
May-08

Oleksandr Letychevskyi,

Stepan Potiyenko
May-08

Static Requirements Checking
and Reachability Problem

May-082

Agents and Environment

Environment with attributes
a

b

x

Agent

• states

• local attributes

• behavior

May-083

Basic Protocols

Basic Protocol is a triple

where:

� x is a list of parameters,

� α – is a precondition,

� u – process (action),

� β – post condition

)(βα >→<∀ ux

Forall ms;

May-084

Transition consistency

� Consistent system has deterministic behavior.

� For each agent state preconditions should not intersect.

where:

� Sn – agent state in precondition of basic protocol n.

� αn – precondition of basic protocol n.

))((),(jiji SSjiji αα ∧¬→=∧≠∀

May-085

set of states

Let: balance >= -100

states covered

by precondition

of BP1

balance >= 0

states covered

by precondition

of BP2

-50 <= balance <= 0

Transition consistency

� Example of inconsistency

state after

BP1 application:

DIALING

state after

BP2 application:

WARNING

BP1

precondition:

phone(p, dial);

balance >= 0 BP2

precondition:

phone(p, dial);

-50 <= balance <= 0

balance = 0

?

May-086

Transition completeness

� Complete system never comes to deadlock.

� For each agent state disjunction of all preconditions should be

true (taking into account restrictions).

where

� Sn – agent state in precondition of basic protocol n.

� Rs – restriction for state s.

� αn – precondition of basic protocol n.

)(i
i

si RsSsi α∨∨→=∃∀

May-087

set of states

Let: balance >= -100

states covered

by precondition

of BP1

balance >= 0

states covered

by precondition

of BP2

-50 <= balance <= 0

Transition completeness

� Example of incompleteness

state after

BP1 application:

DIALING

state after

BP2 application:

WARNING

BP1

precondition:

phone(p, dial);

balance >= 0 BP2

precondition:

phone(p, dial);

-50 <= balance <= 0

balance < -50

⊥

May-088

Safety

� First, initial state is checked

where:

� Q – safety condition.

� I – initial state.

� x – a set of attributes.

))()((xQxIx →∀

May-089

Safety

� Second, each applicable basic protocol should be invariant

relatively to safety condition.

where:

� Q – safety condition.

� Pt(X, βi) – environment state X transformed by postcondition βi.

� αi – precondition of basic protocol i.

� βi – postcondition of basic protocol i.

)),((

)(

QQPti

Qi

ii

i

→∧∀

∧∀

βα

α

May-0810

Safety
� Example of safety violation

BP1

precondition:

phone(p, dial); balance > 0

postcondition:

phone(p, dialing); balance := balance - 1
BP2

precondition:

phone(p, dial); -50 <= balance <= 0

postcondition:

phone(p, warning)

safety condition:

balance > 0

safety condition:

balance > 0

� BP1 breaks safety

� Counter-example:

– Let balance = 1;

– Apply BP1;

– balance = 0.

� Precondition of BP2 breaks

safety

� What does it mean?

– If safety is correct it always

should be true, consequently,

BP2 will never be applied –

unreachable protocol;

– Otherwise, safety is incorrect and

should be revised

May-0811

Reachability

� Found inconsistency, incompleteness and safety violations prove
existence of “bad” states where system has nondeterministic
behavior, deadlock or breaks safety conditions.

� Problem: Are these states reachable?

� Let’s build formulas describing “bad” states.

May-0812

Reachability

� Let protocols i and j are inconsistent. It means that the following

formula is true: ∃(x) (αi(x) ∧ αj(x))
It is a “bad” state.

set of states

states covered

by precondition

of BPi

states covered

by precondition

of BPj

� Let protocols i and j cover incomplete state. It means that the

following formula is true: ∃(x) ¬(αi(x) ∨ αj(x))
It is a “bad” state.

BPi

precondition: ααααi(x)
postcondition: ββββi(x)

BPj

precondition: ααααj(x)

x – a set of attributesx – a set of attributes

� Let protocol i breaks safety Q. It means that some state X(x)

exists such as the following formula is true:

∃(x) (αi(x) ∧ Q(x) ∧ X(x) ∧ ¬(Pt(X(x), βi(x)) → Q(x)))

X is a “bad” state.

safety

violation

May-0813

Approaches to reachability problem solution

� Approach 1. To implement some static filtering to avoid

unreachable “bad” states:

� Let’s consider negation of every “bad” state B as safety condition:

¬B

� If the system never breaks condition ¬B then “bad” state B is

unreachable – it can be omitted.

� Otherwise – the problem remains opened.

� Specification of user-defined restricted states is another method of

filtering.

� Let R – formula specifying restricted states.

� If formula R → B is true then “bad” state B is restricted and can be

filtered.

May-0814

Approaches to reachability problem solution

� Approach 2. Based on using model checking and

symbolic modeling.

� Consider simplified behavior of the model and build

directed graph of transitions using attributes subset.

Let’s choose agent state as a subset. It satisfies the

following properties in any basic protocols system:
– occurs in precondition of each protocol;

– always has concrete value.

May-0815

Approaches to reachability problem solution

– Graph nodes ui are formulas which specify value of chosen subset of
attributes (in this case – names of agent states);

– Graph edges rj are the names of basic protocols.

– Consider “bad” state B and find nodes such as:
ui ∧ B ≠ 0

– Build all paths from the node specifying initial state of the system to found
nodes.

– This set of paths is complete but redundant. These paths can be used for
guided search in model checking or symbolic modeling as forward as
backward.

May-0816

Symbolic modeling
� Here we consider methods of state space generation in symbolic

modeling.

� Pre- and postcondition of any basic protocol can be represented in
the following form:

– precondition: A(r,l,s,z);

– postcondition: B(r,l,s,z) = (r := t(r,l,s,z)) ∧ U(l,r,s,z) ∧ C(r,l,s).

� Here:

– l – the vector of list attributes;

– r,s,z – vectors of attribute expressions of numeric and symbolic types;

– A(r,s,z) and C(r,l,s) – basic languages formulas;

– U(l,r,s,z) – conjunction of list updating operators (l – updated lists);

– r := t(r,s,z) – conjunction of assignments for attributes r:
(r1 := t1(r,s,z)) ∧ (r2 := t2(r,l,s,z)) ∧…;

– z – the vector of attributes which occur in assignments and list
updating operators but absent in formula C(r,l,s).

– all lists l are excluded from precondition A and assignments in
postcondition because list access operators can be substituted by
corresponding expressions (first or last element of a list).

May-0817

Symbolic modeling

� Basic protocol is applicable on state class E if formula E ∧ A(r,l,s,z)

is true. Applicable protocol makes transition:

E � E'

� Here E and E' are formulas that specify state classes. They are

represented as:

– E = F(r,s,z) ∧ L(r,l,s,z)

– E' = F'(r,s,z) ∧ L'(r,l,s,z)

� Where:

– F(r,s,z), F'(r,s,z) – basic language formulas;

– L(r,l,s,z), L'(r,l,s,z) – list equalities:

� (l1 = list(head1(r,s,z), …, tail1(r,s,z))) ∧ (l2 = list(head2(r,s,z), …, tail2(r,s,z))) ∧…;

� headi(r,s,z) and taili(r,s,z) – sequences of expressions, can be empty;

� … - abstract (unknown) part of the list; it’s absent in lists with concrete length.

� Transition from given state to the next one is made by predicate

transformers defined as functions of formulas deduction.

May-0818

Forward predicate transformer

E' = pt(E ∧ A(r,l,s,z), B(r,l,s,z))

E' = pt(F(r,s,z) ∧ L(l,r,s,z) ∧ A(r,s,z), B(r,l,s,z))

E' = E1 ∨ E2 ∨…

Ei = ∃(u,v) (F(u,v,ξi) ∧ A(u,v,ξi) ∧ T(r,u,v,ξi) ∧ L(l,u,v,ξi) ∧ Pi(u,v,r,s)) ∧

C(r,l,s)

T(r,u,v,ξi) = ((r1 = t1(u,v,ξi)) ∧ (r2 = t2(u,v,ξi)) ∧ ...)

L(l,u,v,ξi) = ((l1 = list(head1(u,v,ξi), …, tail1(u,v,ξi))) ∧ (l2 =

list(head2(u,v,ξi), …, tail2(u,v,ξi))) ∧…)

– Here u,v – vectors of new variables introduced for signing old values of

attributes r,s. L(l,u,v,z) contains updated lists after operators U(l,r,s,z)

application. If one attribute of functional type occurs in postcondition more than

once we should consider all possible identifications of its arguments. Formula

Pi(u,v,r,s) specifies one of such possibilities. ξi derived from vector z taking into

account Pi(u,v,r,s).

May-0819

Backward predicate transformer

E = pt-1(E', A(r,l,s,z), B(r,l,s,z))

– Let (r = t(u,s,z) ∧ C(r,l,s)) ≠ 0 (valid postcondition).

F(r,s,z) = ∃v (F'(t(r,v,z),v,z)) ∧ A(r,l,s,z) ∧ P(r,s,z)

– If formula F'(r,s,z) is false then given basic protocol could not be

applied and corresponding behavior branch is not considered.

– List updating operators U(r,l,s,z) change list equalities in the

environment state. U(r,l,s,z) contains operators:

� add_to_tail(l, f(r,s,z))

� add_to_head(l, f(r,s,z))

� remove_from_tail(l, f(r,s,z))

� remove_from_head(l, f(r,s,z))

– Updating of the lists and generation of list equalities L(l,r,s,z) is made

by inverse operators to U(r,l,s,z).

May-0820

Demo

� CDMA (target site) was checked by SRC.

� One safety condition formulated:

– (SDU tsdu.SdfMsHHoCmpltT >= 0) & (SDU tsdu.SdfMsHHoCmpltT < 2)

– It means that timer never started twice and never stopped twice.

CTG with

Maxtraces=10000

(28 protocols

were not applied)

SRC

Tool

3 protocols
110 concrete

states
0 concrete states

4 protocols
6 classes of

states

118 pairs of

protocols

safety violation
incompleteness /

deadlock

inconsistency /

nondeterminism

