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1 The notion of a Gröbner basis

The material of this chapter is largely taken from [Winkler 1996], where also proofs
of theorems are given.

Before we start with the technical details, let us briefly review the historical devel-
opment leading to the concept of Gröbner bases. In his seminal paper [Hilbert 1890], D.
Hilbert gave a proof of his famous Basis Theorem as well as of the structure and length
of the sequence of syzygy modules of a polynomial system. Implicitly he also showed
that the Hauptproblem, i.e. the problem whether f ∈ I for a given polynomial f and
polynomial ideal I, can be solved effectively. Hilbert’s solution of the Hauptproblem (and
similar problems) was reinvestigated by G. Hermann in [Hermann 1926]. She counted the
field operations required in this effective procedure and arrived at a double exponential
upper bound in the number of variables. In fact, Hermann’s, or for that matter Hilbert’s,
algorithm always actually achieves this worst case double exponential complexity. The
next important step came when B. Buchberger, in his doctoral thesis [Buchberger 1965]
advised by W. Gröbner, introduced the notion of a Gröbner basis (he did not call it that
at this time) and also gave an algorithm for computing it. Gröbner bases are very spe-
cial and useful bases for polynomial ideals. In subsequent publications, e.g. [Buchberger
1970,1985], Buchberger exhibited important additional applications of his Gröbner bases
method, e.g. to the solution of systems of polynomial equations. In the worst case, Buch-
berger’s Gröbner bases algorithm is also double exponential in the number of variables,
but in practice there are many interesting examples which can be solved in reasonable
time. But still, in the worst case, the double exponential behaviour is not avoided. And,
in fact, it cannot be avoided by any algorithm capable of solving the Hauptproblem, as
was shown by E.W. Mayr and A.R. Meyer in [Mayr,Meyer 1982].

When we are solving systems of polynomial (algebraic) equations, the important pa-
rameters are the number of variables n and the degree of the polynomials d. The Buch-
berger algorithm for constructing Gröbner bases is at the same time a generalization of
Euclid’s algorithm for computing the greatest common divisor (GCD) of univariate poly-
nomials (the case n = 1) and of Gauss’ triangularization algorithm for linear systems (the
case d = 1). Both these algorithms are concerned with solving systems of polynomial
equations, and they determine a canonical basis (either the GCD of the inputs or a tri-
angularized form of the system) for the given polynomial system. Buchberger’s algorithm
can be seen as a generalization to the case of arbitrary n and d.

Let K be a computable field and K[X] = K[x1, . . . , xn] the polynomial ring in n
indeterminates over K. If F is any subset of K[X] we write 〈F 〉 or ideal(F ) for the ideal
generated by F in K[X]. By [X] we denote the monoid (under multiplication) of power
products xi11 · · ·xinn in x1, . . . , xn. 1 = x0

1 . . . x
0
n is the unit element in the monoid [X].

lcm(s, t) denotes the least common multiple of the power products s, t.
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Commutative rings with 1 in which the basis condition holds, i.e. in which every ideal
has a finite basis, are usually called Noetherian rings. This notation is motivated by the
following lemma.

Lemma 1.1. In a Noetherian ring there are no infinitely ascending chains of ideals. tu

Theorem 1.2. (Hilbert’s Basis Theorem) If R is a Noetherian ring then also the univariate
polynomial ring R[x] is Noetherian.

Hilbert’s Basis Theorem implies that the multivariate polynomial ring K[X] is Noethe-
rian, if K is a field. So every ideal I in K[X] has a finite basis, and if we are able to
effectively compute with finite bases then we are dealing with all the ideals in K[X].

We will define a Gröbner basis of a polynomial ideal via a certain reduction relation
for polynomials. A Gröbner basis will be a basis with respect to which the corresponding
reduction relation is confluent. Before we can define the reduction relation on the polyno-
mial ring, we have to introduce an ordering of the power products with respect to which
the reduction relation should be decreasing.

Definition 1.1. Let < be an ordering on [X] that is compatible with the monoid structure,
i.e.

(i) 1 = x0
1 . . . x

0
n < t for all t ∈ [X] \ {1}, and

(ii) s < t =⇒ su < tu for all s, t, u ∈ [X].

We call such an ordering < on [X] an admissible ordering. tu

Example 1.1. We give some examples of frequently used admissible orderings on [X].

(a) The lexicographic ordering with xπ(1) > xπ(2) > . . . > xπ(n), π a permutation of
{1, . . . , n}:

xi11 . . . xinn <lex,π xj11 . . . xjnn iff there exists a k ∈ {1, . . . , n} such that for all l < k
iπ(l) = jπ(l) and iπ(k) < jπ(k).

If π = id, we get the usual lexicographic ordering <lex.

(b) The graduated lexicographic ordering w.r.t. the permutation π and the weight function
w : {1, . . . , n} → R

+:

for s = xi11 . . . xinn , t = xj11 . . . xjnn we define s <glex,π,w t iff( n∑
k=1

w(k)ik <
n∑
k=1

w(k)jk
)

or
( n∑
k=1

w(k)ik =
n∑
k=1

w(k)jk and s <lex,π t
)
.

We get the usual graduated lexicographic ordering <glex by setting π = id and w =
1const.
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(c) The graduated reverse lexicographic ordering:

we define s <grlex t iff

deg(s) < deg(t) or (deg(s) = deg(t) and t <lex,π s, where π(j) = n− j + 1).

(d) The product ordering w.r.t. i ∈ {1, . . . , n − 1} and the admissible orderings <1 on
X1 = [x1, . . . , xi] and <2 on X2 = [xi+1, . . . , xn]:

for s = s1s2, t = t1t2, where s1, t1 ∈ X1, s2, t2 ∈ X2, we define s <prod,i,<1,<2 t iff

s1 <1 t1 or (s1 = t1 and s2 <2 t2). tu

A complete classification of admissible orderings is given in [Robbiano 1985].

Lemma 1.3. Let < be an admissible ordering on [X].

(i) If s, t ∈ [X] and s divides t then s ≤ t.

(ii) < (or actually >) is Noetherian, i.e. there are no infinite chains of the form t0 > t1 >
t2 > . . ., and consequently every subset of [X] has a smallest element.

Throughout this chapter let R be a commutative ring with 1, K a field, X a set of
variables, and < an admissible ordering on [X].

Definition 1.2. Let s be a power product in [X], f a non-zero polynomial in R[X], F a
subset of R[X].

By coeff(f, s) we denote the coefficient of s in f .

lpp(f) := max<{t ∈ [X] | coeff(f, t) 6= 0} (leading power product of f),

lc(f) := coeff(f, lpp(f)) (leading coefficient of f),

in(f) := lc(f)lpp(f) (initial of f),

red(f) := f − in(f) (reductum of f),

lpp(F ) := {lpp(f) | f ∈ F \ {0}},

lc(F ) := {lc(f) | f ∈ F \ {0}},

in(F ) := {in(f) | f ∈ F \ {0}},

red(F ) := {red(f) | f ∈ F \ {0}}. tu

If I is an ideal in R[X], then lc(I) ∪ {0} is an ideal in R. However, in(F ) ∪ {0} in
general is not an ideal in R[X].
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Definition 1.3. Any admissible ordering < on [X] induces a partial ordering� on R[X],
the induced ordering, in the following way:
f � g iff f = 0 and g 6= 0 or

f 6= 0, g 6= 0 and lpp(f) < lpp(g) or
f 6= 0, g 6= 0, lpp(f) = lpp(g) and red(f)� red(g). tu

Lemma 1.4. � (or actually �) is a Noetherian partial ordering on R[X]. tu

One of the central notions of the theory of Gröbner bases is the concept of polynomial
reduction.

Definition 1.4. Let f, g, h ∈ K[X], F ⊆ K[X]. We say that g reduces to h w.r.t.
f (g −→f h) iff there are power products s, t ∈ [X] such that s has a non–vanishing
coefficient c in g (coeff(g, s) = c 6= 0), s = lpp(f) · t, and

h = g − c

lc(f)
· t · f.

If we want to indicate which power product and coefficient are used in the reduction, we
write

g −→f,b,t h, where b =
c

lc(f)
.

We say that g reduces to h w.r.t. F (g −→F h) iff there is f ∈ F such that g −→f h. tu

Example 1.2. Let F = {. . . , f = x1x3 + x1x2 − 2x3, . . .} in Q[x1, x2, x3], and g =
x3

3 + 2x1x2x3 + 2x2−1. Let < be the graduated lexicographic ordering with x1 < x2 < x3.

Then g −→F x
3
3 − 2x1x

2
2 + 4x2x3 + 2x2 − 1 =: h, and in fact g −→f,2,x2 h. tu

Definition 1.5. Let −→ be a reduction relation, i.e. a binary relation, on a set X.

• x −→ means x is reducible, i.e. x −→ y for some y;

• x−→ means x is irreducible or in normal form w.r.t. −→. We omit mentioning the
reduction relation if it is clear from the context;

• x ↓ y means that x and y have a common successor, i.e. x −→ z ←− y for some z;

• x ↑ y means that x and y have a common predecessor, i.e. x←− z −→ y for some z;

• x is a −→–normal form of y iff y −→∗ x. tu

Definition 1.6. (a) −→ is Noetherian or has the termination property iff every reduction
sequence terminates, i.e. there is no infinite sequence x1, x2, . . . in M such that x1 −→
x2 −→ . . . .
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(b) −→ is Church–Rosser or has the Church–Rosser property iff a←→∗ b implies a ↓∗ b.

(c) −→ is confluent iff x ↑∗ y implies x ↓∗ y, or graphically every diamond of the following
form can be completed:

u

∗ ↙ ↘∗
x y
↘↘↘∗ ↙↙↙∗

v

(d) −→ is locally confluent iff x ↑ y implies x ↓∗ y, or graphically every diamond of the
following form can be completed:

u
↙ ↘
x y
↘↘↘∗ ↙↙↙∗

v
tu

As a consequence of the Noetherianity of admissible orderings we get that −→F is
Noetherian for any set of polynomials F ⊂ K[X]. So, in contrast to the general theory
of rewriting, termination is not a problem for polynomial reductions. But we still have to
worry about the Church-Rosser property.

Theorem 1.5. (a) −→ is Church–Rosser if and only if −→ is confluent.

(b) (Newman Lemma) Let −→ be Noetherian. Then −→ is confluent if and only if −→ is
locally confluent.

As an immediate consequence of the previous definitions we get that the reduction
relation −→ is (nearly) compatible with the operations in the polynomial ring. Moreover,
the reflexive–transitive–symmetric closure of the reduction relation −→F is equal to the
congruence modulo the ideal generated by F .

Lemma 1.6. Let a ∈ K∗, s ∈ [X], F ⊆ K[X], g1, g2, h ∈ K[X].

(a) −→F⊆�,

(b) −→F is Noetherian,

(c) if g1 −→F g2 then a · s · g1 −→F a · s · g2,

(d) if g1 −→F g2 then g1 + h ↓∗F g2 + h. tu

Theorem 1.7. Let F ⊆ K[X]. The ideal congruence modulo 〈F 〉 equals the reflexive–
transitive–symmetric closure of −→F , i.e. ≡〈F 〉=←→∗F . tu
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So the congruence ≡〈F 〉 can be decided if −→F has the Church–Rosser property. Of
course, this is not the case for an arbitrary set F . Such distinguished sets (bases for
polynomial ideals) are called Gröbner bases.

Definition 1.5. A subset F ofK[X] is a Gröbner basis (for 〈F 〉) iff−→F is Church–Rosser.
tu

A Gröbner basis of an ideal I in K[X] is by no means uniquely defined. In fact,
whenever F is a Gröbner basis for I and f ∈ I, then also F ∪{f} is a Gröbner basis for I.

For testing whether a given basis F of an ideal I is a Gröbner basis it suffices to test for
local confluence of the reduction relation −→F . This, however, does not yield a decision
procedure, since there are infinitely many situations f ↑F g. However, Buchberger has
been able to reduce this test for local confluence to just testing a finite number of sitations
f ↑F g [Buchberger 1965]. For that purpose he has introduced the notion of subtraction
polynomials, or S–polynomials for short.

Definition 1.8. Let f, g ∈ K[X]∗, t = lcm(lpp(f), lpp(g)). Then

cp(f, g) =
(
t− 1

lc(f)
· t

lpp(f)
· f, t− 1

lc(g)
· t

lpp(g)
· g
)

is the critical pair of f and g. The difference of the elements of cp(f, g) is the S–polynomial
spol(f, g) of f and g. tu

If cp(f, g) = (h1, h2) then we can depict the situation graphically in the following way:

lcm(lpp(f), lpp(g))
•

↙f ↘g

• •
h1 h2

The critical pairs of elements of F describe exactly the essential branchings of the reduction
relation −→F .

Theorem 1.8. (Buchberger’s Theorem) Let F be a subset of K[X].

(a) F is a Gröbner basis if and only if g1 ↓∗F g2 for all critical pairs (g1, g2) of elements of
F .

(b) F is a Gröbner basis if and only if spol(f, g) −→∗F 0 for all f, g ∈ F .

Buchberger’s theorem suggests an algorithm for checking whether a given finite basis
is a Gröbner basis: reduce all the S–polynomials to normal forms and check whether they
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are all 0. In fact, by a simple extension we get an algorithm for constructing Gröbner
bases.

algorithm GRÖBNER B(in: F ; out: G);
[Buchberger algorithm for computing a Gröbner basis. F is a finite subset of K[X]∗;
G is a finite subset of K[X]∗, such that 〈G〉 = 〈F 〉 and G is a Gröbner basis.]
(1) G := F ;

C := {{g1, g2} | g1, g2 ∈ G, g1 6= g2};
(2) while not all pairs {g1, g2} ∈ C are marked do

{choose an unmarked pair {g1, g2};
mark {g1, g2};
h := normal form of spol(g1, g2) w.r.t. −→G;
if h 6= 0
then{C := C ∪ {{g, h} | g ∈ G};

G := G ∪ {h} };
};

return tu

Every polynomial h constructed in GRÖBNER B is in 〈F 〉, so 〈G〉 = 〈F 〉 throughout
GRÖBNER B. Thus, by Theorem 1.8 GRÖBNER B yields a correct result if it stops. The
termination of GRÖBNER B is a consequence of Dickson’s Lemma which implies that in
[X] there is no infinite chain of elements s1, s2, . . . such that si 6 | sj for all 1 ≤ i < j. The
leading power products of the polynomials added to the basis form such a sequence in [X],
so this sequence must be finite.

Theorem 1.9. (Dickson’s Lemma) Every A ⊆ [X] contains a finite subset B, such that
every t ∈ A is a multiple of some s ∈ B.

The termination of GRÖBNER B also follows from Hilbert’s Basis Theorem applied
to the initial ideals of the sets G constructed in the course of the algorithm, i.e. 〈in(G)〉.
See Exercise 8.3.4.

The algorithm GRÖBNER B provides a constructive proof of the following theorem.

Theorem 1.10. Every ideal I in K[X] has a Gröbner basis. tu

Example 1.3. Let F = {f1, f2}, with f1 = x2y2 + y − 1, f2 = x2y + x. We compute a
Gröbner basis of 〈F 〉 in Q[x, y] w.r.t. the graduated lexicographic ordering with x < y.
The following describes one way in which the algorithm GRÖBNER B could execute (recall
that there is a free choice of pairs in the loop):
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(1) spol(f1, f2) = f1 − yf2 = −xy + y − 1 =: f3 is irreducible, so G := {f1, f2, f3}.

(2) spol(f2, f3) = f2 + xf3 = xy −→f3 y − 1 =: f4, so G := {f1, f2, f3, f4}.

(3) spol(f3, f4) = f3 + xf4 = y − x− 1 −→f4 −x =: f5, so G := {f1, . . . , f5}.

All the other S–polynomials now reduce to 0, so GRÖBNER B terminates with

G = {x2y2 + y − 1, x2y + x,−xy + y − 1, y − 1,−x}. tu

In addition to the original definition and the ones given in Theorem 1.8, there are
many other characterizations of Gröbner bases. We list only a few of them.

Theorem 1.11. Let I be an ideal in K[X], F ⊆ K[X], and 〈F 〉 ⊆ I. Then the following
are equivalent.

(a) F is a Gröbner basis for I.

(b) f −→∗F 0 for every f ∈ I.

(c) f −→F for every f ∈ I \ {0}.

(d) For all g ∈ I, h ∈ K[X]: if g −→∗F h then h = 0.

(e) For all g, h1, h2 ∈ K[X]: if g −→∗F h1 and g −→∗F h2 then h1 = h2.

(f) 〈in(F )〉 = 〈in(I)〉.

The Gröbner basis G computed in Example 1.3 is much too complicated. In fact,
{y − 1, x} is a Gröbner basis for the ideal. There is a general procedure for simplifying
Gröbner bases.

Theorem 1.12. Let G be a Gröbner basis for an ideal I in K[X]. Let g, h ∈ G and g 6= h.

(a) If lpp(g) | lpp(h) then G′ = G \ {h} is also a Gröbner basis for I.

(b) If h −→g h
′ then G′ = (G \ {h}) ∪ {h′} is also a Gröbner basis for I.

Observe that the elimination of basis polynomials described in Theorem 1.12(a) is
only possible if G is a Gröbner basis. In particular, we are not allowed to do this during
a Gröbner basis computation. Based on Theorem 1.12 we can show that every ideal has a
unique Gröbner basis after suitable pruning and normalization.

Definition 1.9. Let G be a Gröbner basis in K[X].

G is minimal iff lpp(g) 6 | lpp(h) for all g, h ∈ G with g 6= h.



Gröbner bases 9

G is reduced iff for all g, h ∈ G with g 6= h we cannot reduce h by g.

G is normed iff lc(g) = 1 for all g ∈ G. tu

From Theorem 1.12 we obviously get an algorithm for transforming any Gröbner basis
for an ideal I into a normed reduced Gröbner basis for I. No matter from which Gröbner
basis of I we start and which path we take in this transformation process, we always reach
the same uniquely defined normed reduced Gröbner basis of I.

Theorem 1.13. Every ideal in K[X] has a unique finite normed reduced Gröbner basis.

Observe that the normed reduced Gröbner basis of an ideal I depends, of course, on
the admissible ordering <. Different orderings can give rise to different Gröbner bases.
However, if we decompose the set of all admissible orderings into sets which induce the
same normed reduced Gröbner basis of a fixed ideal I, then this decomposition is finite.
This leads to the consideration of universal Gröbner bases. A universal Gröbner basis for
I is a basis for I which is a Gröbner basis w.r.t. any admissible ordering of the power
products.

If we have a Gröbner basis G for an ideal I, then we can compute in the vector space
K[X]/I over K. The irreducible power products (with coefficient 1) modulo G form a basis
of K[X]/I . We get that dim(K[X]/I) is the number of irreducible power products modulo
G. Thus, this number is independent of the particular admissible ordering.

Example 1.4. Let I = 〈x3y − 2y2 − 1, x2y2 + x+ y〉 in Q[x, y]. Let < be the graduated
lexicographic ordering with x > y. Then the normed reduced Gröbner basis of I has
leading power products x4, x3y, x2y2, y3. So there are 9 irreducible power products.

If < is the lexicographic ordering with x > y, then the normed reduced Gröbner basis
of I has leading power products x and y9. So again there are 9 irreducible power products.

In fact, dim(Q[x, y]/I) = 9. tu
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2 Solving ideal membership problems by Gröbner bases

Computation in the vector space of polynomials modulo an ideal

The ring K[X]/I of polynomials modulo the ideal I is a vector space over K. A
Gröbner basis G provides a basis for this vector space.

Theorem 2.1. The irreducible power products modulo G, viewed as polynomials with
coefficient 1, form a basis for the vector space K[X]/I over K.

Ideal membership

By definition Gröbner bases solve the ideal membership problem for polynomial ideals,
i.e.

given: f, f1, . . . , fm ∈ K[X],

decide: f ∈ 〈f1, . . . , fm〉.

Let G be a Gröbner basis for I = 〈f1, . . . , fm〉. Then f ∈ I if and only if the normal form
of f modulo G is 0.

Example 2.1. Suppose that we know the polynomial relations (axioms)

4z − 4xy2 − 16x2 − 1 = 0,

2y2z + 4x+ 1 = 0,

2x2z + 2y2 + x = 0
between the quantities x, y, z, and we want to decide whether the additional relation (hy-
pothesis)

g(x, y) = 4xy4 + 16x2y2 + y2 + 8x+ 2 = 0
follows from them, i.e. whether we can write g as a linear combination of the axioms or,
in other words, whether g is in the ideal I generated by the axioms.

Trying to reduce the hypothesis g w.r.t. the given axioms does not result in a reduction
to 0. But we can compute a Gröbner basis for I w.r.t. the lexicographic ordering with
x < y < z, e.g. G = {g1, g2, g3} where

g1 = 32x7 − 216x6 + 34x4 − 12x3 − x2 + 30x+ 8,

g2 = 2745y2 − 112x6 − 812x5 + 10592x4 − 61x3 − 812x2 + 988x+ 2,

g3 = 4z − 4xy2 − 16x2 − 1.
Now g −→∗G 0, i.e. g(x, y) = 0 follows from the axioms. tu
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Radical membership

Sometimes, especially in applications in geometry, we are not so much interested in
the ideal membership problem but in the radical membership problem, i.e.

given: f, f1, . . . , fm ∈ K[X],

decide: f ∈ radical(〈f1, . . . , fm〉).

The radical of an ideal I is the ideal containing all those polynomials f , some power
of which is contained in I. So f ∈ radical(I) ⇐⇒ fn ∈ I for some n ∈ N. Geometrically
f ∈ radical(〈f1, . . . , fm〉) means that the hypersurface defined by f contains all the points
in the variety (algebraic set) defined by f1, . . . , fm.

The following extremely important theorem relates the radical of an ideal I to the set
of common roots V (I) of the polynomials contained in I.

Theorem 2.2. (Hilbert’s Nullstellensatz) Let I be an ideal in K[X], where K is an
algebraically closed field. Then radical(I) consists of exactly those polynomials in K[X]
which vanish on all the common roots of I.

By an application of Hilbert’s Nullstellensatz we get that f ∈ radical(〈f1, . . . , fm〉)
if and only if f vanishes at every common root of f1, . . . , fm if and only if the system
f1 = . . . fm = z · f − 1 = 0 has no solution, where z is a new variable. I.e.

f ∈ radical(〈f1, . . . , fm〉)⇐⇒ 1 ∈ 〈f1, . . . , fm, z · f − 1〉.

So the radical membership problem is reduced to the ideal membership problem.

Equality of ideals

We want to decide whether two given ideals are equal, i.e. we want to solve the ideal
equality problem:

given: f1, . . . , fm, g1, . . . , gk ∈ K[X],

decide: 〈f1, . . . , fm〉︸ ︷︷ ︸
I

= 〈g1, . . . , gk〉︸ ︷︷ ︸
J

.

Choose any admissible ordering. Let GI , GJ be the normed reduced Gröbner bases of
I and J , respectively. Then by Theorem 8.3.6 I = J if and only if GI = GJ .
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3 Solution of algebraic equations by Gröbner bases

We consider a system of equations

f1(x1, . . . , xn) = 0,
...

fm(x1, . . . , xn) = 0,

(3.1)

where f1, . . . , fm ∈ K[X]. The system (3.1) is called a system of polynomial or algebraic
equations. First let us decide whether (3.1) has any solutions in K

n
, K being the algebraic

closure of K. Let I = 〈f1, . . . , fm〉. The following theorem has first been proved in
[Buchberger 1970].

Theorem 3.1. Let G be a normed Gröbner basis of I. (3.1) is unsolvable in K
n

if and
only if 1 ∈ G.

Now suppose that (3.1) is solvable. We want to determine whether there are finitely
or infinitely many solutions of (3.1) or, in other words, whether or not the ideal I is
0–dimensional.

Theorem 3.2. Let G be a Gröbner basis of I. Then (3.1) has finitely many solutions
(i.e. I is 0–dimensional) if and only if for every i, 1 ≤ i ≤ n, there is a polynomial gi ∈ G
such that lpp(gi) is a pure power of xi. Moreover, if I is 0–dimensional then the number
of zeros of I (counted with multiplicity) is equal to dim(K[X]/I).

The rôle of the Gröbner basis algorithm GRÖBNER B in solving systems of algebraic
equations is the same as that of Gaussian elimination in solving systems of linear equations,
namely to triangularize the system, or carry out the elimination process. The crucial
observation, first stated in [Trinks 1978], is the elimination property of Gröbner bases. It
states that if G is a Gröbner basis of I w.r.t. the lexicographic ordering with x1 < . . . < xn,
then the i–th elimination ideal of I, i.e. I∩K[x1, . . . , xi], is generated by those polynomials
in G that depend only on the variables x1, . . . , xi.

Theorem 3.3. (Elimination Property of Gröbner Bases) Let G be a Gröbner basis of I
w.r.t. the lexicographic ordering x1 < . . . < xn. Then

I ∩K[x1, . . . , xi] = 〈G ∩K[x1, . . . , xi]〉,

where the ideal on the right hand side is generated over the ring K[x1, . . . , xi].

Theorem 3.3 can clearly be generalized to product orderings, without changing any-
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thing in the proof.

Example 3.1. Consider the system of equations f1 = f2 = f3 = 0, where

4xz − 4xy2 − 16x2 − 1 = 0,

2y2z + 4x+ 1 = 0,

2x2z + 2y2 + x = 0,

are polynomials in Q[x, y, z]. We are looking for solutions of this system of algebraic
equations in Q

3
, where Q is the field of algebraic numbers.

Let < be the lexicographic ordering with x < y < z. The algorithm GRÖBNER B
applied to F = {f1, f2, f3} yields (after reducing the result) the reduced Gröbner basis
G = {g1, g2, g3}, where

g1 =65z + 64x4 − 432x3 + 168x2 − 354x+ 104,

g2 =26y2 − 16x4 + 108x3 − 16x2 + 17x,

g3 =32x5 − 216x4 + 64x3 − 42x2 + 32x+ 5.

By Theorem 3.1 the system is solvable. Furthermore, by Theorem 3.2, the system has
finitely many solutions. The Gröbner basis G yields an equivalent triangular system in
which the variables are completely separated. So we can get solutions by solving the
univariate polynomial g3 and propagating the partial solutions upwards to solutions of the
full system. The univariate polynomial g3 is irreducible over Q, and the solutions are

(α, ± 1√
26

√
α
√

16α3 − 108α2 + 16α− 17, − 1
65

(64α4 − 432α3 + 168α2 − 354α+ 104)),

where α is a root of g3. We can also determine a numerical approximation of a solution
from G, e.g.

(−0.1284722871, 0.3211444930, −2.356700326). tu
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4 Arithmetic of polynomial ideals

In commutative algebra and algebraic geometry there is a strong correspondence be-
tween radical polynomial ideals and algebraic sets, the sets of zeros of such ideals over the
algebraic closure of the field of coefficients. For any ideal I in K[x1, . . . , xn] we denote
by V (I) the set of all points in An(K), the n–dimensional affine space over the algebraic
closure of K, which are common zeros of all the polynomials in I. Such sets V (I) are
called algebraic sets. On the other hand, for any subset V of An(K) we denote by I(V )
the ideal of all polynomials vanishing on V . Then for radical ideals I and algebraic sets V
the functions V (·) and I(·) are inverses of each other, i.e.

V (I(V )) = V and I(V (I)) = I.

This correspondence extends to operations on ideals and algebraic sets in the following
way:

ideal algebraic set
I + J V (I) ∩ V (J)
I · J, I ∩ J V (I) ∪ V (J)
I : J V (I)− V (J) = V (I)− V (J) (Zariski closure of the difference)

So we can effectively compute intersection, union, and difference of varieties if we can carry
out the corresponding operations on ideals.

Definition 4.1. Let I, J be ideals in K[X].

The sum I + J of I and J is defined as
I + J = {f + g | f ∈ I, g ∈ J}.

The product I · J of I and J is defined as
I · J = 〈{f · g | f ∈ I, g ∈ J}〉.

The quotient I : J of I and J is defined as
I : J = {f | f · g ∈ I for all g ∈ J}. tu

Theorem 4.1. Let I = 〈f1, . . . , fr〉 and J = 〈g1, . . . , gs〉 be ideals in K[X].

(a) I + J = 〈f1, . . . , fr, g1, . . . , gs〉.

(b) I · J = 〈figj | 1 ≤ i ≤ r, 1 ≤ j ≤ s〉.

(c) I ∩ J = (〈t〉 · I + 〈1− t〉 · J) ∩K[X], where t is a new variable.

(d) I : J =
⋂s
j=1(I : 〈gj〉) and

I : 〈g〉 = 〈h1/g, . . . , hm/g〉, where I ∩ 〈g〉 = 〈h1, . . . , hm〉.
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So all these operations can be carried out effectively by operations on the bases of the
ideals. In particular the intersection can be computed by Theorem 3.3.

We always have I · J ⊂ I ∩ J . However, I ∩ J could be strictly larger than I · J .
For example, if I = J = 〈x, y〉, then I · J = 〈x2, xy, y2〉 and I ∩ J = I = J = 〈x, y〉.
Both I · J and I ∩ J correspond to the same variety. Since a basis for I · J is more easily
computed, why should we bother with I ∩ J? The reason is that the intersection behaves
much better with respect to the operation of taking radicals (recall that it is really the
radical ideals that uniquely correspond to algebraic sets). Whereas the product of radical
ideals in general fails to be radical (consider I ·I), the intersection of radical ideals is always
radical.

Theorem 4.2. Let I, J be ideals in K[X]. Then
√
I ∩ J =

√
I ∩
√
J (
√
I means the

radical of I).

Example 4.1. Consider the ideals

I1 = 〈2x4 − 3x2y + y2 − 2y3 + y4〉,
I2 = 〈x, y2 − 4〉,
I3 = 〈x, y2 − 2y〉,
I4 = 〈x, y2 + 2y〉.

The coefficients are all integers, but we consider them as defining algebraic sets in the
affine plane over C. In fact, V (I1) is the tacnode curve (compare Section 1.1), V (I2) =
{(0, 2), (0,−2)}, V (I3) = {(0, 2), (0, 0)}, V (I4) = {(0, 0), (0,−2)}.

First, let us compute the ideal I5 defining the union of the tacnode and the 2 points
in V (I2). I5 is the intersection of I1 and I2, i.e.

I5 = I1 ∩ I2 = (〈z〉I1 + 〈1− z〉I2) ∩Q[x, y]

= 〈−4y2 + 8y3 − 3y4 + 12x2y − 8x4 − 2y5 + y6 − 3x2y3 + 2y2x4,

xy2 − 2xy3 + xy4 − 3x3y + 2x5〉.

Now let us compute the ideal I6 defining V (I5)− V (I3), i.e. the Zariski closure of V (I5) \
V (I3), i.e. the smallest algebraic set containing V (I5) \ V (I3).

I6 = I5 : I3 = (I5 : 〈x〉) ∩ (I5 : 〈y2 − 2y〉)
= 〈2x4 − 3x2y + y2 − 2y3 + y4〉 ∩
〈y5 − 3y3 + 2y2 − 3x2y2 + 2yx4 − 6x2y + 4x4, 2x5 − 3x3y + xy2 − 2xy3 + xy4〉

= 〈y5 − 3y3 + 2y2 − 3x2y2 + 2yx4 − 6x2y + 4x4, 2x5 − 3x3y + xy2 − 2xy3 + xy4〉.

V (I6) is the tacnode plus the point (0,−2).
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Finally, let us compute the ideal I7 defining V (I6) − V (I4), i.e. the Zariski closure of
V (I6) \ V (I4).

I7 = I6 : I4 = (I6 : 〈x〉) ∩ (I6 : 〈y2 + 2y〉)
= 〈2x4 − 3x2y + y2 − 2y3 + y4〉 ∩ 〈2x4 − 3x2y + y2 − 2y3 + y4〉
= I1.

So we get back the ideal I1 defining the tacnode curve. tu
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5 Hilbert functions and computation of dimension

The dimension of an algebraic variety can be defined in several equivalent ways. We
will use an algebraic approach, and derive an algorithm for computing the dimension for
an ideal (an its corresponding variety) by an application of Gröbner bases. Our treatment
of this subject is based on monomial ideals (such as the initial ideal of an ideal) and the
concept of the Hilbert function.

Throughout this chapter we let K be a field of characteristic 0, K the algebraic closure
of K, and K a universal domain for K, i.e. K is an algebraically closed superfield of K
with infinite transcendence degree over K. E.g., C is a universal domain for Q.

An algebraic definition of dimension

The following definition of the dimension of an ideal can be found in [Gröbner
1968/1970], vol. II, p. 38.

Definition 5.1: Let I ⊂ K[x1, . . . , xn] be a proper ideal and {i1, . . . , id} a subset of
{1, . . . , n}. The set {xi1 , . . . , xid} is said to be independent modulo I if

I ∩K[xi1 , . . . , xid ] = {0}.

We denote the set {X ⊆ {x1, . . . , xn} | X is independent modulo I} by ∆(I). The dimen-
sion of I, denoted by dim(I), is the maximal number of elements in any set of variables
independent modulo I, i.e.

dim(I) = max({|X| | X ∈ ∆(I)}).

Furthermore, for a non–empty variety V ⊆ Kn
we define its dimension as

dim(V ) := dim(I(V )). tu

Observe that for any proper ideal I ⊂ K[x1, . . . , xn] we have

∆(I) = ∆(
√
I) and therefore dim(I) = dim(

√
I).

Let {i1, . . . , id} ⊆ {1, . . . , n}. It follows from the elimination property of Gröbner bases
that

{xi1 , . . . , xid} ∈ ∆(I) iff G ∩K[xi1 , . . . , xid ] = ∅,

where G is the reduced Gröbner basis of I with respect to a lexicographic ordering with
xi1 ≺ xi2 ≺ . . . ≺ xid ≺ other variables (or, for that matter, a product ordering with
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{xi1 , . . . , xid} ≺ X \ {xi1 , . . . , xid}). From these observations we can immediately derive
an algorithm DIMENSION 1 for computing the dimension of an ideal I.

algorithm DIMENSION 1(in: F ; out: d,X);
[F is a finite subset of K[x1, . . . , xn], with I := 〈F 〉 6= K[x1, . . . , xn].
d = dim(I), and X is a set of independent variables modulo I with |X| = d.]
(1) for every permutation p of {1, . . . , n} do

{ compute the reduced Gröbner basis Gp of I w.r.t. the lexicographic
ordering with xp(1) ≺ . . . ≺ xp(n);
ip := the greatest element of {0, . . . , n} such that
Gp ∩K[xp(1), . . . , xp(ip)] = ∅ };

(2) choose a permutation p′ such that
ip′ = max({ip | p a permutation of {1, . . . , n}});

(3) d := ip′ ;
X := {xp′(1), . . . , xp′(ip′ )};
return tu

Example 5.1: Let I be the ideal generated by

F := {x1x3 + x2
1 + x1x2, x2x3 + x1 + 1, x1x2 + x1x2x3} ⊆ Q[x1, x2, x3].

We obtain ∆(I) by computing lexicographic Gröbner bases of F w.r.t. every possible
ordering of variables. Here are these six reduced Gröbner bases:

x1 ≺ x2 ≺ x3 : {x2x3 + x1 + 1, x1x3 + 2x2
1 + x1, x1x2 − x2

1 − x1, x
3
1 + x2

1},
x2 ≺ x1 ≺ x3 : {x1x3 + 2x1x2 − x1, x2x3 + x1 + 1, x2

1 − x1x2 + x1, x1x
2
2 − x1x2},

x1 ≺ x3 ≺ x2 : {x2x3 + x1 + 1, x1x2 − x2
1 − x1, x1x3 + 2x2

1 + x1, x
3
1 + x2

1},
x3 ≺ x1 ≺ x2 : {2x1x2 + x1x3 − x1, x2x3 + x1 + 1, 2x2

1 + x1x3 + x1, x1x
2
3 − x1},

x2 ≺ x3 ≺ x1 : {x1 + x2x3 + 1, x2x
2
3 + 2x2

2x3 − x2x3 + x3 + 2x2 − 1,
x3

2x3 − x2
2x3 + x2

2 − x2},
x3 ≺ x2 ≺ x1 : {x1 + x2x3 + 1, 2x2

2x3 + x2x
2
3 − x2x3 + 2x2 + x3 − 1,

x2x
3
3 − x2x3 + x2

3 − 1}.

Since every Gröbner basis contains a bivariate polynomial, an independent set of variables
can at most contain one variable. Because of the first Gröbner basis, {x1} 6∈ ∆(I). But
{x2} ∈ ∆(I) and {x3} ∈ ∆(I), because the second Gröbner basis does not contain an
element of Q[x2], and the forth Gröbner basis does not contain an element of Q[x3].
Altogether,

∆(I) = { {x2}, {x3}, ∅ }. tu

Obviously this approach suffers from the fact that n! Gröbner bases w.r.t. lexico-
graphic orderings have to be computed. So our goal is to derive a more efficient approach
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to the computation of the dimension. The crucial fact for obtaining a faster algorithm is
the following theorem, which will be proved later (for graduated orderings), after we have
compiled some knowledge about Hilbert functions.

Definition 5.2: Let ≺ be an admissible ordering on [x1, . . . , xn], I an ideal in
K[x1, . . . , xn]. The initial ideal of I, denoted by I≺, is the ideal 〈in(I)〉, i.e. the ideal
generated by the initials or leading terms of I w.r.t. ≺. tu

Theorem 5.1: Let ≺ be an admissible ordering on [x1, . . . , xn], I a proper ideal in
K[x1, . . . , xn]. Let X be an element of maximal cardinality in ∆(I≺). Then X is an
element of maximal cardinality in ∆(I) and therefore

dim(I≺) = |X| = dim(I). tu

Hence, the computation of an element of maximal cardinality in ∆(I) can be reduced
to the computation of an element of maximal cardinality in ∆(I≺).

If G is a Gröbner basis of I w.r.t. ≺, then 〈in(G)〉 = I≺. In fact, this is equivalent to
G being a Gröbner basis w.r.t. ≺. So, for every subset X = {xi1 , . . . , xid} ⊆ {x1, . . . , xn},

X ∈ ∆(I≺) iff in(g) 6∈ K[xi1 , . . . , xid ] for every g ∈ G.

Therefore, after computing G, we can obtain an element of maximal cardinality in ∆(I≺)
by purely combinatorial methods.

This leads immediately to the much more efficient algorithm DIMENSION 2 for com-
puting the dimension of an ideal I.

algorithm DIMENSION 2(in: F ; out: d,X);
[F is a finite subset of K[x1, . . . , xn], with I := 〈F 〉 6= K[x1, . . . , xn].
d = dim(I), and X is a set of independent variables modulo I with |X| = d.]
(1) choose an admissible ordering ≺ on [x1, . . . , xn];

G := GB(F ) w.r.t. ≺;
(2) for all subsets X = {xi1 , . . . , xim} of {x1, . . . , xn} check whether

(*) X ∈ ∆(I≺), i.e. whether
in(g) 6∈ K[xi1 , . . . , xim ] for every g ∈ G;

(3) X := a set of maximal cardinality satisfying this condition (*);
d := |X|;
return tu

A proof of Theorem 5.1 can be found in [Kalkbrener,Sturmfels 1995]. In [Kre-
del,Weispfenning 1991] a different proof for lexicographic orderings is given. We will re-
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strict ourselves to another special case: we will prove Theorem 5.1 under the additional
assumption that ≺ is a graduated ordering, i.e.

deg(u) < deg(v) =⇒ u ≺ v for all u, v ∈ [x1, . . . , xn].

Our proof is based on the important concept of Hilbert functions.

Example 5.2: Let F be defined as in the previous example and let G be the reduced
Gröbner basis of F w.r.t. the lexicographic ordering with x1 ≺ x2 ≺ x3. Then

I≺ = 〈in(G)〉 = 〈x2x3, x1x3, x1x2, x
3
1〉.

Hence,
∆(I≺) = { {x2}, {x3}, ∅ } and dim(I) = dim(I≺) = 1. tu

The initial ideal I≺ of an ideal I has the special property of being generated by
monomials. Such ideals have a structure very similar to homogeneous ideals. Of course,
they are particular homogeneous ideals.

Definition 5.3: An ideal I in K[x1, . . . , xn] is a monomial ideal iff it has a monomial
basis, i.e. a basis B s.t. every f ∈ B is a monomial axj11 · · ·xjnn , a ∈ K. tu

Theorem 5.2: Let I be an ideal in K[x1, . . . , xn]. Then the following are equivalent:

(i) I is a monomial ideal.

(ii) If f ∈ I and m is a monomial occurring in f , then m ∈ I.

(iii) I is generated by a finite monomial basis.

The Hilbert function

Let W be a subspace of a finite–dimensional vector space V . Recall that in this case
W and the quotient space V/W are also finite–dimensional and

dim(V ) = dim(W ) + dim(V/W ). (5.1)

Definition 5.4: Let I ⊆ K[x1, . . . , xn] be an ideal. For a non–negative integer s we let

K[x1, . . . , xn]≤s

denote the set of polynomials of total degree ≤ s in K[x1, . . . , xn] and we define

I≤s := I ∩K[x1, . . . , xn]≤s.
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Note that we can consider K[x1, . . . , xn]≤s as a finite–dimensional vector space over K and
I≤s as a finite–dimensional subspace. The (affine) Hilbert function of I is the function on
the non–negative integers s defined by (using (5.1))

HFI(s) : = dim(K[x1, . . . , xn]≤s/I≤s)
= dim(K[x1, . . . , xn]≤s)− dim(I≤s).

tu

Example 5.3: Consider the ideal

I = 〈x2〉 ⊂ Q[x, y, z].

By a simple inspection we see that for
s = 0, 1, 2, 3 the Hilbert function of I is as
follows:

s HFI(s)

0 1

1 4

2 9

3 16

For s ≥ 2 we have

HFI(s) =
(

3 + s

s

)
−
(

3 + (s− 2)
s− 2

)
=

(3 + s)(2 + s)(1 + s)− (1 + s)s(s− 1)
3!

= s2 + 2s+ 1.

So we see that for s ≥ 2 the Hilbert function HFI agrees with a polynomial function. tu

Let I ⊂ K[x1, . . . , xn] be a proper ideal, ≺ a graduated ordering on [x1, . . . , xn], and
I≺ the initial ideal of I. We will show that

I and the monomial ideal I≺ have the same Hilbert function. (5.2)

Therefore, we will now study Hilbert functions of monomial ideals. More precisely,
we will show that for every monomial ideal J there exists a non–negative integer t and a
univariate polynomial h ∈ Q[x] such that

HFJ(s) = h(s) for every s ≥ t and dim(J) = deg(h). (5.3)
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Using (5.2) and (5.3) it will be easy to prove Theorem 5.1 for graduated orderings.
For proving (5.3) we introduce the concept of a translate.

Definition 5.5: For each monomial ideal I in K[x1, . . . , xn] we let

C(I) := {u ∈ [x1, . . . , xn] | u 6∈ I}

be the set of power products (power products with coefficient 1) not in I, the complement
of I.

For M,N ⊆ [x1, . . . , xn] we define their product as

M ·N := {uv | u ∈M,v ∈ N}.

For every integer r ∈ {1, . . . , n}, every set of variables {xi1 , . . . , xir} ⊆ {x1, . . . , xn},
and every u ∈ [x1, . . . , xn] we call

{u} · [xi1 , . . . , xir ]

a translate of dimension r. Furthermore, every singleton {u} ⊂ [x1, . . . , xn] is called a
translate of dimension 0. tu

Example 5.4: Consider the ideal

I = 〈x3
1, x1x2〉 ⊂ Q[x1, x2].

Obviously, C(I) = {x1, x
2
1} ∪ [x2]. Let s be a non–negative integer and denote the set of

those power products in C(I) with total degree ≤ s by Cs. It will be shown in the proof
of Theorem 2.5 that the set {u | u ∈ Cs} (or, more precisely, the equivalence classes with
representatives u ∈ Cs) is a basis of the quotient space Q[x1, x2]≤s/I≤s. Therefore, I has
the following Hilbert function:

HFI(0) = 1, HFI(1) = 3, HFI(s) = s+ 3 for s ≥ 2.

Note that the Hilbert function is a polynomial function for sufficiently large s (in this
example s must be at least 2). Furthermore, the degree of this polynomial is equal to the
dimension of the ideal. We will show that both results hold for arbitrary ideals. The proof
is based on the observation that if I is a monomial ideal, the set of power products not
in the ideal can be written as a finite disjoint union of translates. For instance, in this
example

C(I) = {x1} ∪ {x2
1} ∪ {1} · [x2]. tu

Theorem 5.3: If I ⊂ K[x1, . . . , xn] is a monomial ideal then C(I) can be written as a
finite disjoint union of translates.
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In Example 5.3 we saw that we could write the Hilbert function HFI(s) as a difference
of binomial coefficients depending on the number of variables and s for sufficiently large
s. This observation can be generalized and it will lead us to the concept of the Hilbert
polynomial.

Lemma 5.4: The number of power products of degree ≤ s in [x1, . . . , xm] is the binomial
coefficient (

m+ s

s.

)
tu

Now we can determine the number of power products of degree ≤ s in an arbitrary
translate.

Lemma 5.5: Let u ∈ [x1, . . . , xn] and t = deg(u).

(i) The number of power products of degree ≤ s in the translate {u}· [x1, . . . , xm] is equal
to the binomial coefficient (

m+ s− t
s− t

)
,

provided that s ≥ t.

(ii) For s ≥ t, this number of power products is a polynomial function of s of degree m
and the coefficient of sm is 1/m!.

Theorem 5.6: If I ⊂ K[x1, . . . , xn] is a proper monomial ideal, then for all s sufficiently
large, the number of power products not in I of degree ≤ s is a polynomial of degree
d = dim(I) in s. Furthermore, the coefficient of sd in this polynomial is positive.

Our next goal is to generalize Theorem 5.6 to arbitrary ideals. The following crucial
observation is due to Macaulay.

Theorem 5.7: Let I ⊆ K[x1, . . . , xn] be an ideal and let ≺ be a graduated ordering on
[x1, . . . , xn]. Then the monomial ideal J = I≺ (the initial ideal) has the same Hilbert
function as I.

Corollary: Let I ⊆ K[x1, . . . , xn] be an ideal. There exists a polynomial h(x) ∈ Q[x],
such that for sufficiently large s we have HFI(s) = h(s).

Definition 5.6: Let I ⊆ K[x1, . . . , xn] be an ideal. The polynomial which equals HFI(s)
for sufficiently large s is called the (affine) Hilbert polynomial of I, denoted by HPI(s). tu
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The smallest integer t such that HFI(s) = HPI(s) for all s ≥ t is called the index
of regularity of I. Determining the index of regularity is of considerable interest and
importance in many computations with ideals, but we will not pursue this topic here.

Theorem 5.8: Let I ⊂ K[x1, . . . , xn] be a proper ideal. Then dim(I) equals the degree
of the Hilbert polynomial of I.

Now we have compiled all the necessary prerequisites for proving Theorem 5.1 under
the additional assumption, that ≺ is a graduated ordering.

Theorem 5.1: Let ≺ be a graduated ordering on [x1, . . . , xn], I a proper ideal in
K[x1, . . . , xn]. Let X be an element of maximal cardinality in ∆(I≺). Then X is an
element of maximal cardinality in ∆(I) and therefore

dim(I≺) = |X| = dim(I).

Proof: Using Theorems 5.6, 5.7, and 5.8, we obtain

dim(I≺) = deg(HPI≺)
= deg(HPI)
= dim(I).

We still have to show that any maximal element in ∆(I≺) is also a maximal element
in ∆(I). Clearly, ∆(I≺) ⊆ ∆(I), since

X ∈ ∆(I≺) X ∈ ∆(I)
m m

I≺ ∩K[X] = 〈0〉 =⇒ I ∩K[X] = 〈0〉

Therefore, if X is an element of maximal cardinality in ∆(I≺), then X must also be an
element of maximal cardinality in ∆(I). tu
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6 Algebraic curves and surfaces

Algebraic curves and surfaces have been studied intensively in algebraic geometry for
decades and even centuries. Thus, there exists a huge amount of theoretical knowledge
about these geometric objects. Recently, algebraic curves and surfaces play an impor-
tant and ever increasing rôle in computer aided geometric design, computer vision, and
computer aided manufacturing. Consequently, theoretical results need to be adapted to
practical needs. We need efficient algorithms for generating, representing, manipulating,
analyzing, rendering algebraic curves and surfaces.

One interesting subproblem is the rational parametrization of curves and surfaces.
Consider an affine plane algebraic curve C in A2(K) in implicit representation, i.e. defined
by the bivariate polynomial f(x, y) ∈ K[x, y]. I.e.

C = {(a, b) | (a, b) ∈ A2(K) and f(a, b) = 0}.

Of course, we could also view this curve in the projective plane P2(K), defined by F (x, y, z),
the homogenization of f(x, y).

In this chapter we follow the development in [Sendra,Winkler 1991,1997].

Definition 6.1. A pair of rational functions P(t) = (x(t), y(t)) ∈ K(t) is a rational
parametrization of the curve C, if and only if f(x(t), y(t)) = 0 and for almost every point
(x0, y0) ∈ C (i.e. up to finitely many exceptions) there is a parameter value t0 ∈ K such
that (x0, y0) = (x(t0), y(t0)).

The parametrization P is proper iff the corresponding map is an isomorphism between
A

1(K) and C. tu

Only irreducible curves, i.e. curves whose defining polynomial is absolutely irre-
ducible, can have a rational parametrization. Almost any rational transformation of a
rational parametrization is again a rational parametrization, so such parametrizations are
not unique.

Implicit representations (by defining polynomial) and parametric representations (by
rational parametrization) both have their particular advantages and disadvantages. Given
an implicit representation of a curve and a point in the plane, it is easy to check whether the
point is on the curve. But it is hard to generate “good” points on the curve, i.e. for instance
points with rational coordinates if the defining field is Q. On the other hand, generating
good points is easy for a curve given parametrically, but deciding whether a point is on
the curve requires the solution of a system of algebraic equations. So it is highly desirable
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to have efficient algorithms for changing from implicit to parametric representation, and
vice versa.

Fig. 6.1 Fig. 6.2

Fig. 6.3 Fig. 6.4

Example 6.1: Let us consider curves in the plane (affine or projective) over C. The curve
defined by f(x, y) = y2 − x3 − x2 (see Fig. 6.1) is rationally parametrizable, and actually
a parametrization is (t2 − 1, t(t2 − 1)).

On the other hand, the elliptic curve defined by f(x, y) = y2 − x3 + x (see Fig 6.2)
does not have a rational parametrization.

The tacnode curve (see Fig. 6.3) defined by f(x, y) = 2x4 − 3x2y + y4 − 2y3 + y2 has
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the parametrization

x(t) =
t3 − 6t2 + 9t− 2

2t4 − 26t3 + 40t2 − 32t+ 9
, y(t) =

t2 − 4t+ 4
2t4 − 26t3 + 40t2 − 32t+ 9

.

The criterion for parametrizability of a curve is its genus. Only curves of genus 0, i.e. curves
having as many singularities as their degree permits, have a rational parametrization. tu

Computing such a parametrization essentially requires the full analysis of singularities
(either by successive blow-ups, or by Puiseux expansion) and the determination of a regular
point on the curve. Elimination methods such as Gröbner bases or resultants are the tools
for the singularity analysis. If the curve C is defined over the field K, then the singularitites
of C come in full conjugacy classes over K. Whereas the singularity structure of a curve is
fixed, we can control the quality of the resulting parametrization by controlling the field
over which we choose the regular point for the parametrization. Thus, finding a regular
curve point over a minimal field extension on a curve of genus 0 is one of the central
problems in rational parametrization, compare [Sendra,Winkler 1997], [Sendra,Winkler
1999].

Example 6.2: Let C be the curve in the complex plane defined by

f(x, y) = (x2 + 4y + y2)2 − 16(x2 + y2) = 0.

For a picture of this curve in the real affine plane see Fig. 6.4.

The curve C has the following rational parametrization:

x(t) = −32 · −1024i+ 128t− 144it2 − 22t3 + it4

2304− 3072it− 736t2 − 192it3 + 9t4
,

y(t) = −40 · 1024− 256it− 80t2 + 16it3 + t4

2304− 3072it− 736t2 − 192it3 + 9t4
.

So, as we see in Fig.6.4, C has infinitely many real points. But generating any one of these
real points from the above parametrization is not obvious. Does this real curve C also have
a parametrization over R? Indeed it does, let’s see how we can get one.

In the projective plane over C, C has 3 double points, namely (0 : 0 : 1) and (1 : ±i : 0).
Let H̃ be the linear system of conics passing through all these double points. The system
H̃ has dimension 2 and is defined by

h(x, y, z, s, t) = x2 + sxz + y2 + tyz = 0.

I.e., for any particular values of s and t we get a conic in H̃. 3 elements of this linear
system define a birational transformation

T = (h(x, y, z, 0, 1) : h(x, y, z, 1, 0) : h(x, y, z, 1, 1))

= (x2 + y2 + yz : x2 + xz + y2 : x2 + xz + y2 + yz)



28 SCIEnce TS Feb.07

which transforms C to the conic D defined by

15x2 + 7y2 + 6xy − 38x− 14y + 23 = 0.

For a conic defined over Q we can decide whether it has a point over Q or R. In particular,
we determine the point (1, 8/7) on D, which, by T −1, corresponds to the regular point
P = (0,−8) on C. Now, by resticting H̃ to conics through P and intersecting H̃ with C
(for details see [Sendra,Winkler 1997]), we get the parametrization

x(t) =
−1024t3

256t4 + 32t2 + 1
, y(t) =

−2048t4 + 128t2

256t4 + 32t2 + 1
.

over the reals. tu

Many of these ideas which work for curves can actually be generalized to higher di-
mensional geometric objects. For an algorithmic treatment of the general parametrization
problem of algebraic surfaces we refer to [Schicho 1998]. Special algorithmic approaches
have been designed for specific classes of algebraic surfaces. For instance, one subproblem
in computer aided geometric design is the manipulation of offset curves, offset surfaces,
pipe and canal surfaces. These are geometric objects keeping certain distances from a
generating object. In [Peternell,Pottmann 1997] it has been proved that pipe and canal
surfaces can be rationally parametrized. A symbolic algorithm for actually computing such
a parametrization is described in [Landsmann et al. 2000] and [Landsmann et al. 2001].

Now that we have seen some examples of parametrization treated by symbolic alge-
braic computation, let us just briefly discuss the inverse problem, namely the problem of
implicitization. If we are given, for instance, a rational parametrization in K(t) of a plane
curve, i.e.

x(t) = p(t)/r(t), y(t) = q(t)/r(t),

we essentially want to eliminate the parameter t from these relations, and get a relation
just between x and y. We also want to make sure that we do not consider components for
which the denominator r(t) vanishes. This leads to the system of algebraic equations

x · r(t)− p(t) = 0,
y · r(t)− q(t) = 0,
r(t) · z − 1 = 0.

The implicit equation of the curve must be the generator of the ideal

I = 〈x · r(t)− p(t), y · r(t)− q(t), r(t) · z − 1〉/K[x,y,z,t] ∩K[x, y].

Using the elimination property of Gröbner bases, we can compute this generator by a
Gröbner basis computation w.r.t. the lexicographic ordering based on x < y < z < t.

Example 6.3: Let us do this for the curve of Example 6.2. We start from the parametriza-
tion

x(t) =
−1024t3

256t4 + 32t2 + 1
, y(t) =

−2048t4 + 128t2

256t4 + 32t2 + 1
.
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So we have to solve the equations

x · (256t4 + 32t2 + 1) + 1024t3 = 0,

y · (256t4 + 32t2 + 1) + 2048t4 − 128t2 = 0,

(256t4 + 32t2 + 1) · z − 1 = 0.

The Gröbner basis of this system w.r.t. the lexicographic ordering based on x < y < z < t
is

G = {........, x4 + y4 + 8x2y + 2x2y2 + 8y3 − 16x2}.

The polynomial in G depending only on x and y is the implicit equation of the curve. tu
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7 Syzygies — Linear equations over K[X]

For given polynomials f1, . . . , fs, f in K[X] we consider the linear equation

f1z1 + . . .+ fszs = f, (7.1)

or the corresponding homogeneous equation

f1z1 + . . .+ fszs = 0. (7.2)

Let F be the vector (f1, . . . , fs). The general solution of (7.1) and (7.2) is to be sought in
K[X]s. The solutions of (7.2) form a module over the ring K[X], a submodule of K[X]s

over K[X].

Definition 7.1. Any solution of (7.2) is called a syzygy of the sequence of polynomials
f1, . . . , fs. The module of all solutions of (7.2) is the module of syzygies Syz(F ) of F =
(f1, . . . , fs). tu

It turns out that if the coefficients of this equation are a Gröbner basis, then we can
immediately write down a generating set (basis) for the module Syz(F ). The general case
will be reduced to this one.

Theorem 7.1. If the elements of F = (f1, . . . , fs) are a Gröbner basis, then S is a basis
for Syz(F ), where S is defined as follows.

For 1 ≤ i ≤ s let ei = (0, . . . , 0, 1, 0, . . . , 0) be the i–th unit vector and for 1 ≤ i < j ≤ s
let

t = lcm(lpp(fi), lpp(fj)),

pij =
1

lc(fi)
· t

lpp(fi)
, qij =

1
lc(fj)

· t

lpp(fj)
,

and k1
ij , . . . , k

s
ij be the polynomials extracted from a reduction of spol(fi, fj) to 0, such

that

spol(fi, fj) = pijfi − qijfj =
s∑
l=1

klijfl.

Then

S = {pij · ei − qij · ej − (k1
ij , . . . , k

s
ij)︸ ︷︷ ︸

Sij

| 1 ≤ i < j ≤ s}.



syzygies 31

Now that we are able to solve homogeneous linear equations in which the coefficients
are a Gröbner basis, let us see how we can transform the general case to this one.

Theorem 7.2. Let F = (f1, . . . , fs)T be a vector of polynomials in K[X] and let the
elements of G = (g1, . . . , gm)T be a Gröbner basis for 〈f1, . . . , fs〉. We view F and G as
column vectors. Let the r rows of the matrix R be a basis for Syz(G) and let the matrices
A,B be such that G = A · F and F = B ·G. Then the rows of Q are a basis for Syz(F ),
where

Q =

 Is −B ·A
...............
R ·A

 .

What we still need is a particular solution of the inhomogeneous equation (7.1). Let
G = (g1, . . . , gm) be a Gröbner basis for 〈F 〉 and let A be the transformation matrix such
that G = A · F (G and F viewed as column vectors). Then a particular solution of (7.1)
exists if and only if f ∈ 〈F 〉 = 〈G〉. If the reduction of f to normal form modulo G yields
f ′ 6= 0, then (7.1) is unsolvable. Otherwise we can extract from this reduction polynomials
h′1, . . . , h

′
m such that

g1h
′
1 + . . .+ gmh

′
m = f.

So H = (h′1, . . . , h
′
m) ·A is a particular solution of (7.1).

Of course, once we are able to solve single linear equations over K[X], we can also
solve systems of linear equations by dealing with the equations recursively. An algorithm
along these lines is presented in [Winkler 1986]. However, it is also possible to extend
the concept of Gröbner bases from ideals to modules (see [Furukawa et al. 1986] and
[Mora,Möller 1986]) and solve a whole system of linear equations by a single computation
of a Gröbner basis for a submodule of K[X]s.

Example 7.1. Consider the linear equation

( xz − xy2 − 4x2 − 1
4

y2z + 2x+
1
2

x2z + y2 +
1
2
x︸ ︷︷ ︸

F

)

 z1

z2

z3

 = 0,

where the coefficients are in Q[x, y, z]. A basis for the syzygies can be computed as the
rows of a matrix Q according to Theorem 8.4.8. QT may contain for instance the syzygy z1

z2

z3

 =

 2xy2 + 4x2y4 + 2x3y2 + 4y4 − 2x4 − 8x3 − 2x2 − 8x5

−8x3y2 − 4x5y2 − 4xy2 − 3x2 − 19x4 − 16x6

y2 + 17x2y2 + 16x4y2 + 4x3y4 + 4xy4 + 8x4 + 2x3 + 8x2 + 2x

 .

In fact, using the concept of Gröbner bases for modules, we get the following basis for
Syz(F ):  y2z + 2x+ 1

2
−xz + xy2 + 4x2 + 1

4
0

 ,

 x2z + y2 + 1
2x

0
−xz + xy2 + 4x2 + 1

4

 ,
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2xy

2 − 2x3 − 1
2x

2

−x3y2 − xy2 − 4x4 − 3
4x

2

xy4 + 4x2y2 + 1
4y

2 + 2x2 + 1
2x

 ,

 0
x2z + y2 + 1

2x
−y2z − 2x− 1

2

 . tu
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