := f/Ω

(respec-
tively Fω := F/Ω

) the ω-homogeneous initial form of a polynomial f (re-
spectively the set of initial ω-homogeneous initial forms of the polynomi-
als in the set F ) with respect to /Ω in accordance with the usual notations
for quasi-homogeneity.

2.5 Partial term orderings and Gröbner bases

Given a partial term ordering /, the /-initial forms of polynomials in an
ideal I generate its /-initial ideal. Whenever / is total - and hence a term
ordering - the /-initial ideal of I corresponds to its initial ideal. Since /-
initial ideals generalize the notion of initial ideals, it makes sense to inves-
tigate how to generalize properties of initial ideals for this broader family
of ideals.

In this section we demonstrate some significant properties of /-initial
ideals. In particular, we show how from the Gröbner basis of an ideal
one may read off a Gröbner basis of its /-initial ideal, whenever the term
ordering is a refinement of /.
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The properties of Gröbner bases and partial term orderings have been
investigated by Collart and Mall (see [15],[16], and[17], [18]). In our expo-
sition we follow [18].

Given an ideal I ⊆ K[x1, . . . , xn] and a partial term order / on T n, the
toric degeneration of I with respect to / is the ideal 〈I/〉 = 〈{f/ | f ∈ I}〉. The
collection of all toric degenerations of I is called the toric complex of I . This
terminology comes from [18], where the authors briefly explain how these
objects are related to the theory of toric varieties.

Gröbner bases of toric degenerations allow a characterization that is
similar to that of Gröbner bases of initial ideals. In order to present the
main result of this section, we need to state some more properties of partial
term orderings.

Given partial term orderings /1, /2, . . . , /r we define the concatenation
ordering as the ordering obtained by comparing first according to /1, then
to /2, etc. and denote it by (/1 | / | . . . | /r). If ≺ is a term ordering then,
given a partial term ordering /, the term ordering (/ |≺) is said to refine /.

An ideal I is called /-homogeneous if for every f ∈ I , if f = f1+· · ·+fm is
the /-homogeneous decomposition of f , then fi ∈ I for every i = 1, . . . , m.

Let I ⊆ K[x1, . . . , xn] be an ideal, and /, /1, /2 partial term orderings.
Then the following are some basic properties of /-homogeneity:

• I is /-homogeneous if and only if it has a set of /-homogeneous gen-
erators

• I is (/1 | /2)-homogeneous if and only if it is both /1-homogeneous
and /2-homogeneous

Let (/ | /′) be a concatenation of term orderings on T n. Then for any
polynomial f ∈ K[x1, . . . , xn] taking the initial term with respect to /′ of
the /-inital segment of f is the same as taking the (/ | /′)-initial segment of
f since (/ | /′) refines /, that is

f(/|/′) = (f/)/′

For a set F of polynomials F ⊆ K[x1, . . . , xn] we have similarly

F(/|/′) = (F/)/′



2.5. PARTIAL TERM ORDERINGS AND GRÖBNER BASES 27

Note that, if (/ |≺) is a term ordering on T n refining /, where ≺ is a
term ordering, then for any polynomial f ∈ K[x1, . . . , xn] taking the initial
term with respect to (/ |≺) of the /-inital segment of f is the same as taking
the (/ |≺) of f since (/ |≺) refines /, that is

(f/)(/|≺) = f(/|≺) = (f/)≺

If F is any subset of polynomials F ⊆ K[x1, . . . , xn] then similarly

(F/)(/|≺) = F(/|≺) = (F/)≺

Let / be a partial term ordering on K[x1, . . . , xn]. Thes a set of poly-
nomials G ⊆ K[x1, . . . , xn] is called meager with respect to / if for every
g, g′ ∈ G onr has either g/ / g′/ or g′/ / g/, that is, no two /-initial segments
of polynomials in G lie in the same /-layer.

Proposition Let I ⊆ K[x1, . . . , xn] be an ideal and / and /′ partial term
orderings on T n. Then the initial ideal of I with respect to (/ | /′) is equal
to the initial ideal of I with respect to /′ of the the /-initial ideal of I , that
is

〈I(/|/′)〉 = 〈(〈I/〉)/′〉

Proof A proof of this may be found in [18], Proposition 2.4. The proof
is based on the fact that for every ideal I there exists a finite meager set
G ⊂ I such that every f ∈ 〈I/〉 can be written as a sum of initial segments
of elements of G. //

Proposition Let / be a partial term ordering on T n represented by Ω and
I ⊆ K[x1, . . . , xn] be an ideal. Let ≺ be any term ordering on T n. Then

1. if G is the reduced Gröbner basis of I with respect to (/ |≺) then G/

is a Gröbner basis of 〈I/〉 with respect to (/ |≺)

2. there exists ω ∈ Rn
+ such that 〈I/〉 = 〈Iω〉
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3. I is /-homogeneous if and only if all of its reduced Gröbner bases are

4. I = 〈I/〉 if and only if I is /-homogeneous

Proof 1. For proving (1) we will use the basic property of refinements of
partial term orderings mentioned at the beginning of this section.

Recall that, by the basic properties of Gröbner bases, G is a Gröbner
basis of I with respect to a term ordering if and only if the initial terms of
G generate the initial ideal of I with respect to the given term ordering.
Hence we can write 〈G(/|≺)〉 = 〈I(/|≺)〉 since G is by definition a Gröbner
basis of I with respect to (/| ≺).

What we need to prove is that (G/)(/|≺) generates 〈(〈I/〉)(/|≺)〉. But this
follows from the fact that (〈I/〉)(/|≺) = I(/|≺) and (G/)(/|≺) = G(/|≺)

2. In order to prove (2) we will use induction on the number of vectors
in the sequence Ω.

If Ω = (ω) then ω is the required vector.

Let (2) hold for any sequence of k − 1 vectors Ω′ = (ω1, . . . , ωk−1) and
let ω′ be the vector such that 〈I/Ω′ 〉 = 〈Iω′〉. Let ωk ∈ Rn

+ be a weight vector
and Ω′′ = (ω1, . . . , ωk−1, ωk). What we need to show is that there exists
an ω′′ ∈ Rn

+ such that 〈I/Ω′′ 〉 = 〈Iω′′〉 . Let ≺ a term ordering refining /Ω′′

and G the reduced Gröbner basis of I with respect to ≺. According to
(1), G/Ω′′ is a Gröbner basis of 〈I/Ω′′ 〉 with respect to ≺ and we can write
〈I/Ω′′ 〉 = 〈G/Ω′′ 〉. Then if we provide a ω′′ such that 〈G/Ω′′ 〉 = 〈Gω′′〉we have
completed the proof of the induction step.

Let g ∈ G, t1, t2 ∈ supp(g) and let a = log(t1) , β = log(t2) and let
t1 /(ω′|ωk) t2. According to the definition of multi-degree, t1 /(ω′|ωk) t2 if and
only if (ω′α, ωkα) <lex (ω′β, ωkβ). Set ω′′ = ω′+ εωk for some ε ∈ R+ \∅. We
will prove that one can always find such an ε for which t1 /(ω′|ωk) t2 if and
only if t1 /ω′′ t2.

By definition of ω′′ , t1 /ω′′ t2 if and only if (ω′ + εωk)α < (ω′ + εωk)β.

If ω′α < ω′β then denote their difference by λ = ω′β−ω′α ∈ R+\∅. Take
ε such that the inequality εωkα < λ + εωkβ holds, that is ε(ωkα− ωkβ) < λ.
If ωkα − ωkβ then any positive ε will do, otherwise one can always find a
positive ε such that ε < λ

ωkα−ωkβ
.

If ω′α = ω′β then ωkα < ωkβ and any positive ε satisfies the inequality
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(ω′ + εωk)α < (ω′ + εωk)β.

By repeating the same argument for all pairs of terms in supp(g) and
for every g ∈ G one has an ε ∈ R+ \ ∅ and a weight vector ω′′ = ω′ + εωk

such that 〈G/Ω′′ 〉 = 〈Gω′′〉.
3. If I is /-homogeneous then it admits a basis of /-homogeneous

polynomials. Let G be a reduced Gröbner basis of I . If g ∈ G and g
is not /-homogeneous, then since g ∈ I and I is /-homogeneous, every
/-homogeneous component of g belongs to I . But this means that g is re-
ducible with respect to G, and this means that G is not reduced. But then
every reduced Gröbner basis G contains only /-homogeneous polynomi-
als.

Conversely, assume that every reduced Gröbner basis of I is /-homoge-
neous. Let G = {g1, . . . , gr} be a reduced Gröbner basis of I and let f ∈ I
be /-homogeneous. Then we can write

f =
r∑

i=1

higi

for some polynomials h1, . . . , hr not necessarily /-homogeneous. For ev-
ery i, let hi =

∑ki

j=1 hij be the decomposition of hi into /-homogeneous
segments. Then we can write

f =
r∑

i=1

(

ki∑
j=1

)gi

Hence, since every /-homogeneous segment of f is in I , the ideal I is /-
homogeneous.

4. If I = 〈I/〉 then I is /-homogeneous by (3).

Conversely, if I is /-homogeneous, by hypothesis all /-homogeneous
components of f are in I for every f ∈ I and therefore f ∈ 〈I/〉 and I ⊆
〈I/〉. In order to prove the other inclusion, observe that every g ∈ 〈I/〉 can
be written as

∑
i hi(fi)/ with fi ∈ I . Then, since (fi)/ ∈ I , it follows that

g ∈ I . //
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2.6 Partial term orderings and Hilbert functions

In this section we define an analogous Hilbert functions for /-homogeneous
ideals as a generalization of Hilbert functions of homogeneous ideals. For
an ideal that is not homogeneous, one may define the affine Hilbert func-
tion. It is known (see for instance [20], p. 448, Prop. 4) that if≺ is a degree-
compatible term ordering then the Hilbert function of an ideal equals the
Hilbert function of its initial ideal with respect to ≺, and hence it can be
read off from a Gröbner basis with respect to ≺. An analogous property
also holds for partial term orderings that are refinements of a weight vec-
tor with positive coordinates.

Our results are derived from [18], [35], [45].

A Z-graded ring is a ring R that admits a direct sum decomposition (as
an abelian group)

R =
⊕

i∈Z
Ri

such that if ri ∈ Ri and rj ∈ Rj , then rirj ∈ Ri+j .

One can define gradings by arbitrary groups, but for now the definition
of Z-grading will suffice. Hence in the following we will mean Z-graded
every time we talk about graded.

A module M over a graded ring R is graded if it can be written as a
direct sum

M =
⊕

i∈Z
Mi

such that if mi ∈ Mi and mj ∈ Mj then mimj ∈ Mi+j .

The ring of polynomials K[x1, . . . , xn] together with the usual degree
“deg” is graded since every polynomial can be written as a sum of homo-
geneous forms. This is called the standard grading of the ring of polynomi-
als. If we set

K[x1, . . . , xn]=s := {f ∈ K[x1, . . . , xn] | f homogeneous of degree s}
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then we can write

K[x1, . . . , xn] =
⊕

s∈Z
K[x1, . . . , xn]=s

where K[x1, . . . , xn]=0 = K, the ring of coefficients, and K[x1, . . . , xn]=s = ∅
for s < 0.

Similarly, one can equip K[x1, . . . , xn] with the grading given by any
weighted degree given by a weight vector v ∈ Rn

+ with positive coordinates.

Consider now a homogeneous ideal I ⊆ K[x0, x1, . . . , xn]. One can
regard K[x0, x1, . . . , xn]/I as a K-module. Given a Gröbner basis G of I
we even have a basis of K[x0, x1, . . . , xn]/I as vector space over K. The set

S(G) = {t ∈ T n+1 | t not multiple of any of the leading terms in G}

generates K[x0, x1, . . . , xn]/I as a vector space over K and is called the
staircase of G (see Section 2.2).

The vector spaces (K[x0, x1, . . . , xn]/I)=s of forms of degree s yield a
grading on K[x0, x1, . . . , xn]/I

K[x0, x1, . . . , xn]/I =
⊕

s∈Z
(K[x0, x1, . . . , xn]/I)=s

Define the Hilbert function of a graded K-module as

H(M, s) := dimKMs

Observe that if K[x0, x1, . . . , xn] is equipped with the standard grading
then

dimK(K[x0, x1, . . . , xn]/I)=s = dimKK[x0, x1, . . . , xn]=s/I=s

= dimKK[x0, x1, . . . , xn]=s − dimKI=s

=

(
n + s

s

)
− dimKI=s

where dimKK[x1, . . . , xn]=s =

(
n + s

s

)
is the number of terms of degree

s in n + 1 variables.
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Example

Let I = 〈x3 + y3 + z3〉 ⊆ K[x, y, z]. Consider the standard grading and
order the terms so that x3 > y3 > z3. Then

i generators of Mi as K-vectorspace dimKMi

0 {1} 1
1 {x, y, z} 3
2 {x2, xy, xz, y2, yz, z2} 6
3 {x2y, x2z, xy2, xyz, xz2, y3, y2z, yz2, z3} 9
4 {x2y2, x2yz, x2z2, xy3, xy2z, xyz2, xz3, y4, y3z, y2z2, yz3, z4} 12
. . . . . . . . .

Counting terms of degree s that are multiples of x3 is the same as
counting terms of degree s − 3. Hence for s ≥ 3 we have dimkI=s =(

3 + s− 4
s− 3

)
and H(K[x, y, z]/I, s) =

(
3 + s− 1

s

)
−

(
3 + s− 4

s− 3

)
.

If we add the line x to the ideal I we know by Bezout’s theorem that
a line and a cubic curve meet in 3 points in the projective space. Observe
that K[x, y, z]/〈x3 + y3 + z3, x〉 ∼= K[y, z]/〈y3 + z3〉 and the Hilbert function
is

s 0 1 2 3 4 . . .
H(K[y, z]/〈y3 + z3〉, s) 1 2 3 3 3 . . .

The fact that for any s ≥ 2 the Hilbert function is a constant is a conse-
quence of the well-known result that for a big enough s the Hilbert func-
tion can be expressed as a polynomial in s called the Hilbert polynomial
whose degree is the dimension of the variety of I . //

If I ⊆ K[x1, . . . , xn] is not a homogeneous ideal then the set of poly-
nomials of total degree s is not a K-module since it is not closed under
addition. We can instead consider the K-module (K[x1, . . . , xn]/I)≤s of
polynomials of degree ≤ s and define the affine Hilbert function as

aH(M, s) := dimKM≤s

If one denotes by Ih the homogenization of the ideal I then the affine
and projective Hilbert functions satisfy the equality
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aH(K[x1, . . . , xn]/I, s) = H(K[x0, x1, . . . , xn]/Ih, s)

This and other properties of Hilbert functions are presented in Chapter
9 of [20]. We will just recall here those properties which provide a method
for its computation.

In the projective case, the Hilbert function of a homogeneous ideal co-
incides with the Hilbert function of its initial ideal ideal that is

H(K[x0, x1, . . . , xn]/I, s) = H(K[x0, x1, . . . , xn]/〈I≺〉, s)

for any term ordering ≺ and I homogeneous. A proof of this property can
be found in [20], p.452, Prop. 9.

In the affine case we need to consider term orderings that are compati-
ble with the degree, that is those term orderings≺ such that t1 ≺ t2 implies
deg(t1) ≤ deg(t2). Call such orderings graded.

Then for I ⊆ K[x1, . . . , xn] not necessarily homogeneous we can write

aH(K[x1, . . . , xn]/I, s) =a H(K[x1, . . . , xn]/〈I≺〉, s)

for any graded term ordering ≺. For a proof of this fact see [20], p. 448,
Prop. 4.

We now want to investigate the behaviour of the Hilbert function of
initial ideals with respect to partial term orderings.

Let / be a partial term ordering arising from an Ω-sequence. We have
seen in Section 2.4 that any polynomial f ∈ K[x1, . . . , xn] can be uniquely
decomposed into a sum of /-homogeneous segments f1, f2, . . . , fm such
that f = f1 / +f2 / + · · ·+ /fm.

Let Ω = (ω1, . . . , ωm) with ωi ∈ Rn
+ for every i = 1, . . . , m, m ≤ n. If we

set

K[x1, . . . , xn]=/w := {f ∈ K[x1, . . . , xn]| f homogeneous of Ω-degree w}
for w ∈ Zm then we can write

K[x1, . . . , xn] =
⊕

w∈Zm

K[x1, . . . , xn]=/w
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In fact, let w1, w2 ∈ Zm and f1, f2 ∈ K[x1, . . . , xn] Ω-homogeneous such
that w1 = degΩ(f1) and w2 = degΩ(f2). Then one can see that degΩ(f1f2) =
degΩ(f1) + degΩ(f2) = w1 + w2. Also, if degΩ(f1) = degΩ(f2) then degΩ(f1 +
f2) = degΩ(f1) = degΩ(f2).

Let I=/w = I ∩ K[x1, . . . , xn]=/w. Remark that (K[x1, . . . , xn]/I)=/w =
K[x1, . . . , xn]=/w/I=/w, but in general (K[x1, . . . , xn]/I)=/w is not finite. To
see this, consider for instance the ideal 〈x1〉 and the partial term ordering
given by ω = (1, 0, . . . , 0) in K[x1, . . . , xn]. Then for every (d1, . . . , dn) ∈ Nn

we have degω(xd1
1 · · · xdn

n ) = (d1, 0, . . . , 0), therefore for every w = (w1) ∈ Z1

the vector space K[x1, . . . , xn]=/w/I=/w is infinite.

Lemma Let / be a the partial term represented by Ω = (ω1, . . . , ωm).
Then, whenever ω1 = (ω11, . . . , ω1n) ∈ Rn

+ satisfies ω1i > 0 for every
i = 1, . . . , n , the vector space K[x1, . . . , xn]=/w/I=/w has finite dimension
for every (w1, . . . , wm) ∈ Zm.

Proof Let t = xd1
1 · · · xdn

n with (d1, . . . , dn) ∈ Nn and w = (w1, . . . , wm) ∈
Zm. Then if we prescribe degΩ(t) = w = (w1, . . . , wm), the equation ω01d1 +
· · · + ω0ndn = w1 has finitely many solutions (d1, . . . , dn) in Zn and hence
in Nn. //

Since we are not interested in infinite dimensional vector spaces, we
assume from now on that the first vector in Ω has positive coordinates.

Let / be a partial term ordering represented by Ω, I be a /-homogeneous
ideal and (K[x0, x1, . . . , xn]/I)=/w be the K-module of the Ω-homogeneous
forms in (K[x0, x1, . . . , xn]/I) of Ω-degree w. Then, as in the case of ho-
mogeneous ideals, one can compute the dimension of this vector space by
computing the dimension of their initial ideals (see Proposition 9, Ch. 9
§3, p. 452 in [20]).

Proposition Let Ω = (ω0, ω1, . . . , ωm) be a sequence of vectors ωi ∈ Rn+1
+

representing the partial term ordering / on T n+1 and let ≺ be a term or-
dering. Assume that ω0 = (ω00, ω01, . . . , ω0n) is such that ω0j > 0 for ev-
ery j = 0, 1, . . . n. If I ⊆ K[x0, x1, . . . , xn] is a /-homogeneous ideal then
K[x0, x1, . . . , xn]=/w/I=/w and K[x0, x1, . . . , xn]=/w/(I≺)=/w have the same
dimension as vector spaces over K.
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Proof For f ∈ K[x0, x1, . . . , xn]=/w denote by [f ] the equivalence class of
f in K[x0, x1, . . . , xn]=/w/I=/w.

We want to show that the set

C := {[t] | degΩ(t) = w, t not multiple of any of the leading terms in 〈I≺〉}

is a basis of the vector space K[x0, x1, . . . , xn]=/w/I=/w.

We know from the previous lemma that C is finite. Denote the elements
of C by [t1], . . . , [tr] and choose h1, . . . hr ∈ K such that

∑r
i=1 hi[ti] = [0].

Then
∑r

i=1 hiti ∈ I and therefore reducible to 0 modulo the Gröbner basis
G of I with respect to ≺. By definition of C, since {t1, . . . , tr} ∈ S(G), we
must have h1 = . . . = hr = 0. Hence, C is linearly independent.

We now want to prove that C spans K[x0, x1, . . . , xn]=/w/I=/w.

Let f ∈ K[x0, x1, . . . , xn]=/w and f ′ be its normal form modulo G. Since
every polynomial in G is /-homogeneous, f ′ ∈ K[x0, x1, . . . , xn]=/w and
[f ] = [f ′]. Hence, C is a basis of K[x0, x1, . . . , xn]=/w/I=/w.

Moreover

dimK(I ∩K[x0, x1, . . . , xn]=/w) =
= |K[x0, x1, . . . , xn]=/w| − |K[x0, x1, . . . , xn]=/w/I ∩K[x0, x1, . . . , xn]=/w|
= |K[x0, x1, . . . , xn]=/w| − |C|
= dimK(I=/w ∩K[x0, x1, . . . , xn]=/w)

//

If we drop the condition of /-homogeneity for I , we need an additional
restriction on ≺ in order to obtain a similar result. Namely, we require the
term ordering≺ to be a refinement of /. Note that since we require the first
vector in Ω to have positive coordinates, whenever Ω = (ω) = (1, . . . , 1),
prescribing that≺ be a refinement of / is the same as prescribing that≺ be
a graded term ordering.

Proposition Let Ω = (ω1, . . . , ωs) be a sequence of vectors ωi ∈ Rn
+ with

ω1 = (ω11, . . . , ω1n) such that ω1j > 0 for every j = 1, . . . , n . Let / be the
partial term ordering on T n represented by Ω and let ≺ be a term ordering
refining / . Then (K[x1, . . . , xn]/I)=/w and (K[x1, . . . , xn]/I≺)=/w have the
same dimension as vector spaces over K.
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Proof Since Ω gives a grading on K[x1, . . . , xn], dim(K[x1, . . . , xn]/I)=/w

is the Hilbert function of I . Since ≺ refines C, ≺ is graded and we know
that the Hilbert function of I≺ is the same of the Hilbert function of I . //



Chapter 3

The Gröbner Walk

The Gröbner fan of an ideal is a partition of the set of term orderings such
that two term orderings belonging to the same element of the partition
yield the same oriented reduced Gröbner basis, where oriented means that
the leading terms of the polynomials in the basis are marked out.

Gröbner fans were first introduced by Robbiano and Mora in 1988 (see
[43]). In their paper they consider the space of real vectors and study the
behavior of term orderings that refine the partial term orderings given by
these vectors. For a given polynomial ideal, the vectors corresponding
to term orderings that yield the same Gröbner basis are contained in a
convex subset (cone) of Rn, and this set is polyhedral. Furthermore, the
family of all such cones, called the Gröbner fan of the ideal, is finite. The
definition of Gröbner fan of an ideal was originally aimed at providing an
algorithm for the construction of universal Gröbner bases. These are bases
that satisfy the Gröbner property for any term ordering.

The Gröbner fan of an ideal allows to define an algorithm for change
of orderings in the theory of Gröbner bases. The algorithm has been pre-
sented in 1997 by Collart, Kalkbrener, and Mall ([14]) and is known as the
Gröbner walk. The combinatorial properties of Gröbner fans on which the
Gröbner walk algorithm is based are also presented in [15],[16], and[17].

Given an initial term ordering one steps on different cones in the fan
until the target ordering is reached. Any two cones in the fan have a com-
mon face that consists of those partial term orderings that may be refined
to term orderings belonging to either one of the two cones. By exploiting
the properties of partial orderings on the intersections of cones, one does

37
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not have to compute a whole Gröbner basis at each step. Instead, one just
needs to compute the Gröbner basis of a /-homogeneous initial ideal and
lift it.

The Gröbner walk algorithm has shown to be in many cases less costly
than a computation of one single Gröbner basis because, even if stepping
on the fan requires the computation of Gröbner bases for several smaller
ideals, these are in general easier to compute.

Some implementation issues and improvements of the Gröbner walk
algorithm are presented in [5] , [6], and [4], where the problem of de-
termining a path on the fan that minimizes computations is investigated.
Even though there is no answer to how to define an optimal path, some
criteria have been investigated that result in a better behaviour of the al-
gorithm. By perturbing the path one avoids those points where more
than two cones intersect, which correspond to homogeneous ideals that
are harder to compute. Empirical results show that perturbation of the
path may in many cases improve the performance of the algorithm. The
use of perturbation techniques together with the construction of a conve-
nient ordering equivalent to the target one lead to a further speed-up of
the algorithm as shown in [49].

In [18], Collart and Mall analyze the relationship between the Gröbner
fan and what they call the toric complex of an ideal and are able to provide
new insights in this theory. Given a partial term ordering, a toric degener-
ation of an ideal is the ideal generated by the initial forms of the elements
of the ideal with respect to an admissible partial term ordering. The toric
complex of an ideal is defined as the collection of all toric degenerations
of the ideal.

An thorough complexity analysis of the Gröbner walk algorithm is not
yet known. One contribution in this direction has been given by Kalk-
brener in [35]. The provided bound on the degrees of polynomials in adja-
cent Gröbner bases may be used for a local complexity analysis of the algo-
rithm. Two cones are called adjacent if their intersection lies in a facet (that
is a proper face of maximal dimension) of both cones. Kalkbrener demon-
strates that the maximum degree of one basis can be at most quadratic
in the maximum degree of the adjacent basis. Still, a doubly exponential
lower bound on the degrees holds for non-adjacent bases.

Based on a result by Huyn ([34]), Kalkbrener shows that for every natu-
ral number m there exists a prime ideal P and two reduced Gröbner bases
F and G of P such that F has bounded degree and cardinality O(m) and
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G has degree and cardinality at least 22m . In [36] it is shown how for cer-
tain classes of ideals this behaviour may be explained by a conjecture in
complexity theory.

Analogous to the notion of Gröbner fan of an ideal is the notion of state
polytope of an ideal. Even though we will not present this theory here, we
refer to [48] for an introduction to the topic.

After recalling some basic notions from convex geometry in Section
3.1, in Section 3.2 we introduce Gröbner cones for polynomial ideals. In
Section 3.3 we demonstrate some properties of Gröbner fans following
Robbiano’s approach. In Section 3.4 the Gröbner walk algorithm is pre-
sented. Section 3.5 illustrates with an example how perturbation methods
can speed up the walk. Our computations have been performed with the
Gröbner walk implementation (see [3]) in CASA (see [32]). Finally, in Sec-
tion 3.6 we present Kalkbrener’s proof of the degree bound for adjacent
Gröbner bases.

3.1 Some notions from convex geometry

In this section we recall some basic notions about convex sets in the Eu-
clidean space and give the definition of polyhedral cones.

For vectors v, w in Rn, viewed as the Euclidean space, denote by v · w
the ordinary scalar product v1w1 + · · · + vnwn where v = (v1, . . . , vn), w =
(w1, . . . , wn). Recall that the Euclidean distance between the points v and
w in Rn equals

‖v − w‖ =
√

(v − w)2

and that Rn is endowed with the standard topology where the open sets
are unions of open balls of center v ∈ Rn and radius r ∈ R+ given by
B(v, r) = {w ∈ Rn | ‖v − w‖ ≤ r}.

If V ⊆ Rn, the set of all linear combinations with nonnegative coeffi-
cients

λ1v1 + · · ·+ λkvk

where v1, . . . , vk ∈ V and λi ∈ R , λi ≥ 0 for every i = 1, . . . , k is called the
positive hull of V or the cone determined by V . If V is finite then we call
the positive hull of V a polyhedral cone or simply a cone.
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A set V ⊆ Rn is called convex if for any two elements v, w ∈ V with
v 6= w the line segment

[v, w] := {λv + (1− λ)w | 0 ≤ λ ≤ 1}

is contained in V .

Observe that the cone of any set V ⊆ Rn is a closed convex set.

One can prove that a cone is polyhedral if and only if it is of the form
{v ∈ Rn | Av ≤ 0} for some matrix A ∈ Rm×n (see [41]). If the cone C is
given by {v ∈ Rn | Av ≤ 0} then C is determined by a subset {v1, . . . , vk}
of the set of solutions to the system My = b, where M consists of n linearly

independent rows of
(

A
I

)
and b = ±eT

j for some unit vector ej .

We say that v ∈ V ⊆ Rn is in the relative interior of V , v ∈ relint V if v
is in the interior of the affine subspace generated by V (that is, there exists
an open ball B entirely contained in the affine subspace generated by V
and such that v ∈ B ). By abuse of language, we call interior of a cone its
relative interior.

For a fixed u ∈ Rn, u 6= 0, and α ∈ R, the set H := {v | v · u = α} is a
hyperplane. H+ := {v | v · u ≥ α} and H− := {v | v · u ≤ α} are called the
half-spaces bounded by H .

A hyperplane H is called a supporting hyperplane for a closed convex set
K ⊆ Rn if K ∩H 6= ∅ and K ⊆ H+ or K ⊆ H−. If K ⊆ H+ and α = 0 then
the origin 0 = (0, . . . , 0) is called an apex of K.

Let A ∈ Rm×n be the matrix representing the polyhedral cone C as the
set {v ∈ Rn | Av ≤ 0} ⊆ Rn and denote by ai its i-th row. Then C is the
intersection of the half-spaces bounded by H−

i := {v | v ·ai ≤ 0}where the
Hi := {v | v · ai = 0} are supporting hyperplanes for C.

If H is a supporting hyperplane of the closed convex set K , we call
F := K ∩H a face of K.

The dimension of a convex set is defined as the dimension of the affine
subspace generated by it.

Since a face of the closed convex set K is itself a closed convex set, one
can speak about dimension of a face. A proper face is a face of dimension
d where 0 < d < dim(K). A facet is a proper face of maximal dimension
d = dim(K) − 1. A vertex is a face of dimension 0 and an edge is a face of
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dimension 1.

More material on the combinatorics of convex sets can be found in as
well as in [25] as well as in [10]. Convex sets are a basic tool in linear
programming (see [40]).

3.2 Gröbner cones of an ideal

Say that two term orderings are equivalent if they give rise to the same
oriented Gröbner basis. Then the set of real vectors that give rise to equiv-
alent term orderings forms a polyhedral cone.

Let log be the map which associates to every monomial cxd1
1 · · · xdn

n the
n-tuple of its exponents (d1, . . . , dn) . We define the difference vectors of f
with respect to ≺ as

δ≺(f) := {log(f≺)− log(m) | m ∈ supp(f), m 6= f≺, m 6 |f}

For F ⊆ K[x1, . . . , xn] we define in an analogous way the set of dif-
ference vectors of F as the union of the sets of difference vectors of the
polynomials in F

δ≺(F ) :=
⋂

δ∈F

δ≺(f) ⊆ Zn

Example Let f = 2x2y + 3xyz + 4y2 + 5y and let ≺ be the total degree
lexicographic ordering with x > y > z . Then δ≺(f) is the set

{(1, 0,−1), (2,−1, 0)}

Note that the vector (2, 0, 0) = log(2x2y) − log(5y) is not in δ≺(f) since
y | x2y. //

Example If G = {yz2 + 3t, xt4 − y3zt − y} and ≺ is the total degree
lexicographic ordering with x > y > z > t then

δ≺(G) = {(0, 1, 2,−1), (1,−3,−1, 3), (1,−1, 0, 4)}
is the set of difference vectors for G. //
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(1,0,0)    (0,1,0)

  (0,2/3,1/3)

(1/3,0,2/3)  

(0,0,1)

Figure 3.1: Cone of {xz2, z4, y3z2 − 5z2, xy4 − 5xy, x4y − 2z2}

Given a set of vectors with real coordinates V ⊆ Rn denote by V ∗ the
polar cone of V , i.e.

V ∗ := {w ∈ Rn | w · v ≥ 0 ∀v ∈ V }

Let I ⊆ K[x1, . . . , xn] be an ideal and G the reduced Gröbner basis of I
with respect to a given term ordering ≺ .

The (restricted) Gröbner cone of I with respect to ≺ is the set

C≺(I) := δ≺(I)∗ ∩ Rn
+

where Rn
+ denotes the set of real vectors with non-negative coordinates.

Example Let F = {xy2z2, x4y+xyz2−2z2, xy4−5xy}, let I ⊆ Q[x, y, z] be
the ideal generated by F and let≺ be the total degree reverse lexicographic
ordering with x > y > z .

We compute

G = {xz2, z4, y3z2 − 5z2, xy4 − 5xy, x4y − 2z2}
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the reduced Gröbner basis of I with respect to ≺ where the leading terms
are underlined.

Then δ≺(G) = {(4, 1,−2)} and the Gröbner cone C≺(I) is the set of
vectors w = (w1, w2, w3) ∈ R3

+ satisfying

4w1 + w2 − 2w3 ≥ 0

Figure 3.1 shows the slice of the Gröbner cone of G cut out by the plane
x + y + z = 1. The slice is a quadrilateral with vertices (1, 0, 0), (1

3
, 0, 2

3
),

(0, 2
3
, 1

3
), and (0, 1, 0). //

This one as well as the following drawings of cones’ sections have been
generated in Maple using the the convex package ([27]). A mathematical
reference for the package is [52].

Example Let G = {yz2 + 3t, xt4 − y3zt − y} and ≺ the total degree lex-
icographic term ordering with x > y > z > t. One can verify that G is a
reduced Gröbner basis with respect to≺, hence the cone of the ideal I gen-
erated by G with respect to≺ is given by the vectors w = (w1, w2, w3, w4) ∈
R4

+ satisfying 



w2 + 2w3 − w4 ≥ 0
w1 − 3w2 − w3 + 3w4 ≥ 0
w1 − w2 + 4w4 ≥ 0

//

3.3 The Gröbner fan of an ideal

The Gröbner fan of an ideal is defined as the collection of all of its Gröbner
cones. This collection is finite and its elements are in one-to-one corre-
spondence with the oriented reduced Gröbner bases of the ideal.

We call the (restricted) Gröbner fan of an ideal and denote it by F (I) the
set

F (I) := {C≺(I) |≺ is a term ordering}

In the next two lemmas we state some interesting properties of Gröbner
cones.
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Lemma Let G1 and G2 be two reduced Gröbner bases of the ideal I ⊆
K[x1, . . . , xn] with respect to the term orderings≺1 and resp. ≺2. If (G1)≺1 =
(G2)≺1 , then G1 = G2.

Proof We know that G1 is a Gröbner basis of I with respect to ≺1 if and
only if 〈(G1)≺1〉 = 〈I≺1〉 . But then since (G1)≺1 = (G2)≺1 , we also have
〈(G2)≺1〉 = 〈I≺1〉 and this implies that G2 is also a Gröbner basis of I with
respect to ≺1. Hence G1 = G2 because of the uniqueness of the reduced
Gröbner basis with respect to a given term ordering. //

Note that the converse of the previous lemma is in general not true.
In fact there can be two reduced Gröbner bases which are equal as sets
of polynomials and yet have different initial ideals. If one views Gröbner
bases for an ideal as generating sets of reduction rules, it may occur that
two reduced bases given by the same finite set of polynomials can give
rise to different systems of reductions.

Call a Gröbner basis oriented if the leading terms of its polynomials are
marked out. Then the previous lemma states a one-to-one correspondence
between the set of oriented reduced Gröbner bases of an ideal and the
Gröbner fan of the ideal. For each ideal there exist at most finitely many
oriented reduced Gröbner bases since the Gröbner fan is finite. In order to
prove that we need a further lemma.

Lemma Let G1 and G2 be two reduced Gröbner bases of the ideal I ⊆
K[x1, . . . , xn] with respect to the term orderings ≺1 and, respectively, ≺2.
Then, if (G1)≺1 6= (G2)≺2 , at least one term in (G2)≺2 is not divisible by any
of the terms in (G1)≺1 , that is it belongs to S(G1).

Proof Let G1 = {g1, . . . , gr} and G2 = {h1, . . . , hs}. By contradiction,
assume that for every j = 1, . . . , s there exists tj ∈ T n such that (hj)≺2 =
tj(gij)≺1for some ij ∈ {1, . . . , r}.

If tj = 1 for every j ∈ {1, . . . , s} and r = s then we have G1 = G2 by the
previous lemma.

If tj = 1 for every j ∈ {1, . . . , s} and r 6= s then it cannot be that s > r
otherwise G2 would not be reduced. Let us then assume that s < r. Then
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  (3/4,1/4,0)  (3/4,1/4,0)  (3/4,1/4,0)  (3/4,1/4,0)  (3/4,1/4,0)  (3/4,1/4,0)  (3/4,1/4,0)  (3/4,1/4,0)  (3/4,1/4,0)  (3/4,1/4,0)  (3/4,1/4,0)  (3/4,1/4,0)  (3/4,1/4,0)  (3/4,1/4,0)
(1,0,0)  (1,0,0)  (1,0,0)  (1,0,0)  (1,0,0)  (1,0,0)  (1,0,0)  (1,0,0)  (1,0,0)  (1,0,0)  (1,0,0)  (1,0,0)    (0,1,0)  (0,1,0)  (0,1,0)  (0,1,0)  (0,1,0)  (0,1,0)  (0,1,0)  (0,1,0)  (0,1,0)  (0,1,0)  (0,1,0)  (0,1,0)  (0,1,0)  (0,1,0)  (0,1,0)  (0,1,0)  (0,1,0)  (0,1,0)  (0,1,0)  (0,1,0)  (0,1,0)

(3/4,0,1/4)  (3/4,0,1/4)  (3/4,0,1/4)  (3/4,0,1/4)  (3/4,0,1/4)  (3/4,0,1/4)  (3/4,0,1/4)  (3/4,0,1/4)  (3/4,0,1/4)  (3/4,0,1/4)  (3/4,0,1/4)  

(3/7,1/7,3/7)  (3/7,1/7,3/7)  (3/7,1/7,3/7)  (3/7,1/7,3/7)  (3/7,1/7,3/7)  (3/7,1/7,3/7)  (3/7,1/7,3/7)  (3/7,1/7,3/7)  (3/7,1/7,3/7)  (3/7,1/7,3/7)  (3/7,1/7,3/7)  (3/7,1/7,3/7)  (3/7,1/7,3/7)  (3/7,1/7,3/7)  (3/7,1/7,3/7)  (3/7,1/7,3/7)  
(1/2,0,1/2)  (1/2,0,1/2)  (1/2,0,1/2)  (1/2,0,1/2)  (1/2,0,1/2)  (1/2,0,1/2)  (1/2,0,1/2)  (1/2,0,1/2)  (1/2,0,1/2)  (1/2,0,1/2)  (1/2,0,1/2)  (1/2,0,1/2)  (1/2,0,1/2)    (1/4,1/4,1/2)  (1/4,1/4,1/2)  (1/4,1/4,1/2)  (1/4,1/4,1/2)  (1/4,1/4,1/2)  (1/4,1/4,1/2)  (1/4,1/4,1/2)  (1/4,1/4,1/2)  (1/4,1/4,1/2)  (1/4,1/4,1/2)  (1/4,1/4,1/2)  (1/4,1/4,1/2)  (1/4,1/4,1/2)  (1/4,1/4,1/2)  (1/4,1/4,1/2)  (1/4,1/4,1/2)  (1/4,1/4,1/2)  (1/4,1/4,1/2)  (1/4,1/4,1/2)  (1/4,1/4,1/2)  (1/4,1/4,1/2)  (1/4,1/4,1/2)  (1/4,1/4,1/2)  (1/4,1/4,1/2)  (1/4,1/4,1/2)  (1/4,1/4,1/2)  (1/4,1/4,1/2)  (1/4,1/4,1/2)  (1/4,1/4,1/2)  (1/4,1/4,1/2)  (1/4,1/4,1/2)

(3/11,2/11,6/11)  (3/11,2/11,6/11)  (3/11,2/11,6/11)  (3/11,2/11,6/11)  (3/11,2/11,6/11)  (3/11,2/11,6/11)  (3/11,2/11,6/11)  (3/11,2/11,6/11)  (3/11,2/11,6/11)  (3/11,2/11,6/11)  (3/11,2/11,6/11)  (3/11,2/11,6/11)  (3/11,2/11,6/11)  (3/11,2/11,6/11)  (3/11,2/11,6/11)  (3/11,2/11,6/11)  
(1/5,1/5,3/5)  (1/5,1/5,3/5)  (1/5,1/5,3/5)  (1/5,1/5,3/5)  (1/5,1/5,3/5)  (1/5,1/5,3/5)  (1/5,1/5,3/5)  (1/5,1/5,3/5)  (1/5,1/5,3/5)  (1/5,1/5,3/5)  (1/5,1/5,3/5)  (1/5,1/5,3/5)  (1/5,1/5,3/5)  (1/5,1/5,3/5)  (1/5,1/5,3/5)  (1/5,1/5,3/5)  (1/5,1/5,3/5)  (1/5,1/5,3/5)  (1/5,1/5,3/5)  (1/5,1/5,3/5)  (1/5,1/5,3/5)  (1/5,1/5,3/5)  (1/5,1/5,3/5)  (1/5,1/5,3/5)  (1/5,1/5,3/5)  (1/5,1/5,3/5)  (1/5,1/5,3/5)  (1/5,1/5,3/5)  (1/5,1/5,3/5)  (1/5,1/5,3/5)  (1/5,1/5,3/5)  (1/5,1/5,3/5)  (1/5,1/5,3/5)  (1/5,1/5,3/5)  (1/5,1/5,3/5)  (1/5,1/5,3/5)  

(1/4,0,3/4)  (1/4,0,3/4)  (1/4,0,3/4)  (1/4,0,3/4)  (1/4,0,3/4)  (1/4,0,3/4)  (1/4,0,3/4)  (1/4,0,3/4)  (1/4,0,3/4)  (1/4,0,3/4)  (1/4,0,3/4)  (1/4,0,3/4)  (1/4,0,3/4)  (1/4,0,3/4)  (1/4,0,3/4)    (0,1/4,3/4)  (0,1/4,3/4)  (0,1/4,3/4)  (0,1/4,3/4)  (0,1/4,3/4)  (0,1/4,3/4)  (0,1/4,3/4)  (0,1/4,3/4)  (0,1/4,3/4)  (0,1/4,3/4)  (0,1/4,3/4)  (0,1/4,3/4)  (0,1/4,3/4)  (0,1/4,3/4)  (0,1/4,3/4)  (0,1/4,3/4)  (0,1/4,3/4)  (0,1/4,3/4)  (0,1/4,3/4)

(0,0,1)(0,0,1)(0,0,1)(0,0,1)(0,0,1)(0,0,1)(0,0,1)(0,0,1)(0,0,1)(0,0,1)(0,0,1)(0,0,1)(0,0,1)(0,0,1)(0,0,1)(0,0,1)(0,0,1)

Figure 3.2: The Gröbner fan of {x3 + xz − 2z, y3 − xz}

there exists at least one k ∈ {1, . . . , r} such that (gk)≺1 6= (hj)≺2 . But then
one can prove that gk /∈ 〈G2〉, thus obtaining a contradiction. To prove that,
just observe that gk is irreducible with respect to G2 by the hypothesis that
G1 is reduced and the assumption that (G2)≺2 6= (G1)≺1 , i.e. the initial
terms in G2 with respect to ≺2 are a subset of the initial terms of G1 with
respect to ≺1 and hence S(G1) ⊂ S(G2).

We can therefore assume that there exists a j ∈ {1, . . . , s} and 1 6= tj ∈
T n such that (hj)≺2 = tj(gij)≺1 .

But then the polynomial gij ∈ G1 is in 〈G1〉 but not in 〈G2〉 since it is
irreducible with respect to ≺2. //

It can be proven that the Gröbner fan of an ideal is finite. For a proof
of this result see [43]p. 193, Lemma 2.6.

Example

Let F = {x3 + xz− 2z, y3− xz} . Then the Gröbner fan of I = 〈F 〉 consists
of the following 11 cones C1, . . . , C11 where for each cone a matrix
representing the term ordering and the reduced Gröbner basis is shown:
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Cone Order matrix Gröbner basis Slice of cone

C1




1 1 1
1 0 0
0 1 0


 y3 − xz

x3 + xz − 2z

C2




1 1 2
0 1 0
0 0 1


 xz + x3 +−2z

y3 + x3 − 2z

C3




1 1 3
0 0 1
0 1 0


 z − 1

2
y3 − 1

2
x3

xy3 + x4 − 2y3

C4




1 1 3
0 0 1
1 0 0


 z − 1

2
y3 − 1

2
x3

x4 + xy3 − 2y3

C5




3 2 6
0 0 1
1 0 0




x3 + y3 − 2z
xz − y3

z2 − 1
2
zy3 − 1

2
x2y3

C6




2 1 3
1 0 0
0 0 1




xz − y3

x3 + y3 − 2z
zy3 − 2z2 + x2y3

z3 − 1
2
z2y3 − 1

2
xy6

C7




10 1 5
0 0 1
1 0 0




xz − y3

xy6 + z2y3 − 2z3

z4 − 1
2
z3y3 − 1

2
y9

zy3 − 2z2 + x2y3

x3 + y3 − 2z
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C8




1 1 2
1 0 0
0 0 1




xz − y3

x3 + y3 − 2z
x2y3 + zy3 − 2z2

xy6 + z2y3 − 2z3

z3y3 − 2z4 + y9

C9




1 0 0
0 1 0
0 0 1




y9 + z3y3 − 2z4

xz − y3

xy6 + z2y3 − 2z3

x2y3 + zy3 − 2z2

x3 + y3 − 2z

C10




1 1 3
1 0 0
0 1 0




x3 + y3 − 2z
xz − y3

zy3 − 2z2 + x2y3

C11




3 2 6
0 1 0
1 0 0




xz − y3

x3 + y3 − 2z
x2y3 + zy3 − 2z2

z2y3 − 2z3 + xy6

//

3.4 The Gröbner walk algorithm

Given a Gröbner basis with respect to a starting term ordering, the Gröb-
ner walk algorithm provides a method for obtaining a Gröbner basis for
a given target ordering without having to use Buchberger’s algorithm for
the whole ideal.

The Gröbner walk algorithm is based on two crucial properties of Gröb-
ner fans:

• since the Gröbner fan is finite one can reach a target ordering in
finitely many steps by choosing a distinct cone at each step

• when stepping into a new cone it is not necessary to perform a full
Gröbner basis computation, but instead one can compute a Gröbner
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basis for a smaller ideal (the initial ideal with respect to some partial
term ordering ) and then lift it to a Gröbner basis of the new cone by
performing polynomial operations

The main result that allows to avoid the computation of a new Gröbner
basis when stepping on distinct cones of the Gröbner fan is contained in
the following lemma.

Let / be a partial term ordering on the set of term T n. We have seen
in Section 2.5 that for every partial term ordering / and for every ideal
I ⊆ K[x1, . . . , xn] there exists ω ∈ Rn

+ such that 〈I/〉 = 〈Iω〉.

Lemma Let ≺1 and ≺2 be two term orderings whose cones contain a
common weight vector ω. Let G = {g1, . . . , gr} be the reduced Gröbner
basis of I with respect to ≺1 and H = {h1, . . . , hs} the reduced Gröbner
basis of 〈Iω〉 with respect to ≺2. Then

• (∀i ∈ 1, . . . , s) hi =
∑r

j=1 hijinω(gj) with hi1, . . . , hir ω -homogeneous

• {f1, . . . , fs}where fi =
∑r

j=1 hijgi is a Gröbner basis of I with respect
to ≺2.

Proof We will start by showing that Gω is a Gröbner basis of Iω with
respect to ≺1.

According to the preceeding definition of Gröbner basis it suffices to
show that 〈(Iω)≺1〉 = 〈(Gω)≺1〉 . Since ≺1 refines ω, for every polynomial f
in≺1(inω(f)) = in≺1(f) , therefore (Gω)≺1 = G≺1 and (Iω)≺1 = I≺1 .

Since Gω is a Gröbner basis of Iω with respect to ≺1 we can compute
ω−homogeneous polynomials hi1, . . . , hir such that hi =

∑r
j=1 hijinω(gj)

and degω(hi) = degω(hijinω(gj)) . Note that the S-polynomial of two ω
-homogeneous forms is itself a ω -homogeneous. Also, reducing a ω -
homogeneous polynomial by a ω -homogeneous polynomial results in a
ω -homogeneous polynomial.

Finally, the set F = {f1, . . . , fs} where fi =
∑r

j=1 hijgj is a Gröbner
basis of I with respect to ≺2 . In fact 〈F≺2〉 = 〈Iω)≺2 = 〈I≺2〉. //
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From proof of the lemma we see that, given two term orderings≺1 and
≺2, a weight vector ω in the intersection of their cones, and the reduced
Gröbner basis G of I with respect to ≺1, the computation of a Gröbner F
of I with respect to ≺2 requires the following steps

• extraction of the ω-homogeneous initial forms of the polynomials in
G

• computation of a Gröbner basis H of Gω with respect to ≺2

• computation of the normal forms with respect to Gω and ≺1of the
polynomials in H

• lifting H to a Gröbner basis F with respect to ≺2 by forming linear
combinations of the polynomials in G with the hij as coefficients

• auto-reduce F

Given an ordering ≺1 and the corresponding cone C≺1(I) we want to step
into a new cone that does not coincide with C≺1(I) by choosing an appro-
priate term ordering ≺2 . We have seen in the previous section that the
criterion for deciding the equality of two cones is given by

C≺2(I) = C≺1(I)

if and only if

in≺2(g) = in≺1(g)

for every g in the reduced ≺1-Gröbner basis of I .

Therefore, in order to step out of C1, it suffices to choose a term order-
ing ≺2 for which at least one of the initial monomials in G changes.

Assume now we are given a Gröbner basis for the term ordering≺1 and
we want to compute a Gröbner basis with respect to a given term ordering
≺2 by using the properties of the Gröbner fan of the ideal. Assume that
we are given vectors σ, τ ∈ Rn

+ such that ≺1 is a refinement of σ and ≺2 a
refinement of τ .

Let ω be a weight vector on the line segment

στ = {(1− t)σ + tτ | 0 ≤ t ≤ 1 where σ, τ ∈ Ωn}
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such that

t ∈ {s ∈ Q∩(0, 1] | inω(g) = in≺1(g)+m, m ∈ supp(g−in≺1(g)), deg(m) > 0}

Note that there can be more than one term m satisfying the condition
above, hence one can have several ω to choose from. Speaking in terms
of cones, one just needs to pick a point on a face of the cone in order to
get out of that cone, but no restriction is given neither on the choice of the
face nor on the choice of the point. We will see in the next section how the
choice of the next weight vector influences the efficiency of the algorithm.

Once we have picked the next weight vector ω, we refine it to a term
ordering by taking ≺ω as the concatenation of ω and ≺2 (see Section 2.4).

The Gröbner walk algorithm

Input: ≺1 and ≺2 term orderings refining the weight vectors ω and, re-
spectively, τ

G Gröbner basis with respect to ≺1.

Output: G reduced Gröbner basis with respect to ≺2

Loop

1. Gω ←− initials forms of G with respect to ω

2. ω ←− next weight vector ω + t(τ − ω)

3. if c is undefined then return G

4. Gω ←− Gröbner basis of Gω with respect to ≺ω:= (ω |≺2)

5. G ←− lift Gω

6. Gω ←− interreduce G //
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3.5 Walking faster

In this section we show how the Gröbner walk algorithm can be modi-
fied in order to avoid costly computations. Each step in the algorithm re-
quires the computation of a Gröbner basis for a quasi-homogeneous ideal.
Since no optimal path is prescribed by the algorithm, one may at each
step perturb the path so that the polynomials in the quasi-homogeneous
ideal are as small as possible. In order to keep the intermediate bases as
small as possible, the points to avoid are precisely those where more than
two cones intersect. At these points, in fact, the quasi-homogeneous initial
forms generally consist of more monomials than at point where only two
cones intersect.

Path perturbation may be carried out

• globally, by perturbing the initial and final data, as long as one re-
mains within the prescribed cones

• locally, by perturbing the intermediate data even though this might
lead to taking more steps

When applying a global perturbation, it is always possible to perturb the
final data remaining within the target cone by choosing a special term
ordering that depends on the known degree bounds for polynomials in
Gröbner bases.

Note that global as well as local perturbation may lead to a walk con-
sisting of more steps, but since at each step computations may be carried
out much faster, this strategy results generally in a speedup of the algo-
rithm.

Furthermore, one may speed up the computations of the intermediate
Gröbner bases by exploiting the properties of the underlying initial ideals.

3.5.1 Path perturbation

In order to illustrate the technique of path perturbation we will look at an
example in three variables in order to be able to visualize the Gröbner fan.



52 CHAPTER 3. THE GRÖBNER WALK

(1,0,0)    (0,1,0)

(3/8,3/8,1/4) 

(1/3,1/3,1/3) 

(0,0,1)

Figure 3.3: Gröbner fan for I = 〈z3 − yz − 2y, x3 − yz〉

Example Let F = {z3−yz−2y, x3−yz} be a set of polynomials. The set F
is also the reduced Gröbner basis of I = 〈F 〉with respect to the total degree

reverse lexicographic ordering represented by the matrix




1 1 1
0 0 −1
0 −1 0


.

Assume we want to convert G to a Gröbner basis with respect to the
pure lexicographic ordering with y > x > z, represented by the matrix


0 1 0
1 0 0
0 0 1


.

In Figure 3.3 the slice of the Gröbner fan of I cut out by the plane
x+y+z = 1 is pictured. One can see that the cone containing (1, 1, 1) has no
common face (except for the apex (0, 0, 0)) with any of the two cones con-
taining (0, 1, 0). Furthermore, the segment that joins (1

3
, 1

3
, 1

3
) with (0, 1, 0)

goes through two points of intersection of several cones. On the pictured
slice, these are the points (1

4
, 1

2
, 1

4
) where 6 cones intersect, and (1

5
, 3

5
, 1

5
)

where 5 cones intersect. If one would step out of the initial cone by fol-
lowing the straight path leading from (1

3
, 1

3
, 1

3
) to (0, 1, 0), one would have

to compute the following Gröbner bases of quasi-homogeneous ideals:
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〈z3 − yz, x3 − yz〉 corresponding to weight (1
4
, 1

2
, 1

4
)

〈z3 − 2y + x3, yz, yx3 − 2y2 + x3z3〉 corresponding to weight (1
5
, 3

5
, 1

5
)

If one perturbs the initial weight and takes for instance weight (3
8
, 3

8
, 1

4
)

- that one can see is still in the initial cone - then the walk requires the
computation of Gröbner bases for the following initial ideals:

〈z3 − yz, x3〉 corresponding to weight (2
5
, 2

5
, 1

5
)

〈yz + z3 − 2y, x3 + z3 − 2y〉 corresponding to weight ( 3
14

, 9
14

, 1
7
)

Thus, by perturbing the initial weight we have obtained in the first step
an ideal that consists of one monomial and one binomial, whereas in the
first step of the non-perturbed path we would an ideal generated by two
binomials. For the second step there is no gain as far as the number of
terms in the generators of the quasi-homogeneous ideal are concerned. //

In general, let M be an n × n matrix representing a term ordering ≺
on T n and G a Gröbner basis with respect to ≺. We will assume that M
has entries in N+(this is not a restriction since it is always possible to find
such a matrix for any term ordering). Let C≺be the cone of ≺ for the ideal
generated by G. Then C≺ contains the first row r1 of M . Then, for ε suffi-
ciently small, if we may perturb r1 by εr2 remaining within the cone. Such
an ε has to satisfy

1
ε

> tdeg(g) max(r2) for every g ∈ G

where tdeg(g) := max{∑n
i=1 di | xd1

1 · · · xdn
n is a term in g} and with max(r2)

we denote the maximum value among the coordinates of r2.

If r1 lies on a face F1 of dimension d of the cone, in general r1 + εr2

will lie on a face F2 of dimension d + 1 that contains F1. Perturbing by
the third row of M , we get a vector r1 + εr2 + ε2r3 that is contained in a
d + 3-dimensional open set of the cone, provided that

1
ε

> tdeg(g)(max(r2) + max(r3) for every g ∈ G

One can continue in this fashion until a maximally perturbed vector is
obtained

r1 + εr2 + ε2r3 + · · ·+ εn−1rn

This perturbed vector lies within the cone, and hence does not belong
to any other cone.
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In a similar way, one may perturb the final weight vector. In our ex-
ample, one would have to choose a point close to (0, 1, 0). If one chooses
a vector with positive entries, then the last step requires a Gröbner basis
computation with respect to a degree-compatible ordering, which is easier
than the computation of a Gröbner basis with respect to a lexicographic
ordering.

The drawback of perturbing the target weight vector is that one does
not know in advance how the final cone looks like, hence it might be that
the perturbed vector lies outside of the target cone. In this case, one might
either undo the perturbation and repeat the last step or proceed on on the
perturbed path until the target cone is reached.

For pure lexicographic orderings, Tran ([49]) shows that a weight vec-
tor with positive entries that lies within the target cone can always be de-
termined a priori.

Let ≺ be the pure lexicographic term ordering with x1 < x2 < · · · < xn

on the ring of polynomials in n variables and let I ⊆ K[x1, . . . , xn] be an
ideal. Then, given an upper bound D for the degree of the polynomials in
any Gröbner basis of I , one can determine a priori a weight vector whose
refinement gives the desired lexicographic ordering. Namely, the weight

ω = (Dn−1, Dn−2, . . . , 1)

represents the Gröbner cone C≺(I) . Note that if d is the maximum total
degree of the polynomials that generate the ideal, then for any Gröbner
basis D = (d2 + 2d)2(n−1) (see [23]). For zero-dimensional ideals the bound
is given by D = dO(n).

3.5.2 Exploiting properties of intermediate bases

One of the most costly parts of the Gröbner walk algorithm is the compu-
tation of Gröbner bases for initial ideals at each step on the path. There are
yet some special properties of these ideals that may be exploited in order
to optimize Buchberger’s algorithm.

One first observation is that among the generators of the initial ideals
there is a higher number of monomials than in random ideals. Since the
S-polynomial of two monomials is always 0, one does not need to process
such S-polynomials. By creating two distinct lists for monomials and true
polynomials, one may furthermore reduce the time for creating critical
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pairs. In fact, if the list of true polynomials contains p elements, and the
list of monomials q elements, one just needs to form p(p−1)

2
+ pq critical

pairs, skipping q(q−1)
2

pairs. Note that since the polynomials in the initial
ideals are in general short, their reduction is relatively cheap, hence the
creation of critical pairs takes up most of the time in the Gröbner basis
computation.

As far as skipping of unnecessary S-polynomials is concerned, just
Buchberger’s first criterion is useful in this case, while searching for a third
polynomial in order to apply the second criterion takes generally more
time than reducing the two polynomials.

Due to the presence of monomials among the generators, it is conve-
nient to use those first when carrying out a reduction to normal form. Re-
ducing by a monomial in fact results in a cancellation of the monomial in
the polynomial being reduced, thus making the polynomial shorter.

3.6 Degree bound for adjacent Gröbner bases

When two cones in the Gröbner fan are adjacent, the initial ideal corre-
sponding to a weight vector on the ciommon face of the two ideals is
not only /-homogeneous but it is also quasi-homogeneous. This prop-
erty allows to construct a bound for polynomials in two Gröbner bases
corresponding to adjacent cones. The bound gives a measure of the local
complexity of the Gröbner walk algorithm.

Two cones in the Gröbner fan are called adjacent if they have a face
in common that has maximal dimension. Then one can prove that the
degrees of polynomials in the Gröbner bases on two adjacent cones can
not differ too much, namely for any two Gröbner bases G1, G2 on adjacent
cones in the polynomial ring in n variables, the following inequality holds:

deg(G2) < 2deg(G1)
2 + (n + 1)deg(G1)

This result also explains why the computation of intermediate Gröbner
bases is so fast, since one mostly walks on adjacent cones.

For our presentation we follow the article by Kalkbrener ([35]).

The Gröbner walk algorithm requires at each step the computation of a
Gröbner basis in a cone that has a face in common with the previous cone,
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for which a Gröbner basis is already known. An interesting question to
ask is how much the degrees of the polynomials in the two Gröbner bases
may differ. Kalkbrener presents a quadratic bound for Gröbner bases of
cones whose intersection is a face of maximal dimension.

Let I ⊆ K[x1, . . . , xn] be an ideal and ≺1, ≺2 term orderings such that
C≺1(I) 6= C≺2(I). Then C≺1(I) and C≺2(I) are called adjacent if C≺1(I) ∩
C≺2(I) has dimension n− 1.

For a set of polynomials G ⊆ K[x1, . . . , xn] denote by

deg(G) := max{deg(g) | g ∈ G}

Let us now state the main result of the paper by Kalkbrener.

Proposition Let G1 and G2 be the reduced Gröbner bases of I with re-
spect to ≺1 and ≺2 respectively such that the cones C≺1(I) and C≺2(I) are
adjacent. Then the following inequality holds

deg(G2) < 2deg(G1)
2 + (n + 1)deg(G1)

In the rest of the section we will sketch the main steps of the proof.

Denote by H the hyperplane that contains the common face of C≺1(I)
and C≺2(I). Then H can be represented as the n − 1 dimensional variety
of a linear form

a1ξ1 + · · ·+ anξn

We first observe that H cannot be a boundary face of the positive or-
thant of Rn.

Remember that for an ideal I and a term ordering ≺, we defined the
Gröbner cone of I with respect to ≺ as C≺(I) := δ≺(I)∗ ∩Rn

+. Hence C≺(I)
is contained in the positive orthant of Rn.

Let F1 be the n − 1-dimensional face of C≺1(I) that lies in H , F2 the
n − 1-dimensional face of C≺2(I) that lies in H , and ω ∈ F1 ∩ F2. Then
H+ = {v ∈ Rn

+ | v · ω ≥ 0} and H− = {v ∈ Rn
+ | v · ω ≤ 0} are the half-

spaces bounded by H and without loss of generality we may assume that
C≺1(I) ⊆ H+ and C≺2(I) ⊆ H−. But then H cannot be a boundary face
of the positive orthant of Rn, that is the variety of ξj for some 0 ≤ j ≤ n.
In fact, if H were given by ξj = 0 then there would exist a vector ω =
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(ω1, . . . , ωj−1, 0, ωj+1, . . . , ωn) ∈ F1 ∩ F2 ⊂ Rn
+ and since for every w ∈ C≺2

we have w · ω ≤ 0 then, since w ∈ Rn
+ , it must be wi = 0 for every i 6= j,

that is C≺2 has dimension ≤ 1.

Based on this observation we can now prove the following lemma.

Lemma If C≺1(I) and C≺2(I) are adjacent cones in the fan of the ideal I ,
then there exists ω ∈ C≺1(I) ∩ C≺2(I) with positive coordinates.

Proof Let a1ξ1+· · ·+anξn be the linear form defining the n−1 dimensional
variety H such that C≺1(I)∩C≺2(I) ⊆ H . Since it cannot be that a1 = · · · =
an = 0 because otherwise it would be H = Rn and dim(H) = n, we may
assume without loss of generality that an 6= 0. Let ω = (ω1, . . . , ωn) ∈
C≺1(I) ∩ C≺2(I). Take ω1 = 1, . . . , ωn−1 = 1. Then, since ω ∈ H , we have
a1 + · · ·+ an−1 + ωnan = 0 and since an 6= 0 we can write ωn = −a1+···+an−1

an
.

If ωn > 0 then we have found the desired ω with positive coordinates.
Otherwise, let ωn = 0. Then it must be a1 + · · · + an−1 = 0. Since it
cannot be that a1 = · · · = an = 0 because otherwise H would be the
hyperplane ξn = 0, there must be an aj > 0 for some 1 ≤ j ≤ n − 1.
Assume that an−1 > 0 (if an−1 < 0 we can always take H to be defined
by −a1ξ1 − · · · − anξn). Then one there exists ε > 0 sufficiently small such
that 1− εan > 0 and ω = (1, . . . , 1, 1− εan, εan−1) is the desired vector with
positive coordinates. //

The hyperplane H containing the common face of the cones C≺1(I) and
C≺2(I) is the variety of a1ξ1 + · · ·+ anξn such that

• a1, . . . , an are integers

• gcd(a1, . . . , an) = 1

• at least one of the aiis positive

• at least one of the aiis negative

Without loss of generality we may reorder the variables so that there exists
l ∈ {1, . . . , n− 1} such that ai > 0 for 1 ≤ i ≤ l and aj ≤ 0 for l + 1 ≤ j ≤ n.
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Let

s =
l∏

i=0

xai
i and t =

n∏

j=l+1

x−ai
i

Let R ⊆ T n be the set of terms that are neither divisible by s nor by t. For
every k ∈ N and for every r ∈ R define

Er,k = {rsitk−i | i ∈ {0, . . . , k} and Er =
⋃

k∈BBN

Er,k

Then

• ⋃
r∈R Er,k = T n

• Er1 ∩ Er2 = ∅ for r1, r2 ∈ R with r1 6= r2

• for every r ∈ R the function ψ defined by ψ(rsitj) = xi
0x

j
1 is an order

isomorphism between the posete Er and T 2

By showing that for every r ∈ R and every k ∈ N the set Er,k is an equiv-
alence class, proving the bound for T n can be reduced to constructing a
bound in T 2.

Consider the partial term ordering / given by the vector ω ∈ C≺1(I) ∩
C≺2(I) with positive coordinates. Let J be the ideal I/ = Iω. Then we
have 〈I≺1〉 = 〈J≺1〉 and 〈I≺2〉 = 〈J≺2〉. By applying the results from Sec-
tion 2.6 we know that (K[x1, . . . , xn]/J)=/w, (K[x1, . . . , xn]/J≺1)=/w, and
(K[x1, . . . , xn]/J≺2)=/w have the same dimension.

Hence (K[x1, . . . , xn]/I≺1)=/w and (K[x1, . . . , xn]/I≺2)=/w have the same
dimension.

But (K[x1, . . . , xn]/I≺1)=/w and (K[x1, . . . , xn]/I≺2)=/w are antichains in
T n with respect to the “divides” order relation. Then the bound is proven
once one can show that if A and B are antichains in T nsuch that for every
degree d ∈ N the number of elements of 〈A〉 of degree d equals the number
of elements of 〈B〉 of multidegree d

deg(B) < 2deg(A)2 + (n + 1)deg(A)

Let us look at what happens in the case of antichains in T 2. Let A,B be
antichains in T 2 such that for every d ∈ N

| {a ∈ 〈A〉 | degω(a) = d} |=| {b ∈ 〈B〉 | degω(b) = b} |
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Let t be the least common multiple of the elements of A. Then deg(t) ≤
2deg(A) and for each i > 2deg(A) the cardinality of ∇d(A) =| {a ∈ 〈A〉 |
degω(a) = d} | is constant. For i > 2deg(A) we have

∇d(A) = ∇d(B) = ∇d+1(B) = · · ·

This means that there cannot be any term in B of degree greater than
2deg(A), otherwise it would be ∇d+1(B) < ∇d(B).
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Chapter 4

The FGLM algorithm

The FGLM algorithm is a method for change of orderings by means of
linear algebra techniques. The method applies to Gröbner bases of zero-
dimensional ideals, that are ideals whose underlying polynomial systems
have finitely many common solutions.

When the polynomial system generating a zero-dimensional ideal is in
triangular form, one can compute its solutions by solving univariate poly-
nomial equations. Lexicographic orderings yield Gröbner bases with the
desired triangular shape, yet they are known to have the worst computa-
tional complexity among all term orderings.

By employing the FGLM algorithm, the computation of a lexicographic
Gröbner basis may be reduced to the computation of a Gröbner basis with
respect to a degree-compatible ordering whose time complexity is known
to be dO(n2), where d is the maximum degree of the input polynomials and
n the number of variables.

The FGLM algorithm is based on the observation that polynomials
may be regarded as a linear combinations of terms with coefficients in the
ground field K. Analogously, the ring of polynomials may be regarded as
a vector space of infinite dimension generated by the terms in T n and with
coefficients in K.

This has suggested to use linear algebra techniques to solve problems
in the ring of polynomials and led to the algorithm presented in [26],
named FGLM after its autors, Faugère, Gianni, Lazard, and Mora.

The residue class ring of an ideal is a vector subspace of the ring of

61
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polynomials. If the polynomials that generate the ideal have finitely many
common roots, then the residue class ring of the ideal is finitely generated
as a vector space. Whenever the residue class ring of an ideal is finitely
generated, the ideal is called zero-dimensional.

Any Gröbner basis of an ideal gives as a by-product a set of terms that
is a generating set for the residue class ring, viewed as a vector space. This
set of terms, called a staircase, not only generates the residue class ring but
it is also its canonical basis. Reducing a polynomial to its normal form with
respect to a Gröbner basis is nothing else than representing the polynomial
as combination of terms from the canonical basis.

In the case of a zero-dimensional ideal, the staircase is a finite set. Since
finiteness of the staircase does not depend on the ordering chosen for com-
puting the Gröbner basis, it suffices to compute any Gröbner basis to de-
cide if the ideal is zero-dimensional.

The main idea of the FGLM algorithm is to compute a staircase for
the new ordering by finding linear dependencies between terms. These
dependencies not only give the shape of the new staircase but also yield
the polynomials in the new basis. Linear algebra is used to compute de-
pendencies between terms. The finiteness property of the vector space
guarantees termination of the algorithm.

The material in this chapter is arranged as follows. In Section 4.1 we
present the FGLM algorithm and give an informal proof of its correctness.
The finite vector-space structure of the residue class ring allows a detailed
complexity analysis of the FGLM algorithm. This is presented in Section
4.2. All material presented in sections 4.1 and 4.2 is derived from [26].

Generalisations of the FGLM algorithm for positive-dimensional ideals
have been proposed by Mora and Licciardi ([39]) and by Kapur and Saxena
([37]). Both methods require a sequence of transformations, where each
transformation is carried out by means of linear algebra. We discuss these
methods in section 4.3.

4.1 The algorithm for zero-dimensional ideals

The FGLM algorithm is an alternative method to the Gröbner walk for
change of orderings devised for zero-dimensional polynomial ideals. Gi-
ven a Gröbner basis with respect to some ordering, the Gröbner basis with
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respect to a given target ordering is computed without using Buchberger’s
algorithm. The polynomials in the new basis are computed by means of
linear algebra, by looking for special linear dependencies among polyno-
mials. Termination of the algorithm is guaranteed by the fact that the ideal
is zero-dimensional.

The FGLM algorithm for zero-dimensional ideals is based on the fol-
lowing key ideas:

• the residue class ring with respect to an ideal may be viewed as a
vector space

• for zero-dimensional ideals, residue class rings are finitely generated
and any Gröbner basis provides a canonical vector-space basis

• the elements that are not in the vector-space basis are linearly depen-
dent from the elements in the basis, and the dependency relations
give polynomials in the Gröbner basis

In this section we will describe the algorithm in detail. A proof of its cor-
rectness may be found in [26].

Let G be a Gröbner basis of an ideal I ⊆ K[x1, . . . , xn]. For the sake of
conciseness we will denote by In(G) the set of initial terms of G whenever
the underlying term ordering is clear from the context. Recall that the set

S(G) = {t ∈ T n | t is not a multiple of any term in In(G)}

is a linearly independent vector space basis of K[x1, . . . , xn]/〈G〉 called
the staircase of G.

Figure 4.1 shows S(G) (not-filled dots) and In(G) (grey-filled dots) for
the case of two variables x, y where the coordinates of the points in the
grid are pairs of exponents of terms.

Let I ⊆ K[x1, . . . , xn] be an ideal and G its Gröbner basis with respect
to some term ordering. Then the following conditions are equivalent

• S(G) is a finite set

• K[x1, . . . , xn]/〈G〉 is a finite-dimensional vector space over K

• the variety V (I) over K, the algebraic closure of K, is a finite set
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y
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Figure 4.1: Initial terms and staircase

• if G is a Gröbner basis of I then in In(G) there is a monomial of the
form cix

di
i for every i = 1, . . . , n

Additionally, the number of elements in S(G) equals the number of points
in V (I), counted with their multiplicities.

This result is well-known and will not be proven here. Proofs may be
found in [20], [9], or [2].

An ideal is called zero-dimensional if it satisfies the conditions above.

Given a polynomial f ∈ K[x1, . . . , xn], we may reduce it to its normal
form with respect to G. Its support will contain terms from S(G), that
are irreducible with respect to G. In order to emphasize the vector space
structure of K[x1, . . . , xn]/〈G〉, the terms appearing in the normal form of
f are sometimes called the coordinates of f with respect to G.

Let ≺1 and ≺2 be two term orderings and denote by G1 the reduced
Gröbner basis of the ideal I with respect to≺1, by G2 the reduced Gröbner
basis of I with respect to ≺2.

Assume that the ideal I is zero-dimensional. Given G1 we will de-
scribe a method for obtaining G2 without having to apply Buchberger’s
algorithm.

The idea is the following. We consider terms in ascending order with
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Figure 4.2: The current term is in S(G2) or in In(G2)

respect to ≺2 starting from 1. At each step one of the three following cases
may occur

• the term belongs to S(G2)

• the term belongs to In(G2)

• the term is a multiple of some term in In(G2)

We initialize three sets NewBasis, Initials, and Staircase to the empty set
and enlarge them iteratively. These three sets will at each step be subsets
of G2, In(G2), and S(G2), resp., and coincide with them upon termination.

For each term considered, we have to decide to which of the three cases
above the term gives rise. This may be decided by searching for a linear
dependence relation of the new term from the already processed terms
who have ended up in Staircase. If no linear dependence is found, the set
is added to Staircase; if a linear dependence relation is found, we have
also found a polynomial to be added to NewBasis, and whose initial term
with respect to≺2 is the current term, that goes to augment Initials. Terms
that are multiples of some term in Initials will not be processed, hence the
third case will not occur.

In Figure 4.2 an arrow points at the current term being considered in
the algorithm. The terms corresponding to the empty dots have already
been processed and added to Staircase. Grey dots have been added to
Initials and black-filled dots are multiples of some of the Initials. The
empty areas of the picture correspond to those terms who haven’t been
processed by the algorithm yet. To the right one can see that, whenever a
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term is found that belongs to In(G2), all of its multiples get marked and
won’t be considered in the following steps of the algorithm.

For each term t considered at one step in the algorithm we have

• NewBasis = {g ∈ G2 | g≺2 ≺2 t}
• Initials = NewBasis≺2 = {s ∈ In(G2) | s≺2 ≺2 t}
• Staircase = {s ∈ S(G2) | s ≺2 t}

These three sets suffice for deciding if there is a linear dependence relation
since we only want to consider terms that are smaller than t with respect
to ≺2.

If t is of the form ss1 for some term in Initials, we just step on to the
next term.

If not, we reduce t to its normal form with respect to ≺1. If its ≺1-
coordinates are linearly dependent from the ≺1-coordinates of the ele-
ments in Staircase, then we add t to Initials and the dependency relation
gives a new polynomial to be added to NewBasis. In case no dependency
relation is found, the term t is added to Staircase.

Denote by NF (t) the normal form of t with respect to ≺1.

The FGLM algorithm

Input: ≺1, ≺2 term orderings

G Gröbner basis with respect to ≺1 such that G 6= {1}
Output: NewBasis reduced Gröbner basis with respect to ≺2

initialize NewBasisand Initials to the empty set, Staircaseto {1}

Loop

1. t ←−min≺2{s ∈ T n | t ≺2 s, s /∈ 〈Initials〉, t 6= 1}
2. if t is undefined return NewBasis

3. t1 ←− NF (t)
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4. if there exists t1 +
∑

µ∈Staircase cµNF (µ) = 0 then

(a) NewBasis ←− NewBasis ∪ {t +
∑

µ∈Staircase cµµ}
(b) Initials ←− Initials ∪ {t}

5. else Staircase ←− Staircase ∪ {(t, t1)} //

Observe that what the algorithm does is to construct monic polynomi-
als that belong to the ideal and such that their leading terms with respect
to ≺2 minimally generate I≺2 . Hence the output Gröbner basis is reduced.

Theorem The FGLM algorithm is correct

Proof of correctness Let G1 be a reduced Gröbner basis for I with respect
to ≺1, ≺2 another admissible term ordering. Let S(G1) = {a1, . . . , aD(I)} be
the staircase of G1, where D is the dimension of K[x1, . . . , xn]/I as a K-
vector space. Let S(G2) = {b1, . . . , bD(I)}. Then the algorithm constructs a
matrix C = (cki) such that

bi = c1ia1 + · · ·+ cD(I)iaD(I)

for every bi ∈ S(G2).

We proceed iteratively initializing the sets NewBasis and Initials to
the empty set, and Staircaseto {1}.

Let now t be the minimum term with respect to ≺2 in the set

{s ∈ T n | t ≺2 s for every t ∈ Staircase ∪ Initials, s /∈ 〈Initials〉, t 6= 1}

Then t must be of the form xjbi for some xj , bi with xj ∈ {x1, . . . , xn},
bi ∈ Staircase. In fact, if for every xj that divides t it would be t

xj
∈

〈Initials〉, then also t would be in 〈Initials〉.
Then one of these two cases may occur

1. t = g≺2 for some g ∈ G2, t is added to Initials and g is added to
NewBasis

2. t is added to Staircase
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Let T (G1) = (tijk)be the tensor defined as

tijk := j-th coordinate w.r.t. S(G1) of NFG1(xibk)

for bk ∈ S(G1).

We compute he coordinates c(t) = (c(t)1, . . . , c(t)D(I)) of t as follows

t = xibj = xj

∑
k ckjak

=
∑

k ckj(xjak)
=

∑
k cki(

∑
h tjhkah)

=
∑

h(
∑

k tjhkcki)ah

=
∑

h c(t)hah

If the vector c(t) is linearly independent from the vectors in C, then we
are in case 2 and we have found a new term t ∈ Staircase. Otherwise we
obtain a new element g ∈ G2 from the dependency relation. //

4.2 Complexity analysis

After giving a bound on the size of the input basis, we present an analy-
sis of the FGLM algorithm that shows that its complexity is polynomial in
the number n of variables. When taking into account the growth of coeffi-
cients, the complexity of the algorithm is polynomial in dn2 , where d is the
maximum degree of the polynomials generating the ideal.

The results in this section are derived from [26].

A polynomial time algorithm for computing universal Gröbner bases
of zero-dimensional ideals using linear algebra is also presented in [7],
where bounds on the degrees of the term in staircases are read off from
the properties of certain zonotopes.

4.2.1 Size of the input basis

The FGLM algorithm takes as input a Gröbner basis. For a 0-dimensional
ideal in n variables, the size S of any Gröbner basis satisfies the following
inequality

S ≤ D2 + 2nD

where D is the vector-space dimension of K[x1, . . . , xn]/I . This bound will
be needed later for an overall complexity analysis of the FGLM algorithm.
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Let I ⊆ K[x1, . . . , xn] be a zero-dimensional ideal and G be a Gröbner
basis of I . We will start by giving some bounds on the size of the input
Gröbner basis G. We will assume that G is reduced.

Let D be the number of irreducible terms with respect to G. This num-
ber is an invariant of the ideal since it represents the number of common
zeros (counted with multiplicity) of the polynomials in the ideal in an al-
gebraic closure of the ground field. Hence we can write D = D(I) to
emphasize the fact that this number does not depend on the particular
Gröbner basis of the ideal.

Denote by k the number of polynomials in the input Gröbner basis G.
Then k ≥ n since for every i = 1, . . . , n there is a polynomial in G whose
leading term is of the form cix

di
i .

An upper bound for k is nD(I) for any 0-dimensional ideal I . In fact, let
di be the degree of the univariate polynomial in xi in the Gröbner basis G
for i = 1, . . . , n. Then the exponents of the leading term of any polynomial
in G must be contained in the hypercube whose volume is d1d2 · · · dn and
since di ≤ D for every i, we have proven that k ≤ nD.

Now, in order to represent the basis G one needs a representation for

• the basis S(G)

• the polynomials in G

Each element in S(G) may be represented by the array of length n of its
exponents.

Since we assume G to be reduced, any polynomial g ∈ G is the sum of
its leading term plus a linear combination of elements of S(G). Hence the
representation of one polynomial g in the basis requires

• an array of length n (exponents of the initial term)

• an array of length D (coefficients of the remaining terms in supp(g)
as linear combinations of elements of S(G))

Hence, the size of the input is bounded above by nD+k(n+D). Remember-
ing that the number of polynomials k is at most nD, one gets the following
bound on the size S of the input basis

2nD + n2 ≤ S ≤ nD2 + n2D + nD
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In practice, k is at most D (except when D is very small), hence

S ≤ D2 + 2nD

4.2.2 A polynomial time complexity result

Assuming that operations on the ground field require unit time, we present
a complexity analysis of the FGLM algorithm that yields a polynomial re-
sult in n and D.

The steps in the FGLM algorithm that contribute to its overall complex-
ity require the following computations

• determining the next term to be processed (line 1)

• computing the normal form of a term (line 3)

• searching for a linear dependency relation among polynomials (line
4)

We present here a complexity analysis assuming that field operations re-
quire unit time. With this assumption, the overall complexity is polyno-
mial in n and D.

Next term

In line 1 we want to compute the next term as min{s ∈ T n| t ≺2 s, s /∈
〈Initials〉} where t is the previously processed term. In order to provide
a good complexity bound, we rewrite the algorithm in a way that shows
how the next term may be computed efficiently.

Let us introduce a new set ListOfNexts and a function InsertNexts
that, given a term t, inserts into ListOfNexts the products of t by all the
variables, sorts ListOfNexts by ≺2, and removes all duplicates.

Let NextTerm be a function returning the smallest term in ListOfNexts
with respect to the target ordering. The algorithm then becomes

FGLM algorithm (with management of ListOfNexts)

Input: ≺1, ≺2 term orderings
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G Gröbner basis with respect to ≺1 such that G 6= {1}

Output: NewBasis reduced Gröbner basis with respect to ≺2

initialize NewBasis, Initials, Staircase, ListOfNexts to the empty set,
t = 1

Loop

1. if t is undefined return NewBasis

2. if t is not a multiple of any of the elements in Initials

3. t1 ←− NF≺1(t)

4. if there exists t1 +
∑

µ∈Staircase cµNF≺1(µ) = 0 then

(a) NewBasis ←− NewBasis ∪ {t +
∑

µ∈Staircase cµµ}
(b) Initials ←− Initials ∪ {t}

5. else

(a) Staircase ←− Staircase ∪ {(t, t1)}
(b) InsertNexts(t)

6. t ←− NextTerm //

We have already shown that Initials can contain at most nD elements
since so does any Gröbner basis of a 0-dimensional ideal. Then in line 2
we need to perform nD comparisons between terms and this would yield
a time complexity of O(nD∗nD∗n) since each comparison takes O(n) time
and this step is carried out nD times.

But there is a way of avoiding all these comparisons, namely one has
to remember that each term that is added to ListOfNexts is a product of
a term in Staircase by a variable. One can then keep track of how many
times each term has been inserted in ListOfNexts and replace the test in
line 2 by the line

“2. if the number of insertions of t in ListOfNexts is greater than the
number of variables in t”
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Then this test has a time complexity of O(n) yielding an overall com-
plexity of O(nD ∗ n) since the test is repeated nD times.

Let us now turn to analyse how much time is needed for the manage-
ment of ListOfNexts. This is a list of length at most nD that is merged
at each step with a list of length n, requiring O(nD) comparisons of terms
(time O(n)). Overall, we have O(nD∗n∗D) = O(n2D2), InsertNexts being
called D times.

With an implementation of ListOfNexts as efficient priority queue
with nD insertions and nD deletions of the least element, the complexity
reduces to O(n2Dlog(nD)).

In order to be able to give a polynomial bound for the complexity of the
normal form computation, we introduce a new function and show how to
compute it by using linear algebra instead of the Buchberger normal form
reduction.

Normal form

In line 3 we want to compute NF (t), the normal form of a term t with
respect to the Gröbner basis G. Note that the normal forms in line 4 do not
need to be computed since they have already been stored as the second
coordinates of the elements of Staircase.

The term t is the product of some term τ and a variable xj . Since
τ1 := NF (τ) has already been computed, we can use this information
when computing NF (t). In fact, since NF (t) = NF (τxj) = NF (NF (τ) ∗
NF (xj)), when computing the normal form of t is the same as computing
normal forms of terms of the form σxj , where σ ∈ S(G).

Denote by σ1, . . . , σD the elements of S(G). Let T (G) = (tijk) be the
n × D × D tensor whose element tijk is the j-th coordinate w.r.t. S(G) of
NF (σixk) . Then in order to compute T (G), O(nD3) arithmetic operations
are needed.

In fact, consider the set S(G) := S(G) ∪ {σxi| σ ∈ S(G), i = 1, . . . , n}
containing all terms in the staircase of G plus the terms at the border. As-
sume that S(G) is ordered by ≺ (the ordering corresponding to G). We
will construct the coordinates vectors ti∗k by following the order in which
the σixk appear in S(G).

Consider the term σixk. If σixk ∈ S(G) then it’s already in normal form
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and we have

tijk =

{
1 if j = i
0 otherwise

If σixk ∈ In(G), then there exists a polynomial g ∈ G that has σixk as
its leading term. Write g = σixk +

∑D
u=1 cuσu and in this case we have

tijk = (−a1, . . . ,−aD)

The last case to consider is when σixk ∈ S(G) \ (S(G) ∪ In(G)), that
is when the term is on the border of the staircase but is not an initial
term of any of the polynomials in G. In this case σixk is the product of
some variable xl by a term σhxm whose coordinates th∗m have already
been computed since σhxm ≺ σhxmxl = σixk. But then σixk = σhxmxl =
xl

∑
v thvsσv =

∑
u

∑
v thvstvulbu. In this way one has to perform D2 opera-

tions in order to compute ti∗k, and since this has to be repeated at most nD
times, the complexity of computing T (G) is O(nD3).

Linear dependency

We are now left with analysing the complexity of searching for a linear
dependency relation among polynomials (line 4 in the algorithm).

This is a linear algebra problem that is equivalent to triangularizing a
D × nD matrix, task that can be achieved in time O(nD3).

4.2.3 Growth of coefficients

For a thorough complexity analysis of the FGLM algorithm it is necessary
to take into account the growth of the coefficients. While the linear algebra
computations have a complexity that is exponential in n but polynomial
in D, the normal form computations introduce a growth that appears to
be exponential in nD, even though this has to be proven still.

By introducing a new measure of the problem, E , that is proven to be
bounded above by Dn, we are finally able to state that the overall com-
plexity is polynomial in E.
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Another bound on the size of the input

We start by introducing a new measure for the size of the problem.

Let ≺1, ≺2 be the term ordering used to compute the input Gröbner
basis G, and respectively the target term ordering. We restrict the analysis
to the case where ≺1 is a degree ordering (i.e. for terms t1, t2, whenever
deg(t1) < deg(t2), then t1 ≺1 t2 ). This is anyways the case in which the
algorithm is mostly useful.

Let E be the number of terms in the new basis that are not greater (with
respect to ≺1) than any term in the set

S(G) := S(G) ∪ {σxi| σ ∈ S(G), i = 1, . . . , n}

Then E is the maximum number of terms that may appear in the nor-
mal form computations carried out in the algorithm. As before, let D be
the number of irreducible terms with respect to G. Then the following
inequality holds

D ≤ E ≤
(

n + D
n

)
=

(n + D)!

n!D!
≤ Dn

If the maximal degree of the irreducible terms in S(G) is d, then

E ≤
(

n + d + 1
n

)
=

(n + d + 1)!

n!(d + 1)!

The two above bounds are nothing else than the number of terms in n
variables of degree at most D and, respectively, d + 1.

A polynomial result

The growth of coefficients affects the normal form and the linear algebra
computations in the algorithm.

The reduction to normal form requires at most E steps, that is the num-
ber of terms that may be reduced. It can be shown that a normal form
reduction is equivalent to multiplying E matrices by a vector. Since one
computes at most E normal forms in the algorithm, the complexity of the
normal form computations is O(E2).

The linear algebra part consists in triangularizing matrices.



4.3. VARIATIONS FOR POSITIVE DIMENSIONAL IDEALS 75

Hence, over fields for which polynomial algorithms exist for multiply-
ing and triangularizing matrices, the FGLM algorithm is polynomial. One
can show that, for instance, finite fields and the field of rational numbers
are polynomial.

4.3 Variations for positive dimensional ideals

The finiteness of the residue class ring is a crucial property because it guar-
antees termination of the FGLM algorithm for zero-dimensional ideals.
The problem with positive dimensional ideals is that one is not dealing
anymore with finitely generated vector spaces, hence a workaround is re-
quired in order to guarantee the termination of the algorithm. We will
describe here two methods that work in positive dimension.

Both methods rely on a sequence of applications of the FGLM algo-
rithm. At each step in the sequence the termination of the algorithm is
guaranteed, the output Gröbner basis may yet not be the desired one.

The first method, proposed in [39], works for some special term order-
ings called sequential, for which there is only a finite number of terms that
are smaller than any given term. At each step the input basis is converted
to a sequential ordering until the target ordering is reached. We show that
this method is very similar to the Gröbner walk. The main difference is
that here the intermediate bases are computed with the FGLM algorithm
instead of using the technique of lifting bases of initial ideals.

The second method, presented in [37], runs at each step the FGLM al-
gorithm on a finite set of terms. The result is a Gröbner basis of possibly a
smaller ideal. At each step the set of terms is incremented until the target
basis is obtained. This method will be briefly discussed in 4.3.3.

4.3.1 Conversion to sequential term orderings

A term ordering ≺ is called sequential if for every term t ∈ T n there are at
most finitely many terms s such that s ≺ t.

Recall that an order ≤ on a group G (written multplicatively) is called
archimedean if for every g1, g2 ∈ G+\{1} there exists k ∈ N such that g1 ≤ gk

2 .

Next, we prove that for term orderings the archimedean property is
equivalent to being sequential.
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Proposition Let≺ be a term ordering. Then≺ is sequential if and only if
it is archimedean.

Proof If there exist s, t ∈ T n such that sk ≺ t for every k ∈ N then ≺
cannot be sequential.

Assume now that ≺ is archimedean. We will prove by induction on n
that there cannot exist an infinite set S ⊆ T n and a term t ∈ T n such that
s ≺ t for every s ∈ S.

For n = 1 the only term ordering is the “divide” order relation and for
every term t ∈ T 1 we have t = xk

1 for some k ∈ N and |S| = k.

Assume that every archimedean term ordering in T n−1 is sequential.
Let S ⊆ T n be an infinite set of terms such that s ≺ t for every s ∈ S.
For every s ∈ S write s = xα1

1 xα2
2 · · · xαn

n . Denote by si the term obtained
from s by setting xi = 1 and set Si = {si| s ∈ S}. The term ordering ≺ is
archimedean on T n−1. Since si divides s for every s ∈ S, we have si ≺ s
and hence si ≺ t for every i = 1, . . . , n. By the induction hypothesis Si

must be therefore finite for every i.

Since S is infinite there must exist a j ∈ {1, . . . , n} and a s ∈ Sj such that
there are infinitely many k ∈ N such that xk

j s = s ∈ S. But this contradicts
the hypothesis that ≺ is archimedean because if there would exist m ∈ N
such that t ≺ xm

j then the k satisfying xk
j ≺ xk

j s ≺ t would be at most
finitely many. //

Sequential orderings are those refining a weight vector whose coor-
dinates are all positive. Observe that for any term ordering it is always
possible to find a sequential ordering belonging to its cone. Let in fact ≺
be a non-sequential term ordering and G a Gröbner basis with respect to
≺. Finding a sequential term ordering in the cone of ≺ is the same as find-
ing a weight vector with positive coordinates ω = (ω1, . . . , ωn) ∈ Qn

+ with
ωi 6= 0 for every i = 1, . . . , n and such that Gω = G≺. This is an integer
programming problem that can also be solved by means of Gröbner bases
(see [19],[47], or [33]).

We now present the algorithm that converts any given Gröbner basis
of an ideal to a Gröbner basis with respect to a sequential term ordering.
The ideal in question may be positive dimensional. This algorithm is very
similar to the FGLM algorithm presented in Section 4.1. Here we need
some additional conditions in order to guarantee termination, namely
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• the target weight vector has to have positive coordinates

• every a new polynomial is added to NewBasis, we check if NewBasis
is a Gröbner basis with respect to the target term ordering

Note that the second condition requires a test for the Gröbner property of
NewBasis and not a whole Gröbner basis computation. The test may be
carried out by reducing S-polynomials.

Let τ be a vector in Qn with positive coordinates and denote by NF (t)
the normal form of t with respect to ≺1.

FGLM conversion to sequential orderings

Input: ≺1 term ordering refining ω, ≺2 sequential term ordering refining
τ

G Gröbner basis with respect to ≺1 such that G 6= {1}
Output: NewBasis, the reduced Gröbner basis with respect to ≺2

initialize NewBasisand Initials to the empty set, Staircaseto {1}

Loop

1. t ←−min≺2{s ∈ T n | t ≺2 s, s /∈ 〈Initials〉, t 6= 1}
2. if t undefined or (〈NewBasis〉 = 〈G〉 and NewBasis is complete)

return NewBasis

3. t1 ←− NF (t)

4. if there exists t1 +
∑

µ∈Staircase cµNF (µ) = 0 then

(a) NewBasis ←− NewBasis ∪ {t +
∑

µ∈Staircase cµµ}
(b) Initials ←− Initials ∪ {t}

5. else Staircase ←− Staircase ∪ {(t, t1)} //

From the way we construct NewBasis, at each step the polynomials in
NewBasis are
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• monic

• interreduced with respect to≺2, i.e. for every g ∈ NewBasis no term
in supp(g) is divisible by any of the terms in NewBasis≺2 \ {g≺2}

• they belong to the ideal I

These properties make NewBasis a subset of the reduced Gröbner ba-
sis with respect to ≺2 at each step in the loop. That does not make yet
NewBasis the Gröbner basis of the input ideal, in fact it might be that
even if 〈NewBasis〉 = 〈G〉, still NewBasis might not be complete. The
check for completeness my be carried out by reducing all S-polynomials
in NewBasis to their normal form with respect to NewBasis. As long as
there are S-polynomials that do not reduce to 0, one needs to carry on the
search for dependencies. Remark that while in Buchberger’s algorithm
one adds to the basis the S-polynomials that do not reduce to 0, here one
does not need to add them to the basis. NewBasis gets enlarged only
when a new linear dependency relation is found. At each addition of a
new polynomial to NewBasis, one checks if one is able to reduce to zero
the S-polynomials that couldn’t be reduced before, and at the same time
adds | NewBasis | S-polynomials to the list of S-polynomials to be re-
duced.

The staircase of a positive dimensional ideal is an infinite set. Upon
termination, the algorithm delivers just a finite subset of the staircase of
NewBasis, namely the set

{s ∈ S(NewBasis) | s ≺2 t for every t ∈ NewBasis≺2}

of all terms in the staircase of NewBasis that are smaller with respect
to ≺2 of all ≺2-initial terms of NewBasis.

Next, we present a more formal proof of correctness of the algorithm.

Proof of correctness For proving that the FGLM conversion to sequen-
tial orderings algorithm is correct we show that it delivers the reduced
Gröbner basis of I = 〈G〉 with respect to ≺2. Notice that the algorithm
is the same as the FGLM algorithm for 0-dimensional ideals presented in
Section 4.1. Here we require ≺2 to be a sequential ordering and we have
an additional test in line 2.

Assume for now that the algorithm terminates. We first prove that the
elements in Staircase are linearly independent modulo I . If it would not
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be so, then there would be a finite subset C ⊆ Staircase such that the
linear combination

f =
∑
ti∈C

λiti

reduces to 0 modulo I . That is,

NF (f) =
∑
ti∈C

λiNF (ti) = 0

Without loss of generality, we may assume that C = {t1, . . . , tk} with
t1 ≺2 t2 ≺2 · · · ≺2 tk, where ≺2 is the target sequential ordering. Since in
the loop we consider terms in increasing order with respect to ≺2, by the
time tk is being examined the terms t1, t2 . . . , tk−1 have already been added
to Staircase. But then tk is added to Initials and not to Staircase because
the condition in line 4 of the algorithm is satisfied. Hence the elements in
Staircase are linearly independent modulo I .

We now show that the elements in NewBasis belong to I . Every poly-
nomial f that is added to NewBasis is by costruction of the form

f = t +
∑

µ∈Staircase

cµµ

and it satisfies NF (t) +
∑

µ∈Staircase cµNF (µ) = 0. But

NF (f) = NF (t) +
∑

µ∈Staircase

cµNF (µ)

and since NF (f) = 0, we have f ∈ I .

Finally, since we consider terms in ascending order with respect to ≺2,
the terms in Initials are the leading terms with respect to ≺2 of the ele-
ments in NewBasis.

Now we want to show that every term that is not in Staircase nor in
Initials is either

• a multiple of a term in Initials

• it is greater with respect to ≺2 than all terms in Initials

If t is a term that is processed by the algorithm (line 1) and the condition
“(〈NewBasis〉 = 〈G〉 and NewBasis is complete)” is not true, then t is
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added either to Initialsor to Staircase, hence the statement is in this case
true.

The reason why a term t is not processed by the algorithm is either
(by the definition of the next term t in line 1) because t ∈ 〈Initials〉, and
hence is a multiple of a term in Initials, or because the condition in line
2 “(〈NewBasis〉 = 〈G〉 and NewBasis is complete)” is satisfied and the
algorithm returns NewBasis without processing t. But then we know that
t is greater with respect to ≺2 than all terms in Initials.

We now have to prove that the algorithm terminates. But this follows
from the fact that ≺2 is sequential and hence for every term t there are at
most a finite number of terms that are smaller than t with respect to ≺2.
This implies that in a finite number of steps we obtain a set of polynomials
that generates I≺2 and such that all S-polynomials reduce to 0, hence a
reduced Gröbner basis of I with respect to ≺2. Since each polynomial f in
NewBasis is monic and by construction none of the monomials in supp(f)
is multiple of any of the terms in Initials other than itself, then NewBasis
is reduced. //

4.3.2 The FGLM Walk

We have seen how to convert a Gröbner basis of a positive dimensional
ideal to a sequential ordering by using a modified FGLM algorithm. We
now present an algorithm using that uses sequences of applications of
these FGLM conversions to sequential orderings. At each step in the se-
quence, we convert to a new sequential ordering, and stop once a sequen-
tial ordering is found that lies in the same cone of the non-sequential tar-
get term ordering. In order to verify whether two term orderings lie in
the same cone, it is sufficient to compare the initial terms in the respective
Gröbner bases, as shown in Section 3.4.

In this way, we can compute Gröbner bases of positive dimensional
ideals with respect to non-sequential orderings by using the FGLM ma-
chinery.

Calling this variation the “FGLM walk” points out the fact that this
algorithm may be viewed as a Gröbner walk where each conversion is
carried out by means of the FGLM algorithm. The additional restriction
here is on the choice of the next weight vector, whose coordinates have to
be positive in order to guarantee that each term ordering in the sequence
of conversions is sequential.
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Denote by NF (t) the normal form of t with respect to ≺1. Let fglmp be
a function that, given the reduced Gröbner basis of an ideal I with respect
to ≺old and a sequential term ordering ≺new, delivers the reduced Gröbner
basis of I with respect to ≺2. The algorithm that computes this function
has been presented in 4.3.1.

FGLM walk

Input: ≺1 term ordering refining ω, ≺2 term ordering

G reduced Gröbner basis with respect to ≺1 such that G 6= {1}
Output: NewBasis reduced Gröbner basis with respect to ≺2

initialize NewBasis to G

initialize ≺old to ≺1,

initialize ≺new to ≺2

Loop

1. if NewBasis≺old
= NewBasis≺2 then return NewBasis

2. ω ←− next weight vector ω + c(τ − ω) with positive coordinates

3. ≺new←−term ordering refining ω

1. NewBasis ←− fglmp(NewBasis,≺old,≺new)

2. ≺old←−≺new

//

4.3.3 Incrementing finite sets of terms

In [37] a variation of the FGLM algorithm that works for positive dimen-
sional ideals is proposed. In order to overcome the problem with the in-
finite vector space basis of the residue class ring, one works with a finite
subset of it, namely the subset given by all terms of degree smaller than a
given d.

Given a Gröbner basis G, the algorithm goes as follows
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1. choose a degree d

2. let NewBasis be the set of all linear relations modulo G among terms
of degree ≤ d , computed by FGLM

3. if 〈NewBasis〉 6= 〈G〉 repeat step 1 with a new degree bigger than d

This algorithm terminates since there exists d ∈ N such that, for every g
in the target Gröbner basis, deg(g) ≤ D. The FGLM computation in step
2 is finite since we are considering finitely many terms. Yet, it does not
deliver the target Gröbner basis if the current d is strictly smaller than D,
thus requiring another conversion.

Note that nothing is said on how to chose d. Starting with d = D would
avoid intermediate computations but it is in most cases not a good choice.

Dealing with degree bounds reminds us of the method proposed in
[49], where a Gröbner Walk is performed by choosing a target ordering
that depends on the known degree bounds for the new basis. In this
case though, choosing an initial degree equal to the known bound for
the new basis would make the algorithm very inefficient in most cases,
since we would consider more terms than necessary when the bound is
not reached.



Chapter 5

Comparison of the two methods

For zero-dimensional ideals there exist implementations of the Gröbner
walk and of the FGLM algorithms in Maple. We converted a few Gröbner
bases to the pure lexicographic ordering and compared the runtimes of
the two algorithms. For all of our examples, the Gröbner walk algorithm
performed better (up to 50 times) than the FGLM algorithm. By looking at
the steps that required most of the computation time, we noticed that the
FGLM algorithm performed much worse than the Gröbner walk when-
ever most of the runtime was spent on normal form computations. We
therefore tried to modify the FGLM algorithm slightly in order to avoid
costly normal forms computations. This led to a better runtime for the
FGLM algorithm, and even though with our modifications the runtimes
of the FGLM algorithm were worse than those of the Gröbner walk, in
some cases both algorithms took the same time to terminate. In any case,
with our modifications we were able to provide what we claim is a fairer
comparison of the two algorithms.

For positive dimensional ideals we compared the Gröbner walk algo-
rithm with what we call the FGLM walk. For vector spaces that do not
admit a finite basis, the FGLM algorithm does not terminate in general. It
does terminate, though, if one performs a conversion to a sequential term
ordering. The Gröbner cone of any given term ordering contains a term
ordering that is the refinement of a positive weight vector. By using a se-
quence of such conversions, we approximate the final term ordering by a
positive weight vector until the target term ordering is reached. For pos-
itive dimensional ideals the Gröbner walk algorithm was more than one
thousand times faster than the FGLM algorithm. This behaviour may be
explained by the fact that FGLM conversions require the search for depen-

83
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dencies among families of terms. In the positive dimensional case, these
families are very big even when considering sequential term orderings.

We conclude by saying that whereas it might make sense to use se-
quences of FGLM conversions instead of the Gröbner walk algorithm for
zero-dimensional ideals, this does not seem to make any sense for positive
dimensional ideals.

All experiments ran on a computer with 1.90GHz Intel Pentium 4 pro-
cessor under Linux 2.4.10. Times are expressed in seconds.

The polynomial systems that we used for our experiments are listed
in Appendix A A. Most of them come from of the benchmark suite for
Computer Algebra that is available on the internet (see [1]).

5.1 Zero-dimensional ideals

In this section we compute Gröbner bases for some zero-dimensional poly-
nomial ideals and compare the performance of the Gröbner walk and the
FGLM algorithms for these examples. In Section 5.1.1 we use the algo-
rithms that are available in Maple. But the comparison would not be fair
since it does not take in account the perturbation of the target weight vec-
tor that is implemented in the Gröbner walk algorithm. In order to make
the comparison fair, we also introduce a perturbation of the target weight
vector in the FGLM algorithm and apply it in sequence. The results of this
new comparison are presented in Section 5.1.2. The Gröbner walk algo-
rithm is still faster than the FGLM algorithm, but by a smaller factor.

5.1.1 Comparing the existing algorithms

In order to get an idea of how algorithms for change of ordering perform
in practice, we computed Gröbner bases with respect to the pure lexico-
graphic ordering of zero-dimensional polynomial systems using the Gröb-
ner walk and the FGLM algorithms.

The input was a precomputed Gröbner basis with respect to the total
degree inverse lexicographic ordering.

The output was a Gröbner basis of the ideal generated by the input
basis with respect to the pure lexicographic ordering such that x1 > · · · >
xn for the list of variables [x1, . . . , xn].
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For each example, we kept track of the total run time as well as of
the times required by the most costly steps of each of the two algorithms.
These are: construction of weight vectors (including perturbation of the
initial and final weights), computation of Gröbner bases of the intermedi-
ate quasi-homogeneous initial ideals, and lifting of the bases for the Gröb-
ner walk; normal form, finding linear dependency relations among poly-
nomials, and selection of the current term to be processed for the FGLM
algorithm. For the Gröbner walk we also kept track of the number of steps
in the path.

We used the implementations that are currently available in Maple: the
GWalk function (described in [3]) from the CASA package (see [32], also
[31]) and the fglm function from the Ore_algebra package.

The following table contains a a summary of our results. For each sys-
tem, we listed

• n, the number of variables

• d, the maximum total degree of the generators

• D, the number of irreducible terms with respect to the ideal (see dis-
cussion in Section 4.2)

• C, the number of digits of the longest coefficients in the final basis

The third and fourth columns contain the timings obtained when running
GWalk and fglm , the last row contains the ratio of the total runtimes
FGLM/GW.

Info GW FGLM ratio
a1 n = 3

d = 5
D = 54
C = 202

11.80
weight 1.10
GB 1.86
lift 6.77
steps 74

260.57
normalf 101.76
nextterm .34
dependency 158.47

22

a2 n = 3
d = 2
D = 4
C = 2

.03
weight .01
GB 0
lift .01
steps 1

.06
normalf .02
nextterm 0
dependency .40

2
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Info GW FGLM ratio
a3 n = 5

d = 2
D = 16
C = 77

1.64
weight .28
GB .36
lift .51
steps 20

2.98
normalf .81
nextterm .09
dependency 2.07

2

a4 n = 2
d = 2
D = 4
C = 2

.01
weight 0
GB 0
lift 0
steps 1

.09
normalf .07
nextterm 0
dependency .02

9

a5 n = 3
d = 6

D = 20
C = 9

2.07
weight .19
GB .27
lift .36
steps 23

69.93
normalf 68.52
nextterm .50
dependency 1.36

34

a6 n = 2
d = 2
D = 4
C = 2

total .01
weight 0
GB 0
lift 0
steps 1

total .07
normalf .04
nextterm 0
dependency .03

7

a7 n = 3
d = 2
D = 8
C = 7

total .03
weight .01
GB .01
lift .01
steps 4

total .27
normalf .20
nextterm 0
dependency .07

9

a8 n = 3
d = 2
D = 8
C = 19

total .17
weight .29
GB .5
lift .01
steps 6

total .17
normalf .02
nextterm 0
dependency .14

1

a9 n = 3
d = 5

D = 40
C = 701

total 23.75
weight .86
GB 4.35
lift 16.88
steps 46

total 371.86
normalf 42.01
nextterm .10
dependency 329.76

16
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Info GW FGLM ratio
a10 n = 2

d = 7
D = 28
C = 24

total .48
weight .08
GB .18
lift .19
steps 18

total 3.24
normalf 1.13
nextterm .02
dependency 2.09

7

a11 n = 3
d = 2
D = 8
C = 24

total .12
weight .01
GB .04
lift .03
steps 6

total .18
normalf .13
nextterm 0
dependency .05

2

a12 n = 3
d = 4

D = 24
C = 307

total 3.47
weight .30
GB .54
lift 2.09
steps 27

total 87.07
normalf 5.30
nextterm .01
dependency 81.76

25

a13 n = 3
d = 3
D = 6
C = 10

total .02
weight 0
GB 0
lift .01
steps 2

total .14
normalf .10
nextterm 0
dependency .04

7

a14 n = 4
d = 4

D = 24
C = 332

total 4.19
weight .30
GB .84
lift 2.36
steps 24

total 28.47
normalf 3.30
nextterm .7
dependency 25.10

7

a15 n = 3
d = 3
D = 8
C = 36

total .10
weight .01
GB .01
lift .06
steps 4

total .19
normalf .14
nextterm 0
dependency .02

2

a16 n = 2
d = 4
D = 5
C = 2

total 0.02
weight 0
GB 0
lift 0.01
steps 2

total .14
normalf .03
nextterm 0
dependency .10

7
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Info GW FGLM ratio
a17 n = 3

d = 4
D = 16
C = 16

total .54
weight .10
GB .13
lift .10
steps 16

total .84
normalf .47
nextterm .02
dependency .35

2

a18 n = 4
d = 2

D = 16
C = 96

total .44
weight .04
GB .20
lift .19
steps 12

total 16.88
normalf 15.42
nextterm .04
dependency 1.415

38

a19 n = 4
d = 2

D = 16
C = 96

total .37
weight .05
GB .14
lift .15
steps 12

total 13.74
normalf 12.53
nextterm 0
dependency 1.21

37

a20 n = 4
d = 2

D = 16
C = 441

total 5.51
weight 0.54
GB 1.23
lift 2.30
steps 19

total 34.06
normalf 4.63
nextterm .17
dependency 29.26

6

a21 n = 4
d = 4

D = 16
C = 9

total 7.08
weight .84
GB 2.63
lift 2.16
steps 40

total 16.35
normalf 8.25
nextterm .27
dependency 7.80

2

a22 n = 2
d = 11
D = 56
C = 50

total .43
weight .12
GB .08
lift .15
steps 18

total 11.43
normalf .84
nextterm .02
dependency 10.57

27

a23 n = 3
d = 6

D = 20
C = 9

total 3.24
weight .05
GB .33
lift .44
steps 23

total 70.30
normalf 68.68
nextterm .01
dependency 1.61

22
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Info GW FGLM ratio
a24 n = 4

d = 4
D = 56
C = 9

total 6.42
weight .84
GB 2.05
lift 2.03
steps 35

total 17.37
normalf 9.35
nextterm .24
dependency 7.77

3

a25 n = 4
d = 3

D = 73
C = 27

total 32.77
weight 3.75
GB 3.82
lift 21.78
steps 59

total 695.40
normalf 598.27
nextterm .62
dependency 96.48

21

a26 n = 4
d = 2

D = 16
C = 441

total 4.30
weight 0.29
GB 1.58
lift 2.37
steps 19

total 32.46
normalf 4.10
nextterm .01
dependency 28.35

8

a27 n = 3
d = 4

D = 45
C = 296

total 26.99
weight 2.62
GB 8.45
lift 14.80
steps 61

total 1090.64
normalf 236.61
nextterm .02
dependency 854.01

40

a28 n = 3
d = 5

D = 54
C = 194

total 12.98
weight 2.06
GB 2.17
lift 7.25
steps 79

total 646.38
normalf 526.94
nextterm .12
dependency 119.31

50

For these examples the Gröbner walk performed better than the FGLM
algorithm up to a factor of 50, even when the walk required several steps.
One may also observe that the ratio is generally higher whenever normal
form computations make up for most of the runtime of the FGLM algo-
rithm.

5.1.2 A fairer comparison

We saw in the previous section that the FGLM algorithm performs much
worse than the Gröbner walk algorithm whenever most of its runtime is
spent on normal form computations.

Since it is known that normal form reductions for degree compatible
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orderings are faster than for lexicographic orderings, we tried to improve
the normal form computation timing in the FGLM algorithm by convert-
ing the basis to a degree compatible ordering. We already mentioned in
Section 3.5 that one can construct a priori a weight vector that is contained
in the target cone. This vector depends on the degree bound for polyno-
mials in the Gröbner bases of the ideal.

Instead of using the bound, we performed a sequence of conversions
with the FGLM algorithm with respect to total degree orderings≺1,≺2, . . .
where ≺i was a term ordering refining the weight vector

ωi = (2i(n−1)
, 2i(n−2)

, . . . , 1)

for i = 1, 2, . . . until the desired basis was reached. Property (d) of
Theorem 2.7 in [43] guarantees that there exists an i big enough such that
ωi is in the interior of the Gröbner cone of ≺plex. Denote by ≺lexthe pure
lexicographic ordering with x1 > x2 > · · · > xn. After each transformation
we checked if the obtained Gröbner basis G would satify G≺i

= G≺lex
. If

not, one more step would be required, and we used G as input for the next
conversion, otherwise we were done.

The following table shows the timings obtained by running a sequence
of FGLM conversions on some of the previous examples.

Info FGLM SEQUENCE FGLM ratio
a5 n = 3

d = 6
D = 20
C = 9

3.09
normalf 1.16
nextterm .03
dependency 1.34
steps 5

69.93
normalf 68.52
nextterm .50
dependency 1.36

23

a12 n = 3
d = 4

D = 24
C = 307

21.08
normalf 3.59
nextterm .22
dependency 15.38
steps 5

87.07
normalf 5.30
nextterm .01
dependency 81.76

4

a18 n = 4
d = 2

D = 16
C = 96

2.52
normalf .63
nextterm .19
dependency 1.35
steps 4

16.88
normalf 15.42
nextterm .04
dependency 1.415

7
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Info FGLM SEQUENCE FGLM ratio
a19 n = 4

d = 2
D = 16
C = 96

2.17
normalf .60
nextterm .02
dependency 1.44
steps 4

13.74
normalf 12.53
nextterm 0
dependency 1.21

6

a26 n = 4
d = 2

D = 16
C = 441

23.47
normalf 3.21
nextterm .16
dependency 16.91
steps 4

32.46
normalf 4.10
nextterm .01
dependency 28.35

1

a27 n = 3
d = 4

D = 45
C = 296

183.31
normalf 21.46
nextterm .80
dependency 151.61
steps 6

1090.64
normalf 236.61
nextterm .02
dependency 854.01

6

a28 n = 3
d = 5

D = 54
C = 194

164.82
normalf 18.66
nextterm .72
dependency 106.84
steps 6

646.38
normalf 526.94
nextterm .12
dependency 119.31

4

Based on these timings, it seems that also for the FGLM algorithm it
is faster to compute a sequence of intermediate Gröbner bases instead of
converting the input basis at once. This may be explained by two facts:

• degree-compatible orderings are used - these orderings make normal
forms computations faster

• the cone of the input basis at each step is “close” to the target cone

Note that the Gröbner walk algorithm, as it is implemented in CASA, uses
path perturbation (see Section 3.5.1). In particular, the target weight vec-
tor is perturbated at the beginning of the algorithm. Once the perturbed
target vector is reached, it is checked if the desired Gröbner basis has been
obtained (and this is true in most cases). If not, then further steps in the
direction of the non-perturbed target vector are carried out. This means
that when we computed our examples we almost never converted a basis
to a pure lexicogtraphic ordering when using the Gröbner walk algorithm.
That’s why using a sequence of FGLM conversions instead of the FGLM
algorithm makes the comparison a fairer one.
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Note also that since we do not set any restriction on the choice of the
next weight vector (other than that it has to lie outside of the current cone),
we do not know whether any two successive cones are adjacent. We also
tried to run the sequence of FGLM transformations using at each step
other weight vectors. Approaching the target weight vector slowlier gives
rise to more but shorter steps and on the vice-versa approaching the target
vector faster gives rise to less but longer steps. In our experiments, we
did not find that another choice of intermediate weight vectors performed
better as the ωi = (2i(n−1)

, 2i(n−2)
, . . . , 1) , hence the ωi seem to be a good

choice.

One more remark is that for system a26 there was no big improve-
ment when using a sequence of FGLM conversions instead of the original
FGLM algorithm. This is due to the fact that in this example most of the
computation time is required by the search for dependency relations. In
the previous table one sees that the coefficients of the polynomials in the
final Gröbner basis had up to 441 digits, and this made the matrix compu-
tations costlier, whereas the normal form computations did not amount to
a big part of the runtime.

Summarizing now our results we have the following timings, where
the second and third columns contain respectively the total runtime of the
Gröbner walk and of the FGLM sequence algorithm, the fourth column
contains the ratio FGLM seq. over GW.

GW FGLM seq. ratio
a5 2.07 3.09 1
a12 3.47 21.08 6
a18 .44 2.52 6
a19 .37 2.17 6
a26 4.30 23.47 5
a27 26.99 183.31 7
a28 12.98 164.82 13

From this table we see that with a fair comparison the ratio FGLM/GW
has improved and is at most 13.

Finally, a fair comparison for some more zero-dimensional polynomial
systems. These examples come from [6] and are listed in Appendix A.
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GW FGLM seq. ratio
Ex1 n = 3

d = 4
D = 45
C = 106

10.41
weight .44
GB 1.26
lift 8.62
steps 36

49.41
normalf 6.43
nextterm .08
dependency 42.80
steps 5

5

Ex2 n = 3
d = 4

D = 46
C = 261

11.09
weight .10
GB 2.23
lift 6.85
steps 47

263.42
normalf 11.57
nextterm .65
dependency 121.52
steps 6

24

Ex3 n = 3
d = 4

D = 53
C = 183

17.19
weight 2.70
GB 3.37
lift 9.04
steps 57

193.54
normalf 11.45
nextterm .66
dependency 91.55
steps 5

11

s6 n = 6
d = 2

D = 64
C = 14

27.62
weight 1.32
GB 19.16
lift 6.02
steps 41

20.85
normalf 3.77
nextterm 3.08
dependency 12.60
steps 3

1

s7 n = 7
d = 2

D = 127
C = 122

300.60
weight 15.04
GB 191.04
lift 89.56
steps 144

389.34
normalf 39.52
nextterm 51.30
dependency 293.50
steps 7

1

The ratio here is at most 24, and in two cases it goes down to 1.

In the implementation of the FGLM sequence one often has to deal
with weight vectors whose entries are big integers. By using the relint
function of the convex package, one can always find a weight vector with
smaller entries that lies in the cone of the intermediate basis, and refine
this vector to a term ordering that lies within the cone of the basis. Since
this vector is computed after having converted the basis, we do not require
that it has positive entries. Using smaller weight vectors for normal forms
computations with respect to the old basis also seems to speed up this part
of the algorithm, but we haven’t investigated that in detail yet.

In a future implementation of the FGLM sequence it might be helpful
to keep track at each step the polynomials in the previous bases in order to
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skip some dependency computations. It is often the case, in fact, that two
reduced Gröbner bases of the same ideal have one or more polynomials in
common.

5.2 Positive dimensional ideals

For positive dimensional ideals we compared the runtimes of the Gröbner
walk with the runtime of a sequence of FGLM conversions to sequential
orderings as in the previous section. Each FGLM conversion was carried
out with the algorithm described in Section 4.3. In the following table we
list a few examples where we compared the two algorithms . For each
system, we listed

• n, the number of variables

• d, the maximum total degree of the generators

• k, the dimension of the ideal

• C, the number of digits of the longest coefficients in the final basis

The third and fourth columns contain the timings obtained when running
GWalk and a sequence of FGLM conversions to sequential orderings, as in
the previous section.

Info GW FGLM ratio
b1 n = 3

d = 3
k = 1
C =

.03
weight 0
GB 0
lift .01
steps 1

18.66
normalf 1.22
nextterm .43
dependency 14.747
steps 1

622

b2 n = 4
d = 3
k = 1
C = 2

.21
weight .08
GB .04
lift .05
steps 5

3.99
normalf .45
nextterm .08
dependency 2.05
steps 1

19

b3 n = 4
d = 31
k = 1
C = 3

3.07
weight .40
GB .83
lift 1.54
steps 26

> 6000
normalf
nextterm
dependency

> 1954
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It soon became clear to us that for positive dimensional ideals the Gröb-
ner walk algorithm performs way better than the FGLM sequence. This
extremely bad behaviour of the FGLM sequence can be easily explained
by the fact that dependency relations have to be sought among very large
families of terms, and these families get bigger whenever we increase the
coordinates of the weight vector ω.

In the first two examples the sequence of FGLM conversions required
just one step. Even in this case the Gröbner walk algorithm was much
faster. In the third example we stopped the FGLM sequence after 6000
seconds while it was still completing the first step. By looking at the final
Gröbner basis with respect to the pure lexicographic ordering ≺plex and
the variables ordered by x > y > z > t, one can see that the smallest i such
that the weight vector

ωi = (2i3 , 2i2 , 2i, 1)

is contained in the cone of ≺plex is 3. Therefore the sequence of FGLM
conversions would have required 3 steps.

Let diff_vectors be a Maple procedure that computes the set of dif-
ference vectors of a set of polynomials given its initial terms. Then the
following Maple session shows how to check if the vectors (64, 16, 4, 1)
and (512, 64, 8, 1) belong to the cone M1 generated by the difference vec-
tors, that is the cone of ≺plex, by using the function iscontained from
the Convex package.

> with(Ore_algebra): with(Groebner):

with(casa): with(convex):

> A:=poly_algebra(x,y,z,t):

> F:=[x^8-z, x^10-t, x^31-x^6-x-y];

8 10 31 6
F := [x - z, x - t, x - x - x - y]

> Told:=termorder(A,tdeg(x,y,z,t)):

> Tnew:=termorder(A,plex(x,y,z,t)):

> Gold:=gbasis(F,Told):
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> Gnew:=GWalk(Gold,[x,y,z,t]):

> LT:=map(leadterm,Gnew,Tnew):

[x, y, z, t]

> dv:=diff_vectors([x,y,z,t],Gnew,LT):

> M1:=intersection(op(dv));

M1 := cone(4, 4, 0, 4, 4)

> a:=4: iscontained([a^3,a^2,a,1],M1);

false

> a:=8: iscontained([a^3,a^2,a,1],M1);

true
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Appendix A

Benchmarks

Zero-dimensional systems

The following table contains examples of zero-dimensional polynomial
systems from the SymbolicData library ([1]).

a1

[x, y, z]
y4 + xy2z + x2 − 2xy + y2 + z2

xy4 + yz4 − 2x2y − 3
−x3y2 + xyz3 + y4 + xy2z − 2xy

a2

[x, y, z]
2y + 2z + x− 1
2yz + 2yx− y
2y2 + 2z2 + x2 − x

a3

[u0, u1, u2, u3, u4]
u0 + 2u1 + 2u2 + 2u3 + 2u4 − 1
2u1u2 + 2u0u3 + 2u1u4 − u3

u2
1 + 2u0u2 + 2u1u3 + 2u2u4 − u2

2u0u1 + 2u1u2 + 2u2u3 + 2u3u4 − u1

u2
0 + 2u2

1 + 2u2
2 + 2u2

3 + 2u2
4 − u0

a4
[x1, x2]
x2

1 + x2
2 − 10

x2
1 + x1x2 + 2x2

2 − 16

a5

[a, b, c]
a2bc + ab2c + abc2 + abc + ab + ac + bc
a2b2c + ab2c2 + a2bc + abc + bc + a + c
a2b2c2 + a2b2c + ab2c + abc + ac + c + 1
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a6
[x, y]
y2 + 2x− 7y + 5
x2 + 6x + 3y − 4

a7

[x, y, z]
y2 + 2x− 7y + 2z + 5
x2 + 6x + 3y + 6z − 4
x2 + y2 + z2 − 1

a8

[x1, x2, x3]
−5x2

1 + 2x1x2 − 2x2
2 + 8x1x3 − 10x2x3 − 13x2

3 + x1 − x2

−2x2
1 − 2x2

2 − 4x1x3 − 4x2x3 − 4x2
3 + x1 + x2

6x2
1 − 4x1x2 + 3x2

2 − 8x1x3 + 10x2x3 + 13x2
3 − 1

a9

[x, y, z]
2x2 + 3y2 + 7xz + 9yz + 5z2 + 4x
3x4 + 6y3 + xyz + 3xz2 + 2yz2 + 4z2 + 5
3y4z + 7x3 + 10z3 + 8xy + 12y2 + 18xz + 12

a10
[x, y]
x4 + y4 − 1
x5y2 + x2y5 − 4x3y3 − 1

a11

[x, y, z]
2x2 + 4xy + 3y2 + 7xz + 9yz + 5z2 + 2
3x2 + xy + 6y2 + 3xz + 2yz + 4z2 + 5
7x2 + 8xy + 12y2 + 18xz + 3yz + 10z2 + 12

a12

[x, y, z]
7xy + 3yz + x + 4y + 2z + 10
x3 + x2y + 2y3 + 3xyz + 6y2z + 5xy + yz + 3x + 1
3x4 + 2x2y2 + 4x2z2 + 5z4 + 3x2y + xyz + 6y2z + xz2

a13

[x1, x2, x3]
−4x1 + x2 + x3 − 3
5x2

1 + 3x2
2 + 4x2

3 + 2x1 − 1
5x3

3 + 16x2
1 + 3x2

2 − 1

a14

[x1, x2, x3, x4]
−4x1 + x2 + x3 + x4

−4x2
1 + x2

2 + x2
3 + x2

4 + 4x1 + x2 + x3 + x4 − 3
5x3

1 + 4x2
3x4 + 3x2

2 + 2x1x4 + 4x1 + x2 + x3 + 2x4 − 1
5x4

3 + x3
4 + 16x2

1 + 3x2
2 − 4x4 − 1

a15

[x, y, z]
4x + 5y + 6
2x2z + 4y2z + 4yz2 + 3xy + 25y2 + 7xz + 2y − 3z
x2y + 3xyz + xz2 + 15x2 + xy + 9yz + 7
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a16
[x, y]
xy2 + x + y + 1
7x2y2 + x2y + x + y

a17

[t1, t2, t3]
4t22t

2
3 + 2t22 + 5t2t3 + 3t23 + 1

4t21t
2
3 + 3t21 + 5t1t3 + 2t23 + 1

4t21t
2
2 + 2t21 + 5t1t2 + 3t22 + 1

a18

[x, y, z, w]
−3w2 + x + 3y + 2z + 13
−11z2 + x + 3z + 7w − 9
4y2 + 4x + 3z + 2w + 4
5x2 + 6x + 3y + 6z + 2w + 3

a19

[x, y, z, w]
−3w2 + x + 3y + 2z + 13
−11z2 + x + 3z + 7w − 9
4y2 + 4x + 3z + 2w + 4
5x2 + 6x + 3y + 6z + 2w + 3

a20

[w, x, y, z]
−2w2 + 9wx + 8x2 + 9wy + 9xy + 6y2 − 7wz−
−3xz − 7yz − 6z2 − 4w + 8x + 4y + 8z + 2

3w2 − 5wx + 4x2 − 3wy + 2xy + 9y2 − 6wz−
−2xz + 6yz + 7z2 + 9w + 7x + 5y + 7z + 5

7w2 + 5wx + 2x2 + 3wy + 9xy − 4y2 − 5wz−
−7xz − 5yz − 4z2 − 5w + 4x + 6y − 9z + 2

8w2 + 5wx + 5x2 − 4wy + 2xy + 7y2 + 2wz−
−7xz − 8yz + 7z2 + 3w − 7x− 7y − 8z + 8

a21

[x, y, z, t]
2yzt + xt2 − x− 2z
y2z + 2xyt− 2x− z
−xz3 + 4yz2t + 4xzt2 + 2yt3 + 4xz + 4z2 − 10yt− 10t2 + 2
−x3z + 4xy2z + 4x2yt + 2y3t + 4x2 − 10y2 + 4xz − 10yt + 2

a22
[x, y]
3x2y9 + y9 + 5x4

9x3y8 + 11y10 + 9xy8

a23

[x, y, z]
x2yz + xy2z + xyz2 + xyz + xy + xz + yz
x2y2z + xy2z2 + x2yz + xyz + yz + x + z
x2y2z2 + x2y2z + xy2z + xyz + xz + z + 1
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a24

[y, z, x, t]
2yzt + xt2 − 2z − x
y2z + 2yxt− z − 2x
−z3x + 4yz2t + 4zxt2 + 2yt3 + 4z2 + 4zx− 10yt− 10t2 + 2
4y2zx− zx3 + 2y3t + 4yx2t− 10y2 + 4zx + 4x2 − 10yt + 2

a25

[t, x, y, z]
t2z + x2z + y2z + z − 1
t2y + x2y + yz2 + y − 1
tx2 + ty2 + tz2 + t− 1
t2x + xy2 + xz2 + x− 1

a26

[w, x, y, z]
−2w2 + 9wx + 8x2 + 9wy + 9xy + 6y2 − 7wz−
−3xz − 7yz − 6z2 − 4w + 8x + 4y + 8z + 2

3w2 − 5wx + 4x2 − 3wy + 2xy + 9y2 − 6wz−
−2xz + 6yz + 7z2 + 9w + 7x + 5y + 7z + 5

7w2 + 5wx + 2x2 + 3wy + 9xy − 4y2 − 5wz−
−7xz − 5yz − 4z2 − 5w + 4x + 6y − 9z + 2

8w2 + 5wx + 5x2 − 4wy + 2xy + 7y2 + 2wz−
−7xz − 8yz + 7z2 + 3w − 7x− 7y − 8z + 8

a27

[x, y, z]
xy3 + y4 − 2xz3 + yz2 − z3

x3y + 2xy2z + 2x2y
2x3y + yz3 − 3x2y + 2

a28

[z, y, x]
y4 + zy2x + z2 + y2 − 2yx + x2

z3yx− y2x3 + y4 + zy2x− 2yx
z4y + y4x− 2yx2 − 3

The following table contains examples from the article [6] by Amrhein,
Gloor, and Küchlin.

Ex1

[z, y, x]
xy3 + y4 + yz2 − z3 − 2xz3

2x2y + x3y + 2xy2z
2− 3x2y + 2x3y + yz3

Ex2

[z, y, x]
x + 3xy3 + y4 + yz2

−x2z + 2y3z + z2 + 2yz2 + 3xyz2

3x3 + xy2 + yz2 − 2xz3



Ex3

[z, y, x]
x2 + y4 + x3z + yz − 2xz3

x2y2 + y3z + z3 + 3yz3

y4 − x2z + 2y2z − 2xyz2

s6

[x1, x2, x3, x4, x5, x6]
2x6x2 + 2x5x3 + x2

4 + x2
1 + x1

2x6x3 + 2x5x4 + 2x2x1 + x2

2x6x4 + x2
5 + 2x3x1 + x3 + x2

2

2x6x5 + 2x4x1 + x4 + 2x3x2

x2
6 + 2x5x1 + x5 + 2x4x2 + x2

3

2x6x1 + x6 + 2x5x2 + 2x4x3

s7

[x1, x2, x3, x4, x5, x6, x7]
2x7x2 + 2x6x3 + 2x5x4 + x2

1 + x1

2x7x3 + 2x6x4 + x2
5 + 2x2x1 + x2

2x7x4 + 2x6x5 + 2x3x1 + x3 + x2
2

2x7x5 + x2
6 + 2x4x1 + x4 + 2x3x2

2x7x6 + 2x5x1 + x5 + 2x4x2 + x2
3

x2
7 + 2x6x1 + x6 + 2x5x2 + 2x4x3

2x7x1 + x7 + 2x6x2 + 2x5x3 + x2
4

Positive dimensional systems

b1

Neff-89
[z, y, x]
2zy + 2y2zx + x2 − 3z − y − 2x
z2 − 8zy − 4y2 + 4zx + 3x2 − 4x + 1

b2

Wang-92c
[d, c, b, a]
−3dc + b2 − 2a + 2
−3da2 − 4cb + 2b2 − 6ca + 3ba
−3dc2 + cb2 − da + b

b4

TD-89
[x, y, z, t]
x8 − z
x10 − t
x31 − x6 − x− y
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Curriculum vitae
Geboren 1966 in Trento (Italien), Kindheit und Jugend in Catania, Cosenza
und Udine.
Studium der Mathematik in Bologna 1985-1992.
Dr.-Studium am RISC Institut in Linz 1992-1996.
Verschiedene Jobs als Programmiererin in Linz, Salzburg und Wien 1996-
2003.
Wissenschaftliche Arbeiten:

• Aspetti algoritmici in algebra commutativa, Diplomarbeit, Universität
Bologna, 1992

• On the transformation of Gröbner bases, Präsentation im CoCoA IV
Workshop, 1995

• Linear algebra methods for the transformation of Gröbner bases, Tech. Rep.
RISC No. 95-54, 1995

• On the classification of term orderings types, WSEAS Transactions on
Mathematics, 2(30), 2003


