
Introduction to Unification Theory
Syntactic Unification

Temur Kutsia

RISC, Johannes Kepler University of Linz, Austria
kutsia@risc.uni-linz.ac.at

Overview

Motivation

Brief History

Preliminaries

Unification Algorithm

Outline

Motivation

Brief History

Preliminaries

Unification Algorithm

What is Unification
I Goal: Identify two symbolic expressions.
I Method: Replace certain subexpressions (variables) by

other expressions.

Example

I Goal: Identify f (x ,a) and f (b, y).
I Method: Replace the variable x by b, and the variable y

by a. Both initial expressions become f (b,a).
I Of course, one should know what expressions are

variables, and what are not.
(Syntax: variables, function symbols, terms, etc.)

I The substitution {x 7→ b, y 7→ a} unifies the terms f (x ,a)
and f (b, y).

I Solving the equation f (x ,a) = f (b, y) for x and y .

What is Unification
I Goal: Identify two symbolic expressions.
I Method: Replace certain subexpressions (variables) by

other expressions.

Example

I Goal: Identify f (x ,a) and f (b, y).
I Method: Replace the variable x by b, and the variable y

by a. Both initial expressions become f (b,a).

I Of course, one should know what expressions are
variables, and what are not.
(Syntax: variables, function symbols, terms, etc.)

I The substitution {x 7→ b, y 7→ a} unifies the terms f (x ,a)
and f (b, y).

I Solving the equation f (x ,a) = f (b, y) for x and y .

What is Unification
I Goal: Identify two symbolic expressions.
I Method: Replace certain subexpressions (variables) by

other expressions.

Example

I Goal: Identify f (x ,a) and f (b, y).
I Method: Replace the variable x by b, and the variable y

by a. Both initial expressions become f (b,a).
I Of course, one should know what expressions are

variables, and what are not.
(Syntax: variables, function symbols, terms, etc.)

I The substitution {x 7→ b, y 7→ a} unifies the terms f (x ,a)
and f (b, y).

I Solving the equation f (x ,a) = f (b, y) for x and y .

What is Unification
I Goal: Identify two symbolic expressions.
I Method: Replace certain subexpressions (variables) by

other expressions.

Example

I Goal: Identify f (x ,a) and f (b, y).
I Method: Replace the variable x by b, and the variable y

by a. Both initial expressions become f (b,a).
I Of course, one should know what expressions are

variables, and what are not.
(Syntax: variables, function symbols, terms, etc.)

I The substitution {x 7→ b, y 7→ a} unifies the terms f (x ,a)
and f (b, y).

I Solving the equation f (x ,a) = f (b, y) for x and y .

What is Unification
I Goal: Identify two symbolic expressions.
I Method: Replace certain subexpressions (variables) by

other expressions.

Example

I Goal: Identify f (x ,a) and f (b, y).
I Method: Replace the variable x by b, and the variable y

by a. Both initial expressions become f (b,a).
I Of course, one should know what expressions are

variables, and what are not.
(Syntax: variables, function symbols, terms, etc.)

I The substitution {x 7→ b, y 7→ a} unifies the terms f (x ,a)
and f (b, y).

I Solving the equation f (x ,a) = f (b, y) for x and y .

What is Unification
I Goal of unification: Identify two symbolic expressions.
I Method: Replace certain subexpressions (variables) by

other expressions.

Depending what is meant under "identify" (syntactic identity or
equality modulo some equations) one speaks about syntactic
unification or equational unification.

Example

I The terms f (x ,a) and g(a, x) are not syntactically unifiable.
I However, they are unifiable modulo the equation

f (a,a) = g(a,a) with the substitution {x 7→ a}.

What is Unification
I Goal of unification: Identify two symbolic expressions.
I Method: Replace certain subexpressions (variables) by

other expressions.

Depending at which positions the variables are allowed to
occur, and which kind of expressions they are allowed to be
replaced by, one speaks about first-order unification or
higher-order unification.

Example

I If G and x are variables, the terms f (x ,a) and G(a, x) can
not be subjected to first-order unification.

I G(a, x) is not a first-order term: G occurs in the top
position.

I However, f (x ,a) and G(a, x) can be unified by higher-order
unification with the substitution {x 7→ a,G 7→ f}.

What is Unification Good For?

I To make an inference step in theorem proving.
I To perform an inference in logic programming.
I To make a rewriting step in term rewriting.
I To generate a critical pair in completion.
I To extract a part from structured or semistructured data

(e.g. from an XML document).
I For type inference in programming languages.
I For matching in pattern-based languages.
I For program schemas manipulation and software

engineering.
I For various formalisms in computational linguistics.
I etc.

What this Course Is (Not) About

The course gives an introduction to
I First-order syntactic unification.
I Higher-order unification.
I Applications of unification.

There are many interesting topics not considered here.
Among them

I first- and higher-order equational unification.
I Their (order)-sorted counterparts.

What this Course Is (Not) About

The course gives an introduction to
I First-order syntactic unification.
I Higher-order unification.
I Applications of unification.

There are many interesting topics not considered here.
Among them

I first- and higher-order equational unification.
I Their (order)-sorted counterparts.

Plan of the Course

I This lecture: First-order syntactic unification. Recursive
Descent Algorithm.

I Second lecture: Improved algorithms for first-order
syntactic unification.

I Third lecture: Higher-order unification.
I Fourth lecture: Applications of unification.

Reading

We will basically follow the following papers:

F. Baader and W. Snyder.
Unification Theory.
In A. Robinson and A. Voronkov, editors, Handbook of
Automated Reasoning, pages 447–533. Elsevier, 2001.

F. Baader and J. Siekmann.
Unification Theory.
In D. Gabbay, C. Hogger and A. Robinson, editors,
Handbook of Logic in Artificial Intelligence and Logic
Programming, Oxford University Press, 1994.

W. Snyder and J. Gallier.
Higher-Order Unification Revisited: Complete Sets of
Transformations.
J. Symbolic Computation, 8(1–2), 101–140, 1989.

Reading
Other literature used:

F. Baader and T. Nipkow.
Term Rewriting and All That.
Cambridge University Press, 1998.

G. Dowek.
Higher Order Unification and Matching.
In A. Robinson and A. Voronkov, editors, Handbook of
Automated Reasoning, pages 1009–1062. Elsevier, 2001.

C. Kirchner (ed.)
Unification.
Academic Press, London, 1990.

C. Kirchner and H. Kirchner.
Rewriting, Solving, Proving.

K. Knight.
Unification: A Multidisciplinary Survey.
ACM Computing Surveys, 21(1), 1989.

as well as results from various papers.

Outline

Motivation

Brief History

Preliminaries

Unification Algorithm

Brief History

1920s: Emil Posts diary and notes contain the first hint of the
concept of a unification algorithm that computes a most
general representative as opposed to all possible
instantiations.

1930: The first explicit account of unification algorithm was given
in Jacques Herbrand’s doctoral thesis. It was the first
published unification algorithm and was based on a
technique later rediscovered by Alberto Martelli and Ugo
Montanari, still in use today.

1962: First implementation of unification algorithm at Bell Labs,
as a part of the proof procedure that combined Prawitz’s
and Davis-Putnam methods.

1964: Jim Guard’s team at Applied Logic Corporation started
working on higher-order versions of unification.

Brief History

1920s: Emil Posts diary and notes contain the first hint of the
concept of a unification algorithm that computes a most
general representative as opposed to all possible
instantiations.

1930: The first explicit account of unification algorithm was given
in Jacques Herbrand’s doctoral thesis. It was the first
published unification algorithm and was based on a
technique later rediscovered by Alberto Martelli and Ugo
Montanari, still in use today.

1962: First implementation of unification algorithm at Bell Labs,
as a part of the proof procedure that combined Prawitz’s
and Davis-Putnam methods.

1964: Jim Guard’s team at Applied Logic Corporation started
working on higher-order versions of unification.

Brief History

1920s: Emil Posts diary and notes contain the first hint of the
concept of a unification algorithm that computes a most
general representative as opposed to all possible
instantiations.

1930: The first explicit account of unification algorithm was given
in Jacques Herbrand’s doctoral thesis. It was the first
published unification algorithm and was based on a
technique later rediscovered by Alberto Martelli and Ugo
Montanari, still in use today.

1962: First implementation of unification algorithm at Bell Labs,
as a part of the proof procedure that combined Prawitz’s
and Davis-Putnam methods.

1964: Jim Guard’s team at Applied Logic Corporation started
working on higher-order versions of unification.

Brief History

1920s: Emil Posts diary and notes contain the first hint of the
concept of a unification algorithm that computes a most
general representative as opposed to all possible
instantiations.

1930: The first explicit account of unification algorithm was given
in Jacques Herbrand’s doctoral thesis. It was the first
published unification algorithm and was based on a
technique later rediscovered by Alberto Martelli and Ugo
Montanari, still in use today.

1962: First implementation of unification algorithm at Bell Labs,
as a part of the proof procedure that combined Prawitz’s
and Davis-Putnam methods.

1964: Jim Guard’s team at Applied Logic Corporation started
working on higher-order versions of unification.

Brief History

1965: Alan Robinson introduced unification as the basic
operation of his resolution principle, and gave a formal
account of an algorithm that computes a most general
unifier for first-order terms. This paper (A Machine
Oriented Logic Based on the Resolution Principle, J. ACM)
has been the most influential paper in the field. The name
"unification" was first used in this work.

1967: Donald Knuth and Peter Bendix independently reinvented
"unification" and “most general unifier” as a tool for testing
term rewriting systems for local confluence by computing
critical pairs.

1972: Gerard Huet and Claudio Lucchesi showed undecidability
of higher-order unification. Warren Goldfarb sharpened the
result later (in 1981).

Brief History

1965: Alan Robinson introduced unification as the basic
operation of his resolution principle, and gave a formal
account of an algorithm that computes a most general
unifier for first-order terms. This paper (A Machine
Oriented Logic Based on the Resolution Principle, J. ACM)
has been the most influential paper in the field. The name
"unification" was first used in this work.

1967: Donald Knuth and Peter Bendix independently reinvented
"unification" and “most general unifier” as a tool for testing
term rewriting systems for local confluence by computing
critical pairs.

1972: Gerard Huet and Claudio Lucchesi showed undecidability
of higher-order unification. Warren Goldfarb sharpened the
result later (in 1981).

Brief History

1965: Alan Robinson introduced unification as the basic
operation of his resolution principle, and gave a formal
account of an algorithm that computes a most general
unifier for first-order terms. This paper (A Machine
Oriented Logic Based on the Resolution Principle, J. ACM)
has been the most influential paper in the field. The name
"unification" was first used in this work.

1967: Donald Knuth and Peter Bendix independently reinvented
"unification" and “most general unifier” as a tool for testing
term rewriting systems for local confluence by computing
critical pairs.

1972: Gerard Huet and Claudio Lucchesi showed undecidability
of higher-order unification. Warren Goldfarb sharpened the
result later (in 1981).

Brief History

1972: Gordon Plotkin showed how to build certain equational
axioms into the inference rule for proving (resolution)
without loosing completeness, replacing syntactic
unification by unification modulo the equational theory
induced by the axioms to be built in.

1972: Huet developed a constrained resolution method for
higher-order theorem proving, based on an ω-order
unification algorithm. Peter Andrews and the collaborators
later implemented the method in the TPS system.

1976: Huet further developed this work in his Thèse d’État. A
fundamental contribution in the field of first- and
higher-order unification theory.

Brief History

1972: Gordon Plotkin showed how to build certain equational
axioms into the inference rule for proving (resolution)
without loosing completeness, replacing syntactic
unification by unification modulo the equational theory
induced by the axioms to be built in.

1972: Huet developed a constrained resolution method for
higher-order theorem proving, based on an ω-order
unification algorithm. Peter Andrews and the collaborators
later implemented the method in the TPS system.

1976: Huet further developed this work in his Thèse d’État. A
fundamental contribution in the field of first- and
higher-order unification theory.

Brief History

1972: Gordon Plotkin showed how to build certain equational
axioms into the inference rule for proving (resolution)
without loosing completeness, replacing syntactic
unification by unification modulo the equational theory
induced by the axioms to be built in.

1972: Huet developed a constrained resolution method for
higher-order theorem proving, based on an ω-order
unification algorithm. Peter Andrews and the collaborators
later implemented the method in the TPS system.

1976: Huet further developed this work in his Thèse d’État. A
fundamental contribution in the field of first- and
higher-order unification theory.

Brief History

1978: Jörg Siekmann in his thesis introduced unification
hierarchy and suggested that unification theory was worthy
of study as a field in its own right.

1980s: Further improvement of unification algorithms, starting
series of Unification Workshops (UNIF).

1990s: Maturing the field, broadening application areas,
combination method of Franz Baader and Klaus Schulz.

2006: Colin Stirling proved decidability of higher-order matching,
an open problem for 30 years.

Brief History

1978: Jörg Siekmann in his thesis introduced unification
hierarchy and suggested that unification theory was worthy
of study as a field in its own right.

1980s: Further improvement of unification algorithms, starting
series of Unification Workshops (UNIF).

1990s: Maturing the field, broadening application areas,
combination method of Franz Baader and Klaus Schulz.

2006: Colin Stirling proved decidability of higher-order matching,
an open problem for 30 years.

Brief History

1978: Jörg Siekmann in his thesis introduced unification
hierarchy and suggested that unification theory was worthy
of study as a field in its own right.

1980s: Further improvement of unification algorithms, starting
series of Unification Workshops (UNIF).

1990s: Maturing the field, broadening application areas,
combination method of Franz Baader and Klaus Schulz.

2006: Colin Stirling proved decidability of higher-order matching,
an open problem for 30 years.

Brief History

1978: Jörg Siekmann in his thesis introduced unification
hierarchy and suggested that unification theory was worthy
of study as a field in its own right.

1980s: Further improvement of unification algorithms, starting
series of Unification Workshops (UNIF).

1990s: Maturing the field, broadening application areas,
combination method of Franz Baader and Klaus Schulz.

2006: Colin Stirling proved decidability of higher-order matching,
an open problem for 30 years.

Outline

Motivation

Brief History

Preliminaries

Unification Algorithm

Terms

Alphabet:

I A set of fixed arity function symbols F .
I A countable set of variables V.
I F and V are disjoint.

Terms over F and V:

t ::= x | f (t1, . . . , tn),

where
I n ≥ 0,
I x is a variable,
I f is an n-ary function symbol.

Terms

Conventions, notation:

I Constants: 0-ary function symbols.
I x , y , z denote variables.
I a,b, c denote constants.
I f ,g,h denote arbitrary function symbols.
I s, t , r denote terms.
I Parentheses omitted in terms with the empty list of

arguments: a instead of a().

Terms

Conventions, notation:

I Ground terms: terms without variables.
I T (F ,V): the set of terms over F and V.
I T (F): the set of ground terms over F .
I Equation: a pair of terms, written s .

= t .
I vars(t): the set of variables in t . This notation will be used

also for sets of terms, equations, and sets of equations.

Terms

Example

I f (x ,g(x ,a), y) is a term, where f is ternary, g is binary, a is
constant.

I vars(f (x ,g(x ,a), y)) = {x , y}.
I f (b,g(b,a), c) is a ground term.
I vars(f (b,g(b,a), c)) = ∅.

Substitutions

Substitution
I A mapping from variables to terms, where all but finitely

many variables are mapped to themselves.

Example
A substitution is represented as a set of bindings:

I {x 7→ f (a,b), y 7→ z}.
I {x 7→ f (x , y), y 7→ f (x , y)}.

All variables except x and y are mapped to themselves by
these substitutions.

Notation
I σ, ϑ, η, ρ denote arbitrary substitutions.
I ε denotes the identity substitution.

Substitutions

Substitution Application
Applying a substitution σ to a term t :

tσ =

{
σ(x) if t = x
f (t1σ, . . . , tnσ) if t = f (t1, . . . , tn)

Example

I σ = {x 7→ f (x , y), y 7→ g(a)}.
I t = f (x ,g(f (x , f (y , z)))).
I tσ = f (f (x , y),g(f (f (x , y), f (g(a), z)))).

Substitutions

Domain, Range, Variable Range
For a substitution σ:

I The domain is the set of variables:

dom(σ) = {x | xσ 6= x}.

I The range is the set of terms:

ran(σ) =
⋃

x∈dom(σ)

{xσ}.

I The variable range is the set of variables:

vran(σ) = vars(ran(σ)).

Substitutions

Example (Domain, Range, Variable Range)

dom({x 7→ f (a, y), y 7→ g(z)}) = {x , y}
ran({x 7→ f (a, y), y 7→ g(z)}) = {f (a, y),g(z)}

vran({x 7→ f (a, y), y 7→ g(z)}) = {y , z}

dom({x 7→ f (a,b), y 7→ g(c)}) = {x , y}
ran({x 7→ f (a,b), y 7→ g(c)}) = {f (a,b),g(c)}

vran({x 7→ f (a,b), y 7→ g(c)}) = ∅ (ground substitution)

dom(ε) = ∅
ran(ε) = ∅

vran(ε) = ∅

Substitutions

Restriction
Restriction of a substitution σ on a set of variables X :
A substitution σ|X such that for all x

xσ|X =

{
xσ if x ∈ X
x otherwise

Example

I {x 7→ f (a), y 7→ x , z 7→ b}|{x ,y} = {x 7→ f (a), y 7→ x}.
I {x 7→ f (a), z 7→ b}|{x ,y} = {x 7→ f (a)}.
I {z 7→ b}|{x ,y} = ε.

Substitutions

Composition of Substitutions

I Written: σϑ.
I t(σϑ) = (tσ)ϑ.
I Algorithm for constructing the representation of the

composition σϑ:
1. σ and ϑ are given by their representation.
2. Apply ϑ to every term in ran(σ) to obtain σ1.
3. Remove from ϑ any binding x 7→ t with x ∈ dom(σ) to

obtain ϑ1.
4. Remove from σ1 any trivial binding x 7→ x to obtain σ2.
5. Take the union of the sets of bindings σ2 and ϑ1.

Jump to RDA

Substitutions

Example (Composition)
σ = {x 7→ f (y), y 7→ z}
ϑ = {x 7→ a, y 7→ b, z 7→ y}

1. σ1 = {x 7→ f (y)ϑ, y 7→ zϑ} = {x 7→ f (b), y 7→ y}
2. ϑ1 = {z 7→ y}
3. σ2 = {x 7→ f (b)}
4. σϑ = {x 7→ f (b), z 7→ y}

Composition is not commutative:

ϑσ = {x 7→ a, y 7→ b} 6= σϑ.

Substitutions

Elementary Properties of Substitutions

Theorem
I Composition of substitutions is associative.
I For all X ⊆ V, t and σ, if vars(t) ⊆ X then tσ = tσ|X .
I For all σ, ϑ, and t, if tσ = tϑ then tσ|vars(t) = tϑ|vars(t)

Proof.
Exercise.

Substitutions

Triangular Form
Sequential list of bindings:

[x1 7→ t1; x2 7→ t2; . . . ; xn 7→ tn],

represents composition of n substitutions each consisting of a
single binding:

{x1 7→ t1}{x2 7→ t2} . . . {xn 7→ tn}.

Substitutions

Variable Renaming, Inverse
A substitution σ = {x1 7→ y1, x2 7→ y2, . . . , xn 7→ yn} is called
variable renaming iff

I y ’s are distinct variables, and
I {x1, . . . , xn} = {y1, . . . , yn}.

The inverse of σ, denoted σ−1, is the substitution

σ−1 = {y1 7→ x1, y2 7→ x2, . . . , yn 7→ xn}

Example

I {x 7→ y , y 7→ z, z 7→ x} is a variable renaming.
I {x 7→ a}, {x 7→ y}, and {x 7→ z, y 7→ z} are not.

Substitutions

Idempotent Substitution
A substitution σ is idempotent iff σσ = σ.

Example
Let σ = {x 7→ f (z), y 7→ z}, ϑ = {x 7→ f (y), y 7→ z}.

I σ is idempotent.
I ϑ is not: ϑϑ = σ 6= ϑ.

Theorem
σ is idempotent iff dom(σ) ∩ vran(σ) = ∅.

Proof.
Exercise.

Substitutions

Instantiation Quasi-Ordering

I A substitution σ is more general than ϑ, written σ ≤· ϑ, if
there exists η such that ση = ϑ.

I The relation ≤· is quasi-ordering (reflexive and transitive
binary relation), called instantiation quasi-ordering.

I =· is the equivalence relation corresponding to ≤·.

Example
Let σ = {x 7→ y}, ρ = {x 7→ a, y 7→ a}, ϑ = {y 7→ x}.

I σ ≤· ρ, because σ{y 7→ a} = ρ.
I σ ≤· ϑ, because σ{y 7→ x} = ϑ.
I ϑ ≤· σ, because ϑ{x 7→ y} = σ.
I σ =· ϑ.

Substitutions

Theorem
For any σ and ϑ, σ =· ϑ iff there exists a variable renaming
substitution η such that ση = ϑ.

Proof.
Exercise.

Example
σ, ϑ from the previous example:

I σ = {x 7→ y}.
I ϑ = {y 7→ x}.
I σ =· ϑ.
I σ{x 7→ y , y 7→ x} = ϑ.

Substitutions

Unifier, Most General Unifier

I A substitution σ is a unifier of the terms s and t if sσ = tσ.
I A unifier σ of s and t is a most general unifier (mgu) if
σ ≤· ϑ for every unifier ϑ of s and t .

I A unification problem for s and t is represented as s .
=? t .

Substitutions
Example (Unifier, Most General Unifier)
Unification problem: f (x , z)

.
=? f (y ,g(a)).

I Some of the unifiers:

{x 7→ y , z 7→ g(a)}
{y 7→ x , z 7→ g(a)}
{x 7→ a, y 7→ a, z 7→ g(a)}
{x 7→ g(a), y 7→ g(a), z 7→ g(a)}
{x 7→ f (x , y), y 7→ f (x , y), z 7→ g(a)}
. . .

I mgu’s: {x 7→ y , z 7→ g(a)}, {y 7→ x , z 7→ g(a)}.
I mgu is unique up to a variable renaming:

{x 7→ y , z 7→ g(a)} =· {y 7→ x , z 7→ g(a)}

Outline

Motivation

Brief History

Preliminaries

Unification Algorithm

Unification Algorithm

I Goal: Design an algorithm that for a given unification
problem s .

=? t
I returns an mgu of s and t if they are unifiable,
I reports failure otherwise.

Naive Algorithm

Write down two terms and set markers at the beginning of the
terms. Then:

1. Move the markers simultaneously, one symbol at a time,
until both move off the end of the term (success), or until
they point to two different symbols;

2. If the two symbols are both non-variables, then fail;
otherwise, one is a variable (call it x) and the other one is
the first symbol of a subterm (call it t):

I If x occurs in t , then fail;
I Otherwise, replace x everywhere by t (including in the

solution), write down "x 7→ t" as a part of the solution, and
return to 1.

Naive Algorithm

I Finds disagreements in the two terms to be unified.
I Attempts to repair the disagreements by binding variables

to terms.
I Fails when function symbols clash, or when an attempt is

made to unify a variable with a term containing that
variable.

Example

f (x ,g(a),g(z))

f (g(y),g(y),g(g(x)))

f (x ,g(a),g(z))

f (g(y),g(y),g(g(x)))

f (x ,g(a),g(z))

f (g(y),g(y),g(g(x)))f (g(y),g(y),g(g(x)))f (g(y),g(y),g(g(g(y))))

f (g(y),g(a),g(z))f (g(y),g(a),g(z))

f (g(y),g(y),g(g(g(y))))f (g(y),g(y),g(g(g(y))))

f (g(y),g(a),g(z))

f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(z))

f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(z))

f (g(a),g(a),g(g(g(a))))f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(z))f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(g(g(a))))

Example

f (x ,g(a),g(z))

f (g(y),g(y),g(g(x)))

f (x ,g(a),g(z))

f (g(y),g(y),g(g(x)))

f (x ,g(a),g(z))

f (g(y),g(y),g(g(x)))f (g(y),g(y),g(g(x)))f (g(y),g(y),g(g(g(y))))

f (g(y),g(a),g(z))f (g(y),g(a),g(z))

f (g(y),g(y),g(g(g(y))))f (g(y),g(y),g(g(g(y))))

f (g(y),g(a),g(z))

f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(z))

f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(z))

f (g(a),g(a),g(g(g(a))))f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(z))f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(g(g(a))))

Example

f (x ,g(a),g(z))

f (g(y),g(y),g(g(x)))

f (x ,g(a),g(z))

f (g(y),g(y),g(g(x)))

f (x ,g(a),g(z))

f (g(y),g(y),g(g(x)))

f (g(y),g(y),g(g(x)))f (g(y),g(y),g(g(g(y))))

f (g(y),g(a),g(z))f (g(y),g(a),g(z))

f (g(y),g(y),g(g(g(y))))f (g(y),g(y),g(g(g(y))))

f (g(y),g(a),g(z))

f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(z))

f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(z))

f (g(a),g(a),g(g(g(a))))f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(z))f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(g(g(a))))

Example

f (x ,g(a),g(z))

f (g(y),g(y),g(g(x)))

f (x ,g(a),g(z))

f (g(y),g(y),g(g(x)))

f (x ,g(a),g(z))

f (g(y),g(y),g(g(x)))

f (g(y),g(y),g(g(x)))

f (g(y),g(y),g(g(g(y))))

f (g(y),g(a),g(z))f (g(y),g(a),g(z))

f (g(y),g(y),g(g(g(y))))f (g(y),g(y),g(g(g(y))))

f (g(y),g(a),g(z))

f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(z))

f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(z))

f (g(a),g(a),g(g(g(a))))f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(z))f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(g(g(a))))

Example

f (x ,g(a),g(z))

f (g(y),g(y),g(g(x)))

f (x ,g(a),g(z))

f (g(y),g(y),g(g(x)))

f (x ,g(a),g(z))

f (g(y),g(y),g(g(x)))f (g(y),g(y),g(g(x)))

f (g(y),g(y),g(g(g(y))))

f (g(y),g(a),g(z))

f (g(y),g(a),g(z))

f (g(y),g(y),g(g(g(y))))f (g(y),g(y),g(g(g(y))))

f (g(y),g(a),g(z))

f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(z))

f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(z))

f (g(a),g(a),g(g(g(a))))f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(z))f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(g(g(a))))

Example

f (x ,g(a),g(z))

f (g(y),g(y),g(g(x)))

f (x ,g(a),g(z))

f (g(y),g(y),g(g(x)))

f (x ,g(a),g(z))

f (g(y),g(y),g(g(x)))f (g(y),g(y),g(g(x)))

f (g(y),g(y),g(g(g(y))))

f (g(y),g(a),g(z))

f (g(y),g(a),g(z))

f (g(y),g(y),g(g(g(y))))f (g(y),g(y),g(g(g(y))))

f (g(y),g(a),g(z))

f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(z))

f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(z))

f (g(a),g(a),g(g(g(a))))f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(z))f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(g(g(a))))

{x 7→ g(y)}

Example

f (x ,g(a),g(z))

f (g(y),g(y),g(g(x)))

f (x ,g(a),g(z))

f (g(y),g(y),g(g(x)))

f (x ,g(a),g(z))

f (g(y),g(y),g(g(x)))f (g(y),g(y),g(g(x)))f (g(y),g(y),g(g(g(y))))

f (g(y),g(a),g(z))

f (g(y),g(a),g(z))

f (g(y),g(y),g(g(g(y))))

f (g(y),g(y),g(g(g(y))))

f (g(y),g(a),g(z))

f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(z))

f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(z))

f (g(a),g(a),g(g(g(a))))f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(z))f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(g(g(a))))

{x 7→ g(y)}

Example

f (x ,g(a),g(z))

f (g(y),g(y),g(g(x)))

f (x ,g(a),g(z))

f (g(y),g(y),g(g(x)))

f (x ,g(a),g(z))

f (g(y),g(y),g(g(x)))f (g(y),g(y),g(g(x)))f (g(y),g(y),g(g(g(y))))

f (g(y),g(a),g(z))f (g(y),g(a),g(z))

f (g(y),g(y),g(g(g(y))))

f (g(y),g(y),g(g(g(y))))

f (g(y),g(a),g(z))

f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(z))

f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(z))

f (g(a),g(a),g(g(g(a))))f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(z))f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(g(g(a))))

{x 7→ g(y)}

Example

f (x ,g(a),g(z))

f (g(y),g(y),g(g(x)))

f (x ,g(a),g(z))

f (g(y),g(y),g(g(x)))

f (x ,g(a),g(z))

f (g(y),g(y),g(g(x)))f (g(y),g(y),g(g(x)))f (g(y),g(y),g(g(g(y))))

f (g(y),g(a),g(z))f (g(y),g(a),g(z))

f (g(y),g(y),g(g(g(y))))f (g(y),g(y),g(g(g(y))))

f (g(y),g(a),g(z))

f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(z))

f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(z))

f (g(a),g(a),g(g(g(a))))f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(z))f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(g(g(a))))

{x 7→ g(a)}

Example

f (x ,g(a),g(z))

f (g(y),g(y),g(g(x)))

f (x ,g(a),g(z))

f (g(y),g(y),g(g(x)))

f (x ,g(a),g(z))

f (g(y),g(y),g(g(x)))f (g(y),g(y),g(g(x)))f (g(y),g(y),g(g(g(y))))

f (g(y),g(a),g(z))f (g(y),g(a),g(z))

f (g(y),g(y),g(g(g(y))))f (g(y),g(y),g(g(g(y))))

f (g(y),g(a),g(z))

f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(z))

f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(z))

f (g(a),g(a),g(g(g(a))))f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(z))f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(g(g(a))))

{x 7→ g(a), y 7→ a}

Example

f (x ,g(a),g(z))

f (g(y),g(y),g(g(x)))

f (x ,g(a),g(z))

f (g(y),g(y),g(g(x)))

f (x ,g(a),g(z))

f (g(y),g(y),g(g(x)))f (g(y),g(y),g(g(x)))f (g(y),g(y),g(g(g(y))))

f (g(y),g(a),g(z))f (g(y),g(a),g(z))

f (g(y),g(y),g(g(g(y))))f (g(y),g(y),g(g(g(y))))

f (g(y),g(a),g(z))

f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(z))

f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(z))

f (g(a),g(a),g(g(g(a))))f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(z))f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(g(g(a))))

{x 7→ g(a), y 7→ a}

Example

f (x ,g(a),g(z))

f (g(y),g(y),g(g(x)))

f (x ,g(a),g(z))

f (g(y),g(y),g(g(x)))

f (x ,g(a),g(z))

f (g(y),g(y),g(g(x)))f (g(y),g(y),g(g(x)))f (g(y),g(y),g(g(g(y))))

f (g(y),g(a),g(z))f (g(y),g(a),g(z))

f (g(y),g(y),g(g(g(y))))f (g(y),g(y),g(g(g(y))))

f (g(y),g(a),g(z))

f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(z))

f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(z))

f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(z))

f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(g(g(a))))

{x 7→ g(a), y 7→ a}

Example

f (x ,g(a),g(z))

f (g(y),g(y),g(g(x)))

f (x ,g(a),g(z))

f (g(y),g(y),g(g(x)))

f (x ,g(a),g(z))

f (g(y),g(y),g(g(x)))f (g(y),g(y),g(g(x)))f (g(y),g(y),g(g(g(y))))

f (g(y),g(a),g(z))f (g(y),g(a),g(z))

f (g(y),g(y),g(g(g(y))))f (g(y),g(y),g(g(g(y))))

f (g(y),g(a),g(z))

f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(z))

f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(z))

f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(z))

f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(g(g(a))))

{x 7→ g(a), y 7→ a}

Example

f (x ,g(a),g(z))

f (g(y),g(y),g(g(x)))

f (x ,g(a),g(z))

f (g(y),g(y),g(g(x)))

f (x ,g(a),g(z))

f (g(y),g(y),g(g(x)))f (g(y),g(y),g(g(x)))f (g(y),g(y),g(g(g(y))))

f (g(y),g(a),g(z))f (g(y),g(a),g(z))

f (g(y),g(y),g(g(g(y))))f (g(y),g(y),g(g(g(y))))

f (g(y),g(a),g(z))

f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(z))

f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(z))

f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(z))

f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(g(g(a))))

{x 7→ g(a), y 7→ a}

Example

f (x ,g(a),g(z))

f (g(y),g(y),g(g(x)))

f (x ,g(a),g(z))

f (g(y),g(y),g(g(x)))

f (x ,g(a),g(z))

f (g(y),g(y),g(g(x)))f (g(y),g(y),g(g(x)))f (g(y),g(y),g(g(g(y))))

f (g(y),g(a),g(z))f (g(y),g(a),g(z))

f (g(y),g(y),g(g(g(y))))f (g(y),g(y),g(g(g(y))))

f (g(y),g(a),g(z))

f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(z))

f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(z))

f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(z))

f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(g(g(a))))

{x 7→ g(a), y 7→ a, z 7→ g(g(a))}

Example

f (x ,g(a),g(z))

f (g(y),g(y),g(g(x)))

f (x ,g(a),g(z))

f (g(y),g(y),g(g(x)))

f (x ,g(a),g(z))

f (g(y),g(y),g(g(x)))f (g(y),g(y),g(g(x)))f (g(y),g(y),g(g(g(y))))

f (g(y),g(a),g(z))f (g(y),g(a),g(z))

f (g(y),g(y),g(g(g(y))))f (g(y),g(y),g(g(g(y))))

f (g(y),g(a),g(z))

f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(z))

f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(z))

f (g(a),g(a),g(g(g(a))))f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(z))f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(g(g(a))))

f (g(a),g(a),g(g(g(a))))

{x 7→ g(a), y 7→ a, z 7→ g(g(a))}

Interesting Questions

Implementation:
I What data structures should be used for terms and

substitutions?
I How should application of a substitution be implemented?
I What order should the operations be performed in?

Correctness:
I Does the algorithm always terminate?
I Does it always produce an mgu for two unifiable terms, and

fail for non-unifiable terms?
I Do these answers depend on the order of operations?

Complexity:
I How much space does this take, and how much time?

Answers

On the coming slides, for various unification algorithms.

Implementation: Unification by Recursive Descent

Implementation of the naive algorithm:
I Term representation: either by explicit pointer structures or

by built-in recursive data types (depending on the
implementation language).

I Substitution representation: a list of pairs of terms.
I Application of a substitution: constructing a new term or

replacing a variable with a new term.
I The left-to-right search for disagreements: implemented by

recursive descent through the terms.

Unification by Recursive Descent

Input: Terms s and t
Output: An mgu of s and t
Global: Substitution σ. Initialized to ε

Unify (s,t)
begin

if s is a variable then s := sσ; t := tσ;
Print(s, ’ .=? ’, t , ’σ = ’, σ);
if s is a variable and s = t then Do nothing;
else if s = f (s1, . . . , sn) and t = g(t1, . . . , tm), n,m ≥ 0 then

if f = g then for i := 1 to n do Unify (si , ti);
else Exit with failure;

else if s is not a variable then Unify (t , s);
else if s occurs in t then Exit with failure;
else σ := σ{s 7→ t};

end
Algorithm 1: Recursive descent algorithm

Recursive Descent Algorithm

I Implementation of substitution composition: Without the
steps 3 and 4 of the composition algorithm. Jump to composition

I Reason: When a binding x 7→ t created and applied, x
does not appear in the terms anymore.

The Recursive Descent Algorithm is essentially the Robinson’s
Unification Algorithm.

Example

s = f (x ,g(a),g(z)), t = f (g(y),g(y),g(g(x))), σ = ε.

Printing outputs are given in blue.

Unify(f (x ,g(a),g(z)), f (g(y),g(y),g(g(x))))

f (x ,g(a),g(z))
.

=? f (g(y),g(y),g(g(x))), σ = ε

Unify(x ,g(y))

x .
=? g(y), σ = ε

Unify(g(a),g(y))

g(a)
.

=? g(y), σ = {x 7→ g(y)}

Continues on the next slide.

Example (Cont.)

Unify(a, y)

a .
=? y , σ = {x 7→ g(y)}

Unify(y ,a)

y .
=? a, σ = {x 7→ g(y)}

Unify(g(z),g(g(x)))

g(z)
.

=? g(g(x)), σ = {x 7→ g(a), y 7→ a}
Unify(z,g(x))

z .
=? g(g(a)), σ = {x 7→ g(a), y 7→ a}

Result: σ = {x 7→ g(a), y 7→ a, z 7→ g(g(a))}

Properties of Recursive Descent Algorithm

I Goal: Prove logical properties of the Recursive Descent
Algorithm.

I Method (rule-based approach):
1. Describe an inference system for deriving solutions for

unification problems.
2. Show that the inference system simulates the actions of the

Recursive Descent Algorithm.
3. Prove logical properties of the inference system.

The Inference System U

I A set of equations in solved form:

{x1
.

= t1, . . . , xn
.

= tn}

where each xi occurs exactly once.
I For each idempotent substitution there exists exactly one

set of equations in solved form.
I Notation:

I [σ] for the solved form set for an idempotent substitution σ.
I σS for the idempotent substitution corresponding to a

solved from set S.

The Inference System U

I System: The symbol ⊥ or a pair P; S where
I P is a multiset of unification problems,
I S is a set of equations in solved form.

I ⊥ represents failure.
I A unifier (or a solution) of a system P; S: A substitution

that unifies each of the equations in P and S.
I ⊥ has no unifiers.

The Inference System U

Example

I System: {g(a)
.

=? g(y),g(z)
.

=? g(g(x))}; {x .
= g(y)}.

I Its unifier: {x 7→ g(a), y 7→ a, z 7→ g(g(a))}.

The Inference System U

Six transformation rules on systems:1

Trivial: {s .
=? s} ∪ P ′; S =⇒ P ′; S.

Decomposition: {f (s1, . . . , sn)
.

=? f (t1, . . . , tn)} ∪ P ′; S =⇒

{s1
.

=? t1, . . . , sn
.

=? tn} ∪ P ′; S,
where n ≥ 0.

Symbol Clash: {f (s1, . . . , sn)
.

=? g(t1, . . . , tm)} ∪ P ′; S =⇒ ⊥
if f 6= g.

1∪ when applied to P is a multiset union.

The Inference System U

Orient: {t .
=? x} ∪ P ′; S =⇒ {x .

=? t} ∪ P ′; S,
if t is not a variable.

Occurs Check: {x .
=? t} ∪ P ′; S =⇒ ⊥

if x ∈ vars(t) but x 6= t .

Variable Elimination: {x .
=? t} ∪ P ′; S =⇒

P ′{x 7→ t}; S{x 7→ t} ∪ {x .
= t},

if x /∈ vars(t).

Unification with U

In order to unify s and t :
1. Create an initial system {s .

=? t}; ∅.
2. Apply successively rules from U .

The system U is essentially the Herbrand’s Unification
Algorithm.

Simulating the Recursive Descent Algorithm by U

s, t , σ when printed in the Recursive Descent Algorithm:

s1 t1 ε
s2 t2 σ2
s3 t3 σ3
. . .

Can be simulated by the sequence of transformations:

{s1
.

=? t1}; ∅
=⇒ {s2

.
=? t2} ∪ P2; S2

=⇒ {s3
.

=? t3} ∪ P3; S3
. . .

where si
.

=? ti is the equation acted on by a rule, and σi is σSi .

Simulating the Recursive Descent Algorithm by U

Furthermore:
I If the call to Unify in RDA ends in failure, then the

transformation sequence ends in ⊥.
I If the call to Unify in RDA terminates with success, with a

global substitution σn, then the transformation sequence
ends in ∅; S where σS = σn.

This simulation can be achieved by
I treating P as a stack,
I always applying the rule to the top equation,
I only using Trivial when s is a variable.

There is only one rule applicable at each step under this
control.

U — an abstract version of RDA.

Properties of U : Termination

Lemma
For any finite multiset of equations P, every sequence of
transformations in U

P; ∅ =⇒ P1;σ1 =⇒ P2;σ2 =⇒ · · ·

terminates either with ⊥ or with ∅; S, with S in solved form.

Properties of U : Termination

Proof.
Complexity measure on the multisets of equations: 〈n1,n2,n3〉,
ordered lexicographically on triples of naturals, where

n1 = The number of distinct variables in P.
n2 = The number of symbols in P.
n3 = The number of equations in P of the form t .

=? x
where t is not a variable.

Each rule in U reduces the complexity measure.

Properties of U : Termination

Proof [Cont.]
I A rule can always be applied to a system with non-empty

P.
I The only systems to which no rule can be applied are ⊥

and ∅; S.
I Whenever an equation is added to S, the variable on the

left-hand side is eliminated from the rest of the system, i.e.
S1,S2, . . . are in solved form.

Corollary
If P; ∅ =⇒+ ∅; S then σS is idempotent.

Properties of U : Correctness

Notation: Γ for systems.

Lemma
For any transformation P; S =⇒ Γ, a substitution ϑ unifies P; S
iff it unifies Γ.

Properties of U : Correctness

Proof.
Occurs Check: If x ∈ vars(t) and x 6= t , then

I x contains fewer symbols than t ,
I xϑ contains fewer symbols than tϑ.

Therefore, xϑ and tϑ can not be unified.

Variable Elimination: From xϑ = tϑ, by structural induction:

uϑ = u{x 7→ t}ϑ

for any term, equation, or multiset of equations u. Then

P ′ϑ = P ′{x 7→ t}ϑ, S′ϑ = S′{x 7→ t}ϑ.

Properties of U : Correctness

Theorem (Soundness)
If P; ∅ =⇒+ ∅; S, the σS unifies any equation in P.

Proof.
σS unifies S. Induction using the previous lemma finishes the
proof.

Properties of U : Correctness

Theorem (Completeness)
If ϑ unifies every equation in P, then any maximal sequence of
transformations P; ∅ =⇒ · · · ends in a system ∅; S such that
σS ≤· ϑ.

Proof.
Such a sequence must end in ∅; S where ϑ unifies S (why?).
For every binding x 7→ t in σS, xσSϑ = tϑ = xϑ and for every
x /∈ dom(σS), xσSϑ = xϑ. Hence, ϑ = σSϑ.

Corollary
If P has no unifiers, then any maximal sequence of
transformations from P; ∅ must have the form
P; ∅ =⇒ · · · =⇒ ⊥.

Properties of U : Correctness

Observations:

I The choice of rules in computations via U is don’t care
nondeterminism (the word “any” in Completeness
Theorem).

I Any control strategy will result to an mgu for unifiable
terms, and failure for non-unifiable terms.

I Any practical algorithm that proceeds by performing
transformations of U in any order is

I sound and complete,
I generates mgus for unifiable terms.

I Not all transformation sequences have the same length.
I Not all transformation sequences end in exactly the same

mgu.

Properties of U : Correctness

Observations:

I Any substitution generated by U is a compact
representation of the (infinite) set of all unifiers.

I The unifiers can be generated by composing all the
possible substitutions with the mgu.

I Any two mgu’s of a given pair of terms are instances of
each other.

I The mgu’s can be obtained from a single mgu by
composition with variable renaming.

I By this operation it is possible to create an infinite number
of mgu’s.

I The finite search tree for U is not able to produce every
idempotent mgu.

Complexity of Recursive Descent

Can take exponential time and space.

Example
Let

s = h(x1, x2, . . . , xn, f (y0, y0), f (y1, y1), . . . , f (yn−1, yn−1), yn)

t = h(f (x0, x0), f (x1, x1), . . . , f (xn−1, xn−1), y1, y2, . . . , yn, xn)

Unifying s and t will create an mgu where each xi and each yi
is bound to a term with 2i+1 − 1 symbols:

{x1 7→ f (x0, x0), x2 7→ f (f (x0, x0), f (x0, x0)), . . . ,

y0 7→ x0, y1 7→ f (x0, x0), y2 7→ f (f (x0, x0), f (x0, x0)), . . .}

Can we do better?

Complexity of Recursive Descent

First idea: Use triangular substitutions.

Example
Triangular unifier of s and t from the previous example:

[y0 7→ x0; yn 7→ f (yn−1, yn−1); yn−1 7→ f (yn−2, yn−2); . . .]

I Triangular unifiers are not larger than the original problem.
I However, it is not enough to rescue the algorithm:

I Substitutions have to be applied to terms in the problem,
that leads to duplication of subterms.

I In the example, calling Unify on xn and yn, which by then
are bound to terms with 2n+1 − 1 symbols, will lead to
exponential number of recursive calls.

How to Speed up Unification?

Develop
(a) more subtle data structures for terms.
(b) a different method for applying substitutions.

Details: The next lecture.

	Motivation
	Brief History
	Preliminaries
	Unification Algorithm

