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Abstract. A unified approach is applied for the construction of sequent forms of the famous Herbrand
theorem for first-order classical and intuitionistic logics without equality. The forms do not explore
skolemization, have wording on deducibility, and as usual, provide a reduction of deducibility in the
first-order logics to deducibility in their propositional fragments. They use the original notions of admis-
sibility, compatibility, a Herbrand extension, and a Herbrand universe being constructed from constants,
special variables, and functional symbols occurring in the signature of a formula under investigation.
The ideas utilized in the research may be applied for the construction and theoretical investigations
of various computer-oriented calculi for efficient logical inference search without skolemization in both
classical and intuitionistic logics and provide some new technique for further development of methods
for automated reasoning in non-classical logics.

1 Introduction

Herbrand’s paper [1] contains a theorem called now the Herbrand theorem. This theorem permits to reduce
the question of the deducibility (validity) of a formula F of first-order classical logic to the question of the
deducibility (validity) of a quantifier-free (“propositional”) formula F ′, at that, the deducibility of F ′ can be
established by means of using only propositional “calculations”. When making the reduction of F to F ′, a
certain set of terms (so-called Herbrand universe) is constructed. Different ways of construction of Herbrand
universe(s) lead to different forms of the Herbrand theorem. In particular, three forms are given in [1]: A,B,
and C. The Herbrand universes for B and C are defined as minimal sets of terms containing constants and
functional symbols occurring in the Skolem functional form of F , and the unique difference between B and
C consists in the ways of the skolemization of F 1.

The form A does not need the skolemization of F , and the Herbrand universe for it uses only constants,
functional symbols, and certain quantifier variables from F . But its application requires checking a large
number of quantifier sequences constructed from “schemes” (in the terminology of [1]) in order to find at
least one sequence satisfying a certain condition that guarantees the validity of the formula F .

Since intuitionistic logic does not keep the skolemization transformations in general, it is impossible to
obtain the forms B and C for intuitionistic logic. Therefore, for intuitionistic logic, there can be made an
attempt to construct a Herbrand theorem similar to the form A only, i.e. when preliminary skolemization
is not obligatory and reduction of first-order investigations to propositional “calculations” is performed.
Besides, it is desired to give such forms of Herbrand’s theorem for classical and intuitionistic cases providing
the clear-cut distinction between them.

This research gives a possible decision of the problem under consideration: the unified forms of Her-
brand’s theorem are formulated for classical and intuitionistic logics in a sequent form2. It does not explore
skolemization, have wordings on deducibility, and develops the approach suggested in [5–7] for classical logic
and modified in a certain way for a tableau treatment of intuitionistic logic in [8], which permits to achieve
the objective just reminded on the base of the original notions of admissibility and compatibility. Note that
a similar style of inference search (not requiring skolemization and not giving Herbrand theorems at once)
was exploited by the author of the paper and his coauthors in a number of sequent calculi for classical logic

1 For example, see [2] and [3] for some details relating to such a type of Herbrand’s theorem.
2 The announcement of the main results of the research was made in the slightly different form at the Kurt Goedel

Centenary Symposium, Vienna, Austria, 2006 [4].



(see, for example, [9, 10]) and in the tableau method for intuitionistic logic from [11] in order to optimize an
item-by-item examination arising when quantifier rules applications satisfying Gentzen’s admissibility – i.e.
to the eigenvariable condition [12] – are made3.

Additionally note that our approach based on the notions of admissibility and compatibility shares
some ideas with the papers [16] and [17] being exploited in the original way for the construction of various
computer-oriented methods for classical and non-classical logics such as matrix characterization methods [17],
different modifications of the connection method (see, for example, [16], [18], [19], [20]), and ordinal sequent
and tableau methods (see, for example, [21], [22]). But all these papers do not contain any direct instructions
how to construct both classical and intuitionistic forms (not requiring skolemization) of Herbrand’s theorem.

2 Preliminaries

We use standard terminology of first-order sequent logic without equality. The basic signature Sig0 of the
first-order language consists of a (possibly empty) set of functional symbols (including constants), a (non-
empty) set of predicate symbols, and logical connectives: the quantifier symbols for the universal character ∀
and for existential character ∃ as well as the propositional symbols for the implication (⊃), disjunction (∨),
conjunction (∧), and negation (¬). At that, ∀x and ∃x are called quantifiers; they are considered as a single
whole. A countable set of variables is denoted by V ar.

The notions of terms, atomic formulas, literals, formulas, sequents, free and bound variables, are defined
in the usual way [23] and assumed to be known to the reader.

As usual, we assume that no two quantifiers in any formula or in any sequent have a common variable,
which can be achieved by renaming bound variables.

Without loss of generality, an initial sequent (i.e. a sequent being investigated on deducibility) always is
considered to have the form → F , where F is a closed formula.

If the principal connective of a formula F is � (i.e. F has the form F ′�F ′′ or �F ′, where � is ⊃, ∨, ∧,
¬, ∀, or ∃), then F is called �-formula.

As in [2], we say that an occurrence of a subformula F in a formula G is
– positive if F is G;
– positive (negative) if G is of the form: G1 ∧ G2, G2 ∧ G1, G1 ∨ G2, G2 ∨ G1, G2 ⊃ G1, ∀xG1, or ∃xG1

and F is positive (negative) in G1;
– negative (positive) if G is of the form G1 ⊃ G2 or ¬G1 and F is positive (negative) in G1.

Further, a formula F has a positive (negative) occurrence in a sequent Γ → ∆ if F has a positive
occurrence in a formula from ∆ (from Γ ) or if F has a negative occurrence in a formula from Γ (from ∆).
Moreover, if F has the form ∀xF ′ (∃xF ′) and F has a positive (negative) occurrence in a formula G or in a
sequent S, then ∀x (∃x) is called a positive quantifier in G or in S, respectively; ∃x (∀x) is called a negative
quantifier in G or in S, if ∃xF ′ (∀xF ′) has a positive (negative) occurrence in G or in S, respectively.

In what follows, the variable of a positive quantifier occurring in a formula G or in a sequent S is called
a parameter in G or in S, respectively; the variable of a negative quantifier occurring in a formula G or in a
sequent S is called a dummy in G or in S, respectively.

Remark. The terms “parameters” and “dummies” are taken from [13], where they are used in the analo-
gous sense.

The way of the extension of the notions of dummies and parameters to sequents and sets of formulas or
of sequents is obvious.

Since the property “to be a dummy” (“to be a parameter”) is invariant w.r.t. logical rules applications
in sequent calculi, any parameter (dummy) x in a formula (in a sequent, in a set of formulas or of sequents)
is convenient to be written as x (x).

For a formula F (for a sequent S), µ(F ) (µ(S)) denotes the result of the elimination of all the quantifiers
from F (from S).

3 S. Kanger introduced his definition of admissibility [13] which has an advantage over Gentzen’s one; its modified
forms were used in a number of papers concerning inference search in classical logic (see, for example, [14]) and in
intuitionistic logic (see, for example, [15]).



If F (S) is a formula (a sequent) and x is its parameter or its dummy then x considered to be a parameter
or a dummy in µ(F ) (in µ(S)).

In what follows, we suppose a reader to know all the notions relating to deducibility in Gentzen (sequent)
calculi LK and LJ . Draw you attention to the fact that all the inference trees in calculi under consideration
are understood in the usual sense and grow “from top to bottom” by applying inference rules to an input
sequent and afterwards to its “heirs”, and so on. Additionally remind that any inference tree having only
leaves with axioms is called a proof tree.

3 Admissibility and compatibility

Let F be a formula. By (i, F ), we denote the i-th occurrence of its subformula if F is read from left to right.
We write (i, F ) vF (j, F ) if, and only if (j, F ) is a subformula of (i, F ). Obviously, the relation vF is a
partial order.

If (i, F ) is the occurrence of a �-formula, where � is a logical connective (a propositional connective or
a quantifier), we also refer to this occurrence as to i�-occurrence in F .

If a formula F has i�- and j�-occurrences of its subformulas (i 6= j) and i�-occurrencevF j�-occurrence,
then j�′ is said to be in the scope of i�; this fact is denoted by i� lF j�′. If � (�′) is ∀x or ∃x, we always
write ix lF j�′ (i� lF jx); at that, when �′ (�) is ∀y or ∃y, we write ix ≺F jy (iy ≺F jx) underlining
the fact that lF is restricted only in the case of the consideration of quantifiers variables. Moreover, any
occurrence i� of a symbol � in a formula F is treated as a new symbol. Therefore, i� and j� (i 6= j) are
different symbols denoting the same logical “operation” �. That is why i�- and j�-occurrences in F can be
considered as different subformulas of F (i 6= j), if needed.

Obviously, for any formula F , ≺F ⊂ lF and the relations ≺F and lF are irreflexive and transitive.
The extensions of ≺F and of lF to the case of a sequent S (≺S and lS) are obvious. The same relates

to the case of a set Ξ of formulas or of sequents (≺Ξ and lΞ).
All the above-given extensions do not lead to confusion since we already begin all our investigations with

a closed formula without common bound variables or with a sequent containing only such formulas.
A substitution, σ, is a finite mapping from variables to terms denoted by σ = {x1 7→ t1, . . . , xn 7→ tn},

where variables x1, . . . , xn are pairwise different and xi is distinguished from ti for all i = 1 . . . n. For an
expression Ex and a substitution σ, the result of the application of σ to the expression of Ex is understood
in the usual sense; it is denoted by Ex · σ.

For any set Ξ of expressions, Ξ · σ denotes the set obtained by the application of σ to every expression
in Ξ. If Ξ is a set of (at least two) expressions and Ξ · σ is a singleton, then σ is called a unifier of Ξ. The
notion of a most general simultaneous unifier (mgsu) of a set of expressions also is understood in the usual
sense.

For any formula F (for any sequent S, for any set Ξ of formulas or sequents), each substitution σ induces
a (possibly empty) relation �F,σ (�S,σ,�Ξ,σ) as follows: y �F,σ x (y �S,σ x, y �Ξ,σ x) if, and only if,
there exists x 7→ t ∈ σ such that x is a dummy in F (S, Ξ), the term t contains y, and y is a parameter in
F (S, Ξ). Obviously, �F,σ (�S,σ, �Ξ,σ) is an irreflexive relation.

In what follows, for a substitution σ and for a formula F (for a sequent S, for a set Ξ of expressions),
CF,σ (CS,σ, CΞ,σ) denotes the transitive closure of ≺F ∪ �{F},σ (of ≺S ∪ �S,σ, of ≺Ξ ∪ �Ξ,σ). At that
time, JF,σ (JS,σ, JΞ,σ) denotes the transitive closure of lF ∪ �{F},σ (of lS ∪ �S,σ, of lΞ ∪ �Ξ,σ).

A substitution σ is admissible (cf. [17]) for a formula F (for a sequent S, for a set Ξ of expressions) if,
and only if, for every x 7→ t ∈ σ, x is a dummy in F (in S, in Ξ), and CF,σ (CS,σ, CΞ,σ) is an irreflexive
relation.

Obviously, CF,σ ⊆ JF,σ (CS,σ ⊆ JS,σ, CΞ,σ ⊆ JΞ,σ). Therefore, the following facts hold on the base of
the definitions.

Proposition 1. The relation JF,σ as well as JS,σ and JΞ,σ are irreflexive (antisymmetric) if, and only if,
CF,σ as well as and CS,σ and CΞ,σ are an irreflexive (antisymmetric) relations. Moreover, the irreflexivity
of JF,σ (of JS,σ, of JΞ,σ) implies the antisymmetry of JF,σ (of JS,σ, of JΞ,σ) and vise versa.

This proposition permits the investigation of the irreflexivity (or the antisymmetry) of C to replace by
the investigation of the irreflexivity (or the antisymmetry) of J and vice versa.



Let F be a formula and j1�1, . . ., jr
�r a sequence of all its logical connectives occurrences. Let TrF be

an inference tree for the initial sequent → F such that if αTrF
(j1i�1) denotes an inference rule application

eliminating the occurrence j1�1 in F then Tr can be constructed in accordance with the order determined
by the sequence αTrF

(j1�1), . . ., αTrF
(jr
�r). In this case, j1�1, . . ., jr

�r is called a proper sequence for
TrF . (It is obvious that there may exist a connectives occurrences sequence for a formula F such that the
sequence is not proper for any TrF . Besides, it must be clear that there may exist more than one proper
sequence for an inference tree TrF in the case of the existence of one for F .)

Let F be a formula and TrF an inference tree for the initial sequent → F . The tree TrF is called
compatible with a substitution σ if, and only if, there exists a proper sequence j1�1, . . ., jr

�r for TrF such
that for any natural numbers m and n, the property m < n implies that the ordered pair 〈jn�n, jm�m〉
does not belong to JF,σ.

The results of the next section demonstrate the importance of the notion of compatibility for the intu-
itionistic case, while it is redundant for classical one as a whole and must be “transformed” into the notion
of admissibility.

4 Herbrand theorems

This section contains the main results of the paper, which condense the investigations presented in [7, 11,
8] in a unified form. Additionally note that without loss of generality, we are interested in establishing the
deducibility of an initial sequent of the form → F , where F is a closed formula.

Let F be a formula and F1, . . . , Fn its variants. If F1, . . . , Fn does not have any bound variables in pairs,
then F1 ∧ . . . ∧ Fn (F1 ∨ . . . ∨ Fn) is called a variant ∧-duplication (a variant ∨-duplication).

Herbrand extension. Let G be a formula, F its subformula, and H a variant ∧-duplication (∨-duplication)
of F not having common variables with G. Then the result of the replacement of F by H in G is called
a one-step Herbrand extension of G. Further, the result HE(G) of a finite sequence of one-step extensions
consequently applied to G, then to a one-step Herbrand extension of G, and so on is called a Herbrand
extension of G. If HE(G) is generated by means of only ∧-extensions, H is called an intuitionistic Herbrand
extension of G.

Herbrand quasi-universe. Let F be a formula. Then HQ(F ) denotes the following minimal set of terms
(called a Herbrand quasi-universe): (i) every constant and every parameter occurring in F belong to HQ(F )
(if there is no constant in F then the special constant c0 ∈ HQ(F )); (ii) if f is a k-ary functional symbol
and terms t1, . . ., tk ∈ HQ(F ) then f(t1, . . ., tk) ∈ HQ(F ).

In other words, HQ(F ) can be considered as a minimal set of terms constructing from constants and
parameters occurring in F with the help of functional symbols of F with arities more that 0.

In what follows, pLK and pLJ denote the propositional parts of LK and LJ , respectively, which means
that pLK and pLJ do not contain quantifier rules, as well as (Con →) and (→ Con) (see the next section)
when antecedents and succedents of sequents are identified with multisets.

Theorem 1. (Sequent form of Herbrand’s theorem for classical logic.) For a formula F , the sequent → F
is deducible in the calculus LK (in any sequent calculus coextensive with LK) if, and only if, there are an
Herbrand extension HE(F ) and a substitution σ of terms from the Herbrand quasi-universe HQ(F ) for all
the dummies of HE(F ) such that

(i) there exists a proof tree Trµ(HE(F ))·σ for → µ(HE(F )) · σ in pLK and
(ii) σ is an admissible substitution for HE(F ).

For intuitionistic logic, Theorem 1 transforms to the following form.

Theorem 2. (Sequent form of Herbrand’s theorem for intuitionistic logic.) For a formula F , the sequent
→ F is deducible in the calculus LJ (in any sequent calculus coextensive with LJ) if, and only if, there are
an intuitionistic Herbrand extension HE(F ) and a substitution σ of terms from the Herbrand quasi-universe
HQ(HE(F )) for all the dummies of HE(F ) such that

(i) there exists a proof tree Trµ(HE(F ))·σ for → µ(HE(F )) · σ in pLJ ,
(ii) σ is an admissible substitution for HE(F ), and
(iii) Trµ(HE(F ))·σ is compatible with σ.



Draw your attention to the fact that Theorems 1 and 2 are distinguished by only the existence of (iii) in
Theorem 2 (and by the calculi LK and LJ). The requirement (iii) is essential for intuitionistic logic. It is
easy to check this fact with the help of the following simple examples.

Example 1. Let we have the sequent S: → F , where F is ¬∀xP (x) ⊃ ∃y¬P (y) (→ F is deducible in LK
and is not deducible in LJ). Obviously, for any intuitionistic Herbrand extension HE(F ), µ(HE(F )) has
the form ¬(P (x1,1)∧ . . .∧P (x1,p1))∧ . . .∧ ¬(P (xr,1)∧ . . .∧P (xr,pr

)) ⊃ ¬P (y) and Herbrand quasi-universe
for it is equal to {c0, x1,1, . . . , xr,pr

}.
For → µ(HE(F )), any substitution σi,j = {y 7→ xi,j}, where i and j are any natural numbers not

exceeding r and pr respectively, leads to a possibility to construct a proof tree Tri,j for the selected extension
µ(HE(F )). (Obviously, the substitution {y 7→ c0} does not have such a property.) It is easy to check the
admissibility of σi,j for HE(F ) and the absence of compatibility of Tri,j with σi,j regardless of the selection
of Tri,j and σi,j . As result, we have the deducibility of S in LK by Theorem 1 and the non-deducibility of
S in LJ by Theorem 2. (When constructing any proof tree for S in LJ , any relation JHE(F ),σi,j

requires
the application of the rule eliminating the first negation of F on the second step of deducing the proof tree,
which is impossible to do in LJ for S.)

Example 2. If we slightly modify Example 1, taking → ∃x¬P (x) ⊃ ¬∀yP (y) as S, we have for S: HQ(S)
= {c0, x} and the substitution {y 7→ x} is admissible for S. In this case, any proof tree for → ¬P (x) ⊃ ¬P (x)
is compatible with {y 7→ x}. Thus, S is deducible in LJ (and, of course, in LK).

Example 3. If we take → ∀y∃xP ′(y, x) ⊃ ∃y1∀x1P
′(x1, y1) as a sequent S, we have: HQ(S) = {x, x1}

and for the substitution σ = {y 7→ x1, y1 7→ x}, the sequent → P ′(x1, x) ⊃ P ′(x1, x) is deducible in pLK.
Unfortunately, σ is not admissible for S and we cannot say anything about the deducibility of S even in LK.
But it is easy to show that the construction of any Herbrand extension of ∀y∃xP ′(y, x) ⊃ ∃y1∀x1P

′(x1, y1)
cannot lead to an admissible substitution for any Herbrand extension and any its proof tree. Therefore, S is
not deducible neither in LK nor in LJ .

As you can see the above-given examples demonstrate that in comparison with Theorem 1, the grave
disadvantage of Theorem 2 consists in the existence of the condition (iii) requiring a certain form of a proof
tree for a sequent µ(→ F )·σ in pLJ (or in its any analogue coextensive with pLJ): it must be compatible with
σ, which does not permit any order of propositional rules applications leading to Tr while, in the classical
case, any proof tree Tr for a sequent µ(→ F ) ·σ in pLK admits any order of propositional rules applications
leading to Tr.

Finally, note that since LK and LJ are sound and complete calculi, the obtained results permit to
reduce the investigation the semantic characterization of classical and/or intuitionistic validity (of first-order
formulas) to propositional deducibility satisfying certain conditions. Additionally, pay your attention to the
fact that Theorem 1 can easily be transformed into some of sequent forms of Herbrand’s theorem given in
[7] for classical logic.

5 Conclusion

This paper presents the author’s results on Herbrand-type theorems for the sequent treatment of first-order
classical and intuitionistic logics. The sequent formalism under consideration gave a possibility to develop
the unified approach to wording and proving the Herbrand forms suggested here. Besides, it also allowed us
to achieve enough general considerations: many famous variants of the Herbrand theorem for classical logic
known to the authors can be produced as its application. Additionally, note that obtained theorems wording
has a transparent character and is connected with deducibility only. This feature and unified approach to the
Herbrand theorems may be used as a theoretical basis for the construction of computer-oriented methods
for enough efficient inference search in classical and intuitionistic logics. Such examples can be found in [7]
for the classical case and in [8] for the intuitionistic one.

In this connection, it is interest to note than the certain calculi used in [7, 8] for the obtaining the
Herbrand-type theorems can serve as examples of enough efficient sequent calculi for their computer imple-
mentation.
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