
Third training school – RISC 2008
KANT/KASH tutorial

http://www.math.tu-berlin.de/ k̃ant

LESSENI SYLLA

TU Berlin - Fakulẗat II

Institut für Mathematik Stra. des

17. Juni 136 D-10623 Berlin, Germany

lesseni(at)math.tu-berlin.de

Third training school – RISC 2008– p. 1/24



Plan

Third training school – RISC 2008– p. 2/24



Plan

Introduction to KANT/KASH

Third training school – RISC 2008– p. 2/24



Plan

Introduction to KANT/KASH

First steps in KASH3

Third training school – RISC 2008– p. 2/24



Plan

Introduction to KANT/KASH

First steps in KASH3

Applications

Third training school – RISC 2008– p. 2/24



Plan

Introduction to KANT/KASH

First steps in KASH3

Applications

Programming Language

Third training school – RISC 2008– p. 2/24



Programming Language

Third training school – RISC 2008– p. 3/24



Programming Language

function

Third training school – RISC 2008– p. 3/24



Programming Language

function

if

Third training school – RISC 2008– p. 3/24



Programming Language

function

if

while

Third training school – RISC 2008– p. 3/24



Programming Language

function

if

while

repeat

Third training school – RISC 2008– p. 3/24



Programming Language

function

if

while

repeat

for

Third training school – RISC 2008– p. 3/24



Programming Language

function

if

while

repeat

for

Examples

Third training school – RISC 2008– p. 3/24



Programming Language

KASH3 uses the GAP3 shell as a user interface. The
programming language of GAP3 is an impreative
language with some functional and some objects oriented
features. In KASH3 additional features like Methods,
Maps, and Extendable Objects are available.

Third training school – RISC 2008– p. 4/24



function

Synthax:
function([< arg − ident > , < arg − ident >])
[local < loc − ident > , < loc − ident >;]
< statements >
end;

Third training school – RISC 2008– p. 5/24



function

Purpose:
A function is in fact a statement; so it can be assigned to
a variable or to a list element or a record component.
Because for each of the formal arguments <arg-ident>
and for each of the formal locals <loc-ident> a new
variable is allocated when the function is called, it is
possible that a function calls itself. This is usually called
recursion. When a function <fun1> definition is
evaluated inside another function <fun2>, KASH binds
all the identifiers inside the function <fun1> that are
identifiers of an argument or a local of <fun2> to the
corresponding variable. This set of bindings is called the
environment of the function <fun1>. When <fun1> is
called, its body is executed in this environment.

Third training school – RISC 2008– p. 6/24



function:

Example:
kash% addition:= function(arg1, arg2)
% #this function returns the sum of
% #the both arguments
% local a;
% a:= arg1+arg2;
% Print("The sum is:\n");
% return a;
% end;

Third training school – RISC 2008– p. 7/24



function

NB:
A comfortable way to define a "simple" function is to
used the maps-to operator:->
Examples:
cube:= x -> x 3̂;
cube(3)? cube(6.9)? cube(I)?
M:=Matrix(3,[2,8,9,5,4,0,1,3,2]);
cube(M)?

additionby5:= x -> x+5;
additionby5(0)? additionby5(-76)?

Third training school – RISC 2008– p. 8/24



for

Synthax:
for < variable > in < list > do < statements > od;

Purpose:
Thefor loop executes the <statements> for every element
of <list>. The statement sequence <variable> is first
executed with <variable> bound to the first element of
<list>, then with <variable> bound to the second element
of <list> and so on. <variable> must be a simple
variable, it must not be a list element selection or a
record component selection.

Third training school – RISC 2008– p. 9/24



for

Example:
kash% changelist:= function(L)
% #this function takes a list as
% #argument and changes its entries
% local i, K;
% K:= []; K[1]:= L[1];
% L[1]:= K[1]-2*L[Length(L)];
% for i in [2..Length(L)] do
% K[i]:= L[i]; L[i]:= K[i]-2*K[i-1];
% od;
% return L;
% end;

What does it do?

Third training school – RISC 2008– p. 10/24



if

Synthax:
if < elt − alg b̂oo > then < statements1 >;
{elif < elt − alg b̂oo > then < statements2 >}
[else < statements3 >]
fi;

Third training school – RISC 2008– p. 11/24



if

Purpose:
Theif statement allows one to execute statements
depending on the value of some boolean expression.
First the boolean expression following theif is evaluated.
If it evaluates totruethe statement sequence
<statements1> after the firstthenis executed, and the
execution of theif statement is complete. Otherwise the
boolean expressions followingelif are evaluated in turn.
There may be any number ofelif parts, possibly none at
all. If the if expression and all, if any,elif expressions
evaluate tofalseand there is anelsepart, which is
optional, its statement sequence <statements3> is
executed and the execution of theif statement is
complete. Theif statement terminates by afi keyword.

Third training school – RISC 2008– p. 12/24



if

Example:
kash% checkprimenumber:= function(a)
% #this function checks if the given
% #number is prime or not!
% if IsPrime(a) then
% Print(a);
% Print(" is a prime number \n");
% else
% Print("Not, bye big loser!\n");
% fi;
% end;

Third training school – RISC 2008– p. 13/24



while

synthax:
while < elt − alg b̂oo > do < statements > od;

Purpose:
Thewhile loop executes the <statements> while the
condition evaluates totrue. First the boolean expression
is evaluated. If it evaluates tofalseexecution of thewhile
loop terminates and the statement immediately following
thewhile loop is executed next. Otherwise if it evaluates
to truethe <statements> are executed and the whole
process begins again.

Third training school – RISC 2008– p. 14/24



repeat

Synthax:
repeat < statements > until < elt − alg b̂oo >;

Purpose:
Therepeatloop executes the statement sequence
<statements> until the condition evaluates totrue. First
<statements> are executed. Then the boolean expression
is evaluated. If it evaluates totruetherepeatloop
terminates and the statement immediately following the
repeatloop is executed next. Otherwise if it evaluates to
falsethe whole process begins again with the execution
of the <statements>.

Third training school – RISC 2008– p. 15/24



Examples

Example 1
kash% Mul_and_Inv:= function(arg1)
% #this function returns a map that
% #multiplies by "arg1"
% local phi, psi;
% phi:= function(arg2)
% return arg2*arg1; end;
% psi:= function(arg3)
% return arg3/arg1; end;
% return Map(Q, Q, phi, psi);
% end;

Third training school – RISC 2008– p. 16/24



Examples

Example 2
kash% gcd_lcm:= function(arg1, arg2)
% #this function returns the GCD
% #and the LCM of the both arguments
% local a, b;
% a:= GCD(arg1, arg2);
% b:= LCM(arg1, arg2);
% return [a, b];
% end;

Third training school – RISC 2008– p. 17/24



Examples

Example 3
kash% gcd_int:= function(arg)
% #this function returns the GCD
% #of the given integers.
% local c, r, how, i;
% if Length(arg)=1 then return arg[1];
% elif Length(arg) <> 1 then
% how:= function(a, b)
% while b <> 0 do
% r:= b; b:= a mod b; a:= r; od;
% return a;
% end;
% c:= how(arg[1], arg[2]);
% for i in [3..Length(arg)] do

Third training school – RISC 2008– p. 18/24



Examples

% c:= how(c, arg[i]); od;
% return c;
% fi;
% end;

Third training school – RISC 2008– p. 19/24



Examples

Example 4
kash% GCD_int:= function(arg)
% #this function returns the GCD
% #of the given integers.
% local c, r, how, i;
% if Length(arg)=1 then return arg[1];
% elif Length(arg) <> 1 then
% how:= function(a, b)
% repeat r:= a mod b; a:= b; b:= r;
% until b=0;
% return a;
% end;
% c:= how(arg[1], arg[2]);
% for i in [3..Length(arg)] do

Third training school – RISC 2008– p. 20/24



Examples

% c:= how(c, arg[i]); od;
% return c;
% fi;
% end;

Third training school – RISC 2008– p. 21/24



Examples

Example 5:The program file prog.k
InverseMatrix:= function(M)
#this function returns the inverse
#of a matrix over Z if it is
#invertible using the formula:
#Inv(M) = Adjoint(M)*(1/Det(M))
local A;
A:= Determinant(M);
if BaseRing(M) <> Z then
return "The coeff are not in Z,bye!";
elif A = -1 or A = 1 then
Print("The inverse is: \n");
Print(Adjoint(M)*(1/A), "\n");
else

Third training school – RISC 2008– p. 22/24



Examples

Print("The determinant is: ");
Print(Determinant(M), "\n");
Print("Not invertible over Z! \n");
fi;
end;

How to load the program file prog.k in KASH?
kash% Read("prog.k");

Third training school – RISC 2008– p. 23/24



Examples

Exercises
1) Create a function namedmult_inv with domainR

and codomainC which returns a map that multiplies by
"I*arg1" and also compute the preimages (ref.
example 1).
2) Create a function namedprimes which returns the
list of prime numbers less or equal to the given argument.

Thank you for your attention!

Third training school – RISC 2008– p. 24/24


	Plan
	Plan
	Plan
	Plan
	Plan

	Programming Language
	Programming Language
	Programming Language
	Programming Language
	Programming Language
	Programming Language
	Programming Language

	Programming Language
	function
	function
	function:
	function
	for
	for
	if
	if
	if
	while
	repeat
	Examples
	Examples
	Examples
	Examples
	Examples
	Examples
	Examples
	Examples
	Examples

