
EXPLICIT MODAL LOGICS

of single-conclusion proof systems

Vladimir Krupski (MSU)

Joint work with

Sergei Artemov (CUNY) and Nikolai Krupski (MSU)

2007

Formal proof theory T – a theory in which the human argu-

ments about proofs and provability should be formalized.

Requirements:

• encodings for formulas, proofs and programs

• Provable(x) – “x is provable”

• Proof(x, y) – “x is a proof of y”

Suitable candidates: T = PA, ZF, . . .

But all of them are VERY UNFRIENDLY in this role:

axioms and rules say nothing about proofs and provability.

Improvements – proof theoretical interfaces for T :

Provable — modal provability logics (GL/S4)

Proof — logics of proofs (FPL/LP)

Verification of decision procedures.

Decide(pϕq)
yes (ϕ is valid)

fail

“Private” verification (for oneself):

establish Decide(pϕq) = yes ⇒ Provable(pϕq).

“Public” verification:

construct t s.t. Decide(pϕq) = yes ⇒ Proof(t, pϕq),

distribute t + trusted ProofChecker().

Core proof logic language:

p0, p1, . . . – proof variables

!1,×2 – operations on proofs

}

7−→ Tm

S0, S1, . . . – sentence variables
¬,∨,∧,→, (:)

}

7−→ Fm

t ∈ Tm, F ∈ Fm

(t : F) ∈ Fm

Informal semantics:
t : F – the arithmetical statement “t proves F”,

×, ! – act on proof codes:

C
C
C
C
C
C
C

�
�
�
�
�
�
�

F → G

t
↘

C
C
C
C
C
C
C

�
�
�
�
�
�
�

F

s
↘

=⇒×

C
C
C
C
C
C
C

�
�
�
�
�
�
�

G

t × s
↘

C
C
C
C
C
C
C

�
�
�
�
�
�
�

F

t
↘

=⇒!

C
C
C
C
C
C
C

�
�
�
�
�
�
�

t : F

!t
↘

Single-valued proof predicates – reflect the external deriva-

tions:
“x is a code of a derivation and

y is the code of its last formula”

p :F ∧ p :G ⇒ F = G How to formalize this without “=” ?

t1 :F1 ∧ . . . ∧ tn :Fn 7−→ S:={ ti = tj ⇒ Fi = Fj | 1 ≤ i, j ≤ n }

Def: A unifier σ of S is a substitution s.t. tiσ 6≡ tjσ or Fiσ ≡ Fjσ

holds for every i, j.

Def: A = B (mod S) iff Aσ ≡ Bσ for every unifier σ of S.

Lemma: The relation A = B (mod S) is decidable.

Unification axioms:

t1 :F1 ∧ . . . ∧ tn :Fn → (A ↔ B) when A = B (mod S).

System FLP (Single-conclusion proof logic)
A0. Propositional axioms and rules
A1. t :(F → G) → (s :F → ts :G)
A2. t :F → F

A3. t :F →!t :(t :F)
A4. Unification axioms

Theorem 1: FLP is sound and complete w.r. to arithmeti-
cal provability interpretations based on single-valued proof pred-
icates.

Theorem 2: FLP is decidable.

Theorem 3: The rule with a scheme
F1, . . . , Fn

F
is PA-admissible

iff FLP` F1 ∧ . . . ∧ Fn → F .
Moreover, all the operations on PA-derivations induced by ad-
missible rules of this kind can be represented by proof terms
(Lifting Lemma).

Language extension by references

Ex: goal(t) such that t : F ⇒ goal(t) = F ∀t, F

Axiom scheme: t : F → t : goal(t)

NB: goal cannot be a constant function symbol here:

(A ∧ B) and goal(t) must be unifiable, otherwise

t :(A ∧ B), t :goal(t) ` ⊥ (from Unification axiom).

So, ` ¬ t :(A ∧ B). The same with ¬,∨,→,: .

goal() is SO variable, or reference

We use more powerful unification algorithm that can deal with

SO variables. The set of all Unification axioms is still decidable.

Example with pattern matching:

refl(t) such that t : (s : F) ⇒ refl(t) = s ∀t, s, F

Axiom scheme: t : (s : F)
︸ ︷︷ ︸

ϕ(s)

→ t : (refl(t) : F)

Here ϕ(x) is a pattern, x is a metavariable.

t 7−→ G := goal(t) 7−→ match G with ϕ(x); return x.

General case:

f(t) such that t : ϕ(. . . , Y, . . .) ⇒ f(t) = Y ;

ϕ = F0∧ p1 :F1∧. . .∧ pn :Fn where Fi = Fi(p1, . . . , pn;S1, . . . , Sm).

System FLPref = FLP + (all references)

The scope of Unification axioms (A4) now includes references.

The semantics of A = B (mod S) relation involves Second Order

unification, but in restricted form which still remains decidable.

Theorems 1’,2’,3’. FLPref is decidable, sound and complete

w.r. to arithmetical single-conclusion proof interpretations. It

provides the same admissibility test for arithmetical inference

rules specified by schemes in FLPref-language.

Ex:

is proof(t) := t :goal(t) means “t is a complete proof”;

∃x̄t:ϕ(x̄) F (x̄) := t :ϕ(g(t)) ∧ F (g(t));

∀x̄t:ϕ(x̄) F (x̄) := t :ϕ(g(t)) → F (g(t)).

is proof(p)

goal(p)

is proof(p)

refl(!p):goal(p)

p :¬goal(p)
⊥

∃S0, S1p0:(S0→S1)
p1 :S0

is proof(p0p1)

Reflexive combinatory logic
RCL→ (Artemov, 2003), extends CL→ (Curry).

!t, t · s, t :F, F → G

Rigid typing: xF
i (typed proof variables);

k
(...)

s(...), d(...), o(...), c(...) (typed proof constants).

Inductive definitions for two judgements:

• “F is well formed formula”

• “ Γ ` F ”

For every t there is at most one F s.t. t :F is well formed.

RCL→, wf-rules:

Standard wf-rules from CL→ for →, ·, k(...), s(...);

F -wf

xF
i :F -wf

t :F -wf

!t : t :F -wf

t :F -wf

d
t:F→F :(t :F → F) -wf

u :(F → G), v :F -wf

o
(...) :(u :(F → G) → (v :F → uv :G)) -wf

t :F -wf

c
(...) :(t :F →!t : t :F) -wf

“ F -wf ” is polynomial time decidable. (N. Krupski)

RCL→, derivability:

Precondition: all formulas below must be well formed.

Axioms: t :F → F

k(...) :(F → (G → F))

s(...) :((F → (G → H)) → ((F → G) → (F → H)))

d(...) :(t :F → F)

o(...) :(u :(F → G) → (v :F → uv :G))

c(...) :(t :F →!t : t :F)

Rule: F → G, F ` G.

“ Γ ` F ” is PSPACE-complete. (N. Krupski)

