On Verification of Parameterized Distributed Systems

Moscow State University
Computational Mathematics and Cybernetics

Igor V. Konnov

INTAS meeting
Verification by Model Checking

Given a program P and its specification φ build a model M of P on some appropriate abstraction level.

Check, whether M satisfies φ.

Otherwise, generate a counter-example.
The Main Problems of MC

- To choose some suitable formalism for representing abstract models of programs.
- To choose some expressive formal language for representing specifications.
- To develop an efficient model-checking algorithm.
Modelling Distributed Systems

- Individual processes are modelled by Labelled Transition Systems.
- Model of distributed system is an asynchronous parallel composition of LTSes with rendezvous message passing (synchronous communication).
Example of Model
Specifications

We specify program and model behavior by formulas of temporal logic ACTL*-X.

Examples:
- $\text{AF}(\text{critical1})$
- $\text{AG}(\neg \text{critical1} \land \neg \text{critical2})$
- $\neg \text{receive2 \ AU \ send1}$.
Parameterized Distributed Systems

Many distributed algorithms are parameterized by:

- the number of similar processes,
- the size of data types,
- the size of communication channels.

Many distributed algorithms have unbounded data types.
Models Parameterized by Number of Processes

We study the verification problem for families of distributed systems \(\{M_n\} \), \(n \geq 1 \).

Every system \(M_n \) is composed of some distinguished process \(Q \) and a number of isomorphic processes that are instances of the same prototype process \(P \).

\[M_n = Q \parallel P \parallel P \parallel \ldots \parallel P. \]
Specifications of Parameterized Systems

To specify a behavior of parameterized distributed system $M_n = Q \parallel P \parallel P \parallel \ldots \parallel P$ we may:

- either specify a desirable behaviour of the distinguished process Q; in this case we deal with the same specification for the whole family of systems $\{M_n\}$
- or consider parameterized family of formulae ϕ_n;
- or use formulae over regular expressions.
Parameterized Model Checking

For a family S_n of specifications and a family M_n of models we need to check, whether $M_n \models S_n$.

The problem is undecidable [Apt, Kozen, 1986].

The problem is undecidable even for ring networks that are composed of very simple processes.
Suppose that we are given some partial order \leq on LTSes which complies with the following requirements:

- It is conservative under a class of specifications \mathcal{Y}. For any $\psi \in \mathcal{Y}$ prop. $A \leq B$ and $B \models \psi$ implies $A \models \psi$.

- It is monotonic. Relation $A \leq B$ and $C \leq D$ implies $A \parallel B \leq C \parallel D$.

Then to check that $M_n \models \psi$ holds for every n, it is sufficient to find LTS I (invariant) such that $Q \parallel P \parallel I$ and $I \parallel P \parallel I$, hold, and check that $I \models \psi$.

PMC by Invariants
Partial Orders on LTSes

We should choose some order \leq

Some partial orders on LTSes that may be used for the purpose of invariant-aided parameterized verification:

- trace inclusion,
- (strong) simulation,
- weak simulation,
- branching simulation,
- block simulation (close to visible simulation),
- quasi-block simulation.
How to find an invariant?

- To guess it...
- To build another abstraction of P using heuristics and specification.
- To find N such that $M_{N+1} = M_N \parallel P \leq M_N$.

 In this we have $M_{N+2} = (M_N \parallel P) \parallel P \leq M_N \parallel P$, and for every n, $n \geq N + 1$, $M_{n+1} \leq M_N$ holds. Thus it is sufficient to check models M_1, \ldots, M_N.
If we can't find an invariant

- Think more.
- Change the level of abstraction.
- Choose a more suitable partial order relation.
 - Strong simulation is applicable to synchronous systems, but it is poorly suited for finding an invariant of asynchronous systems (though it is possible with combination of abstraction [Clarke, Grumberg, Jha, 1997]).
 - To extend invariant based technique on asynchronous systems we introduce block and quasi-block simulations.
(Strong) Simulation

- Conservative under ACTL*
- Monotonic
- Easy to check!
- Too strong to us
Weak Simulation

Neither conservative
Nor monotonic
Block Simulation

- Conservative under ACTL*-X
- Still not monotonic (but it is in some limited cases)
Definition of Block Simulation

Let \(M_i = (S_i, S_{i0}, A_i, R_i, \Sigma_i, L_i) \), \(i = 1,2 \), be LTSes. Let \(\Sigma_0 \) in \(\Sigma_1 \cap \Sigma_2 \). \(H \in S_1 \times S_2 \) is a block simulation iff for each \((s_1, t_1) \in H \):

- \(L_1(s_1) \cap E_0 = L_2(t_1) \cap E_0 \),
- For every finite block \(s_1 \xrightarrow{-\tau} s_2 \xrightarrow{-\tau} \ldots \xrightarrow{-\tau} s_m \xrightarrow{-a} s \) there is a block \(t_1 \xrightarrow{-\tau} t_2 \xrightarrow{-\tau} \ldots \xrightarrow{-\tau} t_{m+1} \xrightarrow{-a} t \) such that \((s_{m+1}, t_{n+1}) \in H \) and \((s_i, t_j) \in H \),
- For any infinite block \(s_1 \xrightarrow{-\tau} s_2 \xrightarrow{-\tau} \ldots \) from \(s_1 \) there is an infinite block \(t_1 \xrightarrow{-\tau} t_2 \xrightarrow{-\tau} \ldots \) such that \((s_i, t_j) \in H \).
M3 block simulates M1, M4 block simulates M2
But the composition does not preserve block simulation
Quasi-block Simulation

$M1 \parallel M2$

$M3 \parallel M4$
Properties of Quasi-block Simulation

- Block simulation is a quasi-block simulation.
- As a consequence, quasi-block simulation is conservative under ACTL*-X.
- It is monotonic (if synchronization is performed in the same way in the both pairs of models).
Our Verification Framework

- Family of parameterized models is described by network grammars (as in [Clarke, Grumberg, Jha, 1995]).
- Fragments derived from the same non-terminal are checked against block simulation.
- If for some M it holds $M \parallel P \parallel \ldots \parallel P \leq M$, then invariant of non-terminal is found.
Example: Tree Wave Algorithm

- The root node sends message to its successors and waits for response.
- An intermediate node waits for a message from its parent, sends message to its successors, waits for responses, and relays these replies to the parent.
- A leaf node waits for a message from its parent and sends a response back.
Checking Invariant

[Diagram of tree structures with annotations "block simulated by"]
It is enough to check the model
Another models

- We are looking for interesting (and practical) models as case study for running experiments.
- Now we are trying to build an abstraction of Resource ReserVation Protocol (RSVP) and check its properties.
Computing Block Simulation, straightforward approach

To check $M' \leq M''$ one may:

- begin with including all pairs (s', s''): s' in S', s'' in S'' of nodes having the same labels
- refine the set by removing one by one those pairs that do not fit the definition
- until only those pairs that agree the definition remain.

Pairs may be added on demand.

Models may be built on-the-fly.
Simulation-like relations may be interpreted as a parity game of two players: Spoiler and Duplicator [T. Henzinger, O. Kupferman, S. Rajamani, 2002].

Spoiler tries to find a move which testifies against the simulation while Duplicator should find an adequate response to certify the simulation.

If Duplicator provides a winning strategy, then the simulation does exist.
Hierarchy of Simulations

Simulation

Block

Simulation

Branching
Simulation

Quasi-block
Simulation

Weak
Simulation
References

