EXPLICIT MODAL LOGICS of single-conclusion proof systems

Vladimir Krupski (MSU) Joint work with Sergei Artemov (CUNY) and Nikolai Krupski (MSU)

2007

Formal proof theory T – a theory in which the human arguments about proofs and provability should be formalized.

Requirements:

- encodings for formulas, proofs and programs
- Provable(x) "x is provable"
- Proof(x, y) "x is a proof of y"

Suitable candidates: $T = PA, ZF, \ldots$

But all of them are VERY UNFRIENDLY in this role: axioms and rules say nothing about proofs and provability.

Improvements – proof theoretical interfaces for T:

Provable - modal provability logics (GL/S4)

Proof — logics of proofs (FPL/LP)

Verification of decision procedures.

$$Decide(\lceil \varphi \rceil) \xrightarrow{} yes \ (\varphi \text{ is valid})$$
fail

"Private" verification (for oneself):

establish $Decide(\lceil \varphi \rceil) = yes \Rightarrow Provable(\lceil \varphi \rceil).$

"Public" verification:

construct t s.t. $Decide(\ulcorner \varphi \urcorner) = yes \Rightarrow Proof(t, \ulcorner \varphi \urcorner),$ distribute t + trusted ProofChecker(). Core proof logic language:

 $\begin{array}{l} p_0, p_1, \dots - \text{ proof variables} \\ !^1, \times^2 - \text{ operations on proofs} \end{array} \right\} \longmapsto \mathbf{Tm}$

 $S_0, S_1, \dots - \text{sentence variables} \\ \neg, \lor, \land, \rightarrow, (_:_) \\ \end{cases} \longmapsto \mathsf{Fm}$

 $\frac{t \in \mathbf{Tm}, \quad F \in \mathbf{Fm}}{(t : F) \in \mathbf{Fm}}$

Informal semantics:

ļ

t: F – the arithmetical statement "t proves F", $\times, !$ – act on proof codes:

Single-valued proof predicates – reflect the external derivations:

"x is a code of a derivation and

y is the code of its last formula"

 $p: F \land p: G \Rightarrow F = G$ How to formalize this without "="?

$$t_1: F_1 \land \ldots \land t_n: F_n \longmapsto S:= \{ t_i = t_j \Rightarrow F_i = F_j \mid 1 \le i, j \le n \}$$

Def: A unifier σ of S is a substitution s.t. $t_i \sigma \not\equiv t_j \sigma$ or $F_i \sigma \equiv F_j \sigma$ holds for every i, j. Def: $A = B \pmod{S}$ iff $A\sigma \equiv B\sigma$ for every unifier σ of S. Lemma: The relation $A = B \pmod{S}$ is decidable.

Unification axioms:

 $t_1: F_1 \land \ldots \land t_n: F_n \to (A \leftrightarrow B) \text{ when } A = B \pmod{S}.$

System FLP (Single-conclusion proof logic) *A0.* Propositional axioms and rules *A1.* $t: (F \rightarrow G) \rightarrow (s: F \rightarrow ts: G)$ *A2.* $t: F \rightarrow F$ *A3.* $t: F \rightarrow !t: (t: F)$ *A4.* Unification axioms

Theorem 1: FLP is sound and complete w.r. to arithmetical provability interpretations based on single-valued proof predicates.

Theorem 2: FLP is decidable.

Theorem 3: The rule with a scheme $\frac{F_1, \ldots, F_n}{F}$ is **PA**-admissible

iff $\mathbf{FLP} \vdash F_1 \land \ldots \land F_n \to F$.

Moreover, all the operations on **PA**-derivations induced by admissible rules of this kind can be represented by proof terms (Lifting Lemma).

Language extension by references

Ex: goal(t) such that $t: F \Rightarrow$ goal(t) = $F \qquad \forall t, F$

Axiom scheme: t

$$t: F \to t: \texttt{goal}(t)$$

NB: goal cannot be a constant function symbol here: $(A \land B)$ and goal(t) must be unifiable, otherwise $t: (A \land B), t:$ goal(t) $\vdash \bot$ (from Unification axiom). So, $\vdash \neg t: (A \land B)$. The same with $\neg, \lor, \rightarrow, :$.

goal() is SO variable, or reference

We use more powerful unification algorithm that can deal with SO variables. The set of all Unification axioms is still decidable.

Example with pattern matching:

refl(t) such that $t: (s:F) \Rightarrow refl(t) = s \quad \forall t, s, F$

Axiom scheme:

$$t:\underbrace{(s:F)}_{\varphi(s)}\to t:(\texttt{refl}(t):F)$$

Here $\varphi(x)$ is a pattern, x is a metavariable. $t \mapsto G := \text{goal}(t) \mapsto \text{match } G \text{ with } \varphi(x); \text{return } x.$

General case:

f(t) such that $t: \varphi(\ldots, Y, \ldots) \Rightarrow f(t) = Y;$

 $\varphi = F_0 \wedge p_1 : F_1 \wedge \ldots \wedge p_n : F_n \text{ where } F_i = F_i(p_1, \ldots, p_n; S_1, \ldots, S_m).$

System $FLP_{ref} = FLP + (all references)$

The scope of Unification axioms (A4) now includes references. The semantics of $A = B \pmod{S}$ relation involves Second Order unification, but in restricted form which still remains decidable.

Theorems 1',2',3'. FLP_{ref} is decidable, sound and complete w.r. to arithmetical single-conclusion proof interpretations. It provides the same admissibility test for arithmetical inference rules specified by schemes in FLP_{ref} -language.

Ex:

 $is_proof(t) := t:goal(t)$ means "t is a complete proof";

$$\begin{aligned} \exists \bar{x}_{t:\varphi(\bar{x})} F(\bar{x}) &:= t:\varphi(\bar{g}(t)) \wedge F(\bar{g}(t)); \\ \forall \bar{x}_{t:\varphi(\bar{x})} F(\bar{x}) &:= t:\varphi(\bar{g}(t)) \to F(\bar{g}(t)). \end{aligned}$$

$$\begin{aligned} \underbrace{ \text{is_proof}(p) \\ \text{goal}(p) }_{\text{goal}(p)} & \underbrace{ \text{is_proof}(p) \\ \text{refl}(!p):\text{goal}(p) }_{\text{I}} & \underbrace{ p:\neg\text{goal}(p) }_{\text{I}} \end{aligned}$$

$$\begin{aligned} \exists S_0, S_{1_{p_0:(S_0 \to S_1)}} p_1:S_0 \\ \text{is_proof}(p_0 p_1) \end{aligned}$$

Reflexive combinatory logic RCL \rightarrow (Artemov, 2003), extends CL \rightarrow (Curry).

$$!t, \quad t \cdot s, \quad t \colon F, \quad F \to G$$

Rigid typing: x_i^F (typed proof variables); $\mathbf{k}^{(...)} \mathbf{s}^{(...)}, \mathbf{d}^{(...)}, \mathbf{o}^{(...)}, \mathbf{c}^{(...)}$ (typed proof constants).

Inductive definitions for two judgements:

- "F is well formed formula"
- " $\Gamma \vdash F$ "

For every t there is at most one F s.t. t:F is well formed.

RCL \rightarrow , wf-rules:

Standard wf-rules from $\textbf{CL}_{\rightarrow}$ for \rightarrow , \cdot , $\textbf{k}^{(...)}$, $\textbf{s}^{(...)}$;

 $\frac{F - wf}{x_i^F : F - wf} = \frac{t:F - wf}{!t:t:F - wf} = \frac{t:F - wf}{d^{t:F \to F} : (t:F \to F) - wf}$ $\frac{u:(F \to G), v:F - wf}{o^{(...)} : (u:(F \to G) \to (v:F \to uv:G)) - wf}$ $\frac{t:F - wf}{c^{(...)} : (t:F \to !t:t:F) - wf}$

" F - wf" is polynomial time decidable. (N. Krupski)

RCL \rightarrow , derivability:

Precondition: all formulas below must be well formed. **Axioms:** $t: F \to F$ $\mathbf{k}^{(...)}: (F \to (G \to F))$ $\mathbf{s}^{(...)}: ((F \to (G \to H)) \to ((F \to G) \to (F \to H)))$ $\mathbf{d}^{(...)}: (t: F \to F)$ $\mathbf{o}^{(...)}: (u: (F \to G) \to (v: F \to uv: G))$ $\mathbf{c}^{(...)}: (t: F \to !t: t: F)$ **Rule:** $F \to G, F \vdash G$.

" $\Gamma \vdash F$ " is *PSPACE*-complete. (N. Krupski)